JP2007043153A - ダイを急熱するためのオンダイ加熱回路及び制御ループ - Google Patents

ダイを急熱するためのオンダイ加熱回路及び制御ループ Download PDF

Info

Publication number
JP2007043153A
JP2007043153A JP2006205994A JP2006205994A JP2007043153A JP 2007043153 A JP2007043153 A JP 2007043153A JP 2006205994 A JP2006205994 A JP 2006205994A JP 2006205994 A JP2006205994 A JP 2006205994A JP 2007043153 A JP2007043153 A JP 2007043153A
Authority
JP
Japan
Prior art keywords
integrated circuit
heating
circuit
temperature
internally
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006205994A
Other languages
English (en)
Other versions
JP4758843B2 (ja
Inventor
Jody Greenberg
グリーンバーグ ジョディ
Sehat Sutardja
スタージャ セハット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marvell World Trade Ltd
Original Assignee
Marvell World Trade Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/242,230 external-priority patent/US7375597B2/en
Priority claimed from US11/243,017 external-priority patent/US7852098B2/en
Application filed by Marvell World Trade Ltd filed Critical Marvell World Trade Ltd
Publication of JP2007043153A publication Critical patent/JP2007043153A/ja
Application granted granted Critical
Publication of JP4758843B2 publication Critical patent/JP4758843B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/345Arrangements for heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Control Of Temperature (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

【課題】集積回路を特別な温度のチャンバ内に入れることなく、1つ又は複数の温度まで急速、且つ正確に加熱を行う。
【解決手段】集積回路が、コントローラの制御下で集積回路を加熱するように構成される加熱回路を含む。コントローラにおいて、調整可能な極、零点及び全利得を有する伝達関数がインプリメントされ、調整可能な極、零点及び全利得のうちの1つ又は複数を調整することによって、集積回路の温度応答を変更できるようにする。
【選択図】図1

Description

本発明は、半導体集積回路(IC)に関し、より詳細には、迅速に較正及び試験するためのオンダイ加熱回路及び制御ループに関する。
本出願は、参照により本明細書に援用される、2005年8月1日に出願の米国仮特許出願第60/704,399号及び2005年9月30日に出願の米国仮特許出願第60/722,226号の利益を主張する。さらに、本出願は、参照により本明細書に援用される、本発明の譲受人に譲渡された同時係属中の、「Low-Noise Fine-Frequency Tuning」というタイトルの2005年10月3日に出願の特許出願第11/242,230号及び「On-Die Heating Circuit And Control Loop For Rapid Heating Of The Die」というタイトルの2005年10月3日に出願の特許出願第11/243,017号に関連する。
試験及び較正するためにICを加熱する従来の方法は、ICに外部から熱を加えること、又は特別な温度に調整されたチャンバ内にICを入れることを含む。これらの構成は一般的に実装するのにコストがかかり、感温性の回路を較正する場合のように、ICを正確な温度まで急熱する必要がある場合に正確な結果を提供しない。
それゆえ、ICを特別な温度のチャンバ内に入れることを必要とすることなく、ICを1つ又は複数の温度まで急速且つ正確に加熱できるように、ICの温度を制御できることが好都合であろう。
本発明の実施の形態は、集積回路を1つ又は複数の目標温度まで急速に内部加熱できるようにする回路、方法、装置及びコードを提供する。
本発明の一実施の形態では、集積回路は、コントローラ手段と、コントローラ手段の制御下で集積回路を加熱するための加熱手段とを備え、コントローラ手段において、調整可能な極、零点及び全利得を有する伝達関数がインプリメントされ、調整可能な極、零点及び全利得のうちの1つ又は複数を調整することによって、集積回路の温度応答を変更できるようにする。
一実施の形態では、コントローラ手段は、調整可能な極、零点及び全利得のうちの1つ又は複数をデジタル形式で調整するために、集積回路の外部にあるソースからコマンドを受信し、コマンドは、集積回路が収容されるパッケージの熱特性に対応する情報を含む。
別の実施の形態では、調整可能な極、零点及び全利得のうちの零点は、集積回路が収容されるパッケージの遅い熱動態を補償するように調整される。
さらに別の実施の形態では、集積回路は、集積回路の温度を測定するための温度測定手段と、測定された温度と目標温度との間の差を検出するとともに、検出された温度差をコントローラ手段に与えるための検出器手段とをさらに備える。
さらに別の実施の形態では、集積回路は、1つ又は複数の回路素子を含む感温性ブロックをさらに備え、コントローラ手段は、加熱手段が多様な温度に集積回路を加熱するようにさせるように構成され、感温性ブロックは多様な温度のそれぞれにおいて較正される。
さらに別の実施の形態では、集積回路は、1つ又は複数の回路素子を含む感温性ブロックをさらに含み、感温性ブロック及び温度測定手段は集積回路上の所定の場所に配置され、その場所では、加熱手段によって熱が生成される結果として集積回路にわたって生成される温度勾配が、概ね最小限に抑えられる。
さらに別の実施の形態では、集積回路は、1つ又は複数の回路素子を含む感温性回路をさらに備え、感温性ブロック及び温度測定手段が集積回路の第1の側に沿って配置され、加熱手段が集積回路の第1の側とは反対側にある別の側に沿って配置される。
さらに別の実施の形態では、加熱手段はバイアス信号を生成するためのバイアス手段と、バイアス信号及びコントローラ手段からの複数の制御信号を受信するための電力消費手段とを備える。
さらに別の実施の形態では、電力消費手段は、目標温度に応じて、電流を流すために所定の数のトランジスタがオンに切り替えられるように構成されるトランジスタアレイを備える。
さらに別の実施の形態では、トランジスタアレイ内の各トランジスタは、そのトランジスタをオンに切り替えるためにバイアス信号が選択的に加えられるゲートを有する。
さらに別の実施の形態では、制御信号に応答して、トランジスタアレイ内の複数のトランジスタのゲートにバイアス信号が選択的に加えられて、それらのトランジスタが選択的にオンに切り替えられる。
さらに別の実施の形態では、集積回路は電源電圧によって駆動され、電源電圧の変動に応答して、バイアス手段がバイアス信号を調整し、電力消費手段の動作が所定の電圧範囲内にある電源電圧の変動にほとんど影響を受けないようにする。
さらに別の実施の形態では、バイアス手段は、バイアス信号を調整するようにさらに動作し、電力消費手段の動作が温度変動にほとんど影響を受けないようにする。
以下に記述される詳細な説明及び添付の図面を参照することにより、本発明の本質及び利点をさらに深く理解することができる。
本発明の一実施形態によるオンダイ熱管理システムのブロック図である。
本発明の一実施形態による、調整可能な特性を有する伝達関数を示す図である。
波形A及びBによって示される2つの場合のPC基板上にあるパッケージ化されたICの温度応答を示す図である。
較正のために、オンダイ加熱回路を用いて、パッケージ化されたICが多様な温度に急熱される、本発明の1つの応用形態を示す図である。
ダイ上の熱源に対する、対象回路又は部品及びそれに付随する温度センサの2つの場所を示す図である。
そのダイにわたる温度勾配を示す図である。
本発明の一実施形態による加熱回路の回路図である。
本発明の実施形態が実施される例示的なシステムを示す図である。
本発明の実施形態が実施される例示的なシステムを示す図である。
本発明の実施形態が実施される例示的なシステムを示す図である。
本発明の実施形態が実施される例示的なシステムを示す図である。
本発明の実施形態が実施される例示的なシステムを示す図である。
本発明の実施形態が実施される例示的なシステムを示す図である。
本発明の実施形態が実施される例示的なシステムを示す図である。
本発明の実施形態が実施される例示的なシステムを示す図である。
本発明の一実施形態によれば、オンダイ加熱回路を閉ループフィードバック構成の中で用いて、そのダイをデジタル形式で指定される温度まで急熱する。これは、特性試験中、製造試験中又はベンチ試験中等の試験(細かい分解能による、極めて安定した温度下での試験)のために用いることができる。またそれは、外部から設定される多様な温度における試験を必要とすることなく、チップ上にある任意の感温性の回路又は回路素子(たとえば、基準回路、発振器、インダクタ等)を較正するために用いることもできる。ダイ加熱回路に加えて、閉ループフィードバック構成は、温度測定回路、A/Dコンバータ及びデジタルコントローラを備える。デジタルコントローラによって、ループを動的にプログラミングできるようになり、任意のパッケージ/環境熱特性の場合に、温度応答時間が最小限に抑えられるとともに、安定した加熱が達成される。
図1は、本発明の一実施形態によるオンダイ熱管理システムのブロック図である。加熱回路102が、デジタルコントローラ104の制御下で熱を生成する。温度測定ブロック106が温度を測定し、その温度をアナログ信号に変換する。A/Dコンバータ108が、アナログ温度信号をデジタル信号に変換し、その信号を検出器回路105に供給する。検出器回路105は、デジタル温度と外部から与えられる目標温度との間の差を検出し、その結果(デルタ温度:温度差)をデジタルコントローラ104に供給する。デルタ温度、及びデジタルコントローラ104内に格納される他のパラメータの値に応じて、コントローラ104によって、加熱回路102が、IC温度を維持するか(目標温度に達している場合)、又はさらに多くの熱を生成する(まだ目標温度に達していない場合、又は、たとえば較正のために、多様な温度に加熱する必要がある場合)。
デジタルコントローラ104は、零点及び極及び全利得係数を有する調整可能なデジタル伝達関数を実施する。その場合に、それらのパラメータは全てデジタル形式で調整可能である。その伝達関数が図2に示される。調整可能な零点、極及び利得係数のうちの1つ又は複数が、パッケージの熱特性及び熱動態に基づいて調整され、目標温度(複数可)へのダイの急熱を達成する。調整可能な零点、極及び利得は、コントローラ104の外部制御端子に与えられる外部コマンドによって変更される。その外部コマンドは、ICが収容される特定のパッケージの熱特性に対応する情報、及びICが加熱されるべき1つ又は複数の目標温度(複数可)に関する情報を含む。一実施形態では、外部制御端子はシリアルI/Oバスであり、そのコマンドは、ソフトウエアプログラムの制御下にあるI/Oバスによってコントローラに与えられる。別の実施形態では、デジタル形式で調整可能な零点、極及び利得係数の調整は、所望の零点、極及び利得係数のハードワイヤリングによって、ICの製造中に実行される。この実施形態は、ICが収容されることになるパッケージのタイプ及びその熱特性が製造前にわかっている場合に好都合であり、それにより特定のパッケージのためのデジタル形式で調整可能な零点、極及び利得係数を最適化できるようになる。
目標温度範囲に迅速に達する能力は、感温性回路の効率的で、迅速な較正が必要とされる場合を含む、数多くの応用形態において重要である。従来の回路においてオンダイ熱源が用いられる場合、パッケージにおいて時定数が長いために、目標温度まで急熱することを達成するのは困難である。本発明の一実施形態によれば、目標温度範囲は、コントローラにおいて実施される伝達関数の調整可能な零点、極及び利得係数を用いて、チップの遅い熱動態を補償することにより、迅速に達成される。これは図3にさらに明らかに例示される。
図3は、波形A及びBによって示される2つの場合のPC基板上にあるパッケージ化されたICの温度応答を示す。波形A及びBはそれぞれ、従来の加熱技法の場合、及び本発明の加熱技法の場合の、熱源によって消費される電力が一段階増加するまでの温度応答を示す。波形Aは2つの別個の時定数t1及びt2を有する。最初のかなり急速な応答(時定数t1)は、パッケージ内のシリコンダイの急熱を反映する(そのシリコン質量は通常、あまり大きくないので、熱容量は小さく、熱抵抗は低い)。シリコンが熱くなると、異なる材料境界、すなわちシリコンとパッケージとの境界、及びパッケージと基板との境界にわたって、大きな温度勾配が生成される。パッケージ及び基板の質量は、シリコンよりもはるかに大きく、熱抵抗が高いので、t2として示される波形Aの部分によって示されるように、温度応答の後半部が遅くなる。
2つの時定数間の遷移点(図3において縦方向の破線によって示される)は、近接して配置される極−零対に類似である。したがって、より速い温度応答を得るために、極−零対の極が零点で相殺される必要がある。これは、コントローラの調整可能な極、零点及び利得係数を調整することによって達成される。波形Bは、極−零対の極が伝達曲線の零点によって相殺される温度応答を示す。調整可能なデジタル伝達関数によって、加熱回路によって消費される電力の量及び持続時間を調整し、それによりダイが置かれる任意の環境において、速い温度応答を達成できるようになる。1つの応用形態では、そのコントローラは、図4に示されるように、チップが多様な温度に極めて急速にデジタル形式で加熱されるように設計される。これにより、各温度点において、ダイ上にある感温性回路及び/又は回路素子を迅速に較正できるようになる。迅速且つ正確に較正するために、この技法を実施するのが好都合である例示的な集積回路が、先に引用された、参照により本明細書に援用される、本発明の譲受人に譲渡された同時係属中の、「Low-Noise Fine-Frequency Tuning」というタイトルの2005年10月3日に出願の特許出願第11/242,230号に記述される。
速い温度応答を達成すること以外に、コントローラ104に供給される温度測定値が対象ブロック(すなわち、較正される回路及び/又は回路素子又は部品)の温度を正確に反映することも重要である。理想的には、温度センサを対象ブロックの中央に置くことにより、対象ブロックの最も正確な温度読み値が与えられるであろう。しかし、物理的な制約及び実用上の制約に起因して、センサをそのような位置に配置することはできず、代わりに、対象ブロックに極めて近接して配置される。しかしながら、この制約は、対処されない場合には、対象ブロックを誤って較正することに繋がる可能性があるという問題を提起する。その問題、及び本発明の一実施形態による解決法が、図5A及び図5Bに示される。
図5Aは、ダイ500上にある加熱回路502に対する対象ブロック504及び温度センサ506の2つの代替の場所A及びBを示す。図5Bは、ダイ500にわたる温度勾配(指数関数的減衰)、及び2つのダイ上の場所A及びB並びに加熱回路502の位置を示す。図から明らかなように、場所Aは場所Bよりも温度勾配が急勾配の部分に沿って位置するので、位置Bにおけるセンサと対象ブロックとの間の温度差ΔT2は、位置Aにおける温度差ΔT1よりもはるかに小さい。こうして、場所Bにある温度センサは、場所Aにあるセンサよりも、対象ブロックの温度をより正確に反映する。したがって、加熱回路502を対象回路からできる限り離れるように配置することにより、対象回路の加熱の過不足が概ね最小限に抑えられ、それにより、ダイ上にある感温性回路及び/又は部品を正確に較正できるようになる。
本発明の別の重要な特徴は、加熱回路が、電源電圧及び温度変動の影響をほとんど受けないように設計されることである。図6は、本発明の一実施形態による加熱回路ブロック102(図1)の1つの例示的な回路実施態様を示す。加熱回路102は、バイアス信号Vbiasを生成するバイアス回路602と、Vbias及びデジタルコントローラ104(図1)によって与えられる制御信号Cntlの制御下で熱を生成するように構成される電力消費回路604とを備える。
図6の例示的な実施態様では、制御信号Cntlは、電力消費回路604内のトランジスタの数に対応するビットストリーム(nビット)を含む。電力消費回路604は、電源Vddとグランド端子との間に接続される「n」個のトランジスタから成るアレイを含む。各トランジスタのゲートは、制御信号Cntlの制御下でVbiasに選択的に接続される。目標温度に応じて、デジタルコントローラ104は、所定の数のトランジスタのゲートをVbiasに選択的に接続することによって、トランジスタアレイ内の所定の数のトランジスタをオンに切り替える。
代替の一実施形態では、電力消費回路604は、電力消費回路604が複雑になるのを最小限に抑えながら、制御ループの単調性を、それゆえ負帰還を保証するために、二値符号化信号及び温度計符号化信号の組み合わせを受信するように構成される。この実施形態では、二値符号化信号及び温度計符号化信号はそれぞれ、Cntl信号の最上位ビット位置(MSB)及び最下位ビット位置(LSB)によって与えられる。
バイアス回路602は、電力消費回路604の動作時に、電源電圧及び温度変動の影響を概ね最小限に抑えるための役割を果たす。電力は電流と電圧との積によって決定されるので、電源電圧が変動してもブロック604において消費される電力を一定に保つために、Vbiasが、電源電圧の変動に対して逆方向に変更される。たとえば、電源電圧が増加する場合には、Vbiasは、ブロック604内の導通する各トランジスタの中に流れる電流が変化しないように十分に減少する。バイアス回路602は、フィードバック回路を用いてアナログ補償を実行することにより、これを果たす。
バイアス回路602は、電源電圧とその反転入力端子との間に抵抗R1が接続される増幅器606と、その反転入力端子とグランド電位との間に接続される電流源610とを備える。増幅器606の出力は、NMOSトランジスタ608のゲートに接続され、またバイアス信号Vbiasも与える。トランジスタ608は、増幅器606の非反転端子とグランド電位との間に接続される。抵抗R2及びR3が、電源電圧とグランド電位との間に直列に接続され、その中間ノードが増幅器606の非反転端子に接続される。第2の電流源612が、電源電圧と、増幅器606の非反転端子との間に接続される。キャパシタC1が、増幅器のフィードバックを補償するために、増幅器出力に接続される。こうして、トランジスタ608にバイアスをかけて、トランジスタ608の中に流れる正味の電流が電源電圧に基づくようにするフィードバック回路が形成される。
電流源610は、電源電圧及び温度変動の影響を受けず(バンドギャップ基準発生器と同様)、抵抗R1とともに、増幅器606の反転端子に、電源電圧Vdd未満の一定の電圧にバイアスをかけるための役割を果たす。こうして、増幅器606の反転入力は、Vdd未満の一定の電圧で、電源電圧Vddに追従する。電源電圧が増加又は減少するとき、抵抗R2及びR3は、より多くの、又はより少ない電流を流し、フィードバックによって、トランジスタ608の中に過電流が流れるようになる。それに応じて、増幅器606はトランジスタ608のゲート電圧を制御して、過電流を解消する。このようにして、電流とドレイン電圧との積が概ね一定になるように、トランジスタ608の中に流れる電流及びそのドレインにおける電圧が設定される。電流源612は温度を補償するために収容され、抵抗R2及びR3の温度係数を補償するように設計される。これは、電力消費回路604の動作が温度変動の影響を受けないようにしておくのを助ける。それゆえ、2.7V〜3.6Vのような所与の電源電圧範囲の場合に、温度にわたって、概ね一定の電力が得られる。
ここで図7A〜図7Gを参照すると、本発明が組み込まれる種々の例示的なシステムが示される。図7Aを参照すると、本発明は、ハードディスクドライブ700において具現することができる。本発明は、信号処理及び/又は制御回路のいずれか又は両方においてインプリメントすることができ、それらの回路は図7Aにおいて702で包括的に特定される。いくつかの実施態様では、信号処理及び/又は制御回路702、及び/又はHDD700内の他の回路(図示せず)は、データを処理し、符号化及び/又は暗号化を実行し、計算を実行し、且つ/又は磁気記憶媒体706に出力されるデータ及び/又は磁気記憶媒体706から入力されるデータをフォーマットすることができる。
HDD700は、コンピュータ、携帯情報端末のようなモバイルコンピューティングデバイス、携帯電話、メディア又はMP3プレーヤ等、及び/又は他のデバイスのようなホストデバイス(図示せず)と、1つ又は複数の有線又は無線通信リンク708を介して通信することができる。HDD700は、ランダムアクセスメモリ(RAM)、フラッシュメモリのような低レイテンシーの不揮発性メモリ、リードオンリーメモリ(ROM)及び/又は他の適当な電子データ記憶装置のようなメモリ709に接続することができる。
ここで図7Bを参照すると、本発明は、デジタル多用途ディスク(DVD)ドライブ710において具現することができる。本発明は、図7Bにおいて712で包括的に特定される信号処理及び/又は制御回路のいずれか又は両方、及び/又はDVDドライブ710の大容量データ記憶装置718においてインプリメントすることができる。信号処理及び/又は制御回路712、及び/又はDVD710内の他の回路(図示せず)は、データを処理し、符号化及び/又は暗号化を実行し、計算を実行し、且つ/又は光学記憶媒体716から読み出されるデータ、且つ/又は光学記憶媒体716に書き込まれるデータをフォーマットすることができる。いくつかの実施態様では、信号処理及び/又は制御回路712、及び/又はDVD710内の他の回路(図示せず)は、符号化及び/又は復号化、及び/又はDVDドライブに関連する任意の他の信号処理機能等の他の機能を実行することもできる。
DVDドライブ710は、コンピュータ、テレビ又は他のデバイスのような出力デバイス(図示せず)と、1つ又は複数の有線又は無線通信リンク717を介して通信することができる。DVD710は、データを不揮発性記憶する大容量データ記憶装置718と通信することができる。大容量データ記憶装置718は、図7Aに示されるようなハードディスクドライブ(HDD)を含むことができる。HDDには、約4.572cm(1.8")よりも小さな直径を有する1つ又は複数のプラッタを含むミニHDDを用いることができる。DVD710は、RAM、ROM、フラッシュメモリのような低レイテンシーの不揮発性メモリ、及び/又は他の適当な電子データ記憶装置のようなメモリ719に接続することができる。
ここで図7Cを参照すると、本発明は、高品位テレビ(HDTV)720において具現することができる。本発明は、図7Cにおいて722で包括的に特定される信号処理及び/又は制御回路のいずれか又は両方、HDTV720のWLANインターフェース及び/又は大容量データ記憶装置においてインプリメントすることができる。HDTV720は、有線又は無線のいずれかの形態でHDTV入力信号を受信し、ディスプレイ726のためのHDTV出力信号を生成する。いくつかの実施形態では、信号処理及び/又は制御回路722、及び/又はHDTV720の他の回路(図示せず)は、データを処理し、符号化及び/又は暗号化を実行し、計算を実行し、データをフォーマットし、及び/又は必要とされる場合がある任意の他のタイプのHDTV処理を実行することができる。
HDTV720は、光学及び/又は磁気記憶デバイスのような、データを不揮発性記憶する大容量データ記憶装置727と通信することができる。少なくとも1つのHDDが図7Aに示される構成を有することができ、且つ/又は少なくとも1つのDVDが図7Bに示される構成を有することができる。HDDには、約4.572cm(1.8")よりも小さな直径を有する1つ又は複数のプラッタを含むミニHDDを用いることができる。HDTV720は、RAM、ROM、フラッシュメモリのような低レイテンシーの不揮発性メモリ、及び/又は他の適当な電子データ記憶装置のようなメモリ728に接続することができる。HDTV720は、WLANネットワークインターフェース729を介して、WLANとの接続を支援することもできる。
ここで図7Dを参照すると、本発明は、車両730の制御システム、WLANインターフェース及び/又は車両制御システムの大容量データ記憶装置においてインプリメントされる。パワートレイン制御システム732が、温度センサ、圧力センサ、回転センサ、風量センサ及び/又は任意の他の適当なセンサのような1つ又は複数のセンサからの入力を受信し、且つ/又はエンジン動作パラメータ、トランスミッション動作パラメータ、及び/又は他の制御信号のような1つ又は複数の出力制御信号を生成する。
本発明は、車両730の他の制御システム740においても具現することができる。制御システム740は、同様に、入力センサ742からの信号を受信し、且つ/又は1つ又は複数の出力デバイス744への制御信号を出力することができる。いくつかの実施態様では、制御システム740は、アンチロックブレーキシステム(ABS)、ナビゲーションシステム、テレマティックスシステム、車両テレマティックスシステム、車線逸脱防止システム、適応走行制御システム、ステレオ、DVD、コンパクトディスク等の車両エンターテイメントシステムの一部であってもよい。さらに別の実施態様も考えられる。
パワートレイン制御システム732は、データを不揮発性記憶する大容量データ記憶装置746と通信することができる。大容量データ記憶装置746は、光学及び/又は磁気記憶デバイス、たとえばハードディスクドライブHDD及び/又はDVDを含むことができる。少なくとも1つのHDDが図7Aに示される構成を有することができ、且つ/又は少なくとも1つのDVDが図7Bに示される構成を有することができる。HDDには、約4.572cm(1.8")よりも小さな直径を有する1つ又は複数のプラッタを含むミニHDDを用いることができる。パワートレイン制御システム732は、RAM、ROM、フラッシュメモリのような低レイテンシーの不揮発性メモリ、及び/又は他の適当な電子データ記憶装置のようなメモリ747に接続することができる。パワートレイン制御システム732は、WLANネットワークインターフェース748を介して、WLANとの接続を支援することもできる。制御システム740は、大容量データ記憶装置、メモリ及び/又はWLANインターフェース(全て図示せず)を含んでもよい。
ここで図7Eを参照すると、本発明は、セルラーアンテナ751を含むことができる携帯電話750において具現することができる。本発明は、図7Eにおいて752で包括的に特定される信号処理及び/又は制御回路のいずれか又は両方、携帯電話750のWLANインターフェース及び/又は大容量データ記憶装置においてインプリメントすることができる。いくつかの実施態様では、携帯電話750は、マイクロフォン756、スピーカ及び/若しくはオーディオ出力ジャックのようなオーディオ出力758、ディスプレイ760、並びに/又はキーパッド、ポインティングデバイス、音声作動及び/若しくは他の入力デバイスのような入力デバイス762を含む。信号処理及び/又は制御回路752及び/又は携帯電話750内の他の回路(図示せず)は、データを処理し、符号化及び/又は暗号化を実行し、計算を実行し、データをフォーマットし、且つ/又は他の携帯電話機能を実行することができる。
携帯電話750は、光学及び/又は磁気記憶デバイス、たとえばハードディスクドライブHDD及び/又はDVDのような、データを不揮発性記憶する大容量データ記憶装置764と通信することができる。少なくとも1つのHDDが図7Aに示される構成を有することができ、且つ/又は少なくとも1つのDVDが図7Bに示される構成を有することができる。HDDには、約4.572cm(1.8")よりも小さな直径を有する1つ又は複数のプラッタを含むミニHDDを用いることができる。携帯電話750は、RAM、ROM、フラッシュメモリのような低レイテンシーの不揮発性メモリ、及び/又は他の適当な電子データ記憶装置のようなメモリ766に接続することができる。携帯電話750は、WLANネットワークインターフェース768を介して、WLANとの接続を支援することもできる。
ここで図7Fを参照すると、本発明は、セットトップボックス780において具現することができる。本発明は、図7Fにおいて784で包括的に特定される信号処理及び/又は制御回路のいずれか又は両方、セットトップボックス780のWLANインターフェース及び/又は大容量データ記憶装置においてインプリメントすることができる。セットトップボックス780は、ブロードバンドソースのような信号源から信号を受信し、テレビ及び/又はモニタ及び/又は他のビデオ及び/又はオーディオ出力デバイスのようなディスプレイ788のために適した標準及び/又は高品位オーディオ/ビデオ信号を出力する。信号処理及び/又は制御回路784並びに/或いはセットトップボックス780内の他の回路(図示せず)は、データを処理し、符号化及び/又は暗号化を実行し、計算を実行し、データをフォーマットし、及び/又は任意の他のセットトップボックス機能を実行することができる。
セットトップボックス780は、データを不揮発性記憶する大容量データ記憶装置790と通信することができる。大容量データ記憶装置790は、光学及び/又は磁気記憶デバイス、たとえばハードディスクドライブHDD及び/又はDVDを含むことができる。少なくとも1つのHDDが図7Aに示される構成を有することができ、且つ/又は少なくとも1つのDVDが図7Bに示される構成を有することができる。HDDには、約4.572cm(1.8")よりも小さな直径を有する1つ又は複数のプラッタを含むミニHDDを用いることができる。セットトップボックス780は、RAM、ROM、フラッシュメモリのような低レイテンシーの不揮発性メモリ、及び/又は他の適当な電子データ記憶装置のようなメモリ794に接続することができる。セットトップボックス780は、WLANネットワークインターフェース796を介して、WLANとの接続を支援することもできる。
ここで図7Gを参照すると、本発明は、メディアプレーヤ772において具現することができる。本発明は、図7Gにおいて771で包括的に特定される信号処理及び/又は制御回路のいずれか又は両方、メディアプレーヤ772のWLANインターフェース及び/又は大容量データ記憶装置においてインプリメントすることができる。いくつかの実施態様では、メディアプレーヤ772は、ディスプレイ776、及び/又はキーパッド、タッチパッド等のユーザ入力777を含む。いくつかの実施態様では、メディアプレーヤ772は、ディスプレイ776及び/又はユーザ入力777を介して、通常、メニュー、ドロップダウンメニュー、アイコン及び/又はポイント・アンド・クリックインターフェースを用いるグラフィカルユーザインターフェース(GUI)を用いることができる。メディアプレーヤ772は、スピーカ及び/又はオーディオ出力ジャックのようなオーディオ出力775をさらに含む。信号処理及び/又は制御回路771並びに/或いはメディアプレーヤ772内の他の回路(図示せず)は、データを処理し、符号化及び/又は暗号化を実行し、計算を実行し、データをフォーマットし、及び/又は任意の他のメディアプレーヤ機能を実行することができる。
メディアプレーヤ772は、圧縮されたオーディオ及び/又はビデオコンテンツのようなデータを不揮発性記憶する大容量データ記憶装置770と通信することができる。いくつかの実施態様では、圧縮されたオーディオファイルは、MP3フォーマット又は他の適当な圧縮オーディオ及び/又はビデオフォーマットに準拠するファイルを含む。大容量データ記憶装置は、光学及び/又は磁気記憶デバイス、たとえばハードディスクドライブHDD及び/又はDVDを含むことができる。少なくとも1つのHDDが図7Aに示される構成を有することができ、且つ/又は少なくとも1つのDVDが図7Bに示される構成を有することができる。HDDには、約4.572cm(1.8")よりも小さな直径を有する1つ又は複数のプラッタを含むミニHDDを用いることができる。メディアプレーヤ772は、RAM、ROM、フラッシュメモリのような低レイテンシーの不揮発性メモリ、及び/又は他の適当な電子データ記憶装置のようなメモリ773に接続することができる。メディアプレーヤ772は、WLANネットワークインターフェース774を介して、WLANとの接続を支援することもできる。
図7Hを参照すると、本発明は、アンテナ739を含むことができるボイスオーバインターネットプロトコル(VoIP)電話783において具現することができる。本発明は、図7Hにおいて782で包括的に特定される信号処理及び/又は制御回路のいずれか又は両方、VoIP電話783の無線インターフェース及び/又は大容量データ記憶装置において実施することができる。いくつかの実施態様では、VoIP電話783は、部分的には、マイクロフォン787、スピーカ及び/又はオーディオ出力ジャックのようなオーディオ出力789、ディスプレイモニタ791、キーパッド、ポインティングデバイス、音声作動及び/又は他の入力デバイスのような入力デバイス792、及びワイヤレスフィデリティ(Wi−Fi)通信モジュール786を備える。信号処理及び/又は制御回路782並びに/或いはVoIP電話783内の他の回路(図示せず)は、データを処理し、符号化及び/又は暗号化を実行し、計算を実行し、データをフォーマットし、及び/又は他のVoIP電話機能を実行することができる。
VoIP電話783は、光学及び/又は磁気記憶デバイス、たとえばハードディスクドライブHDD及び/又はDVDのような、データを不揮発性記憶する大容量データ記憶装置502と通信することができる。少なくとも1つのHDDが図7Aに示される構成を有することができ、且つ/又は少なくとも1つのDVDが図7Bに示される構成を有することができる。HDDには、約4.572cm(1.8")よりも小さな直径を有する1つ又は複数のプラッタを含むミニHDDを用いることができる。VoIP電話783は、RAM、ROM、フラッシュメモリのような低レイテンシーの不揮発性メモリ、及び/又は他の適当な電子データ記憶装置のようなメモリ785に接続することができる。VoIP電話783は、Wi−Fi通信モジュール786を介して、VoIPネットワーク(図示せず)との通信リンクを確立するように構成される。上記の実施態様の他に、さらに別の実施態様も考えられる。
本発明の例示的な実施形態の上記の記述は、例示及び説明する目的で提供されてきた。本発明を包括的に述べること、又は記述される形態と全く同じものに本発明を限定することを意図するわけではなく、上記の教示に鑑みて、数多くの変更及び変形が可能である。たとえば、図6は、電力消費回路604のトランジスタによる実施態様を示すが、ブロック604を実装する際に、ダイオード、抵抗性金属トレース、ポリシリコントレース及びドープされた基板等の当業者に知られている他の実施態様を用いることもできる。したがって、それらの実施形態は、本発明の原理及びその実用的な応用形態を最もわかりやすく説明し、それにより、当業者が、考えられる特定の用途に相応しいように、本発明を種々の実施形態及び種々の変更形態において最大限に利用できるようにするために選択され、記述された。

Claims (20)

  1. 集積回路であって、
    コントローラと、
    前記コントローラの制御下で該集積回路を加熱するように構成される加熱回路とを備え、前記コントローラにおいて、調整可能な極、零点及び全利得を有する伝達関数がインプリメントされ、該調整可能な極、零点及び全利得のうちの1つ又は複数を調整することによって、該集積回路の温度応答を変更できるようにする、集積回路。
  2. 前記コントローラは、前記調整可能な極、零点及び全利得のうちの1つ又は複数をデジタル形式で調整するために、前記集積回路の外部にあるソースからコマンドを受信するように構成され、該コマンドは、前記集積回路が収容されるパッケージの熱特性に対応する情報を含む、請求項1に記載の集積回路。
  3. 前記調整可能な極、零点及び全利得のうちの該零点は、前記集積回路が収容される前記パッケージの遅い熱動態を補償するように調整される、請求項1に記載の集積回路。
  4. 前記集積回路の温度を測定するように構成される温度測定回路と、
    前記測定された温度と目標温度との間の差を検出するとともに、該検出された温度差を前記コントローラに与えるように構成される検出器回路とをさらに備える、請求項1に記載の集積回路。
  5. 1つ又は複数の回路素子を含む感温性ブロックをさらに備え、前記コントローラは、前記加熱回路が多様な温度に前記集積回路を加熱するようにさせるようにさらに構成され、前記感温性ブロックは前記多様な温度のそれぞれにおいて較正される、請求項4に記載の集積回路。
  6. 前記加熱回路は、
    バイアス信号を生成するように構成されるバイアス回路と、
    前記バイアス信号及び前記コントローラからの複数の制御信号を受信するように構成される電力消費回路とを備える、請求項1に記載の集積回路。
  7. 前記電力消費回路は、目標温度に応じて、電流を流すために所定の数のトランジスタをオンに切り替えるように構成されるトランジスタアレイを含む、請求項6に記載の集積回路。
  8. 前記トランジスタアレイ内の各トランジスタは、該トランジスタをオンに切り替えるために前記バイアス信号が選択的に加えられるゲートを有する、請求項7に記載の集積回路。
  9. 前記制御信号に応答して、前記バイアス信号が前記トランジスタアレイ内の前記トランジスタのゲートに選択的に加えられて、該トランジスタが選択的にオンに切り替えられる、請求項7に記載の集積回路。
  10. 前記集積回路は電源電圧によって駆動され、該電源電圧の変動に応答して、前記バイアス回路は前記バイアス信号を調整して、前記電力消費回路の動作が所定の電圧範囲内にある前記電源電圧の変動にほとんど影響を受けないようにする、請求項6に記載の集積回路。
  11. 集積回路を内部で加熱するための方法であって、
    コントローラにおいてインプリメントされる伝達関数の調整可能な極、零点及び全利得のうちの1つ又は複数を調整することであって、それにより前記集積回路の温度応答を変更する、調整すること、及び
    前記調整可能な極、零点及び全利得のうちの前記調整された1つ又は複数に従って、前記集積回路を内部で加熱することを含む、集積回路を内部で加熱するための方法。
  12. 前記調整するステップは、前記調整可能な極、零点及び全利得のうちの前記1つ又は複数をデジタル形式で調整するために、前記集積回路の外部にあるソースからコマンドを受信することを含み、該コマンドは、前記集積回路が収容されるパッケージの熱特性に対応する情報を含む、請求項11に記載の集積回路を内部で加熱するための方法。
  13. 前記調整するステップは、前記集積回路が収容される前記パッケージの遅い熱動態を補償するように、前記調整可能な極、零点及び全利得のうちの該零点を調整することをさらに含む、請求項11に記載の集積回路を内部で加熱するための方法。
  14. 前記集積回路の温度を内部で測定すること、及び
    前記測定された温度と目標温度との間の差を内部で検出することをさらに含む、請求項11に記載の集積回路を内部で加熱するための方法。
  15. 前記集積回路は、1つ又は複数の回路素子を含む感温性ブロックを含み、前記方法は、
    前記内部で加熱するステップ、前記内部で測定するステップ及び前記内部で検出するステップを繰り返すことにより、前記集積回路を多様な温度に加熱すること、及び
    前記多様な温度のそれぞれにおいて前記感温性ブロックを内部で較正することをさらに含む、請求項14に記載の集積回路を内部で加熱するための方法。
  16. 前記内部で測定するステップは、前記集積回路上の1つの場所において実行され、該場所では、前記加熱するステップから生じる、前記集積回路にわたる温度勾配が概ね最小限に抑えられる、請求項14に記載の集積回路を内部で加熱するための方法。
  17. 前記集積回路を加熱することが、前記集積回路を駆動する電源電圧の変動にほとんど影響を受けないように、前記集積回路の加熱を制御するためのバイアス信号を生成することをさらに含む、請求項11に記載の集積回路を内部で加熱するための方法。
  18. 目標温度に応じて、トランジスタアレイ内の所定の数のトランジスタに前記バイアス信号を加えることであって、それにより該所定の数のトランジスタをオンに切り替える、加えることをさらに含む、請求項17に記載の集積回路を内部で加熱するための方法。
  19. 前記集積回路は電源電圧によって駆動され、前記バイアス信号を生成するステップは、前記加熱するステップの結果として生成される熱の量が、所定の電圧範囲内にある前記電源電圧の変動にほとんど影響を受けないように実行される、請求項17に記載の集積回路を内部で加熱するための方法。
  20. 前記集積回路は、前記バイアス信号を受信するとともに、前記熱を生成するステップを実行するように構成される加熱回路を含み、前記バイアス信号を生成するステップは、該加熱回路により生成される熱の量が温度変動にほとんど影響を受けないように実行される、請求項19に記載の集積回路を内部で加熱するための方法。

JP2006205994A 2005-08-01 2006-07-28 ダイを急熱するためのオンダイ加熱回路及び制御ループ Expired - Fee Related JP4758843B2 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US70439905P 2005-08-01 2005-08-01
US60/704,399 2005-08-01
US72222605P 2005-09-30 2005-09-30
US60/722,226 2005-09-30
US11/242,230 2005-10-03
US11/242,230 US7375597B2 (en) 2005-08-01 2005-10-03 Low-noise fine-frequency tuning
US11/243,017 2005-10-03
US11/243,017 US7852098B2 (en) 2005-08-01 2005-10-03 On-die heating circuit and control loop for rapid heating of the die

Publications (2)

Publication Number Publication Date
JP2007043153A true JP2007043153A (ja) 2007-02-15
JP4758843B2 JP4758843B2 (ja) 2011-08-31

Family

ID=37026994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006205994A Expired - Fee Related JP4758843B2 (ja) 2005-08-01 2006-07-28 ダイを急熱するためのオンダイ加熱回路及び制御ループ

Country Status (6)

Country Link
EP (1) EP1750301A3 (ja)
JP (1) JP4758843B2 (ja)
CN (1) CN1975621B (ja)
SG (1) SG129370A1 (ja)
TW (1) TWI310123B (ja)
WO (1) WO2007016601A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200266A (ja) * 2008-02-21 2009-09-03 Nec Corp ウエハ及びその温度試験方法
JP2021189158A (ja) * 2020-05-29 2021-12-13 ジュニパー ネットワークス, インコーポレーテッドJuniper Networks, Inc. ハイブリッド自動試験装置を使用する光電気デバイス

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111238669B (zh) * 2018-11-29 2022-05-13 拓荆科技股份有限公司 用于半导体射频处理装置的温度测量方法
CN113326167B (zh) * 2021-05-13 2022-07-08 山东英信计算机技术有限公司 基于基板管理控制器通信的定温可调测试器和测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114067A (ja) * 1987-10-07 1989-05-02 Tektronix Inc 信号伝播遅延制御回路
JPH0688854A (ja) * 1990-09-06 1994-03-29 Robert J Lipp 集積回路における加熱及び温度制御用の方法及び装置
JPH10154665A (ja) * 1996-09-12 1998-06-09 Applied Materials Inc 適応温度コントローラおよび操作方法
JP2000277686A (ja) * 1999-03-29 2000-10-06 Mitsumi Electric Co Ltd 半導体集積回路
JP2001007297A (ja) * 1999-04-21 2001-01-12 Advantest Corp Cmos集積回路及びこれを用いたタイミング信号発生装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383614A (en) 1965-06-28 1968-05-14 Texas Instruments Inc Temperature stabilized semiconductor devices
US4497998A (en) * 1982-12-23 1985-02-05 Fairchild Camera And Instrument Corp. Temperature stabilized stop-restart oscillator
FR2641127B1 (ja) * 1988-12-23 1993-12-24 Thomson Hybrides Microondes
DE19727972A1 (de) 1996-07-02 1998-01-08 Ihlenfeld Waldemar Gui Kuerten Halbleitersubstrat mit temperaturstabilisierbarer elektronischer Schaltung
US7042301B2 (en) 2002-10-15 2006-05-09 Marvell International Ltd. Crystal oscillator emulator
US6954706B2 (en) * 2003-08-20 2005-10-11 Hewlett-Packard Development Company, L.P. Method for measuring integrated circuit processor power demand and associated system
US8037445B2 (en) 2003-08-20 2011-10-11 Hewlett-Packard Development Company, L.P. System for and method of controlling a VLSI environment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114067A (ja) * 1987-10-07 1989-05-02 Tektronix Inc 信号伝播遅延制御回路
JPH0688854A (ja) * 1990-09-06 1994-03-29 Robert J Lipp 集積回路における加熱及び温度制御用の方法及び装置
JPH10154665A (ja) * 1996-09-12 1998-06-09 Applied Materials Inc 適応温度コントローラおよび操作方法
JP2000277686A (ja) * 1999-03-29 2000-10-06 Mitsumi Electric Co Ltd 半導体集積回路
JP2001007297A (ja) * 1999-04-21 2001-01-12 Advantest Corp Cmos集積回路及びこれを用いたタイミング信号発生装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200266A (ja) * 2008-02-21 2009-09-03 Nec Corp ウエハ及びその温度試験方法
JP2021189158A (ja) * 2020-05-29 2021-12-13 ジュニパー ネットワークス, インコーポレーテッドJuniper Networks, Inc. ハイブリッド自動試験装置を使用する光電気デバイス
JP7275079B2 (ja) 2020-05-29 2023-05-17 オープンライト フォトニクス インコーポレイテッド ハイブリッド自動試験装置を使用する光電気デバイス

Also Published As

Publication number Publication date
CN1975621A (zh) 2007-06-06
TW200707151A (en) 2007-02-16
WO2007016601A2 (en) 2007-02-08
EP1750301A2 (en) 2007-02-07
WO2007016601A3 (en) 2007-04-26
CN1975621B (zh) 2010-10-13
SG129370A1 (en) 2007-02-26
TWI310123B (en) 2009-05-21
JP4758843B2 (ja) 2011-08-31
EP1750301A3 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
US7696768B2 (en) On-die heating circuit and control loop for rapid heating of the die
US7423901B2 (en) Calibration system for writing and reading multiple states into phase change memory
US9118313B2 (en) Semiconductor memory device calibrating termination resistance and termination resistance calibration method thereof
US8638619B2 (en) High speed interface for multi-level memory
US7658102B2 (en) Thermal flow sensor having an amplifier section for adjusting the temperature of the heating element
KR20030045639A (ko) 메모리 장치 및 메모리 장치 내 기록 전류 발생 방법
US8786323B2 (en) Driver with resistance calibration capability
US20180114586A1 (en) Impedance calibration circuit and semiconductor memory device including the same
JP4758843B2 (ja) ダイを急熱するためのオンダイ加熱回路及び制御ループ
KR20110097470A (ko) 온도센서
US8188784B1 (en) Power circuit
JP5972808B2 (ja) モニタ回路、半導体集積回路、半導体装置及びその電源電圧制御方法
US7855909B1 (en) Calibrating page borders in a phase-change memory
TWI714515B (zh) 用於功率放大器的溫度補償電路
US7692482B1 (en) Profile circuit control function

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110603

R150 Certificate of patent or registration of utility model

Ref document number: 4758843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371