JP2007066633A - 集電体,負極および電池 - Google Patents

集電体,負極および電池 Download PDF

Info

Publication number
JP2007066633A
JP2007066633A JP2005249597A JP2005249597A JP2007066633A JP 2007066633 A JP2007066633 A JP 2007066633A JP 2005249597 A JP2005249597 A JP 2005249597A JP 2005249597 A JP2005249597 A JP 2005249597A JP 2007066633 A JP2007066633 A JP 2007066633A
Authority
JP
Japan
Prior art keywords
negative electrode
conductive substrate
current collector
polymer layer
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005249597A
Other languages
English (en)
Inventor
Yoshikazu Kato
良和 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005249597A priority Critical patent/JP2007066633A/ja
Publication of JP2007066633A publication Critical patent/JP2007066633A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】 充放電効率を向上させることができる集電体およびそれを用いた負極ならびに電池を提供する。
【解決手段】 負極10は、負極集電体11と負極活物質層12とを有している。負極集電体11は、表面粗さ(Rz)が3μm以上12μm以下の導電性基材11Aに、導電性基材11Aの表面粗さ(Rz)に対する厚みが3分の2以下である高分子層11Bを設けた構成を有している。これにより、リチウムの吸蔵および放出に伴い負極活物質が膨張収縮しても、負極10における導電性の低下を抑制することができ、充放電効率を向上させることができるようになっている。
【選択図】 図1

Description

本発明は、高分子層を設けた集電体およびそれを用いた負極ならびに電池に関する。
近年、モバイル機器の高性能化および多機能化に伴い、これらの電源としての二次電池についても高容量化が切望されている。このような要求に応える二次電池としては、例えば、リチウム二次電池があり、正極にコバルト酸リチウム、負極に黒鉛を用いたものが広く実用化されている。しかし、負極に黒鉛を用いた場合には、電池容量が飽和状態にあり、大幅な高容量化は極めて困難な状況にある。
そこで、負極に金属リチウムを用いることが検討されている。しかしながら、実用化には、リチウムの溶解析出効率の向上を図ることや、リチウムがデンドライト状に析出することを防止する必要がある。
また、最近では、負極にケイ素(Si)あるいはスズ(Sn)などを用いることが検討されている(例えば、特許文献1参照)。これらの理論容量は炭素材料に比べて非常に大きく、電池容量を大幅に向上させることができる。
特開2000−311681号公報
しかしながら、ケイ素(Si)あるいはスズ(Sn)などを用いた場合には、充放電に伴う膨張収縮により、活物質層が脱落してしまい、集電性の低下により充放電効率が低下してしまうという問題があった。
本発明はかかる問題点に鑑みてなされたもので、その目的は、充放電効率を向上させることができる集電体およびそれを用いた負極ならびに電池を提供することにある。
本発明による集電体は、導電性基材と、この導電性基材に設けられた高分子化合物よりなる高分子層とを有し、導電性基材の表面粗さ(Rz)は、3μm以上12μm以下であり、高分子層の厚みは、導電性基材の表面粗さ(Rz)に対して3分の2以下のものである。
本発明による負極は、負極集電体と、この負極集電体に設けられた負極活物質層とを有するものであって、負極集電体は、導電性基材と、この導電性基材に設けられた高分子化合物よりなる高分子層とを有し、導電性基材の表面粗さ(Rz)は、3μm以上12μm以下であり、高分子層の厚みは、導電性基材の表面粗さ(Rz)に対して3分の2以下のものである。
本発明による電池は、正極および負極と共に電解質を備えたものであって、負極は、負極集電体と、この負極集電体に設けられた負極活物質層とを有し、負極集電体は、導電性基材と、この導電性基材に設けられた高分子化合物よりなる高分子層とを有し、導電性基材の表面粗さ(Rz)は、3μm以上12μm以下であり、高分子層の厚みは、導電性基材の表面粗さ(Rz)に対して3分の2以下のものである。
本発明の集電体および負極によれば、表面粗さ(Rz)が3μm以上12μm以下の導電性基材に、導電性基材の表面粗さ(Rz)に対する厚みが3分の2以下である高分子層を設けるようにしたので、導電性の低下を抑制することができる。よって、この集電体および負極を用いた本発明の電池によれば、充放電効率を向上させることができる。
特に、負極に、電極反応物質を吸蔵および放出することが可能であり、構成元素として金属元素および半金属元素からなる群のうちの少なくとも1種を含む負極材料を含有する場合に、高い効果を得ることができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
図1は本発明の一実施の形態に係る負極10の構成を模式的に表すものである。負極10は、例えば、負極集電体11と、負極集電体11に設けられた負極活物質層12とを有している。なお、図1には負極活物質層12が負極集電体11の一面に設けられている場合を示したが、両面に設けるようにしてもよい。
負極集電体11は、例えば、導電性基材11Aに、高分子化合物よりなる高分子層11Bが設けられた構成を有しており、高分子層11は、導電性基材11Aと、負極活物質層12との間に設けられている。このように高分子層11Bを設けることにより、負極活物質層12が負極集電体11から脱落してしまうことを抑制することができるようになっている。
導電性基材11Aは、例えば、銅(Cu),ニッケル(Ni)あるいはステンレスなどの金属材料により構成されている。高分子層11Bを構成する高分子化合物としては、例えば、フッ化ビニリデンを成分として含む重合体、セルロースエーテルあるいはセルロースエーテルの少なくとも一部の置換基が変成されたものが挙げられる。フッ化ビニリデンを成分として含む重合体としては、例えば、ポリフッ化ビニリデンあるいはフッ化ビニリデンの共重合体などがある。共重合体としては、例えばフッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体,フッ化ビニリデン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、あるいはこれらに更に他のエチレン性不飽和モノマーを共重合したものなどが挙げられる。共重合可能なエチレン性不飽和モノマーとしては、例えば、アクリル酸エステル,メタクリル酸エステル,酢酸ビニル,アクリロニトリル,アクリル酸,メタクリル酸,無水マレイン,ブタジエン,スチレン,N−ビニルピロリドン,N−ビニルピリジン,グリシジルメタクリレート,ヒドロキシエチルメタクリレートあるいはメチルビニルエーテルなどが挙げられる。フッ化ビニリデンを成分として含む重合体は、1種を単独で用いてもよく、複数種を混合して用いてもよい。また、セルロースエーテルとしては、例えば、カルボキシメチルセルロースが挙げられる。
導電性基材11Aの表面粗さは、JIS B 0601−2001で規格されている最大高さ(Rz)で、3μm以上12μm以下の範囲内である。また、高分子層11Bの厚みは、導電性基材11Bの表面粗さ(Rz)に対して3分の2以下である。このような範囲とすることにより、導電性基材11Aの表面の一部は、高分子層11Bが設けられていない露出領域を有している。これにより、負極集電体11から負極活物質層12が脱落してしまうことを抑制することができる共に、導電性基材11Aと負極活物質層12との接触性が確保され、導電性の低下を抑制することができるようになっている。なお、高分子層11Bの厚みは、導電性基材11Aの最深部からの厚みとし、例えば、断面SEM(Scanning Electron Microscope;走査型電子顕微鏡)像および触針式膜厚計により測定することができる。また、導電性基材11Aの片面のみを、このような表面粗さ(Rz)としてもよいし、両面をこのような表面粗さ(Rz)としてもよい。更にまた、高分子層11Bは、導電性基材11Aの片面のみに設けるようにしてもよく、両面に設けるようにしてもよい。但し、負極集電体11の少なくとも片面は、導電性基材11Aの表面粗さ(Rz)が上述した範囲であり、更に上述した範囲の厚みを有する高分子層11Bが設けられている。
負極活物質層12は、負極活物質として、リチウム(Li)などの電極反応物質を吸蔵および放出することが可能な負極材料のいずれか1種または2種以上を含んでいる。負極材料としては、例えば、リチウムを吸蔵および放出することが可能であり、金属元素および半金属元素のうちの少なくとも1種を構成元素として含む負極材料が挙げられる。このような負極材料を用いれば、高いエネルギー密度を得ることができるからである。この負極材料は金属元素あるいは半金属元素の単体でも合金でも化合物でもよく、また、これらの1種または2種以上の相を少なくとも一部に有するようなものでもよい。なお、本発明において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体,共晶(共融混合物),金属間化合物あるいはそれらのうちの2種以上が共存するものがある。
この負極材料を構成する金属元素あるいは半金属元素としては、例えば、リチウムと合金を形成可能なマグネシウム(Mg),ホウ素(B),アルミニウム(Al),ガリウム(Ga),インジウム(In),ケイ素,ゲルマニウム(Ge),スズ,鉛(Pb),ビスマス(Bi),カドミウム(Cd),銀(Ag),亜鉛(Zn),ハフニウム(Hf),ジルコニウム(Zr),イットリウム(Y),パラジウム(Pd)あるいは白金(Pt)が挙げられる。これらは結晶質のものでもアモルファスのものでもよい。
中でも、この負極材料としては、短周期型周期表における4B族の金属元素あるいは半金属元素を構成元素として含むものが好ましく、特に好ましいのはケイ素およびスズの少なくとも一方を構成元素として含むものである。ケイ素およびスズは、リチウムを吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができるからである。
スズの合金としては、例えば、スズ以外の第2の構成元素として、ケイ素,ニッケル,銅,鉄,コバルト(Co),マンガン(Mn),亜鉛,インジウム,銀,チタン,ゲルマニウム,ビスマス,アンチモン(Sb),およびクロム(Cr)からなる群のうちの少なくとも1種を含むものが挙げられる。ケイ素の合金としては、例えば、ケイ素以外の第2の構成元素として、スズ,ニッケル,銅,鉄,コバルト,マンガン,亜鉛,インジウム,銀,チタン,ゲルマニウム,ビスマス,アンチモンおよびクロムからなる群のうちの少なくとも1種を含むものが挙げられる。
スズの化合物あるいはケイ素の化合物としては、例えば、酸素(O)あるいは炭素(C)を含むものが挙げられ、スズまたはケイ素に加えて、上述した第2の構成元素を含んでいてもよい。
なお、負極材料としては、リチウムを吸蔵および放出することが可能な炭素材料を用いてもよく、また、これらの炭素材料と、上述した負極材料とを共に用いるようにしてもよい。炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、例えば上述した負極材料と共に用いるようにすればようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができ、更に導電剤としても機能するので好ましい。
このような炭素材料としては、難黒鉛化炭素,易黒鉛化炭素,黒鉛,熱分解炭素類,コークス,ガラス状炭素類,有機高分子化合物焼成体,活性炭およびカーボンブラックなどの炭素材料のいずれか1種または2種以上を用いることができる。このうち、コークス類には、ピッチコークス,ニードルコークスあるいは石油コークスなどがあり、有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂などの高分子化合物を適当な温度で焼成して炭素化したものをいう。
負極活物質層12は、また、ポリフッ化ビニリデンあるいはスチレンブタジエンゴムなどの結着剤および導電剤などの他の材料を含んでいてもよい。
負極10は、例えば、次のようにして作製することができる。まず、例えば、高分子化合物をN−メチル−2−ピロリドンなどの溶剤に溶解し、これを導電性基材11Aに塗布し、乾燥させて溶剤を除去することにより高分子層11Bを形成し、負極集電体11を形成する。また、高分子化合物を水などの分散媒に分散させ、加熱することにより高分子化合物を溶解して塗布するようにしてもよい。
続いて、例えば、負極活物質と、結着剤と、必要に応じて増粘剤とを混合して負極合剤を調製し、この負極合剤をN−メチル−2−ピロリドンあるいは水などの分散媒に分散させて負極合剤スラリーを作製する。次いで、この負極合剤スラリーを負極集電体11に塗布し乾燥させ、圧縮成型することにより負極活物質層12を形成し、図1に示した負極10が形成される。
この負極10は、例えば、次のようにして二次電池に用いられる。
図2は、その二次電池の断面構造を表すものである。この二次電池はいわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶21の内部に、帯状の正極31と帯状の負極10とがセパレータ32を介して積層し巻回された巻回電極体30を有している。電池缶21は、例えばニッケルのめっきがされた鉄により構成されており、一端部が閉鎖され他端部が開放されている。電池缶21の内部には、液状の電解質である電解液が注入され、セパレータ32に含浸されている。また、巻回電極体30を挟むように巻回周面に対して垂直に一対の絶縁板22,23がそれぞれ配置されている。
電池缶21の開放端部には、電池蓋24と、この電池蓋24の内側に設けられた安全弁機構25および熱感抵抗素子(Positive Temperature Coefficient;PTC素子)26とが、ガスケット27を介してかしめられることにより取り付けられており、電池缶21の内部は密閉されている。電池蓋24は、例えば、電池缶21と同様の材料により構成されている。安全弁機構25は、熱感抵抗素子26を介して電池蓋24と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合にディスク板25Aが反転して電池蓋24と巻回電極体30との電気的接続を切断するようになっている。熱感抵抗素子26は、温度が上昇すると抵抗値の増大により電流を制限し、大電流による異常な発熱を防止するものである。ガスケット27は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。
巻回電極体30の中心にはセンターピン33が挿入されている。巻回電極体30の正極31にはアルミニウムなどよりなる正極リード34が接続されており、負極10にはニッケルなどよりなる負極リード35が接続されている。正極リード34は安全弁機構25に溶接されることにより電池蓋24と電気的に接続されており、負極リード35は電池缶21に溶接され電気的に接続されている。
図3は図2に示した巻回電極体30の一部を拡大して表すものである。負極10は上述した構成を有している。これにより、導電性の低下を抑制することができるようになっている。なお、図3では、負極活物質層12は、負極集電体11の両面に形成されているように表されている。
正極31は、例えば、対向する一対の面を有する正極集電体31Aの両面あるいは片面に正極活物質層31Bが設けられた構造を有している。正極集電体31Aは、例えば、アルミニウム箔などの金属箔により構成されている。正極活物質層31Bは、例えば、正極活物質として、電極反応物質であるリチウムを吸蔵および放出することが可能な正極材料のいずれか1種または2種以上を含んでおり、必要に応じて人造黒鉛あるいはカーボンブラックなどの導電剤およびポリフッ化ビニリデンなどの結着剤を含んでいてもよい。
リチウムを吸蔵および放出することが可能な正極材料としては、例えば、リチウム酸化物,リチウムリン酸化物,リチウム硫化物あるいはリチウムを含む層間化合物などのリチウム含有化合物が適当であり、2種以上を混合して用いてもよい。特に、エネルギー密度を高くするには、一般式Lix MIO2 あるいはLiy MIIPO4 で表されるリチウム複合酸化物あるいはリチウムリン酸化物が好ましい。なお、式中、MIおよびMIIは1種類以上の遷移金属を表し、例えば、コバルト(Co),ニッケル,マンガン,鉄,アルミニウム,バナジウム(V)およびチタンのうちの少なくとも1種が好ましい。xおよびyの値は電池の充放電状態によって異なり、通常、0.05≦x≦1.10、0.05≦y≦1.10の範囲内の値である。Lix MIO2 で表されるリチウム複合酸化物の具体例としては、LiCoO2 ,LiNiO2 ,LiNi0.5 Co0.5 2 ,LiNi0.5 Co0.3 Mn0.2 2 、あるいはスピネル型結晶構造を有するLiMn2 4 などが挙げられる。また、Liy MIIPO4 で表されるリチウムリン酸化物の具体例としては、LiFePO4 ,LiFe0.5 Mn0.5 PO4 などが挙げられる。
セパレータ32は、例えば、ポリテトラフルオロエチレン,ポリプロピレンあるいはポリエチレンなどの合成樹脂製の多孔質膜、またはセラミック製の多孔質膜により構成されており、これら2種以上の多孔質膜を積層した構造とされていてもよい。
セパレータ32には、液状の電解質である電解液が含浸されている。この電解液は、例えば溶媒と、この溶媒に溶解された電解質塩とを含んでいる。
溶媒としては、例えば、炭酸プロピレン、炭酸エチレン、炭酸ブチレン、炭酸ジエチル、炭酸ジメチル、炭酸エチルメチル、1,3−ジオキソール−2−オン,4−ビニル−1,3−ジオキソラン−2−オン、エチレンスルフィド、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、酢酸エステル、酪酸エステル、プロピオン酸エステルなどが挙げられる。溶媒には、いずれか1種を単独で用いてもよく、複数種を混合して用いてもよい。
電解質塩としては、例えば、LiPF6 ,LiAsF6 ,LiBF4 ,LiClO4 ,LiB(C6 5 4 ,LiCH3 SO3 ,LiCF3 SO3 ,LiN(CF3 SO2 2 ,LiN(C2 5 SO2 2 ,LiN(C4 9 SO2 )(CF3 SO2 ),LiC(CF3 SO2 3 ,LiC4 9 SO3 ,LiAlCl4 、LiSiF6 、LiClあるいはLiBrなどのリチウム塩が挙げられる。電解質塩には、1種を単独で用いてもよく、複数種を混合して用いてもよい。
この二次電池は、例えば、次のようにして製造することができる。
まず、例えば、上述したようにして負極10を作製する。また、例えば、正極活物質と、必要に応じて導電剤および結着剤とを混合して正極合剤を調製し、この正極合剤をN−メチル−2−ピロリドンなどの分散媒に分散させて正極合剤スラリーを作製する。次いで、この正極合剤スラリーを正極集電体31Aに塗布し乾燥させ、圧縮成型することにより正極活物質層31Bを形成し、正極31を作製する。
続いて、正極集電体31Aに正極リード34を溶接などにより取り付けると共に、負極集電体11に負極リード35を溶接などにより取り付ける。そののち、正極31と負極10とをセパレータ32を介して積層して巻回し、正極リード34の先端部を安全弁機構25に溶接すると共に、負極リード35の先端部を電池缶21に溶接して、巻回した正極31および負極10を一対の絶縁板22,23で挟み電池缶21の内部に収納する。次いで、例えば、電解液を電池缶21の内部に注入し、セパレータ32に含浸させる。そののち、電池缶21の開口端部に電池蓋24,安全弁機構25および熱感抵抗素子26をガスケット27を介してかしめることにより固定する。これにより、図2および図3に示した二次電池が形成される。
この二次電池では、充電を行うと、正極31からリチウムイオンが放出され、セパレータ32に含浸された電解液を介して、負極10に吸蔵される。次いで、放電を行うと、負極10からリチウムイオンが放出され、セパレータ32に含浸された電解液を介して、正極31に吸蔵される。その際、負極活物質、特にリチウムを吸蔵および放出することが可能であり、金属元素および半金属元素のうちの少なくとも1種を構成元素として含む負極材料は、激しく膨張収縮するが、表面粗さ(Rz)が3μm以上12μm以下の導電性基材11Aに、導電性基材11Aの表面粗さ(Rz)に対する厚みが3分の2以下である高分子層11Bが設けられているので、導電性の低下が抑制される。
このように本実施の形態に係る負極10によれば、表面粗さ(Rz)が3μm以上12μm以下の導電性基材11Aに、導電性基材11Aの表面粗さ(Rz)に対する厚みが3分の2以下である高分子層11Bを設けるようにしたので、導電性の低下を抑制することができる。よって、負極10を用いた本実施の形態に係る二次電池によれば、充放電効率を向上させることができる。
特に、負極10にリチウムを吸蔵および放出することが可能であり、構成元素として金属元素および半金属元素からなる群のうちの少なくとも1種を含む負極材料を含有する場合に、高い効果を得ることができる。
更に、本発明の具体的な実施例について詳細に説明する。
(実施例1−1−1,1−1−2,1−2−1,1−2−2)
図4に示したコイン型の二次電池を作製した。この二次電池は、正極41と、負極10とを電解液を含浸させたセパレータ42を介して積層し、外装缶43と外装カップ44との間に挟み、ガスケット45を介してかしめたものである。まず、高分子化合物として重量平均分子量が60万のポリフッ化ビニリデンと、溶剤としてN−メチル−2−ピロリドンとを、ポリフッ化ビニリデン:N−メチル−2−ピロリドン=5:95の質量比で混合し撹拌したポリフッ化ビニリデン/N−メチル−2−ピロリドン溶液を、導電性基材11Aとして電解銅箔に塗布し、乾燥して溶剤を揮発させることにより、ポリフッ化ビニリデンよりなる高分子層11Bを形成し、負極集電体11を作製した。その際、ポリフッ化ビニリデン/N−メチル−2−ピロリドン溶液の塗布量を調整することにより、高分子層11Bの厚みを制御した。電解銅箔の厚みおよび表面粗さ(Rz)は、実施例1−1−1,1−1−2ではそれぞれ15μmおよび3μmとし、実施例1−2−1,1−2−2ではそれぞれ25μmおよび6μmとした。高分子層11Bの厚みは、実施例1−1−1では1.0μmとし、実施例1−1−2では2.0μmとし、実施例1−2−1では1.0μmとし、実施例1−2−2では4.0μmとした。なお、これらの高分子層11Bの厚みは、表面粗さ(Rz)に対して3分の2以下である。
続いて、負極活物質として平均粒径が1μmのケイ素粉末と、結着剤としてポリフッ化ビニリデンとを、ケイ素粉末:ポリフッ化ビニリデン=90:10の質量比で混合し、分散媒としてN−メチル−2−ピロリドンに分散して負極合剤スラリーとした。この負極合剤スラリーを上述した負極集電体11の片面に均一に塗布し、乾燥させたのち、ロールプレス機を用いて圧縮成型することで負極活物質層12を形成し、負極集電体11および負極活物質層12を一括して直径16mmの円盤状に裁断することにより負極10を作製した。負極活物質層12の厚みは、導電性基材11Aの最深部から8μmとした。
また、正極活物質として平均粒径が5μmコバルト酸リチウム(LiCoO2 )粉末と、導電剤としてカーボンブラックと、結着剤としてポリフッ化ビニリデンとを、コバルト酸リチウム粉末:カーボンブラック:ポリフッ化ビニリデン=92:3:5の質量比で混合し、分散媒としてN−メチル−2−ピロリドンに分散して正極合剤スラリーとした。次いで、この正極合剤スラリーを厚み20μmのアルミニウム箔よりなる正極集電体41Aの片面に塗布して乾燥させ、ロールプレス機で圧縮成型して正極活物質層41Bを形成し、正極集電体41Aおよび正極活物質層41Bを一括して直径15mmの円盤状に裁断することにより、正極41を作製した。
続いて、炭酸エチレンと炭酸ジメチルとを、炭酸エチレン:炭酸ジメチル=3:7の質量比で混合した混合溶媒に、1,3−ジオキソール−2−オンを5質量%添加し、電解質塩としてLiPF6 を溶解させて電解液を作製した。電解液におけるLiPF6 の濃度は、1mol/lとした。
そののち、外装カップ44に負極10および厚み25μmのポリプロピレン製のセパレータ42をこの順に配置し、セパレータ42の上から電解液を注ぎ、正極41を入れた外装缶43を被せてガスケット45を介してかしめた。これにより、直径20mm、厚み1.6mmのコイン型の二次電池を得た。
実施例1−1−1,1−1−2,1−2−1,1−2−2に対する比較例1−1−1,1−2−1として、高分子層を形成しなかったことを除き、他は実施例1−1−1,1−1−2,1−2−1,1−2−2と同様にして二次電池を作製した。また、比較例1−1−2,1−2−2として、導電性基材の表面粗さ(Rz)に対する高分子層の厚みを3分の2よりも大きくしたことを除き、他は実施例1−1−1,1−1−2,1−2−1,1−2−2と同様にして二次電池を作製した。具体的には、高分子層の厚みを、比較例1−1−2では4.0μmとし、比較例1−2−2では5.0μmとした。
更に、比較例1−3−1,1−3−2として、導電性基材の表面粗さ(Rz)を15μmとしたことを除き、他は実施例1−1−1,1−1−2,1−2−1,1−2−2と同様にして二次電池を作製した。その際、導電性基材の厚みは35μmとし、高分子層の厚みは2.0μmまたは8.0μmとした。
作製した実施例および比較例の二次電池について充放電を行い、サイクル特性を調べた。その際、充電は、25℃の環境中において、1mA/cm2 の定電流密度で電池電圧が4.2Vになるまで行なったのち、4.2Vの定電圧で電流密度が0.02mA/cm2 に達するまで行い、放電は、1mA/cm2 の定電流密度で電池電圧が2.5Vになるまで行った。サイクル特性は、この充放電を繰り返し、初回放電容量(1サイクル目の放電容量)に対する50サイクル目の放電容量維持率、すなわち、(50サイクル目の放電容量/初回放電容量)×100%から求めた。結果を表1に示す。なお、充電の際には、初回の充電における負極10の利用率を、金属リチウムが析出しないように設計した。
Figure 2007066633
表1に示したように、導電性基材11Aの表面粗さ(Rz)に対する高分子層11Bの厚みを3分の2以下とした実施例1−1−1,1−1−2,1−2−1,1−2−2によれば、高分子層を設けていない比較例1−1−1,1−2−1よりも、あるいは導電性基材の表面粗さ(Rz)に対する高分子層の厚みを3分の2超とした比較例1−1−2,1−2−2よりも、放電容量維持率が向上した。
また、導電性基材11Aの表面粗さ(Rz)を3μm以上12μm以下とした実施例1−1−1,1−1−2,1−2−1,1−2−2によれば、導電性基材の表面粗さ(Rz)をこの範囲外とした比較例1−3−1,1−3−2よりも、放電容量維持率が向上した。
すなわち、表面粗さ(Rz)が3μm以上12μm以下の導電性基材11Aに、導電性基材11Aの表面粗さ(Rz)に対する厚みが3分の2以下である高分子層11Bを設けるようにすれば、サイクル特性を向上させることができることが分かった。
(実施例2−1,2−2)
負極活物質としてコバルト−スズ金属間化合物を用いたことを除き、他は実施例1−1−1,1−1−2,1−2−1,1−2−2と同様にしてコイン型の二次電池を作製した。その際、負極集電体11において、導電性基材11Aである電解銅箔の厚みおよび表面粗さ(Rz)は、それぞれ35μmおよび12mとし、高分子層11Bの厚みは、2.0μmまたは8.0μmとした。なお、これらの高分子層11Bの厚みは、表面粗さ(Rz)に対して3分の2以下である。
また、負極10は、負極活物質として平均粒径が15μmのコバルト−スズ金属間化合物75質量%と、負極活物質および導電剤である炭素材料20質量%と、増粘剤としてカルボキシメチルセルロース2質量%と、結着剤としてスチレンブタジエンゴム3質量%とを混合し、分散媒である純水に分散した負極合剤スラリーを、上述した負極集電体11の片面に均一に塗布し、乾燥させたのち、ロールプレス機を用いて圧縮成形することで負極活物質層12を形成し、負極集電体11および負極活物質層12を一括して直径16mmの円盤状に裁断することにより作製した。負極活物質層12の厚みは、導電性基材11Aの最深部から40μmとした。
実施例2−1,2−2に対する比較例2−1として、高分子層を形成しなかったことを除き、他は実施例2−1,2−2と同様にして二次電池を作製した。また、比較例2−2として、導電性基材の表面粗さ(Rz)に対する高分子層の厚みを3分の2よりも大きくしたことを除き、他は実施例2−1,2−2と同様にして二次電池を作製した。具体的には、高分子層の厚みを10.0μmとした。
作製した実施例および比較例の二次電池について、実施例1−1−1、1−1−2,1−2−1,1−2−2と同様にしてサイクル特性を調べた。結果を表2に示す。
Figure 2007066633
表2から分かるように、導電性基材11Aの表面粗さ(Rz)に対する高分子層11Bの厚みを3分の2以下とした実施例2−1,2−2によれば、高分子層を設けていない比較例2−1よりも、あるいは導電性基材の表面粗さ(Rz)に対する高分子層の厚みを3分の2超とした比較例2−2よりも、放電容量維持率が向上した。
すなわち、他の負極活物質を用いた場合にも、表面粗さ(Rz)が3μm以上12μm以下の導電性基材11Aに、導電性基材11Aの表面粗さ(Rz)に対する厚みが3分の2以下である高分子層11Bを設けるようにすれば、サイクル特性を向上させることができることが分かった。
以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は実施の形態および実施例に限定されず、種々の変形が可能である。例えば、上記実施の形態では、円筒型の二次電池を具体的に挙げて説明し、更に上記実施例では、コイン型の二次電池についても説明したが、本発明は、角型,ボタン型,薄型,大型あるいはラミネートフィルムなどの外装部材を用いた他の形状を有する二次電池、または積層構造などの他の構造を有する二次電池についても同様に適用することができる。また、本発明は、二次電池に限らず、一次電池などの他の電池についても同様に適用することができる。
更に、上記実施の形態および実施例では、電極反応物質としてリチウムを用いる電池について説明したが、ナトリウム(Na)あるいはカリウム(K)などの他のアルカリ金属、またはマグネシウムあるいはカルシウム(Ca)などのアルカリ土類金属、またはアルミニウムなどの他の軽金属を用いる場合についても、本発明を適用することができる。その際、電極反応物質を吸蔵および放出することが可能な正極活物質あるいは溶媒などは、その電極反応物質に応じて選択される。
更にまた、上記実施の形態および実施例では、電解質として電解液を用いる場合について説明したが、電解液を高分子化合物などの保持体に保持させたいわゆるゲル状の電解質、またはイオン伝導性を有する固体電解質を用いてもよい。ゲル状の電解質に用いる高分子化合物としては、例えばポリフッ化ビニリデンあるいはフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体などのフッ素系高分子化合物、ポリエチレンオキサイドあるいはポリエチレンオキサイドを含む架橋体などのエーテル系高分子化合物、ポリアクリロニトリル、ポリメタクリレートあるいはポリアクリレートを繰返し単位として含むものなどが挙げられる。特に、酸化還元安定性の点からは、フッ素系高分子化合物が望ましい。高分子化合物には、いずれか1種を単独で用いてもよく、2種以上を混合して用いてもよい。
固体電解質には、例えば、イオン伝導性を有する高分子化合物に電解質塩を分散させた高分子固体電解質、またはイオン伝導性ガラスあるいはイオン性結晶などよりなる無機固体電解質を用いることができる。このとき、高分子化合物としては、例えば、ポリエチレンオキサイドあるいはポリエチレンオキサイドを含む架橋体などのエーテル系高分子化合物、ポリメタクリレートあるいはポリアクリレートなどのエステル系高分子化合物を単独あるいは混合して、または分子中に共重合させて用いることができる。また、無機固体電解質としては、窒化リチウムあるいはヨウ化リチウムなどを用いることができる。
本発明の一実施の形態に係る負極の構成を表す断面図である。 図1に示した負極を用いた二次電池の構成を表す断面図である。 図2で示した巻回電極体の一部を拡大した断面図である。 実施例で作製した二次電池の断面図である。
符号の説明
10…負極、11…負極集電体、11A…導電性基材、11B…高分子層、12…負極活物質層、21…電池缶、22,23…絶縁板、24…電池蓋、25…安全弁機構、25A…ディスク板、26…熱感抵抗素子、27,45…ガスケット、30…巻回電極体、31,41…正極、31A,41A…正極集電体、31B,41B…正極活物質層、32,42…セパレータ、33…センターピン、34…正極リード、35…負極リード、43…外装缶、44…外装カップ。

Claims (10)

  1. 導電性基材と、この導電性基材に設けられた高分子化合物よりなる高分子層とを有し、
    前記導電性基材の表面粗さ(Rz)は、3μm以上12μm以下であり、
    前記高分子層の厚みは、前記導電性基材の表面粗さ(Rz)に対して3分の2以下である
    ことを特徴とする集電体。
  2. 前記高分子層は、フッ化ビニリデンを成分として含む重合体を含有することを特徴とする請求項1記載の集電体。
  3. 負極集電体と、この負極集電体に設けられた負極活物質層とを有する負極であって、
    前記負極集電体は、導電性基材と、この導電性基材に設けられた高分子化合物よりなる高分子層とを有し、
    前記導電性基材の表面粗さ(Rz)は、3μm以上12μm以下であり、
    前記高分子層の厚みは、前記導電性基材の表面粗さ(Rz)に対して3分の2以下である
    ことを特徴とする負極。
  4. 前記高分子層は、フッ化ビニリデンを成分として含む重合体を含有することを特徴とする請求項3記載の負極。
  5. 前記負極活物質層は、電極反応物質を吸蔵および放出することが可能であり、構成元素として金属元素および半金属元素からなる群のうちの少なくとも1種を含む負極材料を含有することを特徴とする請求項3記載の負極。
  6. 前記負極活物質層は、ケイ素(Si)およびスズ(Sn)のうちの少なくとも一方を構成元素として含む材料を含有することを特徴とする請求項3記載の負極。
  7. 正極および負極と共に電解質を備えた電池であって、
    前記負極は、負極集電体と、この負極集電体に設けられた負極活物質層とを有し、
    前記負極集電体は、導電性基材と、この導電性基材に設けられた高分子化合物よりなる高分子層とを有し、
    前記導電性基材の表面粗さ(Rz)は、3μm以上12μm以下であり、
    前記高分子層の厚みは、前記導電性基材の表面粗さ(Rz)に対して3分の2以下である
    ことを特徴とする電池。
  8. 前記高分子層は、フッ化ビニリデンを成分として含む重合体を含有することを特徴とする請求項7記載の電池。
  9. 前記負極は、電極反応物質を吸蔵および放出することが可能であり、構成元素として金属元素および半金属元素からなる群のうちの少なくとも1種を含む負極材料を含有することを特徴とする請求項7記載の電池。
  10. 前記負極は、ケイ素(Si)およびスズ(Sn)のうちの少なくとも一方を構成元素として含む材料を含有することを特徴とする請求項7記載の電池。
JP2005249597A 2005-08-30 2005-08-30 集電体,負極および電池 Pending JP2007066633A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249597A JP2007066633A (ja) 2005-08-30 2005-08-30 集電体,負極および電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005249597A JP2007066633A (ja) 2005-08-30 2005-08-30 集電体,負極および電池

Publications (1)

Publication Number Publication Date
JP2007066633A true JP2007066633A (ja) 2007-03-15

Family

ID=37928598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249597A Pending JP2007066633A (ja) 2005-08-30 2005-08-30 集電体,負極および電池

Country Status (1)

Country Link
JP (1) JP2007066633A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153224A (ja) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd 電極およびその製造方法
WO2013018686A1 (ja) * 2011-07-29 2013-02-07 古河スカイ株式会社 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品
CN108615892A (zh) * 2018-05-02 2018-10-02 南方科技大学 一种有效抑制锂金属电池枝晶不可控生长的改性集流体、其制备方法及用途
WO2023115817A1 (zh) * 2021-12-22 2023-06-29 上海恩捷新材料科技有限公司 复合集流体及其制备方法、其极片和电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186874A (ja) * 1997-09-09 1999-03-30 Nippon Zeon Co Ltd 非水電解液二次電池または非水電解液コンデンサー用電極
JPH11297307A (ja) * 1998-04-07 1999-10-29 Hitachi Maxell Ltd ポリマーリチウムイオン二次電池
JPH11339771A (ja) * 1998-05-22 1999-12-10 Fuji Photo Film Co Ltd 非水二次電池
JP2002260637A (ja) * 2000-09-01 2002-09-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法
JP2004095264A (ja) * 2002-08-30 2004-03-25 Mitsubishi Materials Corp リチウムイオン二次電池用負極及び該負極を用いて作製したリチウムイオン二次電池
JP2004288520A (ja) * 2003-03-24 2004-10-14 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186874A (ja) * 1997-09-09 1999-03-30 Nippon Zeon Co Ltd 非水電解液二次電池または非水電解液コンデンサー用電極
JPH11297307A (ja) * 1998-04-07 1999-10-29 Hitachi Maxell Ltd ポリマーリチウムイオン二次電池
JPH11339771A (ja) * 1998-05-22 1999-12-10 Fuji Photo Film Co Ltd 非水二次電池
JP2002260637A (ja) * 2000-09-01 2002-09-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法
JP2004095264A (ja) * 2002-08-30 2004-03-25 Mitsubishi Materials Corp リチウムイオン二次電池用負極及び該負極を用いて作製したリチウムイオン二次電池
JP2004288520A (ja) * 2003-03-24 2004-10-14 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153224A (ja) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd 電極およびその製造方法
WO2013018686A1 (ja) * 2011-07-29 2013-02-07 古河スカイ株式会社 集電体及びそれを用いた電極構造体、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ又は蓄電部品
CN108615892A (zh) * 2018-05-02 2018-10-02 南方科技大学 一种有效抑制锂金属电池枝晶不可控生长的改性集流体、其制备方法及用途
WO2019210596A1 (zh) * 2018-05-02 2019-11-07 南方科技大学 一种有效抑制锂金属电池枝晶不可控生长的改性集流体、其制备方法及用途
WO2023115817A1 (zh) * 2021-12-22 2023-06-29 上海恩捷新材料科技有限公司 复合集流体及其制备方法、其极片和电池

Similar Documents

Publication Publication Date Title
JP4196373B2 (ja) 非水電解質二次電池
US8980125B2 (en) Active material, battery, and method for manufacturing electrode
JP4626568B2 (ja) リチウムイオン二次電池
US7754381B2 (en) Anode and battery, and manufacturing methods thereof
JP2007194202A (ja) リチウムイオン二次電池
JP2006286531A (ja) 電池
JP2006156235A (ja) 負極および電池
JP4595145B2 (ja) 非水電解質電池
JP2004362895A (ja) 負極材料およびそれを用いた電池
JP2007103119A (ja) 正極材料、正極および電池
JP2007012559A (ja) 電池
JP4701595B2 (ja) リチウムイオン二次電池
JP5172089B2 (ja) リチウムイオン二次電池用負極の製造方法
JP2007066633A (ja) 集電体,負極および電池
JP2007134244A (ja) 電池
JP2007258094A (ja) 正極活物質、正極および電池
JP4849291B2 (ja) 二次電池
JP5082204B2 (ja) リチウム二次電池用正極活物質の製造方法およびリチウム二次電池
JP5040074B2 (ja) リチウムイオン二次電池用正極活物質の製造方法およびリチウムイオン二次電池
JP2007059206A (ja) 負極および電池
JP4752243B2 (ja) 負極および電池、並びにそれらの製造方法
JP2002222651A (ja) 非水電解質二次電池
JP2005032687A (ja) 負極材料およびそれを用いた電池
JP2005222830A (ja) 電解液および電池
JP2006179439A (ja) 負極および電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111201