JP2007041239A - カラーフィルタの製造方法、及びカラーフィルタ並びに液晶表示装置 - Google Patents

カラーフィルタの製造方法、及びカラーフィルタ並びに液晶表示装置 Download PDF

Info

Publication number
JP2007041239A
JP2007041239A JP2005224734A JP2005224734A JP2007041239A JP 2007041239 A JP2007041239 A JP 2007041239A JP 2005224734 A JP2005224734 A JP 2005224734A JP 2005224734 A JP2005224734 A JP 2005224734A JP 2007041239 A JP2007041239 A JP 2007041239A
Authority
JP
Japan
Prior art keywords
light
color filter
exposure
photosensitive layer
filter according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005224734A
Other languages
English (en)
Inventor
Tomohiro Kodama
知啓 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005224734A priority Critical patent/JP2007041239A/ja
Priority to KR1020087005150A priority patent/KR20080044846A/ko
Priority to CNA2006800286182A priority patent/CN101238398A/zh
Priority to PCT/JP2006/314664 priority patent/WO2007015393A1/ja
Priority to TW095127580A priority patent/TW200710449A/zh
Publication of JP2007041239A publication Critical patent/JP2007041239A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】 フォトマスクを用いず、好適な感光性組成物を用い、ブラック画像の線幅ばらつきを極めて少なく、高精細に形成でき、低コスト、かつ表示特性に優れたカラーフィルタの製造方法、及び該製造方法により製造される表示特性に優れたカラーフィルタ、並びに該カラーフィルタを用いた液晶表示装置を提供すること。
【解決手段】 感光性組成物からなり、基材の表面に位置する感光層に対し、前記感光層を露光する露光工程を含み、前記感光性組成物が、バインダー、重合性化合物、着色剤、及び光重合開始剤を含んでなり、前記着色剤に含まれる顔料の平均粒径が、大きくとも100nmであり、かつ該顔料の前記感光性組成物の固形分中の含有量が、少なくとも30質量%であることを特徴とするカラーフィルタの製造方法である。
【選択図】 図1

Description

本発明は、携帯端末、携帯ゲーム機、ノートパソコン、テレビモニター等の液晶表示装置(LCD)用、PALC(プラズマアドレス液晶)、プラズマディスプレイなどに好適なカラーフィルタの製造方法、及び該製造方法により製造されたカラーフィルタ並びに該カラーフィルタを用いた液晶表示装置に関する。
カラーフィルタは、液晶ディスプレイ(以下、「LCD」、「液晶表示装置」と称することもある)に不可欠な構成部品である。この液晶ディスプレイは非常にコンパクトであり、性能面でもこれまでのCRTディスプレイと同等以上であり、CRTディスプレイから置き換わりつつある。
液晶ディスプレイのカラー画像の形成は、カラーフィルタを通過した光がそのままカラーフィルタを構成する各画素の色に着色されて、それらの色の光が合成されてカラー画像を形成する。そして、現在はRGBの三色の画素でカラー画像を形成している。
近年では、液晶ディスプレイ(LCD)の大画面化及び高精細化の技術開発が進み、その用途はノートパソコン用ディスプレイからデスクトップパソコン用モニター、更にはテレビモニター(以下、「TV」と称することもある)まで拡大されてきている。このような背景の下で、LCDにはコストダウンと表示特性向上が強く要求されるようになってきている。
このコストダウンの方向としては、単に材料のコストダウンにとどまらず、工程の簡素化が進行中であり、特に、露光のためのフォトマスクをなくすことが検討されている。
一方、表示特性向上の方向としては、1インチあたりの画素数を増やしていく高精細化などが検討されている。
特に、RGBの三色の各画素間を規定するように形成されるブラックマトリクスは、みかけの画素幅を規定しているため、該ブラックマトリクスの線幅のばらつきは、その周期性によって、モアレや、周期ムラなどの表示ムラとなりやすい。このため、ブラックマトリクスを形成するブラック画像の微細パターンを高精細に形成可能な方法が求められている。
このようなカラーフィルタの形成方法としては、一般に、感光性組成物を露光、現像することにより微細パターンを形成する、フォトリソグラフィー法が知られている。
前記フォトリソグラフィー法を行う露光装置として、フォトマスクを用いることなく、半導体レーザ、ガスレーザ等のレーザ光を、画素パターン等のデジタルデータに基づいて、感光性組成物上に直接スキャンして、パターニングを行うレーザダイレクトイメージングシステム(以下、「LDI」と称することがある)による露光装置が研究されている(例えば、非特許文献1参照)。
しかしながら、前記LDIによる露光装置を用いた露光においては、露光ヘッドから照射される光ビームが、レンズ系の要因で光軸の中心部に比べて周辺部の光強度が低下してしまう問題や、レンズの像面湾曲、非点隔差、歪曲等により結像させた像が歪んでしまうという問題がある。また、前記露光ヘッドの取付位置や取付角度のずれや、前記感光性組成物の感度や解像度などの光学特性等によって、パターン歪みによる露光量のばらつきや、解像度のばらつきや濃度のむら等が生じ、これを多重露光により軽減すると、露光回数を増やすことにより露光スピードの低下をもたらすとともに、画質の低下等の問題が発生し、露光性能低下の原因となるという問題もある。
このため、フォトマスクを用いることなく、特にブラック画像の線幅ばらつきを極めて少なく、好適な感光性組成物を用い、高精細に形成可能なカラーフィルタの製造方法、及び該カラーフィルタの製造方法により製造される表示特性に優れたカラーフィルタ、並びに該カラーフィルタを用いた液晶表示装置カラーフィルタの形成方法は未だ提供されておらず、更なる改良開発が望まれているのが現状である。
石川明人"マスクレス露光による開発短縮と量産適用化"、「エレクロトニクス実装技術」、株式会社技術調査会、Vol.18、No.6、2002年、p.74-79
本発明は、かかる現状に鑑みてなされたものであり、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、フォトマスクを用いることなく、好適な感光性組成物を用い、画像の線幅ばらつき(エッジラフネス)を極めて少なく、高精細に形成可能であり、低コスト、かつ表示特性に優れ、携帯端末、携帯ゲーム機、ノートパソコン、テレビモニター等の液晶表示装置(LCD)用、PALC(プラズマアドレス液晶)、プラズマディスプレイなどに好適に用いられるカラーフィルタの製造方法、及び該カラーフィルタの製造方法により製造される表示特性に優れたカラーフィルタ、並びに該カラーフィルタを用いた液晶表示装置を提供することを目的とする。
前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 感光性組成物からなり基材の表面に位置する感光層に対して、光照射手段及び光変調手段を少なくとも備えた露光ヘッドと、前記感光層の少なくともいずれかを移動させつつ、前記光照射手段から出射された光を前記光変調手段によりパターン情報に応じて変調しながら前記露光ヘッドから照射して、前記感光層を露光する露光工程を含み、前記感光性組成物が、バインダー、重合性化合物、着色剤、及び光重合開始剤を含んでなり、前記着色剤に含まれる顔料の数平均粒径が、大きくとも100nmであり、かつ該顔料の前記感光性組成物の固形分中の含有量が、少なくとも30質量%であることを特徴とするカラーフィルタの製造方法である。
該<1>に記載のカラーフィルタの製造方法においては、前記着色剤に含まれる顔料の平均粒径が、大きくとも100nmであり、かつ該顔料の前記感光性組成物の固形分中の含有量が、少なくとも30質量%である前記感光性組成物を用いて感光層を形成し、露光工程が、前記光照射手段及び前記光変調手段を少なくとも備えた露光ヘッドと、前記感光層との少なくともいずれかを移動させつつ、前記感光層に対して、前記光照射手段から出射した光を前記光変調手段によりパターン情報に応じて変調しながら前記露光ヘッドから照射して、前記感光層を露光することにより行われるため、フォトマスクを用いることなく、前記感光層の被露光面上に前記パターン情報に基づく像が形成される。例えば、その後、前記感光層を現像することにより、高精細なパターンが形成される。
<2> 光変調手段が、光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、前記描素部をパターン情報に基づいて制御可能である前記<1>に記載のカラーフィルタの製造方法である。
<3>光変調手段が、空間光変調素子である前記<1>から<2>に記載のカラーフィルタの製造方法である。
<4> 空間光変調素子が、デジタル・マイクロミラー・デバイス(DMD)である前記<3>に記載のカラーフィルタの製造方法である。
<5> 空間光変調素子が、ミラー階調型空間変調素子である前記<3>に記載のカラーフィルタの製造方法である。
<6> 光変調手段が、光多面鏡(ポリゴンミラー)である前記<1>から<2>に記載に記載のカラーフィルタの製造方法である。
<7> 光照射手段が、半導体レーザ素子から生ずるレーザ光を出射するレーザ光源である前記<1>から<6>のいずれかに記載のカラーフィルタの製造方法である。
<8> 光照射手段が、光を一端から入射し、入射した前記光を他端から出射する光ファイバを複数本束ねてなるバンドル状のファイバ光源である前記<1>から<7>のいずれかに記載のカラーフィルタの製造方法である。
<9> 光ファイバが、2以上の光を入射し、合波して出射する前記<8>に記載のカラーフィルタの製造方法である。
<10> 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射されたレーザビームを集光して前記マルチモード光ファイバに結合させるレンズ系とを有する前記<1>から<9>のいずれかに記載のカラーフィルタの製造方法である。
<11> 露光ヘッドが、光照射手段からの光を集光して光変調手段に照射する集光レンズ系と、前記光変調手段により変調された光による像を感光層の被露光面上に結像する結像レンズ系とを備える前記<1>から<10>のいずれかに記載のカラーフィルタの製造方法である。
<12> 結像レンズ系が、マイクロレンズがアレイ状に配されてなるマイクロレンズアレイを含む前記<11>に記載のカラーフィルタの製造方法である。
<13> 結像レンズ系が、マイクロレンズの集光位置近傍に、該マイクロレンズを経た光のみが入射するように配列されたアパーチャが配置されてなるアパーチャアレイを含む前記<11>から<12>のいずれかに記載のカラーフィルタの製造方法である。
<14> 集光レンズ系により光照射手段から光変調手段に照射される光の照射領域内における光量に分布を持たせ、前記光変調手段により変調された光の感光層の被露光面における光量分布が均一になるように補正する前記<1>から<13>のいずれかに記載のカラーフィルタの製造方法である。
<15> 集光レンズ系が、光照射手段から出射された光を、主光線の角度に分布を有する光ビームとして光変調手段に照射する前記<14>に記載のカラーフィルタの製造方法である。
<16> 光照射手段から出射された光を、集光レンズ系によりテレセントリック光として、光変調手段に照射する前記<14>に記載のカラーフィルタの製造方法である。
<17> 集光レンズ系が、光軸中心から離れるに従いレンズパワーが小さくなるような非球面形状を持つ第1の光学レンズと、光軸中心から離れるに従いレンズパワーが大きくなるような非球面形状を持つ第2の光学レンズとを有する前記<16>に記載のカラーフィルタの製造方法である。
<18> 集光レンズ系により、光照射手段から光変調手段に照射される光の照射領域の中心部の光量よりも周辺部の光量を増加させる前記<14>から<17>のいずれかに記載のカラーフィルタの製造方法である。
<19> 露光が、光変調手段により変調された光の光路長を変更し、感光層の被露光面に結像する露光光の焦点を調節する焦点調節手段を用いて行われる前記<1>から<18>のいずれかに記載のカラーフィルタの製造方法である。
<20> 結像レンズ系の中央部を含む略矩形状の領域のみにおいて、光変調手段により変調された光を結像する前記<19>に記載のカラーフィルタの製造方法である。
<21> 略矩形状の長辺の長さが、短辺の長さの2倍以上である前記<21>に記載のカラーフィルタの製造方法である。
<22> 焦点調節手段が、光変調手段により変調された光の光軸方向の厚さが変化するように形成されたくさび型プリズムペアを有し、該くさび型プリズムペアを構成する各くさび型プリズムを移動することによって、前記変調された光を感光層の被露光面上に結像する際の焦点を調節する前記<19>から<21>のいずれかに記載のカラーフィルタの製造方法である。
<23> 焦点調節手段が、光学系とピエゾ素子とを有し、前記光学系の間隔を、前記ピエゾ素子により調節することによって、光変調手段により変調された光を感光層の被露光面上に結像する際の焦点を調節する前記<19>から<22>のいずれかに記載のカラーフィルタの製造方法である。
<24> 結像レンズ系が、レンズの光軸を中心に回転可能であり、前記光軸に対して垂直方向に移動可能なレンズからなる前記<19>から<23>のいずれかに記載のカラーフィルタの製造方法である。
<25> 略矩形形状の短辺方向を、感光層のうねり方向に向けて露光する前記<19>から<24>のいずれかに記載のカラーフィルタの製造方法である。
<26> マイクロレンズアレイの各マイクロレンズが、描素部の面の歪みによる収差を補正する非球面を有する前記<12>に記載のカラーフィルタの製造方法である。
<27> 非球面がトーリック面である前記<26>に記載のカラーフィルタの製造方法である。
<28> マイクロレンズアレイの各マイクロレンズが、前記画素部の面の歪みによる収差を補正する屈折率分布を有する前記<12>に記載のカラーフィルタの製造方法である。
<29> マイクロレンズアレイの各マイクロレンズが、前記画素部の周辺部からの光を入射させないレンズ開口形状を有する前記<12>に記載のカラーフィルタの製造方法である。
<30> マイクロレンズアレイの各マイクロレンズが、描素部の面の歪みによる収差を補正する非球面を有する前記<29>に記載のカラーフィルタの製造方法である。
<31> 非球面がトーリック面である前記<30>に記載のカラーフィルタの製造方法である。
<32> マイクロレンズアレイの各マイクロレンズが、前記画素部の面の歪みによる収差を補正する屈折率分布を有する前記<29>に記載のカラーフィルタの製造方法である。
<33> マイクロレンズが円形のレンズ開口形状を有する前記<29>から<32>のいずれかに記載のカラーフィルタの製造方法である。
<34> マイクロレンズの開口形状が、そのレンズ面の一部に遮光部を設けることによって規定されている前記<29>から<33>のいずれかに記載のカラーフィルタの製造方法である。
<35> 走査方向に対し描素部の列方向が所定の設定傾斜角度θをなすように配置されてなる露光ヘッドを用い、
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、
前記露光ヘッドについて、使用描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御し、
前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光を行う前記<1>から<34>のいずれかに記載のカラーフィルタの製造方法である。
<36> 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域の露光に関与する描素部のうち、前記ヘッド間つなぎ領域におけるN重露光を実現するために使用する前記描素部を指定する前記<35>に記載のカラーフィルタの製造方法である。
<37> 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域におけるN重露光を実現するために使用する前記描素部を指定する前記<35>から<36>のいずれか記載のカラーフィルタの製造方法である。
<38> 設定傾斜角度θが、N重露光数のN、描素部の列方向の個数s、前記描素部の列方向の間隔p、及び露光ヘッドを傾斜させた状態において該露光ヘッドの走査方向と直交する方向に沿った描素部の列方向のピッチδに対し、次式、spsinθideal≧Nδを満たすθidealに対し、θ≧θidealの関係を満たすように設定される前記<35>から<37>のいずれかに記載のカラーフィルタの製造方法である。
<39> N重露光のNが、3以上の自然数である前記<35>から<38>のいずれかに記載のカラーフィルタの製造方法である。
<40> 使用描素部指定手段が、
描素部により生成され、被露光面上の露光領域を構成する描素単位としての光点位置を、被露光面上において検出する光点位置検出手段と、
前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段と
を備える前記<35>から<39>のいずれかに記載のカラーフィルタの製造方法である。
<41> 使用描素部指定手段が、N重露光を実現するために使用する使用描素部を、行単位で指定する前記<35>から<40>のいずれかに記載のパターン形成方法である。
<42> 光点位置検出手段が、検出した少なくとも2つの光点位置に基づき、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす実傾斜角度θ´を特定し、
描素部選択手段が、前記実傾斜角度θ´と設定傾斜角度θとの誤差を吸収するように使用描素部を選択する前記<40>から<41>のいずれかに記載のカラーフィルタの製造方法である。
<43> 実傾斜角度θ´が、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす複数の実傾斜角度の平均値、中央値、最大値、及び最小値のいずれかである前記<42>に記載のカラーフィルタの製造方法である。
<44> 描素部選択手段が、実傾斜角度θ´に基づき、ttanθ´=N(ただし、NはN重露光数のNを表す)の関係を満たすtに近い自然数Tを導出し、m行(ただし、mは2以上の自然数を表す)配列された描素部における1行目から前記T行目の前記描素部を、使用描素部として選択する前記<40>から<43>のいずれかに記載のカラーフィルタの製造方法である。
<45> 描素部選択手段が、実傾斜角度θ´に基づき、ttanθ´=N(ただし、NはN重露光数のNを表す)の関係を満たすtに近い自然数Tを導出し、m行(ただし、mは2以上の自然数を表す)配列された描素部における、(T+1)行目からm行目の前記描素部を、不使用描素部として特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する前記<40>から<43>のいずれかに記載のカラーフィルタの製造方法。
<46> 描素部選択手段が、複数の描素部列により形成される被露光面上の重複露光領域を少なくとも含む領域において、
(1)理想的なN重露光に対し、露光過多となる領域、及び露光不足となる領域の合計面積が最小となるように、使用描素部を選択する手段、
(2)理想的なN重露光に対し、露光過多となる領域の描素単位数と、露光不足となる領域の描素単位数とが等しくなるように、使用描素部を選択する手段、
(3)理想的なN重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光不足となる領域が生じないように、使用描素部を選択する手段、及び
(4)理想的なN重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光過多となる領域が生じないように、使用描素部を選択する手段
のいずれかである前記<40>から<45>のいずれかに記載のカラーフィルタの製造方法である。
<47> 描素部選択手段が、複数の露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域において、
(1)理想的なN重露光に対し、露光過多となる領域、及び露光不足となる領域の合計面積が最小となるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
(2)理想的なN重露光に対し、露光過多となる領域の描素単位数と、露光不足となる領域の描素単位数とが等しくなるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
(3)理想的なN重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光不足となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、及び、
(4)理想的なN重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光過多となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
のいずれかである前記<40>から<45>のいずれかに記載のカラーフィルタの製造方法である。
<48> 使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、(N−1)列毎の描素部列を構成する前記描素部、及び1/N行毎の描素部行を構成する前記描素部のいずれかのみを使用して参照露光を行う前記<35>から<47>のいずれかに記載のカラーフィルタの製造方法である。
<49> 使用描素部指定手段が、光点位置検出手段としてスリット及び光検出器、並びに描素部選択手段として前記光検出器と接続された演算装置を有する前記<35>から<48>のいずれかに記載のカラーフィルタの製造方法である。
<50> 光変調手段が、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を更に有してなり、光照射手段から照射される光を該パターン信号生成手段が生成した制御信号に応じて変調させる前記<1>から<49>のいずれかに記載のパターン形成方法である。
<51> 感光層の被露光面に対する描画画素の配置と、パターン情報に係る描画パターンとの関係で生じるジャギーのジャギーピッチ又はジャギー振幅が所定値以下となるよう、
隣接する前記描素部により描画される前記描画画素間の配列ピッチ(A)、
複数の前記描画画素からなる二次元状の描画画素群の走査方向に対する傾斜角度(B)、
前記走査方向に対する前記描画画素の描画ピッチ(C)、及び
前記走査方向と略直交する方向に隣接して描画される前記描画画素の前記走査方向に対する描画位置の位相差(D)の少なくともいずれかを設定し、
前記パターン情報に従い、前記各描素部を所定のタイミングで変調制御することを特徴とする前記<1>から<50>のいずれかに記載のカラーフィルタの製造方法である。
<52> 傾斜角度(B)を、露光ヘッドの全体又は一部を回転させて変更することを特徴とする前記<51>に記載のカラーフィルタの製造方法である。
<53> 配列ピッチ(A)及び描画ピッチ(C)の少なくともいずれかを、前記描画面に描画される前記描画画素群の描画倍率を調整することで変更する前記<51>に記載のカラーフィルタの製造方法である。
<54> 描画ピッチ(C)を、描素部による感光層の被露光面への描画タイミングを調整することにより変更する前記<51>に記載のカラーフィルタの製造方法である。
<55> 描画ピッチ(C)を、感光層の被露光面に対する露光ヘッドの相対移動速度を調整することにより変更する前記<51>に記載のカラーフィルタの製造方法である。
<56> 位相差(D)を、隣接する前記描素部の変調制御のタイミングを調整することにより変更する前記<51>に記載のカラーフィルタの製造方法である。
<57> ジャギーピッチの前記所定値が、感光層の被露光面での前記描画画素のドット径以下に設定される前記<51>に記載のカラーフィルタの製造方法である。
<58> 複数の描素部群を有し、前記各描素部群において、配列ピッチ(A)、傾斜角度(B)、描画ピッチ(C)、及び位相差(D)を、個別に設定する前記<51>に記載のカラーフィルタの製造方法である。
<59> 複数の描素部群を有し、前記各描素部群で生じるジャギーピッチ又はジャギー振幅の平均値が所定値以下となるよう、配列ピッチ(A)、傾斜角度(B)、描画ピッチ(C)、及び位相差(D)の少なくともいずれかを設定する前記<51>に記載のカラーフィルタの製造方法である。
<60> 描画パターンに応じて、配列ピッチ(A)、傾斜角度(B)、描画ピッチ(C)、及び位相差(D)の少なくともいずれかを設定する前記<51>に記載のカラーフィルタの製造方法である。
<61> 描画パターンの走査方向に対する傾斜角度に応じて、配列ピッチ(A)、傾斜角度(B)、描画ピッチ(C)、及び位相差(D)の少なくともいずれかを設定する前記<51>に記載のカラーフィルタの製造方法である。
<62> 走査方向と直交し、又は、略直交する方向の描画パターンにより生じる前記ジャギーピッチ又は前記ジャギー振幅が所定値以下となるよう、配列ピッチ(A)、傾斜角度(B)、描画ピッチ(C)、及び位相差(D)の少なくともいずれかを設定する前記<51>に記載のカラーフィルタの製造方法である。
<63> 少なくともオンオフ制御可能な二次元配列の制御点を感光層の被露光面上に設定し、
前記制御点と、前記感光層の被露光面上とを相対走査するとともに、前記制御点を制御して描画を行う描画方法であって、
前記制御点の略走査方向に沿った点列のピッチ(E)、
前記点列の並び方向(F)、
前記制御点の前記走査方向に対するピッチ(G)、及び
前記走査方向と略直交する方向に隣接する前記制御点の前記走査方向に対する位相差(H)の少なくともいずれかと、描画する描画パターンにより生じるジャギーの形状との相関関係を求め、
前記相関関係に基づいて、前記点列のピッチ(E)、前記点列の並び方向(F)、前記制御点の前記走査方向に対するピッチ(G)、及び前記位相差(H)の少なくともいずれかを設定又は変更する前記<1>から<50>のいずれかに記載のカラーフィルタの製造方法である。
<64> ジャギーの形状が許容範囲内となる点列のピッチ(E)、点列の並び方向(F)、制御点の走査方向に対するピッチ(G)、及び位相差(H)の少なくともいずれかの条件を選択条件として規定する前記<63>に記載のカラーフィルタの製造方法である。
<65> ジャギーの形状が許容範囲外となる点列のピッチ(E)、点列の並び方向(F)、制御点の走査方向に対するピッチ(G)、及び位相差(H)の少なくともいずれかの条件を禁止条件として規定する前記<63>に記載のカラーフィルタの製造方法である。
<66> ジャギーの形状は、ジャギーピッチ及びジャギー振幅の少なくともいずれかにより規定する前記<63>に記載のカラーフィルタの製造方法である。
<67> 描画パターンの方向に対応して相関関係を求めることを特徴とする前記<63>に記載のカラーフィルタの製造方法である。
<68> 所定の領域内に含まれる描画パターンの代表的な方向に対応して前記相関関係を求める前記<63>に記載のカラーフィルタの製造方法である。
<69> 所定の領域内に含まれ、露光ヘッドの走査方向と直交し、又は、略直交する方向の描画パターンの方向を代表的な方向とし、前記代表的な方向に対応して前記相関関係を求める前記<63>に記載のカラーフィルタの製造方法である。
<70> 所定の領域内の描画パターン毎に相関関係を求める前記<63>に記載のカラーフィルタの製造方法である。
<71> 所定の領域内の描画パターン毎に、点列のピッチ(E)、点列の並び方向(F)、制御点の走査方向に対するピッチ(G)、及び位相差(H)の少なくともいずれかを設定又は変更する前記<63>に記載のカラーフィルタの製造方法である。
<72> 相関関係を、点列のピッチ(E)、点列の並び方向(F)、制御点の走査方向に対するピッチ(G)、及び位相差(H)の少なくともいずれかから求めた計算値に基づいて求める前記<63>に記載のカラーフィルタの製造方法である。
<73> 描画データに基づいて描画を行い、描画されたパターンから相関関係を計測して求める前記<63>に記載のカラーフィルタの製造方法である。
<74> 少なくともオンオフ制御可能な二次元配列の制御点を感光層の被露光面上に設定し、
前記制御点と前記感光層の被露光面上とを相対走査するとともに前記制御点を制御して描画を行う描画方法であって、
前記制御点の配列状態と、描画する描画パターンにより生じるジャギーの形状との相関
関係を求め、前記相関関係に基づいて前記配列状態を設定又は変更する前記<1>から<50>のいずれかに記載のカラーフィルタの製造方法である。
<75> 少なくともオンオフ制御可能な二次元配列の制御点を感光層の被露光面上に設定し、
前記制御点と前記感光層の被露光面上とを相対走査するとともに前記制御点を制御して描画を行う描画方法であって、
描画する描画パターンにより生じるジャギーが低減されるよう、前記制御点の配列状態
を設定又は変更することを特徴とする前記<1>から<50>のいずれかに記載のカラーフィルタの製造方法である。
<76> 光変調手段により空間的可変強度を有する露光光を形成し、該露光光によりグレースケール化されたパターンを形成する前記<1>から<75>のいずれかに記載のカラーフィルタの製造方法である。
<77> 露光時間、及び露光光強度のいずれかを変調し、グレースケール化されたパターンを形成する前記<1>から<75>のいずれかに記載のカラーフィルタの製造方法である。
<78> パターン信号生成手段が生成した制御信号の速度が、光照射手段から照射されるパルス光のパルス繰り返し速度よりも大きい前記<1>から<77>のいずれかに記載のカラーフィルタの製造方法である。
<79> 感光層が、感光性組成物を基材の表面に塗布し、乾燥することにより形成される前記<1>から<78>のいずれかに記載のカラーフィルタの製造方法である。
<80> 支持体上に少なくとも一層の感光性組成物層を設けた感光性フィルムを、感光層の表面と基材とが当接するように該基材上に積層し、次いで、支持体を剥離することにより形成される前記<1>から<78>のいずれかに記載のカラーフィルタの製造方法である。
<81> 感光性組成物が、少なくとも、黒色(K)に着色されている前記<1>から<80>のいずれかに記載のカラーフィルタの製造方法である。
<82> 少なくとも、赤色(R)、緑色(G)、及び青色(B)の3原色に着色された感光性組成物を用いて、基材の表面に所定の配置で、R、G及びBの各色毎に、順次、感光層形成工程、露光工程、及び現像工程を繰り返してカラーフィルタを形成する前記<1>から<81>のいずれかに記載のカラーフィルタの製造方法である。
<83> 赤色(R)着色に少なくとも顔料C.I.ピグメントレッド254を、緑色(G)着色に顔料C.I.ピグメントグリーン36及び顔料C.I.ピグメントイエロー139の少なくともいずれかの顔料を、並びに青色(B)着色に少なくとも顔料C.I.ピグメントブルー15:6を用いる前記<82>に記載のカラーフィルタの製造方法である。
<84> 赤色(R)着色に顔料C.I.ピグメントレッド254及び顔料C.I.ピグメントレッド177の少なくともいずれかの顔料を、緑色(G)着色に顔料C.I.ピグメントグリーン36及び顔料C.I.ピグメントイエロー150の少なくともいずれかの顔料を、並びに、青色(B)着色に顔料C.I.ピグメントブルー15:6及び顔料C.I.ピグメントバイオレット23の少なくともいずれかの顔料を用いる前記<82>に記載のカラーフィルタの製造方法である。
<85> 前記<1>から<84>のいずれかに記載のカラーフィルタの製造方法により製造されたことを特徴とするカラーフィルタである。
<86> 前記<85>に記載のカラーフィルタを用いたことを特徴とする液晶表示装置である。
本発明によると、従来における問題を解決することができ、フォトマスクを用いることなく、好適な感光性組成物を用い、画像の線幅ばらつき(エッジラフネス)を極めて少なく、高精細に形成可能であり、低コスト、かつ表示特性に優れ、携帯端末、携帯ゲーム機、ノートパソコン、テレビモニター等の液晶表示装置(LCD)用、PALC(プラズマアドレス液晶)、プラズマディスプレイなどに好適に用いられるカラーフィルタの製造方法、及び該カラーフィルタの製造方法により製造される表示特性に優れたカラーフィルタ、並びに該カラーフィルタを用いた液晶表示装置を提供することができる。また、本発明によると、現像後に観察されるムラ(塗布ムラ及び表示ムラ)が軽減できる。
(カラーフィルタの製造方法)
本発明のカラーフィルタの製造方法は、露光工程を少なくとも含んでなり、感光層形成工程と、現像工程と、更に必要に応じて適宜選択されたその他の工程を含んでなる。
本発明のカラーフィルタは、本発明の前記カラーフィルタの製造方法により製造される。
本発明の液晶表示装置は、本発明の前記カラーフィルタを用いてなり、更に必要に応じてその他の手段を有してなる。
以下、本発明のカラーフィルタの製造方法の説明を通じて、本発明のカラーフィルタ及び液晶表示装置の詳細についても明らかにする。
[感光層形成工程]
前記感光層形成工程は、バインダー、重合性化合物、着色剤、及び光重合開始剤を含む感光性組成物であって、前記着色剤に含まれる顔料の平均粒径が大きくとも100nmであり、かつ該顔料の前記感光性組成物の固形分中の含有量が少なくとも30質量%である感光性組成物を用いて基材の表面に、少なくとも、感光層を形成する工程であり、更に適宜選択されたその他の層を形成する工程である。
前記感光層、及びその他の層を形成する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、塗布により形成する方法、シート状の各層を加圧及び加熱の少なくともいずれかを行うことにより、ラミネートすることにより形成する方法、それらの併用などが挙げられる。
前記感光層形成工程としては、以下に示す第1の態様の感光層形成工程及び第2の態様の感光層形成工程が好適に挙げられる。
第1の態様の感光層形成工程としては、前記感光性組成物を基材の表面に塗布し、乾燥することにより、基材の表面に、少なくとも、感光層を形成し、更に、適宜選択されたその他の層を形成する工程が挙げられる。
第2の態様の感光層形成工程としては、前記感光性組成物をフィルム状に成形した感光性フィルム(以下、「感光性転写材料」と称することがある)を基材の表面に加熱及び加圧の少なくともいずれかの下において積層することにより、基材の表面に、少なくとも、感光層を形成し、更に、適宜選択されたその他の層を形成する工程が挙げられる。
第1の態様の感光層形成工程において、前記塗布及び乾燥の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記基材の表面に、前記感光性組成物を、水又は溶剤に溶解、乳化又は分散させて感光性組成物溶液を調製し、該溶液を直接塗布し、乾燥させることにより積層する方法が挙げられる。
前記感光性組成物溶液の溶剤としては、特に制限はなく、目的に応じて適宜選択することができる。
前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スピンコーター、スリットスピンコーター、ロールコーター、ダイコーター、カーテンコーターなどを用いて、前記基材に直接塗布する方法が挙げられる。本発明においては、液が吐出する部分にスリット状の穴を有するスリット状ノズルを用いた塗布装置(スリットコータ)によって行うことが好ましい。具体的には、特開2004−89851号公報、特開2004−17043号公報、特開2003−170098号公報、特開2003−164787号公報、特開2003−10767号公報、特開2002−79163号公報、特開2001−310147号公報等に記載のスリット状ノズル、及びスリットコータが好適に用いられる。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、通常60〜110℃の温度で30秒間〜15分間程度である。
前記感光層の光学特性としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、吸光度、厚みなどにより表すことができる。
前記吸光度は、透過率の常用対数、即ち、吸光度=−log(T/100)で表される。ただし、Tは、試料に当てる光の強さをXとし、試料を通過した後の光の強さをYとしたとき、T=X/Yで表される。例えば、透過率=85.3%とすると、吸光度(abs)=−log(85.3/100)=0.069となる。
該吸光度は、黒画像用感光材料の場合には、記録するに際して、使用するレーザ光のピーク波長における前記感光層の吸光度を言い、黒以外の画像用感光材料の場合には、350〜750nmにおいて透過率が最大となるピーク波長における前記感光層の吸光度を言い、例えば、公知の分光光度計を用いて測定を行うことができ、(株)島津製作所製UV−分光光度計UV−240などを用いることができる。また、前記吸光度は支持体込みのものから支持体単独の値を差し引いた値で表される。
前記感光層の厚みは、塗布された材料をエポキシ樹脂により包埋、その後クライオミクロトーム切削して断面をSEM観察などにより、読み取ることができる。
前記感光層は記録に用いるレーザ光の吸収波長、又は透過率が最大になるピーク波長における該感光層の吸光度をAとし、該感光層の厚みをX(μm)とすると、前記感光層の光学特性は、A/Xとして表すことができる。前記A/Xの値としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、黒画像用感光材料の場合には、2.0〜5.0が好ましく、2.4〜4.6がより好ましく、3.0〜4.4が特に好ましい。また、黒以外の画像用感光材料の場合には、1.0〜2.8が好ましく、1.3〜2.5がより好ましく、1.6〜2.2が特に好ましい。前記A/Xが、1.0未満であると、画像表示に充分な濃度が得られないことがあり、5.0を超えると露光による膜硬化が不充分で現像性が得られないことがある。もちろん画像表示に光学濃度が必要ない場合は、1.0より小さい値でもよい。
前記感光層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、0.5〜10μmが好ましく、0.6〜6μmがより好ましく、0.8〜4μmが特に好ましい。
第1の態様の感光層形成工程において形成されるその他の層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸素遮断層、剥離層、接着層、光吸収層、表面保護層などが挙げられる。
前記その他の層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記感光層上に塗布する方法、シート状に形成されたその他の層を積層する方法などが挙げられる。
前記第2の態様の感光層形成工程において、基材の表面に感光層、及び必要に応じて適宜選択されるその他の層を形成する方法としては、前記基材の表面に支持体と該支持体上に感光性組成物が積層されてなる感光層と、必要に応じて適宜選択されるその他の層とを有する感光性フィルム(感光性転写材料)を加熱及び加圧の少なくともいずれかを行いながら積層する方法が挙げられ、支持体上に感光性組成物が積層されてなる感光性フィルムを、該感光性組成物が基材の表面側となるように積層し、次いで、支持体を感光性組成物上から剥離する方法が好適に挙げられる。
前記支持体を剥離することにより、支持体による光の散乱や屈折の等影響により、感光性組成物層上に結像させる像にボケ像が生じることが防止され、所定のパターンが高解像度で得られる。
なお、前記感光性フィルムが、後述する保護フィルムを有する場合には、該保護フィルムを剥離し、前記基材に前記感光層が重なるようにして積層するのが好ましい。
前記加熱温度としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、70〜160℃が好ましく、80〜110℃がより好ましい。
前記加圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.01〜1.0MPaが好ましく、0.05〜1.0MPaがより好ましい。
前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒートプレス、ヒートロールラミネーター(例えば、(株)日立インダストリイズ製、LamicII型)、真空ラミネーター(例えば、名機製作所製、MVLP500)などが好適に挙げられる。
前記支持体としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光層を剥離可能であり、かつ光の透過性が良好であるのが好ましく、更に表面の平滑性が良好であるのがより好ましい。
前記支持体の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、4〜300μmが好ましく、5〜175μmがより好ましく、10〜100μmが特に好ましい。
前記支持体の形状としては、特に制限はなく、目的に応じて適宜選択することができ、長尺状が好ましい。前記長尺状の支持体の長さとしては、特に制限はなく、例えば、10m〜20,000mの長さのものが挙げられる。
前記支持体は、合成樹脂製であり、かつ透明であるものが好ましく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢酸セルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ)アクリル酸エステル共重合体、ポリ塩化ビニル、ポリビニルアルコール、ポリカーボネート、ポリスチレン、セロファン、ポリ塩化ビニリデン共重合体、ポリアミド、ポリイミド、塩化ビニル・酢酸ビニル共重合体、ポリテトラフルオロエチレン、ポリトリフルオロエチレン、セルロース系フィルム、ナイロンフィルム等の各種のプラスチックフィルムが挙げられ、これらの中でも、ポリエチレンテレフタレートが特に好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
なお、前記支持体としては、例えば、特開平4−208940号公報、特開平5−80503号公報、特開平5−173320号公報、特開平5−72724号公報などに記載の支持体を用いることもできる。
前記感光性フィルムにおける感光層の形成は、前記基材への前記感光性組成物溶液の塗布及び乾燥(前記第1の態様の感光層形成方法)と同様な方法で行うことができる。
前記保護フィルムは、前記感光層の汚れや損傷を防止し、保護する機能を有するフィルムである。
前記保護フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、5〜100μmが好ましく、8〜50μmがより好ましく、10〜40μmが特に好ましい。
前記保護フィルムの前記感光性フィルムにおいて設けられる箇所としては、特に制限はなく、目的に応じて適宜選択することができ、通常、前記感光層上に設けられる。
前記保護フィルムを用いる場合、前記感光層及び前記支持体の接着力Aと、前記感光層及び保護フィルムの接着力Bとの関係としては、接着力A>接着力Bであることが好適である。
前記支持体と前記保護フィルムとの静摩擦係数としては、0.3〜1.4が好ましく、0.5〜1.2がより好ましい。
前記静摩擦係数が、0.3未満であると、滑り過ぎるため、ロール状にした場合に巻ズレが発生することがあり、1.4を超えると、良好なロール状に巻くことが困難となることがある。
前記保護フィルムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体に使用されるもの、シリコーン紙、ポリエチレン、ポリプロピレンがラミネートされた紙、ポリオレフィン又はポリテトラフルオロエチレンシート、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピレンフィルムなどが特に好ましいものとして挙げられる。
前記支持体と保護フィルムとの組合せ(支持体/保護フィルム)としては、例えば、特開2005−70767号公報の段落番号0151に記載の組合せや、ポリエチレンテレフタレート/ポリエチレンテレフタレートなどが挙げられる。
前記保護フィルムとしては、上述の接着力の関係を満たすために、前記保護フィルムと前記感光層との接着性を調製するために表面処理することが好ましく、例えば、特開2005−70767号公報の段落番号0151に記載の方法などが挙げられる。
前記その他の層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱可塑性樹脂層、中間層、などが挙げられる。
−熱可塑性樹脂層−
前記熱可塑性樹脂層(以下、「クッション層」と称することもある)は、アルカリ現像を可能とし、また、転写時にはみ出した該熱可塑性樹脂層により被転写体が汚染されるのを防止可能とする観点からアルカリ可溶性であることが好ましく、前記感光性転写材料を被転写体上に転写させる際、該被転写体上に存在する凹凸に起因して発生する転写不良を効果的に防止するクッション材としての機能を有していることが好ましく、該感光性転写材料を前記被転写体上に加熱密着させた際に該被転写体上に存在する凹凸に応じて変形可能であるのがより好ましい。
前記熱可塑性樹脂層に用いる材料としては、例えば、特開平5−72724号公報に記載されている有機高分子物質が好ましく、ヴイカーVicat法(具体的には、アメリカ材料試験法エーエステーエムデーASTMD1235によるポリマー軟化点測定法)による軟化点が約80℃以下の有機高分子物質より選択されることが特に好ましい。具体的には、ポリエチレン、ポリプロピレンなどのポリオレフィン、エチレンと酢酸ビニル又はそのケン化物の様なエチレン共重合体、エチレンとアクリル酸エステル又はそのケン化物、ポリ塩化ビニル、塩化ビニルと酢酸ビニル又はそのケン化物の様な塩化ビニル共重合体、ポリ塩化ビニリデン、塩化ビニリデン共重合体、ポリスチレン、スチレンと(メタ)アクリル酸エステル又はそのケン化物の様なスチレン共重合体、ポリビニルトルエン、ビニルトルエンと(メタ)アクリル酸エステル又はそのケン化物の様なビニルトルエン共重合体、ポリ(メタ)アクリル酸エステル、(メタ)アクリル酸ブチルと酢酸ビニル等の(メタ)アクリル酸エステル共重合体、酢酸ビニル共重合体ナイロン、共重合ナイロン、N−アルコキシメチル化ナイロン、N−ジメチルアミノ化ナイロンの様なポリアミド樹脂等の有機高分子などが挙げられる。
前記熱可塑性樹脂層の乾燥厚みは、2〜30μmが好ましく、5〜20μmがより好ましく、7〜16μmが特に好ましい。
−中間層−
前記中間層は、前記感光層上に設けられ、前記感光性転写材料が熱可塑性樹脂層を有する場合には該感光層と該熱可塑性樹脂層との間に設けられる。該感光層と該熱可塑性樹脂層との形成においては、有機溶剤を用いるため、該中間層がその間に位置すると、両層が互いに混ざり合うのを防止することができる。
前記中間層としては、水又はアルカリ水溶液に分散乃至溶解するものが好ましい。
前記中間層の材料としては、公知のものを使用することができ、例えば、特開昭46−2121号公報及び特公昭56−40824号公報に記載のポリビニルエーテル/無水マレイン酸重合体、カルボキシアルキルセルロースの水溶性塩、水溶性セルロースエーテル類、カルボキシアルキル澱粉の水溶性塩、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド類、水溶性ポリアミド、ポリアクリル酸の水溶性塩、ゼラチン、エチレンオキサイド重合体、各種澱粉及びその類似物からなる群の水溶性塩、スチレン/マレイン酸の共重合体、マレイネート樹脂、などが挙げられる。
これらは、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも親水性高分子を使用するのが好ましく、該親水性高分子の中でも、少なくともポリビニルアルコールを使用するのが好ましく、ポリビニルアルコールとポリビニルピロリドンとの併用が特に好ましい。
前記ポリビニルアルコールとしては、特に制限はなく、目的に応じて適宜選択することができ、その鹸化率は80%以上が好ましい。
前記ポリビニルピロリドンを使用する場合、その含有量としては、該中間層の固形分に対し、1〜75体積%が好ましく、1〜60体積%がより好ましく、10〜50体積%が特に好ましい。
前記含有量が、1体積%未満であると、前記感光層との十分な密着性が得られないことがあり、一方、75体積%を超えると、酸素遮断能が低下することがあり好ましくない。
前記中間層は、酸素透過率が小さいことが好ましい。前記中間層の酸素透過率が大きく酸素遮断能が低い場合には、前記感光層に対する露光時における光量をアップする必要を生じたり、露光時間を長くする必要が生ずることがあり、解像度も低下してしまうことがある。
前記中間層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、0.1〜5μm程度であるのが好ましく、0.5〜2μmがより好ましい。
前記厚みが、0.1μm未満であると、酸素透過性が高過ぎてしまうことがあり、5μmを超えると、現像時や中間層除去時に長時間を要し、好ましくない。
前記感光性フィルムの構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体上に、熱可塑性樹脂層と、中間層と、感光層とを、この順に有してなる形態などが挙げられる。なお、前記感光層は、単層であってもよいし、複数層であってもよい。
前記感光性フィルムは、例えば、円筒状の巻芯に巻き取って、長尺状でロール状に巻かれて保管されるのが好ましい。前記長尺状の感光性フィルムの長さとしては、特に制限はなく、例えば、10〜20,000mの範囲から適宜選択することができる。また、ユーザーが使いやすいようにスリット加工し、100〜1,000mの範囲の長尺体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になるように巻き取られるのが好ましい。また、前記ロール状の感光性フィルムをシート状にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端面にはセパレーター(特に防湿性のもの、乾燥剤入りのもの)を設置するのが好ましく、また梱包も透湿性の低い素材を用いるのが好ましい。
前記感光性フィルムは、プリント配線板、カラーフィルタや液晶配向制御用突起、スペーサー、隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフなどのパターン形成用として広く用いることができ、これらの中でも、本発明のカラーフィルタの製造方法に好適に用いることができる。
なお、前記第2の態様の感光層形成方法により形成された感光層を有する積層体への露光方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、支持体上にクッション層を介して存在する感光層からなるフィルムの場合は、前記支持体、必要に応じてクッション層も剥離した後、前記酸素遮断層を介して前記感光層を露光することが好ましい。
<感光層>
前記感光層形成工程で形成される感光層(カラーレジスト層)としては、少なくともバインダー、着色剤、重合性化合物、及び光重合開始剤を含み、前記着色剤に含まれる顔料の数平均粒径が大きくとも100nmであり、かつ該顔料の前記感光性組成物の固形分中の含有量が少なくとも30質量%であり、更に必要に応じて適宜選択されるその他の成分を含む感光性組成物を用いてなる。
<<バインダー>>
前記バインダーとしては、例えば、アルカリ性水溶液に対して膨潤性であるのが好ましく、アルカリ性水溶液に対して可溶性であるのがより好ましい。
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、酸性基を有するものが好適に挙げられる。
前記酸性基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルボキシル基、スルホン酸基、リン酸基などが挙げられ、これらの中でもカルボキシル基が好ましい。
カルボキシル基を有するバインダーとしては、例えば、カルボキシル基を有するビニル共重合体、ポリウレタン樹脂、ポリアミド酸樹脂、変性エポキシ樹脂などが挙げられ、これらの中でも、塗布溶媒への溶解性、アルカリ現像液への溶解性、合成適性、膜物性の調製の容易さ等の観点からカルボキシル基を有するビニル共重合体が好ましい。
前記カルボキシル基を有するビニル共重合体は、少なくとも(1)カルボキシル基を有するビニルモノマー、及び(2)これらと共重合可能なモノマーとの共重合により得ることができる。
前記カルボキシル基を有するビニルモノマーとしては、例えば、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマー、水酸基を有する単量体(例えば、2−ヒドロキシエチル(メタ)アクリレート等)と環状無水物(例えば、無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物)との付加反応物、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレートなどが挙げられる。これらの中でも、共重合性やコスト、溶解性などの観点から(メタ)アクリル酸が特に好ましい。
また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸等の無水物を有するモノマーを用いてもよい。
前記その他の共重合可能なモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、ビニルエーテル類、ビニルアルコールのエステル類、スチレン類、(メタ)アクリロニトリル、ビニル基が置換した複素環式基(例えば、ビニルピリジン、ビニルピロリドン、ビニルカルバゾール等)、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイミダゾール、ビニルカプロラクトン、2−アクリルアミド−2−メチルプロパンスルホン酸、リン酸モノ(2―アクリロイルオキシエチルエステル)、リン酸モノ(1−メチル−2―アクリロイルオキシエチルエステル)、官能基(例えば、ウレタン基、ウレア基、スルホンアミド基、フェノール基、イミド基)を有するビニルモノマーなどが挙げられる。
前記(メタ)アクリル酸エステル類としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、t−オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、アセトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−メトキシエトキシ)エチル(メタ)アクリレート、3−フェノキシ−2−ヒドロキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノフェニルエーテル(メタ)アクリレート、トリエチレングリコールモノメチルエーテル(メタ)アクリレート、トリエチレングリコールモノエチルエーテル(メタ)アクリレート、ポリエチレングリコールモノメチルエーテル(メタ)アクリレート、ポリエチレングリコールモノエチルエーテル(メタ)アクリレート、β−フェノキシエトキシエチルアクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、パーフルオロクチルエチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレートなどが挙げられる。
前記クロトン酸エステル類としては、例えば、クロトン酸ブチル、クロトン酸ヘキシルなどが挙げられる。
前記ビニルエステル類としては、例えば、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、安息香酸ビニルなどが挙げられる。
前記マレイン酸ジエステル類としては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどが挙げられる。
前記フマル酸ジエステル類としては、例えば、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチルなどが挙げられる。
前記イタコン酸ジエステル類としては、例えば、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチルなどが挙げられる。
前記(メタ)アクリルアミド類としては、例えば、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチルアクリル(メタ)アミド、N−t−ブチル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−(2−メトキシエチル)(メタ)アクリルアミド、N、N−ジメチル(メタ)アクリルアミド、N、N−ジエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミドなどが挙げられる。
前記スチレン類としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、酸性物質により脱保護可能な基(例えば、t-Boc等)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、α−メチルスチレンなどが挙げられる。
前記ビニルエーテル類としては、例えば、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテルなどが挙げられる。
前記官能基を有するビニルモノマーの合成方法としては、例えば、イソシアナート基と水酸基又はアミノ基の付加反応が挙げられ、具体的には、イソシアナート基を有するモノマーと、水酸基を1個含有する化合物又は1級若しくは2級アミノ基を1個有する化合物との付加反応、水酸基を有するモノマー又は1級若しくは2級アミノ基を有するモノマーと、モノイソシアネートとの付加反応が挙げられる。
前記イソシアナート基を有するモノマーとしては、例えば、下記構造式(1)〜(3)で表される化合物が挙げられる。
ただし、前記構造式(1)〜(3)中、Rは、水素原子又はメチル基を表す。
前記モノイソシアネートとしては、例えば、シクロヘキシルイソシアネート、n−ブチルイソシアネート、トルイルイソシアネート、ベンジルイソシアネート、フェニルイソシアネートなどが挙げられる。
前記水酸基を有するモノマーとしては、例えば、下記構造式(4)〜(12)で表される化合物が挙げられる。
ただし、前記構造式(4)〜(12)中、Rは、水素原子又はメチル基を表し、n、n1、n2は、1以上の整数を表す。
前記水酸基を1個含有する化合物としては、例えば、アルコール類(例えば、メタノール、エタノール、n−プロパノール、i―プロパノール、n−ブタノール、sec−ブタノール、t−ブタノール、n−ヘキサノール、2−エチルヘキサノール、n−デカノール、n−ドデカノール、n−オクタデカノール、シクロペンタノール、シクロへキサノール、ベンジルアルコール、フェニルエチルアルコール等)、フェノール類(例えば、フェノール、クレゾール、ナフトール等)、更に置換基を含むものとして、フルオロエタノール、トリフルオロエタノール、メトキシエタノール、フェノキシエタノール、クロロフェノール、ジクロロフェノール、メトキシフェノール、アセトキシフェノールなどが挙げられる。
前記1級又は2級アミノ基を有するモノマーとしては、例えば、ビニルベンジルアミンなどが挙げられる。
前記1級又は2級アミノ基を1個含有する化合物としては、例えば、アルキルアミン(メチルアミン、エチルアミン、n−プロピルアミン、i―プロピルアミン、n−ブチルアミン、sec−ブチルアミン、t−ブチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、デシルアミン、ドデシルアミン、オクタデシルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジオクチルアミン)、環状アルキルアミン(シクロペンチルアミン、シクロへキシルアミン等)、アラルキルアミン(ベンジルアミン、フェネチルアミン等)、アリールアミン(アニリン、トルイルアミン、キシリルアミン、ナフチルアミン等)、更にこれらの組合せ(N−メチル−N−ベンジルアミン等)、更に置換基を含むアミン(トリフルオロエチルアミン、ヘキサフルオロイソプロピルアミン、メトキシアニリン、メトキシプロピルアミン等)などが挙げられる。
また、上記以外の前記その他の共重合可能なモノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−エチルヘキシル、スチレン、クロルスチレン、ブロモスチレン、ヒドロキシスチレンなどが好適に挙げられる。
前記その他の共重合可能なモノマーは、1種単独で使用してもよく、2種以上を併用してもよい。
前記ビニル共重合体は、それぞれ相当するモノマーを公知の方法により常法に従って共重合させることで調製することができる。例えば、前記モノマーを適当な溶媒中に溶解し、ここにラジカル重合開始剤を添加して溶液中で重合させる方法(溶液重合法)を利用することにより調製することができる。また、水性媒体中に前記モノマーを分散させた状態でいわゆる乳化重合等で重合を利用することにより調製することができる。
前記溶液重合法で用いられる適当な溶媒としては、特に制限はなく、使用するモノマー、及び生成する共重合体の溶解性等に応じて適宜選択することができ、例えば、メタノール、エタノール、プロパノール、イソプロパノール、1−メトキシ−2−プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、メトキシプロピルアセテート、乳酸エチル、酢酸エチル、アセトニトリル、テトラヒドロフラン、ジメチルホルムアミド、クロロホルム、トルエンなどが挙げられる。これらの溶媒は、1種単独で使用してもよく、2種以上を併用してもよい。
前記ラジカル重合開始剤としては、特に制限はなく、例えば、2,2’−アゾビス(イソブチロニトリル)(AIBN)、2,2’−アゾビス−(2,4’−ジメチルバレロニトリル)等のアゾ化合物、ベンゾイルパーオキシド等の過酸化物、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩などが挙げられる。
前記ビニル共重合体におけるカルボキシル基を有する重合性化合物の含有率としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、5〜50モル%が好ましく、10〜40モル%がより好ましく、15〜35モル%が特に好ましい。
前記含有率が、5モル%未満であると、アルカリ水への現像性が不足することがあり、50モル%を超えると、硬化部(画像部)の現像液耐性が不足することがある。
前記カルボキシル基を有するバインダーの分子量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、重量平均分子量として、2,000〜300,000が好ましく、4,000〜150,000がより好ましい。
前記重量平均分子量が、2,000未満であると、膜の強度が不足しやすく、また安定な製造が困難になることがあり、300,000を超えると、現像性が低下することがある。
前記カルボキシル基を有するバインダーは、1種単独で使用してもよく、2種以上を併用してもよい。前記バインダーを2種以上併用する場合としては、例えば、異なる共重合成分からなる2種以上のバインダー、異なる重量平均分子量の2種以上のバインダー、異なる分散度の2種以上のバインダー、などの組合せが挙げられる。
前記カルボキシル基を有するバインダーは、そのカルボキシル基の一部又は全部が塩基性物質で中和されていてもよい。また、前記バインダーは、さらにポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリビニルアルコール、ゼラチン等の構造の異なる樹脂を併用してもよい。
また、前記バインダーとしては、特許第2873889号明細書に記載のアルカリ水溶液に可溶な樹脂などを用いることができる。
前記感光層における前記バインダーの含有量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、5〜80質量%が好ましく、10〜70質量%がより好ましく、15〜50質量%が特に好ましい。
前記含有量が5質量%未満であると、アルカリ現像性や基板との密着性が低下することがあり、80質量%を超えると、現像時間に対する安定性や、硬化膜(テント膜)の強度が低下することがある。なお、前記含有量は、前記バインダーと必要に応じて併用される高分子結合剤との合計の含有量であってもよい。
前記バインダーの酸価としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、70〜250mgKOH/gが好ましく、90〜200mgKOH/gがより好ましく、100〜180mgKOH/gが特に好ましい。
前記酸価が、70mgKOH/g未満であると、現像性が不足したり、解像性が劣り、パターンを高精細に得ることができないことがあり、250mgKOH/gを超えると、パターンの耐現像液性及び密着性の少なくともいずれかが悪化し、パターンを高精細に得ることができないことがある。
前記バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開昭51−131706号、特開昭52−94388号、特開昭64−62375号、特開平2−97513号、特開平3−289656号、特開平61−243869号、特開2002−296776号などの各公報に記載の酸性基を有するエポキシアクリレート化合物が挙げられる。具体的には、フェノールノボラック型エポキシアクリレートモノテトラヒドロフタレート、あるいは、クレゾールノボラックエポキシアクリレートモノテトラヒドロフタレート、ビスフェノールA型エポキシアクリレートモノテトラヒドロフタレート等であって、例えばエポキシ樹脂や多官能エポキシ化合物に(メタ)アクリル酸等のカルボキシル基含有モノマーを反応させ、更に無水フタル酸等の二塩基酸無水物を付加させたものである。
前記エポキシアクリレート化合物の分子量は、1,000〜200,000が好ましく、2,000〜100,000がより好ましい。該分子量が1,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、200,000を超えると、現像性が劣化することがある。
また、特開平6−295060号公報に記載の酸性基及び二重結合等の重合可能な基を少なくとも1つ有するアクリル樹脂も用いることができる。具体的には、分子内に少なくとも1つの重合可能な二重結合、例えば、(メタ)アクリレート基又は(メタ)アクリルアミド基等のアクリル基、カルボン酸のビニルエステル、ビニルエーテル、アリルエーテル等の各種重合性二重結合を用いることができる。より具体的には、酸性基としてカルボキシル基を含有するアクリル樹脂に、グリシジルアクリレート、グリシジルメタクリレート、桂皮酸等の不飽和脂肪酸のグリシジルエステルや、同一分子中にシクロヘキセンオキシド等のエポキシ基と(メタ)アクリロイル基を有する化合物等のエポキシ基含有の重合性化合物を付加させて得られる化合物などが挙げられる。また、酸性基及び水酸基を含有するアクリル樹脂に、イソシアナートエチル(メタ)アクリレート等のイソシアネート基含有の重合性化合物を付加させて得られる化合物、無水物基を含有するアクリル樹脂に、ヒドロキシアルキル(メタ)アクリレート等の水酸基を含有する重合性化合物を付加させて得られる化合物なども挙げられる。これらの市販品としては、例えば、「カネカレジンAXE;鐘淵化学工業(株)製」、「サイクロマー(CYCLOMER) A−200;ダイセル化学工業(株)製」、「サイクロマー(CYCLOMER) M−200;ダイセル化学工業(株)製」などを用いることができる。
更に、特開昭50−59315号公報記載のヒドロキシアルキルアクリレート又はヒドロキシアルキルメタクリレートとポリカルボン酸無水物及びエピハロヒドリンのいずれかとの反応物などを用いることができる。
また、特開平5−70528号公報に記載のフルオレン骨格を有するエポキシアクリレートに酸無水物を付加させて得られる化合物、特開平11−288087号公報記載のポリアミド(イミド)樹脂、特開平2−097502号公報や特開2003−20310号公報記載のアミド基を含有するスチレン又はスチレン誘導体と酸無水物共重合体、特開平11−282155号公報記載のポリイミド前駆体などを用いることができる。これらは1種単独で使用してもよいし、2種以上を混合して使用してもよい。
前記アクリル樹脂、フルオレン骨格を有するエポキシアクリレート、ポリアミド(イミド)、アミド基含有スチレン/酸無水物共重合体、あるいは、ポリイミド前駆体などのバインダーの分子量は、3,000〜500,000が好ましく、5,000〜100,000がより好ましい。該分子量が3,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、500,000を超えると、現像性が劣化することがある。
前記バインダーの前記感光性組成物固形分中の固形分含有量は、10〜60質量%が好ましく、10〜55質量%がより好ましく、15〜40質量%が特に好ましい。該固形分含有量が、10質量%未満であると、感光層の膜強度が弱くなりやすく、該感光層の表面のタック性が悪化することがあり、60質量%を超えると、露光感度が低下することがある。
<<重合性化合物>>
前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができ、分子中に少なくとも1個の付加重合可能な基を有し、沸点が常圧で100℃以上である化合物が好ましく、例えば、(メタ)アクリル基を有するモノマーから選択される少なくとも1種が好適に挙げられる。
前記(メタ)アクリル基を有するモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の単官能アクリレートや単官能メタクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパンやグリセリン、ビスフェノール等の多官能アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で(メタ)アクリレート化したもの、特公昭48−41708号、特公昭50−6034号、特開昭51−37193号等の各公報に記載されているウレタンアクリレート類;特開昭48−64183号、特公昭49−43191号、特公昭52−30490号等の各公報に記載されているポリエステルアクリレート類;エポキシ樹脂と(メタ)アクリル酸の反応生成物であるエポキシアクリレート類等の多官能アクリレートやメタクリレートなどが挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレートが特に好ましい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記重合性化合物の前記感光性組成物固形分中の固形分含有量は、10〜60質量%が好ましく、15〜50質量%がより好ましく、20〜40質量%が特に好ましい。該固形分含有量が10質量%未満であると、現像性の悪化、露光感度の低下などの問題を生ずることがあり、60質量%を超えると、感光層の粘着性が強くなりすぎることがあり、好ましくない。
前記重合性化合物と前記バインダーの比率は、質量比で、重合性化合物/バインダー=0.5〜1.5が好ましく、0.6〜1.2がより好ましく、0.65〜1.1が特に好ましい。この範囲を超えると、現像時に残渣が生じるなどの問題が生じることがあり、この範囲未満では、完成したカラーフィルタの耐性が低下することがある。
<<光重合開始剤>>
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができ、例えば、紫外線領域から可視の光線に対して感光性を有するものが好ましく、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。
また、前記光重合開始剤は、約300〜800nm(より好ましくは330〜500nm)の範囲内に少なくとも約50の分子吸光係数を有する成分を少なくとも1種含有していることが好ましい。
前記光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの等)、ホスフィンオキサイド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテルなどが挙げられる。
前記トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan、42、2924(1969)記載の化合物、英国特許第第1388492号明細書に記載の化合物、特開昭53−133428号公報記載の化合物、独国特許第第3337024号明細書に記載の化合物、F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載の化合物、米国特許第第4212976号明細書に記載されている化合物、などが挙げられる。
更に、米国特許第第2367660号明細書に記載されているビシナルポリケタルドニル化合物、米国特許第第2448828号明細書に記載されているアシロインエーテル化合物、米国特許第第2722512号明細書に記載されているのα−炭化水素で置換された芳香族アシロイン化合物、米国特許第第3046127号明細書及び米国特許第第2951758号明細書に記載の多核キノン化合物、特開2002−229194号公報に記載の有機ホウ素化合物、ラジカル発生剤、トリアリールスルホニウム塩(例えば、ヘキサフルオロアンチモンやヘキサフルオロホスフェートとの塩)、ホスホニウム塩化合物(例えば、(フェニルチオフェニル)ジフェニルスルホニウム塩等)(カチオン重合開始剤として有効)、国際公開第01/71428号パンフレットに記載のオニウム塩化合物などが挙げられる。
前記若林ら著、Bulletin of the Chemical Society of Japan、42、2924(1969)記載の化合物としては、例えば、2−フェニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−クロルフェニル)−4、6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−トリル)−4、6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(2,4−ジクロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2,4,6−トリス(トリクロルメチル)−1,3,5−トリアジン、2−メチル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−n−ノニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(α,α,β−トリクロルエチル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
前記英国特許第第1388492号明細書に記載の化合物としては、例えば、2−スチリル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メチルスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4−アミノ−6−トリクロルメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭53−133428号公報に記載の化合物としては、例えば、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−エトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−〔4−(2−エトキシエチル)−ナフト−1−イル〕−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4,7−ジメトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(アセナフト−5−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
前記独国特許第第3337024号明細書に記載の化合物としては、例えば、2−(4−スチリルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシスチリル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(1−ナフチルビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−クロロスチリルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−3−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−フラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、及び2−(4−ベンゾフラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記F.C.Schaefer等によるJounal of Organic chemistry,29,1527(1964)記載の化合物としては、例えば、2−メチル−4、6−ビス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(ジブロモメチル)−1,3,5−トリアジン、2−アミノ−4−メチル−6−トリ(ブロモメチル)−1,3,5−トリアジン、及び2−メトキシ−4−メチル−6−トリクロロメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭62−58241号公報に記載の化合物としては、例えば、2−(4−フェニルエチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ナフチル−1−エチニルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−トリルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシフェニル)エチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−イソプロピルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−エチルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記特開平5−281728号公報に記載の化合物としては、例えば、2−(4−トリフルオロメチルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジフルオロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジクロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジブロモフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記特開平5−34920号公報に記載の化合物としては、例えば、2,4−ビス(トリクロロメチル)−6−[4−(N、N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−1,3,5−トリアジン、米国特許第第4239850号明細書に記載されているトリハロメチル−s−トリアジン化合物、更に2,4,6−トリス(トリクロロメチル)−s−トリアジン、2−(4−クロロフェニル)−4,6−ビス(トリブロモメチル)−s−トリアジンなどが挙げられる。
前記米国特許第第4212976号明細書に記載の化合物としては、例えば、オキサジアゾール骨格を有する化合物(例えば、2−トリクロロメチル−5−フェニル−1、3、4−オキサジアゾール、2−トリクロロメチル−5−(4−クロロフェニル)−1、3、4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1、3、4−オキサジアゾール、2−トリクロロメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリブロモメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール;2−トリクロロメチル−5−スチリル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロルスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−メトキシスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−n−ブトキシスチリル)−1,3,4−オキサジアゾール、2−トリプロメメチル−5−スチリル−1,3,4−オキサジアゾール等)などが挙げられる。
本発明で好適に用いられるオキシム誘導体としては、例えば、3−ベンゾイロキシイミノブタン−2−オン、3−アセトキシイミノブタン−2−オン、3−プロピオニルオキシイミノブタン−2−オン、2−アセトキシイミノペンタン−3−オン、2−アセトキシイミノ−1−フェニルプロパン−1−オン、2−ベンゾイロキシイミノ−1−フェニルプロパン−1−オン、3−(4−トルエンスルホニルオキシ)イミノブタン−2−オン、及び2−エトキシカルボニルオキシイミノ−1−フェニルプロパン−1−オンなどが挙げられる。
また、上記以外の光重合開始剤として、アクリジン誘導体(例えば、9−フェニルアクリジン、1,7−ビス(9,9’−アクリジニル)ヘプタン等)、N−フェニルグリシン等、ポリハロゲン化合物(例えば、四臭化炭素、フェニルトリブロモメチルスルホン、フェニルトリクロロメチルケトン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン、7−ベンゾトリアゾール−2−イルクマリン、また、特開平5−19475号、特開平7−271028号、特開2002−363206号、特開2002−363207号、特開2002−363208号、特開2002−363209号公報等に記載のクマリン化合物など)、アミン類(例えば、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸n−ブチル、4−ジメチルアミノ安息香酸フェネチル、4−ジメチルアミノ安息香酸2−フタルイミドエチル、4−ジメチルアミノ安息香酸2−メタクリロイルオキシエチル、ペンタメチレンビス(4−ジメチルアミノベンゾエート)、3−ジメチルアミノ安息香酸のフェネチル、ペンタメチレンエステル、4−ジメチルアミノベンズアルデヒド、2−クロル−4−ジメチルアミノベンズアルデヒド、4−ジメチルアミノベンジルアルコール、エチル(4−ジメチルアミノベンゾイル)アセテート、4−ピペリジノアセトフェノン、4−ジメチルアミノベンゾイン、N,N−ジメチル−4−トルイジン、N,N−ジエチル−3−フェネチジン、トリベンジルアミン、ジベンジルフェニルアミン、N−メチル−N−フェニルベンジルアミン、4−ブロム−N,N−ジメチルアニリン、トリドデシルアミン、アミノフルオラン類(ODB、ODBII等)、クリスタルバイオレットラクトン、ロイコクリスタルバイオレット等)、アシルホスフィンオキサイド類(例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフェニルホスフィンオキサイド、LucirinTPOなど)、メタロセン類(例えば、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ3−(1H−ピロール−1−イル)−フェニル)チタニウム、η5−シクロペンタジエニル−η6−クメニル−アイアン(1+)−ヘキサフルオロホスフェート(1−)等)、特開昭53−133428号公報、特公昭57−1819号公報、同57−6096号公報、及び米国特許第第3615455号明細書に記載された化合物などが挙げられる。
前記ケトン化合物としては、例えば、ベンゾフェノン、2−メチルベンゾフェノン、3−メチルベンゾフェノン、4−メチルベンゾフェノン、4−メトキシベンゾフェノン、2−クロロベンゾフェノン、4−クロロベンゾフェノン、4−ブロモベンゾフェノン、2−カルボキシベンゾフェノン、2−エトキシカルボニルベンゾルフェノン、ベンゾフェノンテトラカルボン酸又はそのテトラメチルエステル、4,4’−ビス(ジアルキルアミノ)ベンゾフェノン類(例えば、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4、4’−ビスジシクロヘキシルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4’−ビス(ジヒドロキシエチルアミノ)ベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−ジメチルアミノベンゾフェノン、4−ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2−t−ブチルアントラキノン、2−メチルアントラキノン、フェナントラキノン、キサントン、チオキサントン、2−クロル−チオキサントン、2,4−ジエチルチオキサントン、フルオレノン、2−ベンジル−ジメチルアミノ−1−(4−モルホリノフェニル)−1−ブタノン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルホリノ−1−プロパノン、2−ヒドロキシ−2−メチル−〔4−(1−メチルビニル)フェニル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類(例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドンなどが挙げられる。
前記光重合開始剤の含有量としては、前記感光性組成物中の全固形成分に対し、0.1〜50質量%が好ましく、0.5〜30質量%がより好ましく、1〜20質量%が特に好ましい。
前記光重合開始剤の含有量は、前記重合性化合物との質量比で表すと、光重合開始剤/重合性化合物=0.01〜0.2が好ましく、0.02〜0.1がより好ましく、0.03〜0.08が特に好ましい。この範囲を超えると、現像残渣が生じたり、析出故障が生じるという問題があり、この範囲未満であると、十分な感度が得られないことがある。
また、後述する感光層への露光における露光感度や感光波長を調製する目的で、前記光重合開始剤に加えて、増感剤を添加することが可能である。
前記増感剤は、後述する光照射手段としての可視光線や紫外光・可視光レーザなどにより適宜選択することができる。
前記増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)することにより、ラジカルや酸等の有用基を発生することが可能である。
前記増感剤としては、特に制限はなく、公知の増感剤の中から目的に応じて適宜選択することができ、例えば、公知の多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン)、キサンテン類(例えば、フルオレセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル)、シアニン類(例えば、インドカルボシアニン、チアカルボシアニン、オキサカルボシアニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー)、アクリジン類(例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン)、アントラキノン類(例えば、アントラキノン)、スクアリウム類(例えば、スクアリウム)、アクリドン類(例えば、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5、7−ジ−n−プロポキシクマリン)、3、3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5、7−ジプロポキシクマリン等が挙げられ、他に特開平5−19475号、特開平7−271028号、特開2002−363206号、特開2002−363207号、特開2002−363208号、特開2002−363209号等の各公報に記載のクマリン化合物など)が挙げられる。
前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開2001−305734号公報に記載の電子移動型開始系[(1)電子供与型開始剤及び増感色素、(2)電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容型開始剤(三元開始系)]などの組合せが挙げられる。
前記増感剤の含有量としては、前記感光性組成物中の全成分に対し、0.05〜30質量%が好ましく、0.1〜20質量%がより好ましく、0.2〜10質量%が特に好ましい。該含有量が、0.05質量%未満であると、活性エネルギー線への感度が低下し、露光プロセスに時間がかかり、生産性が低下することがあり、30質量%を超えると、保存時に前記感光層から前記増感剤が析出することがある。
前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が405nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記α−アミノアルキルケトン類、前記トリアジン骨格を有するハロゲン化炭化水素化合物と後述する増感剤としてのアミン化合物とを組合せた複合光開始剤、ヘキサアリールビイミダゾール化合物、あるいは、チタノセンなどが挙げられる。
<<着色剤>>
前記着色剤としては、該着色剤に含まれる顔料の平均粒径が大きくとも100nmであり、かつ該顔料の前記感光性組成物の固形分中の含有量が少なくとも30質量%であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機顔料、無機顔料、染料などが挙げられる。
これら着色剤と別に又は併用して、着色剤として金属イオンを配位した樹状分岐分子、並びに金属粒子及び合金粒子の少なくともいずれかの金属系粒子を含有する樹状分岐分子から選ばれるいずれかの樹状分岐分子を含有することも可能である。
前記着色剤としては、黄色顔料、オレンジ顔料、赤色顔料、バイオレット顔料、青色顔料、緑色顔料、ブラウン顔料、黒色顔料などが挙げられるが、カラーフィルタを形成する場合には、3原色(B、G、R)及び黒色(K)にそれぞれ着色された複数の感光性転写材料を用いることから、青色顔料、緑色顔料、赤色顔料、及び黒色顔料が好適に用いられる。
前記顔料としては、例えば、特開2005−17716号公報の段落番号0038から0040に記載の色材、特開2005−361447号公報の段落番号0068から0072に記載の顔料、及び特開2005−17521号公報の段落番号0080から0088に記載の着色剤などが好適に挙げられる。
なお、上記有機顔料、無機顔料、又は染料等の着色剤は1種を単独で用いてもよく、又は2種以上を組み合わせて用いることもできる。
本発明においては、携帯端末や携帯ゲーム機等の機器で透過モード、及び反射モードのいずれにおいても良好な表示特性(より色が濃い)を効果的に実現するための前記着色剤の組合せとしては、(i)Rの感光性組成物においては顔料C.I.ピグメントレッド254を用い、(ii)Gの感光性組成物においては顔料C.I.ピグメントグリーン36及び顔料C.I.ピグメントイエロー139を併用して用い、(iii)Bの感光性組成物においては顔料C.I.ピグメントブルー15:6を用いることが好ましい。
また、本発明においては、ノートパソコン用ディスプレイやテレビモニター等の大画面の液晶表示装置等に用いた場合に高い表示特性(色再現域が広く、色温度が高い)を実現するための前記着色剤の組合せとしては、、(I)赤色(R)の感光性組成物においては顔料C.I.ピグメントレッド254及びC.I.ピグメントレッド177の少なくともいずれかを用い、(II)緑色(G)の感光性組成物においては顔料C.I.ピグメントグリーン36及び顔料C.I.ピグメントイエロー150を併用し、(III)青色(B)の感光性組成物においては顔料C.I.ピグメントブルー15:6及びC.I.ピグメントバイオレット23を併用することが好ましい。
上記のような着色剤を用いる場合、前記顔料の数平均粒径としては、大きくとも100nmであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、10〜80nmが好ましく、20〜60nmがより好ましく、30〜40nmが特に好ましい。前記顔料の数平均粒径が、10nm未満であると、カラーフィルタの作製時、及び作製後の安定性が不十分なことがあり、100nmを超えると、エッジラフネス低減の効果が充分に得られないことがある。
前記顔料の数平均粒径を10〜100nmにするためには、公知の方法により顔料微細化処理をすることにより達成することができる。
前記顔料微細化処理の具体例として、特開2001−214077号公報の段落0021から0030に記載の磨砕法、析出法、合成析出法などが挙げられる。
更に、顔料分散物の分散時間を調節することでも、顔料微細化をすることができる。
分散には、公知の分散機を用いることができる。分散時間は、10〜30時間が好ましく、18〜30時間がより好ましく、24〜30時間が特に好ましい。前記分散時間の範囲にすることで、顔料の数平均粒子径を上記の好ましい範囲にすることができる。
前記顔料を分散させる際に使用する分散機としては、特に制限はなく、例えば、朝倉邦造著、「顔料の事典」、第一版、朝倉書店、2000年、438項に記載されているニーダー、ロールミル、アトライダー、スーパーミル、ディゾルバ、ホモミキサー、サンドミル等の公知の分散機などが挙げられる。更に、該文献310頁記載の機械的摩砕により、摩擦力を利用し微粉砕してもよい。
なお、ここで言う「粒径」とは、粒子の電子顕微鏡写真画像を同面積の円とした時の直径を言い、また「数平均粒径」とは多数の粒子について上記の粒径を求め、この100個平均値を言う。
ここで、前記エッジラフネスとは、露光装置から出射されたレーザ光により、感光性材料の感光層面に描画される被露光部の線幅のばらつき及び被露光部の濃度のばらつきをいう。前記エッジラフネスは、前記露光装置の光照射手段などの精度や感光性材料の光学特性のばらつきにより発生する。本発明の感光性組成物は、前記顔料の粒径を限定し、該顔料の前記感光性組成物の固形分中の含有量を限定することにより、前記感光性材料の光学特性のばらつきを抑制でき、前記エッジラフネスを減少することができる。
前記エッジラフネスは、具体的には、図87に示すように、、前記感光性材料の走査方向をy、走査方向yと直交する方向をxとし、略走査方向yに沿って配列されるマイクロミラー40の列がスワス77と定義され、このスワス77の列によって描画される被露光部の線幅や濃度がばらつくことをいう。
前記スワス77は、描画される画像のx方向に対する解像度を高めるため、x方向に対して所定の角度θs(以下、スワス傾斜角度θs(≠90゜)という)に設定され、該スワス77上には、DMD画素A、Bを含む画素が等間隔に配列されている。
しかし、前記スワス77の精度や感光性材料の光学特性などを原因として、図98に示すように、被露光部210の中心線212に対して線幅214が大小にばらつき、線幅が太くなったり、細くなったりする部分(エッジラフネス)ができてしまう。
前記エッジラフネスの評価方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ライン幅30μmのラインの任意の5箇所について、レーザ顕微鏡(VK−9500、キーエンス(株)製;対物レンズ50倍)を用いて観察し、視野内のエッジ位置のうち、最も膨らんだ箇所(山頂部)と、最もくびれた箇所(谷底部)との差を絶対値として求め、観察した5箇所の平均値を算出し、この平均値を評価基準とする方法などが挙げられる。この場合のエッジラフネスとしては、値が小さい程、良好な性能を示すため好ましい。具体的には、1μm以下が好ましく、0.5μm以下がより好ましい。前記平均値が1μmを超えると、解像度が低下し、カラーフィルタのコントラストが低下することがある。
また、図97に示すように、図中の中央部に示される適正露光の場合に比べて、図に向かって左側の太線のように、前記各画素の列方向の重なりや、前記感光性材料の感度などにより、露光過多となってしまうことがある。他方右側の点線のように、前記各画素の列方向の隙間や、前記感光性材料の感度などにより、露光不足となってしまうことがある。 該露光過多や露光不足によって被露光部に濃淡が生じエッジラフネスとなる。
前記顔料の前記感光性組成物の固形分中の含有量としては、少なくとも30質量%であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、30〜60質量%が好ましく、35〜60質量%がより好ましく、45〜60質量%が特に好ましい。
前記顔料の前記含有量が、高い光学濃度を必要とする場合に30質量%未満であると、単位厚みあたりの光学濃度が不十分で所望の光学濃度を達成するために膜を厚くしなければならないことがあり、60質量%を超えると、露光部と未露光部の現像液に対する溶解性の差を出すことが困難になることがある。
<<その他の成分>>
前記感光性組成物には、その他の成分として、例えば、熱架橋剤、可塑剤、界面活性剤、紫外線吸収剤、熱重合禁止剤等の成分を含有してもよい。
前記熱架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光性組成物を用いて形成される感光層の硬化後の膜強度を改良するために、現像性等などに悪影響を与えない範囲で、例えば、1分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂化合物、1分子内に少なくとも2つのオキセタニル基を有するオキセタン化合物、メラミン樹脂化合物などを用いることができる。
前記エポキシ樹脂化合物としては、例えば、ビキシレノール型もしくはビフェノール型エポキシ樹脂(「YX4000;ジャパンエポキシレジン社製」等)又はこれらの混合物、イソシアヌレート骨格等を有する複素環式エポキシ樹脂(「TEPIC;日産化学工業(株)製」、「アラルダイトPT810;チバ・スペシャルティ・ケミカルズ社製」等)、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、グリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂(「ESN−190、ESN−360;新日鉄化学(株)製」、「HP−4032、EXA−4750、EXA−4700;大日本インキ化学工業(株)製」等)、ジシクロペンタジエン骨格を有するエポキシ樹脂(「HP−7200、HP−7200H;大日本インキ化学工業社製」等)、グリシジルメタアクリレート共重合系エポキシ樹脂(「CP−50S、CP−50M;日本油脂(株)製」等)、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂などが挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
前記オキセタン化合物としては、例えば、ビス[(3−メチル−3−オキセタニルメトキシ)メチル]エーテル、ビス[(3−エチル−3−オキセタニルメトキシ)メチル]エーテル、1、4−ビス[(3−メチル−3−オキセタニルメトキシ)メチル]ベンゼン、1、4−ビス[(3−エチル−3−オキセタニルメトキシ)メチル]ベンゼン、(3−メチル−3−オキセタニル)メチルアクリレート、(3−エチル−3−オキセタニル)メチルアクリレート、(3−メチル−3−オキセタニル)メチルメタクリレート、(3−エチル−3−オキセタニル)メチルメタクリレート又はこれらのオリゴマーあるいは共重合体等の多官能オキセタン類の他、オキセタン基と、ノボラック樹脂、ポリ(p−ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、シルセスキオキサン等の水酸基を有する樹脂など、とのエーテル化合物が挙げられ、この他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体なども挙げられる。
前記メラミン樹脂化合物としては、例えば、アルキル化メチロールメラミン、ヘキサメチル化メチロールメラミンなどが挙げられる。
前記エポキシ樹脂化合物又はオキセタン化合物の前記感光性組成物固形分中の固形分含有量は、1〜50質量%が好ましく、3〜30質量%がより好ましい。該固形分含有量が1質量%未満であると、硬化膜の吸湿性が高くなり、絶縁性の劣化が生じることがあり、50質量%を超えると、現像性の悪化や露光感度の低下が生ずることがあり、好ましくない。
また、前記エポキシ樹脂化合物や前記オキセタン化合物の熱硬化を促進するため、例えば、ジシアンジアミド、ベンジルジメチルアミン、4−(ジメチルアミノ)−N,N−ジメチルベンジルアミン、4−メトキシ−N,N−ジメチルベンジルアミン、4−メチル−N,N−ジメチルベンジルアミン等のアミン化合物;トリエチルベンジルアンモニウムクロリド等の4級アンモニウム塩化合物;ジメチルアミン等のブロックイソシアネート化合物;イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、4−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール等のイミダゾール誘導体二環式アミジン化合物及びその塩;トリフェニルホスフィン等のリン化合物;メラミン、グアナミン、アセトグアナミン、ベンゾグアナミン等のグアナミン化合物;2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン、2−ビニル−2,4−ジアミノ−S−トリアジン、2−ビニル−4,6−ジアミノ−S−トリアジン・イソシアヌル酸付加物、2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン・イソシアヌル酸付加物等のS−トリアジン誘導体;などを用いることができる。これらは1種単独で使用してもよく、2種以上を併用してもよい。なお、前記エポキシ樹脂化合物や前記オキセタン化合物の硬化触媒、あるいは、これらとカルボキシル基の反応を促進することができるものであれば、特に制限はなく、上記以外の熱硬化を促進可能な化合物を用いてもよい。
前記エポキシ樹脂、前記オキセタン化合物、及びこれらとカルボン酸との熱硬化を促進可能な化合物の前記感光性組成物固形分中の固形分含有量は、通常0.01〜15質量%である。
また、前記熱架橋剤としては、特開平5−9407号公報記載のポリイソシアネート化合物を用いることができ、該ポリイソシアネート化合物は、少なくとも2つのイソシアネート基を含む脂肪族、環式脂肪族又は芳香族基置換脂肪族化合物から誘導されていてもよい。具体的には、1,3−フェニレンジイソシアネートと1,4−フェニレンジイソシアネートとの混合物、2,4−及び2,6−トルエンジイソシアネート、1,3−及び1,4−キシリレンジイソシアネート、ビス(4−イソシアネート−フェニル)メタン、ビス(4−イソシアネートシクロヘキシル)メタン、イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等の2官能イソシアネート;該2官能イソシアネートと、トリメチロールプロパン、ペンタリスルトール、グリセリン等との多官能アルコール;該多官能アルコールのアルキレンオキサイド付加体と、前記2官能イソシアネートとの付加体;ヘキサメチレンジイソシアネート、ヘキサメチレン−1,6−ジイソシアネート及びその誘導体等の環式三量体;などが挙げられる。
更に、本発明の感光性組成物、あるいは、本発明の感光性フィルムの保存性を向上させることを目的として、前記ポリイソシアネート及びその誘導体のイソシアネート基にブロック剤を反応させて得られる化合物を用いてもよい。
前記イソシアネート基ブロック剤としては、イソプロパノール、tert.−ブタノール等のアルコール類;ε−カプロラクタム等のラクタム類、フェノール、クレゾール、p−tert.−ブチルフェノール、p−sec.−ブチルフェノール、p−sec.−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール等のフェノール類;3−ヒドロキシピリジン、8−ヒドロキシキノリン等の複素環式ヒドロキシル化合物;ジアルキルマロネート、メチルエチルケトキシム、アセチルアセトン、アルキルアセトアセテートオキシム、アセトオキシム、シクロヘキサノンオキシム等の活性メチレン化合物;などが挙げられる。これらの他、特開平6−295060号公報記載の分子内に少なくとも1つの重合可能な二重結合及び少なくとも1つのブロックイソシアネート基のいずれかを有する化合物などを用いることができる。
また、アルデヒド縮合生成物、樹脂前駆体などを用いることができる。具体的には、N,N’−ジメチロール尿素、N,N’−ジメチロールマロンアミド、N,N’−ジメチロールスクシンイミド、トリメチロールメラミン、テトラメチロールメラミン、ヘキサメチロールメラミン、1,3−N,N’−ジメチロールテレフタルアミド、2,4,6−トリメチロールフェノール、2,6−ジメチロール−4−メチロアニソール、1,3−ジメチロール−4,6−ジイソプロピルベンゼンなどが挙げられる。なお、これらのメチロール化合物の代わりに、対応するエチルもしくはブチルエーテル、又は酢酸あるいはプロピオン酸のエステルを使用してもよい。また、メラミンと尿素とのホルムアルデヒド縮合生成物とからなるヘキサメトキシメチルメラミンや、メラミンとホルムアルデヒド縮合生成物のブチルエーテルなどを使用してもよい。
前記熱架橋剤の添加量としては、本発明の効果を損なわない範囲で加えることができ、前記熱架橋剤の含有量としては、感光性組成物の全固形分の0.01〜10質量%が好ましく、0.02〜5質量%がより好ましく、0.05〜3質量%が特に好ましい。
前記可塑剤は、前記感光層の膜物性(可撓性)をコントロールするために添加してもよい。
前記可塑剤としては、例えば、ジメチルフタレート、ジブチルフタレート、ジイソブチルフタレート、ジヘプチルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジトリデシルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジフェニルフタレート、ジアリルフタレート、オクチルカプリールフタレート等のフタル酸エステル類;トリエチレングリコールジアセテート、テトラエチレングリコールジアセテート、ジメチルグリコースフタレート、エチルフタリールエチルグリコレート、メチルフタリールエチルグリコレート、ブチルフタリールブチルグリコレート、トリエチレングリコールジカブリル酸エステル等のグリコールエステル類;トリクレジルホスフェート、トリフェニルホスフェート等のリン酸エステル類;4−トルエンスルホンアミド、ベンゼンスルホンアミド、N−n−ブチルベンゼンスルホンアミド、N−n−ブチルアセトアミド等のアミド類;ジイソブチルアジペート、ジオクチルアジペート、ジメチルセバケート、ジブチルセパケート、ジオクチルセパケート、ジオクチルアゼレート、ジブチルマレート等の脂肪族二塩基酸エステル類;クエン酸トリエチル、クエン酸トリブチル、グリセリントリアセチルエステル、ラウリン酸ブチル、4,5−ジエポキシシクロヘキサン−1,2−ジカルボン酸ジオクチル等、ポリエチレングリコール、ポリプロピレングリコール等のグリコール類が挙げられる。
前記可塑剤の含有量としては、前記感光層の全成分に対して0.1〜50質量%が好ましく、0.5〜40質量%がより好ましく、1〜30質量%が特に好ましい。
前記界面活性剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤などから適宜選択できる。
更に、前記界面活性剤としては、次式、C17SON(R)CHCHO(CHCH)で表されるフッ素系界面活性剤が好適に挙げられる。
ただし、式中、R及びRは、各々水素原子又は炭素数1〜4のアルキル基を表し、nは2〜30の整数を表す。
前記Rとしては、メチル基、エチル基、イソプロピル基が好適に挙げられ、前記Rとしては、水素原子が好適に挙げられる。
前記nとしては、10〜25が好ましく、10〜20がより好ましい。
前記式で表される界面活性剤の具体例としては、メガファックF−141(n=5)、F−142(n=10)、F=143(n=15)、F−144(n=20)(いずれも商品名:大日本インキ化学工業(株)製)が挙げられる。
更に、前記界面活性剤としては、次式(13)〜(17)で表される界面活性剤が好適に挙げられる。
Rf1−X−(CHCHO)・・・(13)
Rf1−X−(CHCHO)・・・(14)
Rf1−X−(CHCHO)(CHCHCHO)・・・(15)
Rf1−X−(CHCHO)(CHCHCHO)Rf2・・・(16)
前記式(13)〜(16)において、R及びRは、炭素素1〜18、好ましくは、炭素数1〜10、より好ましくは、炭素数1〜4のアルキル基を表す。
前記アルキル基としては、飽和アルキル基、不飽和アルキル基が挙げられる。
前記アルキル基の構造としては、直鎖構造、分岐構造を有するものが挙げられ、これらの中でも分岐構造を有するものが好適に挙げられる。
前記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ヘプチル基、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ヘキサデシル基、オタタデシル基、エイコサニル基、ドコサニル基、2−クロロエチル基、2−プロモエチル基、2−シアノエチル基、2−メトキシカルボニルエチル基、2−メトキシエチル基、3−プロモプロピル基などが挙げられる。また、これらのアルキル基は、ハロゲン原子、アシル基、アミノ基、シアノ基、アルキル基、アルコキシ基、アルキル若しくはハロアルキルで置換されていてもよいアリール基、アミド基等で置換されていてもよい。
前記式(13)〜(16)において、Rf1及びRf2は、それぞれ独立して、炭素数1〜18、好ましく2〜12、より好ましくは4〜10のパーフルオロ基を表す。
前記パーフルオロ基としては、飽和パーフルオロ基、不飽和パーフルオロ基が挙げられる。
前記パーフルオロ基の構造としては、直鎖構造、分岐構造を有するものが挙げられ、これらの中でも分岐構造を有するものが好適に挙げられ、前記Rf1及びRf2の少なくともいずれかが、分岐構造を有するものがより好適に挙げられる。
前記パーフルオロ基としては、例えば、パーフルオロノネニル、パーフルオロメチル、パーフルオロプロピレン、パーフルオロノニネル、パーフルオロ安息香酸、パーフルオロプロピレン、パーフルオロプロピル、パーフルオロ(9−メチルオクチル)、パーフルオロメチルオクチル、パーフルオロブチル、パーフルオロ3−メチルブチル、パーフルオロヘキシル、パーフルオロクチル、パーフルオロ7−オクチルエチル、フルオロヘプチル、パーフルオロデシル、パーフルオロブチルなどが挙げられる。また、これらのパーフルオロ基は、ハロゲン原子、アシル基、アミノ基、シアノ基、アルキル基、アルコキシ基、アルキル若しくはハロアルキルで置換されていてもよく、アリール基、アミド基等で置換されていてもよい。
前記Rf1及びRf2は互い同じであってもよく、異なっていてもよい。
前記式(13)〜(16)において、nは、1〜40の整数、好ましくは4〜25の整数を表す。
前記式(13)〜(16)において、mは、0〜40の整数、好ましくは0〜25の整数を表す。
前記式(13)〜(16)において、−X−は、−(CH−(lは1〜10、好ましくは、1〜5の整数を表す)、−CO−O−、−O−、−NHCO−、−NHCOO−のいずれかを表す。
前記式(17)において、R,R,Rは水素原子、又はメチル基を表し、a,b,c,p,qは任意の正数を表し、必要に応じて適宜選ばれるが、例として、a=50、b=c=25、p=q=10などが挙げられる。r,sは任意の正の整数を表し、必要に応じて適宜選ばれるが、例として、r=2、s=6などが挙げられる。CrH2r、CsF2s+1としては、r、sが3以上のとき、直鎖構造、分岐構造のいずれもが含まれる。前記式(17)で表される界面活性剤の具体例としては、メガファックF−780F(a=40、b=5、c=55、r=2、s=6、p=q=7;大日本インキ化学工業(株)製)などが挙げられる。
前記式(13)〜(17)で表される界面活性剤は、1種単独又は2種以上の組合せで用いることができる。
前記界面活性剤の含有量としては、感光性組成物の固形分に対し、0.001〜10質量%が好ましい。
前記含有量が、0.001質量%未満になると、面状改良の効果が得られなくことがあり、10質量%を超えると、密着性が低下することがある。
前記感光性組成物が前記界面活性剤を含有することにより、塗布液としての流動性が良好となり、塗布工程で使用されるスピンコーターやスリットコーターのノズルや配管、容器中での液の付着性が改善され、前記ノズル内に汚れとして残る残渣を効果的に減少させることができるので、塗布液の切り替え時に洗浄に要する洗浄液の量や作業時間を軽減でき、カラーフィルタの生産性を向上させることができる。また、前記カラーレジスト層を形成する際に発生する面状ムラ等を改善することができる。
前記熱重合禁止剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、4−メトキシフェノール、ハイドロキノン、アルキル又はアリール置換ハイドロキノン、t−ブチルカテコール、ピロガロール、2−ヒドロキシベンゾフェノン、4−メトキシ−2−ヒドロキシベンゾフェノン、塩化第一銅、フェノチアジン、クロラニル、ナフチルアミン、β−ナフトール、2,6−ジ−t−ブチル−4−クレゾール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、ピリジン、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、4−トルイジン、メチレンブルー、銅と有機キレート剤反応物、サリチル酸メチル、及びフェノチアジン、ニトロソ化合物、ニトロソ化合物とAlとのキレートなどが挙げられる。
前記熱重合禁止剤の含有量としては、感光性組成物の全成分に対し、0.0001〜10質量%が好ましく、0.0005〜5質量%がより好ましく、0.001〜1質量%が特に好ましい。
前記紫外線吸収剤としては、特開平5−72724号公報記載の化合物のほか、サリシレート系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系、ニッケルキレート系、ヒンダードアミン系などが挙げられる。
具体的には、フェニルサリシレート、4−t−ブチルフェニルサリシレート、2,4−ジ−t−ブチルフェニル−3’,5’−ジ−t−4’−ヒドロキシベンゾエート、4−t−ブチルフェニルサリシレート、2,4−ジ−ヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、エチル−2−シアノ−3,3−ジ−フェニルアクリレート、2,2’−ヒドロキシ−4−メトキシベンゾフェノン、ニッケルジブチルジチオカーバメート、ビス(2,2,6,6−テトラメトル−4−ピリジン)−セバケート、4−t−ブチルフェニルサリシレート、サルチル酸フェニル、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン縮合物、コハク酸−ビス(2,2,6,6−テトラメチル−4−ピペリデニル)−エステル、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、7−{[4−クロロ−6−(ジエチルアミノ)−5−トリアジン−2−イル]アミノ}−3−フェニルクマリンなどが挙げられる。
なお、感光性組成物の全固形分に対する紫外線吸収剤の含有量は、0.5〜15質量%が好ましく、1〜12質量%がより好ましく、1.2〜10質量%が特に好ましい。
前記感光層を形成する感光性組成物は、溶剤を用いて調製することができる。
前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、n−ヘキサノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどのケトン類;酢酸エチル、酢酸ブチル、酢酸−n−アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、及びメトキシプロピルアセテートなどのエステル類;トルエン、キシレン、ベンゼン、エチルベンゼンなどの芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1−トリクロロエタン、塩化メチレン、モノクロロベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1−メトキシ−2−プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3−メトキシプロピオン酸メチル、2−ヘプタノン、シクロヘキサン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテルアセテートなどが好適に挙げられる。これらの溶剤は、単独又2種以上の組合せで用いることができる。
前記感光性組成物の調製時における前記溶剤の添加量としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光性組成物の全固形分濃度が5〜80質量%となるように添加されることが好ましく、10〜60質量%となるように添加されることがより好ましく、15〜50質量%となるように添加されることが特に好ましい。
前記感光層の厚みは、0.3〜10μmが好ましく、0.75〜6μmがより好まく、1.0〜3μmが特に好ましい。
前記層の厚みが0.3μm未満であると、感光層用塗布液の塗布時にピンホールが発生しやすく、製造適性が低下することがあり、10μmを超えると、現像時に未露光部を除去するのに長時間を要することがある
<基材>
前記感光層形成工程で用いられる前記基材としては、特に制限はなく、公知の材料の中から表面平滑性の高いものから凸凹のある表面を有するものまで、目的に応じて適宜選択することができ、板状の基材(基板)が好ましく、具体的には、ガラス板(例えば、ソーダガラス板、酸化ケイ素をスパッタしたガラス板、無アルカリガラス板、石英ガラス板等)、合成樹脂性のフィルム、紙、金属板などが挙げられる。
前記基材は、該基材上に前記感光層における感光層が重なるようにして積層してなる積層体を形成して用いることができる。即ち、前記積層体における感光層の前記感光層に対して露光することにより、露光した領域を硬化させ、後述する現像工程によりパターンを形成することができる。
[露光工程]
前記露光工程としては、光照射手段及び光変調手段を少なくとも備えた露光ヘッドと、前記感光層の少なくともいずれかを移動させつつ、前記感光層に対して、前記光照射手段から出射した光を前記光変調手段によりパターン情報に応じて変調しながら前記露光ヘッドから照射して、前記感光層を露光する工程であり、該露光はマスクレス露光である。
前記マスクレス露光(「マスクレスパターン露光」ともいう)とは、パターン情報(「画像データ」ともいう)に基づいて、光照射手段からの光を変調しながら、露光ヘッドと前記感光層の被露光面とを相対走査することにより、前記感光層の被露光面上に二次元パターン(「画像」ともいう)を形成する露光方法である。これに対し、マスクを用いた従来の露光方法は、露光光を透過させない材質、又は露光光を弱めて透過させる材質でパターンを形成してなるマスクを、前記感光層の被露光面上の光路に配置して露光を行う方法である。
前記光照射手段から照射される光の光源としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、超高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機用などの蛍光管、LED、及びレーザ光(半導体レーザ、固体レーザ、液体レーザ、気体レーザ)等が挙げられ、これらの中でも、超高圧水銀灯及びレーザ光が好ましく、光のオンオフ制御が短時間で行え、光の干渉制御が容易ある観点から、レーザ光がより好ましい。
前記光源の波長としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記超高圧水銀灯としては、i線(365nm)が好ましく、固体レーザとしては、YAG−SHG固体レーザ(532nm)、半導体励起固体レーザ(532nm、355nm、266nm)が好ましく、気体レーザとしては、KrFレーザ(249nm)、ArFレーザ(193nm)が好ましい。半導体レーザとしては、感光性組成物の露光時間の短縮を図る目的、及び入手のしやすさの観点から、300〜500nmが好ましく、340〜450nmがより好ましく、405nm又は410nmであることが特に好ましい。
前記レーザ光のビーム径としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光層における解像度の観点から、ガウシアンビームの1/e値で5〜30μnが好ましく、7〜20μmがより好ましい。
また、前記レーザ光の光エネルギー量としては、特に制限はなく、目的に応じて適宜選択することができ、露光時間の短縮と解像度の観点から、1〜100mJ/cmが好ましく、5〜20mJ/cmがより好ましい。
前記光源としては、光を一端から入射し、入射した前記光を他端から出射する光ファイバを複数本束ねてなるバンドル状のファイバ光源が好ましく、前記光ファイバが、光源からの光を2以上合成した合波レーザ光を出射可能であることがより好ましい。
前記合波レーザ光の照射方法としては、特に制限はなく、目的に応じて適宜選択することができ、複数のレーザ光源と、マルチモード光ファイバと、該複数のレーザ光源から照射されるレーザ光を集光して前記マルチモード光ファイバに結合させるレンズ系とにより合波レーザ光を合成し、照射する方法が挙げられる。
前記露光工程において、前記光照射手段からの光を変調する光変調手段としては、前記光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、前記描素部をパターン情報に基づいて制御可能であるものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、空間変調素子、及び光多面鏡(ポリゴンミラー)などが挙げられる。
前記空間光変調素子としては、特に制限はなく、目的に応じて適宜選択することができ、デジタル・マイクロミラー・デバイス(DMD)、MEMS(Micro Electro Mechanical Systems)タイプの空間光変調素子(SLM;Special Light Modulator)、ミラー階調型空間変調素子、電気光学効果により透過光を変調する光学素子(PLZT素子)、液晶光シャッタ(FLC)などが好適に挙げられる。
なお、MEMSとは、IC製造プロセスを基板としたマイクロマシニング技術によるマイクロサイズのセンサ、アクチュエータ、及び制御回路を集積化した微細システムの総称であり、MEMSタイプの空間光変調素子とは、静電気力を利用した電気機械動作により駆動される空間光変調素子を意味している。さらに、Grating Light Valve(GLV)を複数並べて二次元状に構成したものを用いることもできる。これらの反射型空間光変調素子(GLV)や、透過型空間光変調素子(LCD)を使用する構成においては、前記光源として、レーザのほかにランプ等を使用することができる。
これらの空間光変調素子の中でもDMD、及びミラー階調型空間変調素子がより好適に挙げられ、DMDが特に好適に挙げられる。
前記光多面鏡(ポリゴンミラー)としては、複数面(例えば6面)の平面反射面を有する回転部材であって、回転によって光を走査させることが可能な限り、特に制限はなく、目的に応じて適宜選択することができる。なお、前記光多面体(ポリゴンミラー)を用いる露光においては、前記感光層の被露光面を、前記光多面体(ポリゴンミラー)の走査方向に対して直角に移動させることにより、前記被露光面前面を露光することができる。
前記露光工程において、感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、デジタル露光、アナログ露光などが挙げられるが、デジタル露光が好適である。
前記デジタル露光の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、所定のパターン情報に基づいて生成される制御信号に応じて変調されたレーザ光を用いて行われることが好適である。
更に、前記露光工程において、感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができ、短時間、かつ高速露光を可能とする観点から、露光光と感光層とを相対的に移動させながら行うことが好ましく、前記デジタル・マイクロミラー・デバイス(DMD)と併用されることが特に好ましい。
前記露光工程において、不活性ガス雰囲気下行うことが好ましい。前記感光層形成工程により形成された感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、不活性ガスを前記感光層表面に直接吹きかける方法、枠状フレームの一辺が開放され、不活性ガスの導入孔が少なくとも残りの1辺に形成された試料台中の露光空間に、露光対象である感光層が形成された試料を載置し、前記不活性ガスの導入孔から不活性ガスを導入して、感光層表面を不活性ガスで覆いつつ、露光を行う方法などが挙げられる。
また、前記露光空間を密封空間として、減圧下で該密封空間内に不活性ガスを導入することも可能である。
前記不活性ガスとしては、酸素の影響により前記感光層の重合反応が阻害されることを防止できれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、窒素、ヘリウム、アルゴンなどが挙げられる。
以下、本発明のカラーフィルタの製造方法の態様、及び該カラーフィルタの製造方法に好適に用いられる露光装置を、図面を参照しながら説明する。
前記露光装置としては、いわゆるフラットベッドタイプの露光装置の他、感光材料がドラムの外周面に巻きつけられるアウタードラムタイプの露光装置、及び感光材料がシリンダの内周面に装着されるインナードラムタイプの露光装置であってもよい。以下、一例として、フラットベットタイプの露光装置について説明する。
<露光装置>
前記露光装置は、図1に示すように、前記感光層を前記基体上に積層してなる積層体12(以下、「感光層12」、又は「感光材料12」と表す)を表面に吸着して保持する平板状の移動ステージ14を備えている。4本の脚部16に支持された厚い板状の設置台18の上面には、ステージ移動方向に沿って延びた2本のガイド20が設置されている。ステージ14は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド20によって往復移動可能に支持されている。なお、この露光装置10には、ステージ14をガイド20に沿って駆動するステージ駆動装置(図示せず)が設けられている。
設置台18の中央部には、ステージ14の移動経路を跨ぐようにコの字状のゲート22が設けられている。コの字状のゲート22の端部の各々は、設置台18の両側面に固定されている。このゲート22を挟んで一方の側にはスキャナ24が設けられ、他方の側には感光層12の先端及び後端を検知する複数(たとえば2個)のセンサ26(又はカメラ26)が設けられている。スキャナ24及びセンサ26(又はカメラ26)は、ゲート22に各々取り付けられて、ステージ14の移動経路の上方に固定配置されている。なお、スキャナ24及びセンサ26(又はカメラ26)は、これらを制御する図示しないコントローラに接続されている。
スキャナ24には、図2及び図3Bに示すように、m行n列(例えば、2行5列)の略マトリックス状に配列された10個の露光ヘッドが備えられている。
図2に示すように、各露光ヘッド30が、後述する内部のデジタル・マイクロミラー・デバイス(DMD)36の各描素部(マイクロミラー)列方向が、走査方向と所定の設定傾斜角度θをなすように、スキャナ24に取り付けられている場合には、各露光ヘッド30による露光エリア32は、走査方向に対して傾斜した矩形状のエリアとなる。
ステージ14の移動に伴い、感光層12には露光ヘッド30ごとに帯状の露光済み領域34が形成される。
なお、以下において、m行目のn列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド30mnと表記し、m行目のn列目に配列された個々の露光ヘッドによる露光エリアを示す場合は、露光エリア32mnと表記する。
また、図3A及び図3Bに示すように、帯状の露光済み領域34のそれぞれが、隣接する露光済み領域34と部分的に重なるように、ライン状に配列された各行の露光ヘッド30の各々は、その配列方向に所定間隔(露光エリアの長辺の自然数倍、本実施形態では2倍)ずらして配置されている。このため、1行目の露光エリア3211と露光エリア3212との間の露光できない部分は、2行目の露光エリア3221により露光することができる。
スキャナ24による感光層12の副走査が終了し、センサ26(又はカメラ26)で感光層12の後端が検出されると、ステージ14は、ステージ駆動装置304により、ガイド20に沿ってゲート22の最上流側にある原点に復帰し、再度、ガイド20に沿ってゲート22の上流側から下流側に一定速度で移動される。
ここで、説明のため、ステージ14の表面と平行な平面内に、図1に示すように、互いに直交するX軸及びY軸を規定する。
ステージ14の走査方向に沿って上流側(以下、単に「上流側」ということがある。)の端縁部には、X軸の方向に向かって開く「く」の字型に形成されたスリット28が、等間隔で10本形成されていてもよい。
各スリット28は、上流側に位置するスリット28aと下流側に位置するスリット28bとからなっている。スリット28aとスリット28bとは互いに直交するとともに、X軸に対してスリット28aは−45度、スリット28bは+45度の角度を有している。
スリット28の位置は、前記露光ヘッド30の中心と略一致させられている。また、各スリット28の大きさは、対応する露光ヘッド30による露光エリア32の幅を十分覆う大きさとされている。また、スリット28の位置としては、隣接する露光済み領域34間の重複部分の中心位置と略一致させてもよい。この場合、各スリット28の大きさは、露光済み領域34間の重複部分の幅を十分覆う大きさとする。
ステージ14内部の各スリット28の下方の位置には、N重露光を行う場合、理想のN重露光を実現するために描素部を選択する後述の使用描素部指定処理において、描素単位としての光点を検出する光点位置検出手段としての単一セル型の光検出器(図示せず)が組み込まれていてもよい。また、前記光検出器は、後述する使用描素部指定処理において、前記描素部の選択を行う描素部選択手段としての演算装置(図示せず)に接続されている。
露光時における前記露光装置の動作形態はとしては、露光ヘッドを常に移動させながら連続的に露光を行う形態であってもよいし、露光ヘッドを段階的に移動させながら、各移動先の位置で露光ヘッドを静止させて露光動作を行う形態であってもよい。
また、前記露光の方法として、露光光と前記感光層とを相対的に移動しながら行うことが好ましく、この場合、前記高速変調と併用することが好ましい。これにより、短時間で高速の露光を行うことができる。
<<露光ヘッド>>
露光ヘッド30の概略構成の一例を、図4及び図5A及び図5Bに示す。図4及び図5A及び図5Bでは、前記露光ヘッド30中を伝播する光の光路に沿って、各構成要素を示している。
本例では、入射された光を画像データに応じて描素部ごとに変調する光変調手段(描素部ごとに変調する空間光変調素子)として、DMD36(米国テキサス・インスツルメンツ社製)を備え、光照射手段として、ファイバアレイ光源38を備えている。
図4に示すように、DMD36の光入射側には、光ファイバの出射端部(発光点)が露光エリア32の長辺方向と一致する方向に沿って一列に配列されたレーザ出射部を備えたファイバアレイ光源38、ファイバアレイ光源38から出射されたレーザ光を補正してDMD上に集光させる集光レンズ系40、この集光レンズ系40を透過したレーザ光をDMD36に向けて反射するミラー42がこの順に配置されている。なお図4では、集光レンズ系40を概略的に示してある。
また、DMD36の光反射側には、DMD36で反射されたレーザ光を感光層12の露光面上に結像する結像レンズ系50が配置されている。なお図4では、結像レンズ系50を概略的に示してある。
前記集光レンズ系40は、例えば、図5A及び図5Bに示すように、ファイバアレイ光源38から出射されたレーザ光を平行光化する1対の組合せレンズ44、平行光化されたレーザ光の光量分布が均一になるように補正する1対の組合せレンズ46、及び光量分布が補正されたレーザ光をDMD36上に集光する集光レンズ48で構成され、さらに後述する他の部材等からなる。
前記結像レンズ系50は、例えば、DMD36と感光層12の露光面とが共役な関係となるように配置された2枚のレンズ52及び54で構成され、さらに、マイクロレンズアレイ、及びアパーチャアレイ等の後述する他のレンズ群からなる。
−光変調手段−
前記光変調手段としてのDMD36は、図6に示すように、SRAMセル(メモリセル)56上に、各々描素(ピクセル)を構成する描素部として、多数のマイクロミラー58が格子状に配列されてなるミラーデバイスである。各マイクロミラー58は支柱に支えられており、その表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお、本実施形態では、各マイクロミラー58の反射率は90%以上であり、その配列ピッチは縦方向、横方向ともに13.7μmである。SRAMセル56は、ヒンジ及びヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのものであり、全体はモノリシック(一体型)に構成されている。
DMD36のSRAMセル(メモリセル)56に、所望の2次元パターンを構成する各点の濃度を2値で表した画像信号が書き込まれると、支柱に支えられた各マイクロミラー58が、対角線を中心としてDMD36が配置された基板側に対して±α度(たとえば±10度)のいずれかに傾く。図7Aは、マイクロミラー58がオン状態である+α度に傾いた状態を示し、図7Bは、マイクロミラー58がオフ状態である−α度に傾いた状態を示す。このように、画像信号に応じて、DMD36の各ピクセルにおけるマイクロミラー58の傾きを制御することによって、DMD36に入射したレーザ光Bはそれぞれのマイクロミラー58の傾き方向へ反射される。
それぞれのマイクロミラー58のオンオフ制御は、DMD36に接続された図8のコントローラ302によって行われる。また、オフ状態のマイクロミラー58で反射したレーザ光Bが進行する方向には、光吸収体(図示せず)が配置されている。
また、DMD36は、その短辺が副走査方向と所定角度θ(例えば、0.1°〜5°)を成すように僅かに傾斜させて配置するのが好ましい。図9AはDMD36を傾斜させない場合の各マイクロミラーによる反射光像(露光ビーム)53の走査軌跡を示し、図9BはDMD36を傾斜させた場合の露光ビーム53の走査軌跡を示している。
DMD36には、長手方向にマイクロミラーが多数個(例えば、1024個)配列されたマイクロミラー列が、短手方向に多数組(例えば、756組)配列されているが、図9Bに示すように、DMD36を傾斜させることにより、各マイクロミラーによる露光ビーム53の走査軌跡(走査線)のピッチPが、DMD36を傾斜させない場合の走査線のピッチPより狭くなり、解像度を大幅に向上させることができる。一方、DMD36の傾斜角は微小であるので、DMD36を傾斜させた場合の走査幅Wと、DMD36を傾斜させない場合の走査幅Wとは略同一である。
異なるマイクロミラー列により同じ走査線上が重ねて露光されることにより、アライメントマークに対する露光位置の微少量を制御することができ、高精細な露光を実現することができる、また、主走査方向に配列された複数の露光ヘッドの間のつなぎ目(ヘッド間つなぎ領域)を微少量の制御により段差なくつなぐことができる。
DMDを傾斜させるかわりに、各マイクロミラー列を副走査方向と直交する方向に所定間隔ずらし、図10に示すように千鳥情に配置しても、同様の効果を得ることができる。
なお、図10に示すように、スキャナ24によるX方向への1回の走査で感光層12の全面を露光してもよく、図11A及び図11Bに示すように、スキャナ24により感光層12をX方向へ走査した後、スキャナ24をY方向に1ステップ移動し、X方向へ走査を行うというように、走査と移動を繰り返して、複数回の走査で感光層12の全面を露光するようにしてもよい。
−光照射手段−
前記光照射手段の好適な例として、合波レーザを照射可能な手段、例えば、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射したレーザビームを集光して前記マルチモード光ファイバに結合させるレンズ系とを有する手段(ファイバアレイ光源)について説明する。
ファイバアレイ光源38は、図12に示すように、複数(たとえば14個)のレーザモジュール60を備えており、各レーザモジュール60には、マルチモード光ファイバ62の一端が結合されている。マルチモード光ファイバ62の他端には、マルチモード光ファイバ62より小さいクラッド径を有する光ファイバ64が結合されている。図13に詳しく示すように、光ファイバ64のマルチモード光ファイバ62と反対側の端部は走査方向と直交する方向に沿って7個並べられ、それが2列に配列されてレーザ出射部66が構成されている。
光ファイバ64の端部で構成されるレーザ出射部66は、図13に示すように、表面が平坦な2枚の支持板68に挟み込まれて固定されている。また、光ファイバ64の光出射端面には、その保護のために、ガラス等の透明な保護板が配置されるのが望ましい。光ファイバ64の光出射端面は、光密度が高いため集塵しやすく劣化しやすいが、上述のような保護板を配置することにより、端面への塵埃の付着を防止し、また劣化を遅らせることができる。
このような光ファイバは、例えば、図14に示すように、クラッド径が大きいマルチモード光ファイバ62のレーザ光出射側の先端部分に、長さ1〜30cmのクラッド径が小さい光ファイバ64を同軸的に結合することにより得ることができる。2本の光ファイバは、光ファイバ64の入射端面が、マルチモード光ファイバ62の出射端面に、両光ファイバの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ64のコア64aの径は、マルチモード光ファイバ62のコア62aの径と同じ大きさである。
また、長さが短くクラッド径が大きい光ファイバにクラッド径が小さい光ファイバを融着させた短尺光ファイバを、フェルールや光コネクタ等を介してマルチモード光ファイバ62の出射端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、クラッド径が小さい光ファイバが破損した場合等に先端部分の交換が容易になり、露光ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ64を、マルチモード光ファイバ62の出射端部と称する場合がある。
マルチモード光ファイバ62及び光ファイバ64としては、ステップインデックス型光ファイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いることができる。本実施の形態では、マルチモード光ファイバ62及び光ファイバ64は、ステップインデックス型光ファイバであり、マルチモード光ファイバ62は、クラッド径=125μm、コア径=50μm、NA=0.2、入射端面コートの透過率=99.5%以上であり、光ファイバ64は、クラッド径=60μm、コア径=50μm、NA=0.2である。
一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されている。しかしながら、波長が短いほど伝搬損失は少なくなり、GaN系半導体レーザから出射された波長405nmのレーザ光では、クラッドの厚み{(クラッド径−コア径)/2}を800nmの波長帯域の赤外光を伝搬させる場合の1/2程度、通信用の1.5μmの波長帯域の赤外光を伝搬させる場合の約1/4にしても、伝搬損失は殆ど増加しない。従って、クラッド径を60μmと小さくすることができる。
ただし、光ファイバのクラッド径は60μmには限定されない。従来のファイバアレイ光源に使用されている光ファイバのクラッド径は125μmであるが、クラッド径が小さくなるほど焦点深度がより深くなるので、光ファイバのクラッド径は80μm以下が好ましく、60μm以下がより好ましく、40μm以下が更に好ましい。一方、コア径は少なくとも3〜4μm必要であることから、光ファイバ64のクラッド径は10μm以上が好ましい。
レーザモジュール60は、図15に示す合波レーザ光源(ファイバアレイ光源)によって構成されている。この合波レーザ光源は、ヒートブロック110上に配列固定された複数(例えば、7個)のチップ状の横マルチモード又はシングルモードのGaN系半導体レーザLD1、LD2、LD3、LD4、LD5、LD6、及びLD7と、GaN系半導体レーザLD1〜LD7の各々に対応して設けられたコリメータレンズL1、L2、L3、L4、L5、L6及びL7と、1つの集光レンズ200と、1本のマルチモード光ファイバ62と、から構成されている。なお、半導体レーザの個数は7個には限定されない。例えば、クラッド径=60μm、コア径=50μm、NA=0.2のマルチモード光ファイバには、20個もの半導体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、且つ光ファイバ本数をより減らすことができる。
GaN系半導体レーザLD1〜LD7は、発振波長が総て共通(例えば、405nm)であり、最大出力も総て共通(例えば、マルチモードレーザでは100mW、シングルモードレーザでは30mW)である。なお、GaN系半導体レーザLD1〜LD7としては、350nm〜450nmの波長範囲で、上記の405nm以外の発振波長を備えるレーザを用いてもよい。
前記合波レーザ光源は、図16及び図17に示すように、他の光学要素と共に、上方が開口した箱状のパッケージ400内に収納されている。パッケージ400は、その開口を閉じるように作成されたパッケージ蓋410を備えており、脱気処理後に封止ガスを導入し、パッケージ400の開口をパッケージ蓋410で閉じることにより、パッケージ400とパッケージ蓋410とにより形成される閉空間(封止空間)内に上記合波レーザ光源が気密封止されている。
パッケージ400の底面にはベース板420が固定されており、このベース板420の上面には、前記ヒートブロック110と、集光レンズ200を保持する集光レンズホルダー450と、マルチモード光ファイバ62の入射端部を保持するファイバホルダー460とが取り付けられている。マルチモード光ファイバ62の出射端部は、パッケージ400の壁面に形成された開口からパッケージ外に引き出されている。
また、ヒートブロック110の側面にはコリメータレンズホルダー440が取り付けられており、コリメータレンズL1〜L7が保持されている。パッケージ400の横壁面には開口が形成され、この開口を通してGaN系半導体レーザLD1〜LD7に駆動電流を供給する配線470がパッケージ外に引き出されている。
なお、図17においては、図の煩雑化を避けるために、複数のGaN系半導体レーザのうちGaN系半導体レーザLD7にのみ番号を付し、複数のコリメータレンズのうちコリメータレンズL7にのみ番号を付している。
図18は、前記コリメータレンズL1〜L7の取り付け部分の正面形状を示すものである。コリメータレンズL1〜L7の各々は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメータレンズは、例えば、樹脂又は光学ガラスをモールド成形することによって形成することができる。コリメータレンズL1〜L7は、長さ方向がGaN系半導体レーザLD1〜LD7の発光点の配列方向(図18の左右方向)と直交するように、上記発光点の配列方向に密接配置されている。
一方、GaN系半導体レーザLD1〜LD7としては、発光幅が2μmの活性層を備え、活性層と平行な方向、直角な方向の拡がり角が各々例えば10°、30°の状態で各々レーザビームB1〜B7を発するレーザが用いられている。これらGaN系半導体レーザLD1〜LD7は、活性層と平行な方向に発光点が1列に並ぶように配設されている。
したがって、各発光点から発せられたレーザビームB1〜B7は、上述のように細長形状の各コリメータレンズL1〜L7に対して、拡がり角度が大きい方向が長さ方向と一致し、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入射することになる。つまり、各コリメータレンズL1〜L7の幅が1.1mm、長さが4.6mmであり、それらに入射するレーザビームB1〜B7の水平方向、垂直方向のビーム径は各々0.9mm、2.6mmである。また、コリメータレンズL1〜L7の各々は、焦点距離f1=3mm、NA=0.6、レンズ配置ピッチ=1.25mmである。
集光レンズ200は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取って、コリメータレンズL1〜L7の配列方向、つまり水平方向に長く、それと直角な方向に短い形状に形成されている。この集光レンズ200は、焦点距離f=23mm、NA=0.2である。この集光レンズ200も、例えば、樹脂又は光学ガラスをモールド成形することにより形成される。
また、DMDを照明する光照射手段に、合波レーザ光源の光ファイバの出射端部をアレイ状に配列した高輝度のファイバアレイ光源を用いているので、高出力で且つ深い焦点深度を備えた露光装置を実現することができる。更に、各ファイバアレイ光源の出力が大きくなることで、所望の出力を得るために必要なファイバアレイ光源数が少なくなり、露光装置の低コスト化が図られる。
また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、より深い焦点深度を備えた露光装置を実現することができる。例えば、ビーム径1μm以下、解像度0.1μm以下の超高解像度露光の場合にも、深い焦点深度を得ることができ、高速且つ高精細な露光が可能となる。したがって、高解像度が必要とされる薄膜トランジスタ(TFT)の露光工程に好適である。
また、前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ光源に限定されず、例えば、1個の発光点を有する単一の半導体レーザから入射されたレーザ光を出射する1本の光ファイバを備えたファイバ光源をアレイ化したファイバアレイ光源を用いることができる。
また、複数の発光点を備えた光照射手段としては、例えば、図19に示すように、ヒートブロック110上に、複数(例えば、7個)のチップ状の半導体レーザLD1〜LD7を配列したレーザアレイを用いることができる。また、図20Aに示す、複数(例えば、5個)の発光点111aが所定方向に配列されたチップ状のマルチキャビティレーザ110が知られている。マルチキャビティレーザ111は、チップ状の半導体レーザを配列する場合と比べ、発光点を位置精度良く配列できるので、各発光点から出射されるレーザビームを合波し易い。ただし、発光点が多くなるとレーザ製造時にマルチキャビティレーザ111に撓みが発生し易くなるため、発光点111aの個数は5個以下とするのが好ましい。
前記光照射手段としては、このマルチキャビティレーザ111や、図20Bに示すように、ヒートブロック110上に、複数のマルチキャビティレーザ111が各チップの発光点111aの配列方向と同じ方向に配列されたマルチキャビティレーザアレイを、レーザ光源として用いることができる。
また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光を合波するものには限定されない。例えば、図21に示すように、複数(例えば、3個)の発光点111aを有するチップ状のマルチキャビティレーザ111を備えた合波レーザ光源を用いることができる。この合波レーザ光源は、マルチキャビティレーザ111と、1本のマルチモード光ファイバ62と、集光レンズ200と、を備えて構成されている。マルチキャビティレーザ111は、例えば、発振波長が405nmのGaN系レーザダイオードで構成することができる。
前記構成では、マルチキャビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、集光レンズ200によって集光され、マルチモード光ファイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。
マルチキャビティレーザ111の複数の発光点111aを、上記マルチモード光ファイバ62のコア径と略等しい幅内に並設すると共に、集光レンズ200として、マルチモード光ファイバ62のコア径と略等しい焦点距離の凸レンズや、マルチキャビティレーザ111からの出射ビームをその活性層に垂直な面内のみでコリメートするロッドレンズを用いることにより、レーザビームBのマルチモード光ファイバ62への結合効率を上げることができる。
また、図22に示すように、複数(例えば、3個)の発光点を備えたマルチキャビティレーザ111を用い、ヒートブロック110上に複数(例えば、9個)のマルチキャビティレーザ111が互いに等間隔で配列されたレーザアレイ140を備えた合波レーザ光源を用いることができる。複数のマルチキャビティレーザ111は、各チップの発光点111aの配列方向と同じ方向に配列されて固定されている。
この合波レーザ光源は、レーザアレイ140と、各マルチキャビティレーザ111に対応させて配置した複数のレンズアレイ114と、レーザアレイ140と複数のレンズアレイ114との間に配置された1本のロッドレンズ113と、1本のマルチモード光ファイバ62と、集光レンズ200と、を備えて構成されている。レンズアレイ114は、マルチキャビティレーザ110の発光点に対応した複数のマイクロレンズを備えている。
上記の構成では、複数のマルチキャビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、ロッドレンズ113により所定方向に集光された後、レンズアレイ114の各マイクロレンズにより平行光化される。平行光化されたレーザビームLは、集光レンズ200によって集光され、マルチモード光フアイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光フアイバ内を伝搬し、1本に合波されて出射する。
更に他の合波レーザ光源の例を示す。この合波レーザ光源は、図23A及び図23Bに示すように、略矩形状のヒートブロック180上に光軸方向の断面がL字状のヒートブロック182が搭載され、2つのヒートブロック間に収納空間が形成されている。L字状のヒートブロック182の上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ111が、各チップの発光点111aの配列方向と同じ方向に等間隔で配列されて固定されている。
略矩形状のヒートブロック180には凹部が形成されており、ヒートブロック180の空間側上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、その発光点がヒートブロック182の上面に配置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。
マルチキャビティレーザ111のレーザ光出射側には、各チップの発光点111aに対応してコリメートレンズが配列されたコリメートレンズアレイ184が配置されている。コリメートレンズアレイ184は、各コリメートレンズの長さ方向とレーザビームの拡がり角が大きい方向(速軸方向)とが一致し、各コリメートレンズの幅方向が拡がり角が小さい方向(遅軸方向)と一致するように配置されている。このように、コリメートレンズをアレイ化して一体化することで、レーザ光の空間利用効率が向上し合波レーザ光源の高出力化が図られると共に、部品点数が減少し低コスト化することができる。
また、コリメートレンズアレイ184のレーザ光出射側には、1本のマルチモード光ファイバ62と、このマルチモード光ファイバ62の入射端にレーザビームを集光して結合する集光レンズ200と、が配置されている。
前記構成では、レーザブロック180、182上に配置された複数のマルチキヤビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、コリメートレンズアレイ184により平行光化され、集光レンズ200によって集光されて、マルチモード光フアイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光フアイバ内を伝搬し、1本に合波されて出射する。
前記合波レーザ光源は、上記の通り、マルチキャビティレーザの多段配置とコリメートレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成することができるので、本発明の露光装置のレーザ光源を構成するファイバ光源として特に好適である。
なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ62の出射端部をそのケーシングから引き出したレーザモジュールを構成することができる。
また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモード光ファイバと同一で且つクラッド径がマルチモード光ファイバより小さい他の光ファイバを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、クラッド径が125μm、80μm、60μm等のマルチモード光ファイバを、出射端に他の光ファイバを結合せずに使用してもよい。
−−輝度−−
各レーザモジュールにおいて、レーザビームB1〜B7のマルチモード光ファイバ30への結合効率が0.85で、GaN系半導体レーザLD1〜LD7の各出力が30mWの場合には、アレイ状に配列された光ファイバ64の各々について、出力180mW(=30mW×0.85×7)の合波レーザビームBを得ることができる。従って、6本の光ファイバ64がアレイ状に配列されたレーザ出射部での出力は約1W(=180mW×6)である。
ファイバアレイ光源のレーザ出射部には、この通り高輝度の発光点が主走査方向に沿って一列に配列されている。単一の半導体レーザからのレーザ光を1本の光ファイバに結合させる従来のファイバ光源は低出力であるため、多数列配列しなければ所望の出力を得ることができなかったが、前記合波レーザ光源は高出力であるため、少数列、例えば1列でも所望の出力を得ることができる。
例えば、半導体レーザと光ファイバを1対1で結合させた従来のファイバ光源では、通常、半導体レーザとしては出力30mW(ミリワット)程度のレーザが使用され、光ファイバとしてはコア径50μm、クラッド径125μm、NA(開口数)0.2のマルチモード光ファイバが使用されているので、約1W(ワット)の出力を得ようとすれば、マルチモード光ファイバを48本(8×6)束ねなければならず、発光領域の面積は0.62mm(0.675mm×0.925mm)であるから、レーザ出射部での輝度は1.6×10(W/m)、光ファイバ1本当りの輝度は3.2×10(W/m)である。
これに対し、前記光照射手段が合波レーザを照射可能な手段である場合には、マルチモード光ファイバ6本で約1Wの出力を得ることができ、レーザ出射部での発光領域の面積は0.0081mm(0.325mm×0.025mm)であるから、レーザ出射部68での輝度は123×10(W/m)となり、従来に比べ約80倍の高輝度化を図ることができる。また、光ファイバ1本当りの輝度は90×10(W/m)であり、従来に比べ約28倍の高輝度化を図ることができる。
−−焦点深度−−
ここで、図24A及び図24Bを参照して、従来の露光ヘッドと本実施の形態の露光ヘッドとの焦点深度の違いについて説明する。従来の露光ヘッドのバンドル状ファイバ光源の発光領域の副走査方向の径は0.675mmであり、露光ヘッドのファイバアレイ光源の発光領域の副走査方向の径は0.025mmである。図24Aに示すように、従来の露光ヘッドでは、光照射手段(バンドル状ファイバ光源)38aの発光領域が大きいので、DMD36へ入射する光束の角度が大きくなり、結果として走査面(感光層12)へ入射する光束の角度が大きくなる。このため、集光方向(ピント方向のずれ)に対してビーム径が太りやすい。
一方、図24Bに示すように、本発明の露光装置における露光ヘッドでは、ファイバアレイ光源38bの発光領域の副走査方向の径が小さいので、集光レンズ系40を通過してDMD36へ入射する光束の角度が小さくなり、結果として走査面(感光層12)へ入射する光束の角度が小さくなる。即ち、焦点深度が深くなる。この例では、発光領域の副走査方向の径は従来の約30倍になっており、略回折限界に相当する焦点深度を得ることができる。従って、微小スポットの露光に好適である。この焦点深度への効果は、露光ヘッドの必要光量が大きいほど顕著であり、有効である。この例では、露光面に投影された1描素サイズは10μm×10μmである。なお、DMDは反射型の空間光変調素子であるが、図24A及び図24Bは、光学的な関係を説明するために展開図とした。
〔光量分布の補正方法〕
前記光変調手段を備えるデジタル露光装置では、各描画単位で微細なパターンを高精度に形成するために、露光ヘッド内の各描画単位の光量が均一であることが重要である。ただし実際には、露光ヘッドから照射される光ビームは、レンズ系の要因で光軸の中心部に比べて周辺部の光強度が低下してしまうという問題がある。
そこで、前記光照射手段から前記光変調手段に照射される光の光量分布を補正し、被露光面上での露光光の光量分布を均一に補正する方法を以下に説明する。
なお、この方法に好適な露光ヘッドの構成概略図を、図25に示す。
前記光量分布補正方法は、集光レンズ系により光照射手段から光変調手段に照射される光の照射領域内における光量に分布を持たせ、前記光変調手段により変調された光の感光層の被露光面における光量分布が均一になるように補正する方法であり、以下に説明する第1の形態、及び第2の形態が好適に挙げられる。
−第1の実施形態−
図25に示すように、DMD36の光反射側には投影光学系が設けられ、この投影光学系は、DMD36の光反射側の露光面にある感光層12上に光源像を投影するため、DMD36側から感光層12へ向って順に、レンズ系126、マイクロレンズアレイ128、対物レンズ系130の各露光用の光学部材が配置されて構成されている。
前記レンズ系126及び前記対物レンズ系130は、複数枚のレンズ(凸レンズや凹レンズ等)を組み合せた拡大光学系として構成されており、DMD36により反射されるレーザビーム(光線束)の断面積を拡大することで、DMD36により反射されたレーザビームによる感光層12上の露光エリアの面積を所定の大きさに拡大している。なお、感光層12は、対物レンズ系130の後方焦点位置に配置される。
マイクロレンズアレイ128は、図25に示すように、ファイバアレイ光源38から照射されたレーザ光を反射するDMD36の各マイクロミラー58に1対1で対応する複数のマイクロレンズ132が2次元状に配列され、一体的に成形されて矩形平板状に形成されたものであり、各マイクロレンズ132は、それぞれレンズ系126を透過した各レーザビームの光軸上にそれぞれ配置されている。このマイクロレンズアレイ128は、例えば、樹脂又は光学ガラスをモールド成形することによって形成することができる。
また、本実施形態の露光ヘッド30では、前述した集光レンズ系114は、ロッドインテグレータ118が備える光量分布補正機能とは別に、DMD36により変調された露光ビームの露光面での光量分布をより高い精度で均一に補正するため、DMD36に照射するレーザ光の照射領域内での光量に所定の分布を持たせる機能、詳細には、ファイバアレイ光源38から入射されるレーザ光に対し、主光線の角度に所定の分布を持たせたレーザ光を出射してDMD36に照射する機能を備えている。
ここで、この主光線の角度に分布を有するレーザ光をDMD36に照射する例を、図26A〜図26Dを用いて説明する。なお、主光線(principal ray/chief ray)とは、光学系で物体空間での入射瞳(あるいは開口絞り)の中心を通過する光線(開口絞りを最小にしてもケラレなしに存在する光線)、広義には斜光線束の中心の光線であり、ここでは後者の意味で用いる。
図26Aは、DMD36上に照射されるレーザ光の主光線の傾きを模式的に示した図である。図26Aに示すように、DMD36上の特定の位置Pに照射されるレーザ光LBにおいて、レーザ光LBの主光線がマイナス(−)側に傾く場合には、矢印−PRで示すように主光線はレーザ光の光軸(光軸中心)Xに近づく方向へ傾き、プラス(+)側に傾く場合には、矢印+PRで示すようにレーザ光の光軸Xから遠ざかる方向へ傾く。
図26Bは、本実施形態の集光レンズ系114から出射されるレーザ光が、DMD36上の照明領域に、光軸中心からの距離に応じて主光線の角度に分布を持った状態で照射される例を示した図である。図26Bに示すように、DMD36上の照明領域(レーザ光照射領域)に照射されるレーザ光の主光線角度の分布は、レーザ光の光軸中心では主光線が傾かずに光軸と平行であり、光軸中心から照明領域の周辺部に行くに従って、主光線が+側に除々に傾くとともにその傾斜角度が除々に大きくなり、所定距離YAに達すると主光線の+側への傾斜角度が最大となり(最大傾斜角度A)、所定距離YAを過ぎると主光線の+側への傾斜角度が除々に小さくなり、照明領域の周辺端部に至ると、光軸中心と同じく主光線の傾きが無くなる分布となっている。レーザ光の主光線の角度にこのような分布を持たせることにより、DMD36上の照明領域には、光軸中心に比べて周辺部の光密度が高められた、即ち、光軸中心に比べて周辺部の光輝度が高められたレーザ光が照射される。
なお、レーザ光の主光線角度に上述した分布を持たせる場合には、主光線の最大傾斜角度Aによって決定される分布量の大きさは、周辺部での光量低下量以上で、且つ、露光面で要求される露光ビームのテレセントリック性(主光線と光軸との平行度)を満足する量以下にすることが好ましい。本実施形態の露光ヘッド30の場合、露光面における露光ビームの周辺部の光量低下は、主に、DMD36の光反射側に配置された投影光学系のマイクロレンズアレイ128(図25参照)によって引き起こされるため、上記の分布量の大きさを、例えばこのマイクロレンズアレイ128によって生じる周辺部の光量低下量以上に設定することが望ましい。また、所定距離YAについては、この周辺部の光量低下量及び光量低下領域(光量を補正する領域)に応じて適宜設定することができ、図26Bに示した例では、光軸中心から照明領域の周辺端部(DMD36の外周端部)までの距離をYSとすると、YS>YA>YS/2に設定している。
ファイバアレイ光源38から集光レンズ系114を介してDMD36に照射された照明光(レーザ光)は、各マイクロミラー58の反射面の角度に応じて所定方向に反射されて変調され、変調された光ビームがレンズ系126により拡大されてマイクロレンズアレイ128に設けられたマイクロレンズ132の各々に入射され集光される。そして、この集光された光ビームは、対物レンズ系130によって感光層12の露光面上に結像され、このようにして、ファイバアレイ光源38から照射されたレーザ光が画素毎にオンオフ(変調)されて、感光層12がDMD36の使用画素数と略同数の画素単位(露光エリア)で露光される。
通常は、この光ビームの光量(光強度)分布は、レンズ系の要因により光軸の中心部に比べて周辺部が低下してしまうが、本実施形態の露光ヘッド30には、ファイバアレイ光源38から出射されたレーザ光の光量分布を均一化してDMD36に照射するために、DMD36の光入射側の光路上に配置した集光レンズ系114にロッドインテグレータ118を設けている。ただし、このロッドインテグレータ118によっても、本実施形態のように各描画単位をマイクロレンズアレイ128によって集光する系では、光軸中心部に対する周辺部の光強度低下が顕著となり、より高い精度で画像露光を行う場合に光量分布を要求精度まで補正することが難しい。また、この光量分布の補正精度を高めるために、ロッドインテグレータ118を長尺化することも考えられるが、その場合、ロッドインテグレータ118は非常に高価な光学部品であるため、装置コストが上昇し、また、露光ヘッド30が大型化してしまうデメリットがある。
これに対し、本実施形態の露光ヘッド30では、前述したように、ファイバアレイ光源38から集光レンズ系114へ入射されたレーザ光が、図27中の(1)に示すように、主光線の角度に分布を持ち光軸中心に比べて周辺部の光輝度が高められたレーザ光とされて集光レンズ系114から出射され、DMD36に照射されるため、DMD36のレーザ光照射領域における光量分布は、図27中の(2)に示すように、光軸中心に比べて周辺部の光量が高められる。そのため、DMD36により画素毎に変調された光ビームが、図27中の(3)に示すように、光軸中心から周辺部に行くに従って光の透過量を低下させる特性を持つマイクロレンズアレイ128を透過して感光層12の露光面に照射されると、図27中の(4)に示すように、露光面での光ビームの光量分布は均一になるよう補正される。
以上説明した通り、本実施の形態の露光装置では、2次元的に分布した複数の画素部において、各描画単位の光量が均一になるよう補正され、高精度な画像露光を行うことができる。また、光量分布に応じてDMD36の各マイクロミラー58の駆動タイミングを変化させるよう駆動制御する技術を組み合わせて用いる場合でも、各描画単位の光量が均一になるよう予め補正されているため、DMD36の駆動制御部に掛かる負荷が軽減されて処理速度への影響が低減され、また、電気的な回路構成や処理ソフトを簡素化することができて、コストを抑えることができる。
また、本実施の形態では、上述した光量分布を補正する手段として光学系(集光レンズ系114)を用いており、このような光学系からなる光量分布補正手段であれば、簡素且つ安価な構成により実現できる。
−第2の実施形態−
第2の実施形態は、上述した第1の実施形態に係る露光装置の露光ヘッド30において、集光レンズ系114に、非球面レンズを有するテレセントリック光学系を設けることで、第1の実施形態と同様に露光面での光ビームの光量分布を均一化する技術である。
第2の実施形態に係る露光ヘッドでは、例えば集光レンズ系114に、図28Aに示すような2枚で一組の平凸レンズ152、154により構成されたテレセントリック光学系150が設けられており、このテレセントリック光学系150は、例えばロッドインテグレータ118と集光レンズ120の間に配置されている。
平凸レンズ152、154は、凸面側が非球面状に形成された非球面レンズとされている。レーザ光の入射側(ファイバアレイ光源38側)に配置された平凸レンズ152は、入射面S2の面形状が、曲率半径が光軸(光軸中心)Xから離れるに従い大きくなる非球面、換言すれば、曲率が光軸Xから離れるに従い小さくなる非球面とされ、出射面S3が平面状とされている。また、レーザ光の出射側(DMD36側)に配置された平凸レンズ154は、入射面S4が平面状とされ、出射面S5の面形状が、曲率半径が光軸Xから離れるに従い小さくなる非球面、換言すれば、曲率が光軸Xから離れるに従い大きくなる非球面とされている。
以下、表1に、本実施形態に係るテレセントリック光学系150のレンズデータの一例を示し、表2に、本実施形態に係る入射面S2及び出射面S5の非球面データの一例を示す。
また、上記の非球面データは、非球面形状を表す下記式(1)における係数で表される。
上記式において各係数を以下の通り定義する。
Z:光軸から高さhの位置にある非球面上の点から、非球面の頂点の接平面(光軸に垂直な平面)に下ろした垂線の長さ(mm)
h:光軸からの距離(mm) (h2=x2+y2
R:曲率半径 (曲率:1/R)
A:非球面データ
以上の構成により、本実施形態の露光装置では、図28Aに示すように、平凸レンズ152から出射されたレーザ光LB2では、光軸Xから離れるに従い焦点距離が長くなる。よって、レーザ光LB2が平凸レンズ154の入射面S4に到達した際には、平凸レンズ152の周辺部を通過した光に比べて中央付近を通過した光の方が、光軸Xから離れる傾向が強くなる。これにより、レンズの中央付近よりも周辺部の方が光の輝度が高くなる。また、平凸レンズ154は、平凸レンズ152とは反対に、光軸Xから離れるに従い焦点距離が短くなるため、これらの2枚の平凸レンズ152、154を組み合わせると、テレセントリックな光学系を組むことができる。
これにより、この平凸レンズ152、154を有するテレセントリック光学系150から平行化されて出射されたレーザ光LB3の光量分布は、光軸中心に対して周辺部の分布密度が高くなり、このレーザ光LB3が照射されたDMD36では、レーザ光照射領域の中心部(光軸中心)よりも周辺部の光量が増加される。
図28Bには、非球面レンズ系とした本実施形態のテレセントリック光学系150のベースとなる、球面レンズ系のテレセントリック光学系160の光線図を示す。このテレセントリック光学系160では、レーザ光(LB1)の入射側に配置された平凸レンズ162の入射面S2´が球面とされ、レーザ光(LB3´)の出射側に配置された平凸レンズ164の出射面S5´が球面とされており、したがって、このテレセントリック光学系160では、出射面S5´から出射されたレーザ光LB3´の光量分布は、図28Bに示すように、光軸中心から周辺部に掛けてほぼ均等な分布となる。
このように、第2の実施形態の非球面レンズ系(テレセントリック光学系150)では、上記の球面レンズ系(テレセントリック光学系160)を用いた場合の光量分布との比較からも分かるように、出射されたレーザ光の光量分布は光軸中心に対して周辺部の分布密度が高くなり、光軸中心よりも周辺部の光量が増加される。
したがって、第1の実施形態と同様に、DMD36によって変調された光ビームがマイクロレンズアレイ128を透過することで、光軸中心部に対する周辺部の光量低下を生じても、露光面には光量分布が均一になるよう補正された光ビームが照射され、このテレセントリック光学系150を備えた露光装置によっても高精度な画像露光を行うことができる。また、上述したように、テレセントリック光学系150から出射されるレーザ光は、テレセントリック光として出射されてDMD36に照射されるため、DMD36に照射するレーザ光のテレセントリック性と、DMD36により変調された光ビームの露光面での光量分布の均一性との両立を図ることができる。
また、本実施形態も第1の実施形態と同様に、光量分布を補正する手段として、2枚で一組の平凸レンズ152、154からなる光学系を用いていることで、このような光学系からなる光量分布補正手段であれば、簡素な構成により実現できる。
また、本実施形態では、上記のテレセントリック光学系150を用いてレーザ光の周辺部の光量を増加させていることにより、露光における光利用効率の低下が抑えられる。またこれによって、ファイバアレイ光源38から出射するレーザ光の出力を低化させることも可能になるため、ファイバアレイ光源38の長寿命化や、高輝度光による光学系の汚染/劣化の抑制を図ることもできる。さらに、ファイバアレイ光源38や光学系のメンテナンス回数を減少させることも可能となり、露光装置のメンテナンスコストを低減することもできる。
〔焦点位置精度の補正方法〕
前記結像レンズ系を構成する投影レンズの像面湾曲、非点隔差、歪曲等は、テレセントリック性を低下させ、露光光の焦点位置精度を悪化させるという問題がある。この影響を排除するために多重露光を行うと、露光スピードの低下、画質の低下等が生じるという問題がある。
そこで、結像レンズ系において、被露光面上での露光光の焦点位置精度を補正する方法を以下に説明する。
なお、この方法に好適な露光ヘッドの構成概略図を、図29、及び図35に示す。
前記焦点位置精度の補正方法としては、例えば、光変調手段により変調された光の光路長を変更し、感光層の被露光面に結像する露光光の焦点を調節する焦点調節手段を用いる方法、及び、前記結像レンズ系の中央部を含む略矩形状の領域のみにおいて、光変調手段により変調された光を結像する方法が好適に挙げられる。また、前記感光層(感光材料)の相対移動の方向を、該感光材料のうねり方向に向けて移動させる方法も好適に挙げられる。
図29に示すように、結像レンズ系50は、第1投影レンズ51と、第2投影レンズ52と、マイクロレンズアレイ55と、アパーチャアレイ59とを備えて構成されている。DMD36を構成する各マイクロミラーによって反射されて形成された2次元パターンは、第1投影レンズ51を透過し、所定倍(例えば、3倍)に拡大されて結像される。ここで、第1投影レンズ51を透過した光束Laは、第1投影レンズ51による結像位置の近傍に配設されたマイクロレンズアレイ55の各マイクロレンズ55aによって個別に集光される。この個別に集光された光束がアパーチャ59aを通過して結像される。マイクロレンズアレイ55及びアパーチャアレイ59を通過して結像された2次元パターンは、第2投影レンズ52を透過して更に所定倍(例えば、1.67倍)に拡大され、くさび型プリズムペア54を透過して感光材料12上に結像される。最終的には、DMD36によって形成された2次元パターンが、第1投影レンズ51と第2投影レンズ52の拡大倍率をそれぞれ乗算した倍率(例えば、3倍×1.67倍=5倍)で拡大されて、感光材料12上に投影される。尚、結像レンズ系50は、必ずしも第2投影レンズ52を備えた構成としなくてもよい。
−投影レンズ−
第1投影レンズ51及び第2投影レンズ52について詳しく説明する。図30A及び図30Bは第1投影レンズ51、第2投影レンズ52を構成する投影レンズ300を示した平面図である。露光装置の露光性能を上げるためには、高いレンズ光学性能(像面湾曲、非点隔差、歪曲等を抑制、高いテレセン性)を持つ投影レンズが必要となる。しかしながら、投影レンズの全面領域においてレンズ光学性能を向上させようとすると、レンズのコストアップに繋がり、大口径レンズの製造が困難になるという問題がある。一方、投影レンズの任意の領域のレンズ光学性能を高めるために、故意に所定の領域に歪みを持たせて投影レンズを製造することが可能であることが近年の研究で明らかになった。
そこで、例えば投影レンズの周辺部分に歪みを持たせ、中央部の歪みを少なくして製造することによって、投影レンズの中央部を含む領域のレンズ光学性能を高め、更に中央部を含む領域にてDMD36によって形成された2次元パターンを透過させて結像する。例えば、図30Aに示すように、投影レンズ300の周辺領域である領域320に像面湾曲、領域330に歪曲が大きいという特性を持たせ、その分投影レンズ300の中央部を含む領域の歪みを少なくさせて、レンズ光学性能が高くなるようにして製造する。
しかし、例えば図30Aに示すように、DMD36によって形成された2次元パターンが投影レンズ300の領域310に照射されて透過される場合、2次元パターンの一部が像面湾曲や歪曲が大きい特性を含む領域を透過することになる。つまり、2次元パターンは、投影レンズ300におけるレンズ光学性能の良い領域340に照射される必要がある。そこで、投影レンズ300のレンズ光学性能の良い領域340を選択して2次元パターンを照射するために、例えば2次元パターンの光の光軸を中心として図30Bに示す矢印Aの方向に投影レンズ300を回転させる。この回転により、レンズ光学性能の良い領域340と2次元パターンが照射される領域310を一致させ、レンズ光学性能の良い領域340において2次元パターンを透過させることができる。このように、レンズ光学性能の良い領域において2次元パターンを透過させて結像させることによって、2次元パターンが感光材料12上に投影される際の画質を向上させることができる。
また、投影レンズの全面領域において十分なレンズ光学性能を得ようとすると、大口径の投影レンズの製造が困難であった。しかし、大口径の投影レンズの周辺領域等の任意の領域にレンズ歪みを持たせて、中央部を含む領域のレンズ歪みを少なくすることによって、高いレンズ光学性能を持たせることができる。このような大口径の投影レンズを用いることによって、露光面積が拡大し、露光スピードを速くすることができる。
尚、DMD36から反射された光を投影レンズの中央部を含む一部の領域において結像させるために、DMD36によって形成される2次元パターンは、図30A及び図30Bに示す領域310のように、長辺の長さが短辺の長さより2倍以上長い略矩形状のパターンであることが望ましい。
投影レンズ300のレンズ光学性能の良い領域340に2次元パターンを選択的に照射させるために、結像レンズ系50は2次元パターンの光の光軸を中心として回転可能な構成となっている。図31上部断面図は結像レンズ系50を備える鏡筒400の概略側面断面図であり、図31下部平面図は、図31上部断面図における矢印Bの方向から見た鏡筒400の概略平面図である。鏡筒400は側面につば状のフランジ410を備えている。フランジ410にはネジ貫通孔412がα[°]毎に形成されている。ブラケット420にはネジ貫通孔412に対応させて雌ネジ孔(不図示)が同じくα[°]毎に形成され、ネジ(不図示)をフランジ410のネジ貫通孔412に挿通して、ブラケット420の対応する雌ネジ孔に螺合させることにより、フランジ410とブラケット420が固定される。この構造により、鏡筒400は第1投影レンズ51及び第2投影レンズ52の光軸を中心としてα[°]ずつ回転させて任意の角度位置で固定させることができる。またネジによってフランジ410とブラケット420を固定させる際は、ネジ貫通孔412のうち、全てのネジ貫通孔412にネジを挿通してブラケット420の対応する雌ネジ孔に螺合させてもよいし、例えば対角線上に位置する2箇所のネジ貫通孔412にネジを挿通してブラケット420の対応する雌ネジ孔に螺合させてもよい。
鏡筒400が回転されると、第1投影レンズ51及び第2投影レンズ52も共に回転する。そして感光材料12上に投影された2次元パターンの焦点、画質等の露光性能を計測しながら、最も良い露光性能を示す回転位置でフランジ410とブラケット420を固定する。
このように、鏡筒400を2次元パターンの光の光軸を中心に回転させることによって第1投影レンズ51及び第2投影レンズ52を回転させることにより、第1投影レンズ51及び第2投影レンズ52を構成する投影レンズのレンズ光学性能の良い領域と2次元パターンの照射領域を一致させることができる。
尚、第1投影レンズ51及び第2投影レンズ52を構成する各投影レンズ毎に独立して回転可能なように構成してもよい。また、鏡筒400は2次元パターンの光軸に垂直方向に移動可能なように構成してもよい。或いは、2次元パターンの光軸の垂直方向に第1投影レンズ51及び第2投影レンズ52を構成する各投影レンズが独立して移動可能なように構成してもよい。
このように2次元パターンを投影レンズの中央部を含む一部の領域において結像させるために、DMD36によって形成される2次元パターンは、図30Bに示す領域310のように、長辺の長さが短辺の長さより2倍以上長い略矩形状のパターンであることが望ましい。上記のような略矩形状の2次元パターンを形成するために、本実施の形態のDMD36は、DMD36の一部のマイクロミラー58を駆動制御して辺の長さが短辺の長さより2倍以上長い略矩形状2次元パターンを形成する。
図32A及び32Bを用いて詳しく説明する。DMD36には、例えば、露光する際の主走査方向、即ち行方向に1024画素、更に露光する際の副走査方向、即ち列方向に756画素のマイクロミラー58が2次元状に配置されている。本実施の形態では、列方向に756画素並ぶマイクロミラー58のうち、一部のマイクロミラー58(例えば、240画素)を使用して、1024×240画素の2次元パターンを形成させる。ここで、列方向に並ぶマイクロミラー58のうち使用するマイクロミラー58の数は、行方向に並ぶマイクロミラー58の数の1/2〜1/5程度の数であることが望ましい。
また、DMD36を構成する全てのマイクロミラーに対して、図32Aに示す領域80Cのように、DMD36の中央部を占めるマイクロミラーを使用してもいいし、図32Bに示す領域80Tのように、DMD36の端部付近を占めるマイクロミラーを使用してもよい。また、使用しているマイクロミラーに欠陥が生じた場合は、欠陥が発生していないマイクロミラーの領域を使用するなどして、状況に応じて使用するマイクロミラーの領域を適宜変更してもよい。
このように、DMD36を構成するマイクロミラー58において、列方向に並ぶマイクロミラー58のうち一部のマイクロミラー58を使用することによって、長辺の長さが短辺の長さより長い略矩形状の2次元パターンを形成することができ、第1投影レンズ51及び第2投影レンズ52を構成する投影レンズの高いレンズ光学性能を持つ領域のみに2次元パターンを照射させやすくすることができる。また、DMD36のデータ処理速度は制御するマイクロミラー58の数(画素数)に比例する。従って、列方向に並ぶマイクロミラー58のうち一部のマイクロミラー58を使用することによって、データ処理速度を速くすることができ、露光スピードを速くすることができる。更に、DMD36によって形成される2次元パターンを小さくすることによって、高価なマイクロレンズアレイ55を小型化できるため、露光装置のコストを削減することができる。
尚、長辺の長さが短辺の長さより長い略矩形状の2次元パターンを形成するために、DMD36において列方向に並ぶマイクロミラー58のうち、一部のマイクロミラー58を用いることとして説明したが、予め長辺方向のマイクロミラーの数が短辺方向のマイクロミラーの数より2倍以上多いDMDであってもよい。
−焦点調節手段−
図33はくさび型プリズムペア54の構成を示す側面図であり、図34はくさび型プリズムペア54を示す概略斜視図である。くさび型プリズムペア54は、2次元パターンの光の光路長を変更して、2次元パターンを結像させる際の焦点を調節するための焦点調節手段である。くさび型プリズムペア54は、くさび型プリズム540A及び540Bと、くさび型プリズム540A及び540Bをそれぞれ固定するベースプリズムホルダ541A及び541Bと、ベースプリズムホルダ541Aの両端に配設されたスライドベース542A及びスライドベース542A上を移動するスライダ542Bを含むスライド部545と、スライド部545を移動させる駆動部546とを備えて構成されている。くさび型プリズムペア54については、図34に示すように、例えばガラスやアクリル等の透明材料からなる平行平板を、この平行平板の平行平面H11及びH22に対して斜めに傾く平面Hkに沿って切断することによって得られる一対のくさび型プリズムA及びBを上記くさび型プリズム540A及び540Bとして使用することができる。
図33のくさび型プリズム540A及び540Bは、幅t(例えば、10[um])の空気層550を介してベースプリズムホルダ541A及び541Bに固定される。
また、スライドベース542A及びスライダ542Bとの組み合わせによってリニアスライドが可能であり、駆動部546がくさび型プリズム540A及び540Bの互いの位置を空気層550の幅tが変化しないようにスライド部545を1方向(図中矢印uの方向)に相対的に移動させる。このスライド部545の移動により、くさび型プリズムペア54の2次元パターンの光軸方向の厚さ(平行平面板の厚さから空気層550の幅tを除いた厚さ)が変更される。つまり、くさび型プリズムペア54によって2次元パターンを形成する光の光路長が変更されることになる。
このように、第2投影レンズ52と感光材料12の間にくさび型プリズムペア54を配設することによって、2次元パターンの光の光路長を簡単に調節することができる。従って、従来に比べ、第2投影レンズ52によって結像された2次元パターンを感光材料12上に結像する際の焦点調整が簡単且つ短時間で行うことができる。
尚、図35に示すように、くさび型プリズムペア54をマイクロレンズアレイ55と第2投影レンズ52との間に配置して、2次元パターンの光の光路長を変更することにより、2次元パターンの焦点を調節してもよい。
また、焦点調節手段としてくさび型プリズムペア54を用いた場合を説明したが、これに限定されるものではなく、結像レンズ系50を構成する投影レンズの位置を変化させずに焦点調節を行う高ビーム位置精度の焦点調節手段であればよい。例えば、図36A、図36B、図37A及び図37Bに示すように、マイクロレンズアレイ55をピエゾ素子600を用いて焦点方向(図中矢印Xの方向)に移動させることにより焦点調整を行ってもよい。ピエゾ素子600を用いることによって、マイクロレンズアレイ55の焦点方向と垂直な方向への変位を抑えつつ、焦点方向への微小移動を行うことができるため、安定したビーム位置精度を保ちながら焦点調整を行うことができる。
−感光材料の移動方向−
次に露光時の相対移動における感光材料の移動方向について説明する。図38Aに示す感光材料12とDMD36の位置関係を概略的に示した斜視図である。尚、図2に示すように、露光装置10はDMD36を有する露光ヘッド30を10個備えることとして説明したが、図38A及び図38Bでは簡略化して1個のDMD36にのみ着目して図示し、説明する。
図38Aに示す、DMD36の全てのマイクロミラー58に対して領域80Tを占めるマイクロミラー58を使用する場合、領域80Tの短辺方向を感光材料12のうねり方向に向けて感光材料12をそのうねり方向に移動させながら(領域80Tの短辺方向を感光材料12の移動方向に向ける)感光材料12に対して露光を行う。図38Aにおいて、露光エリア81はDMD36の全てのマイクロミラー58を使用して2次元パターンを形成したときの露光エリアであり、露光エリア81TはDMD81において領域80Tを占めるマイクロミラー58を使用して2次元パターンを形成したときの露光エリアである。
図38Bは、図38Aにおいて破線の枠Pで囲んだ部分を拡大して示した側面図である。図38Bに示すように、DMD36の全てのマイクロミラー58を使用して2次元パターンを形成した場合、露光エリア81の感光材料12に対する最大深度差(露光エリア81内における、感光材料12表面の最大高低差)はd2となる。一方、DMD36において領域80Tを占めるマイクロミラー58を使用した場合、露光エリア81Tの感光材料12に対する最大深度差はd1となる。図38Bに示すように、d1<d2であり、深度差が小さいほうが深度差が大きい場合より2次元パターン内における感光材料12のうねりの度合いが小さい。従って、2次元パターンの焦点位置をより適切な位置に合わせることができる。
また、1フレームの露光が終了し、ステージ14が走査方向に移動することによって感光材料12が移動すると、露光エリア81Tの位置が変化し、露光エリア81T内における感光材料12のうねりの度合いが変化するため、焦点位置も変化するが、くさび型プリズムペア54によって焦点調節がなされることにより、焦点位置は即座に調節される。従って、感光材料12のうねりに対応した長焦点深度を有する露光を行うことができる。
このように、DMD36を構成するマイクロミラー58において、列方向に並ぶマイクロミラー58のうち一部のマイクロミラー58を使用して、略矩形状の2次元パターンを形成させたとき、2次元パターンの短辺方向を感光材料12のうねり方向に向けて露光を行うことにより、露光エリア81T内における感光材料12のうねりの度合いを少なくすることができる。このため、2次元パターンの焦点位置を適切な位置に合わせることができ、露光装置10の焦点深度を従来の露光装置より見かけ上大きくすることができる。従って、露光画質を向上させることができる。
尚、図2に示すように、実際には露光ヘッド30はDMD36の画素列方向が走査方向と所定の設定傾斜角度をなすようにスキャナ24に取り付けられている。従って、各露光ヘッド30による露光エリア32(図38A及び図38Bにおける露光エリア81Tに相当)は走査方向に対して傾斜した矩形状のエリアとなる。露光エリア81T内の感光材料12のうねりの度合いを最小限に抑えるためには、露光エリア81Tの短辺方向と感光材料12のうねり方向を完全に一致させることが理想であるが、露光エリア81Tが上記所定の設定傾斜角度をなしていても、露光エリア81Tの短辺方向が長辺方向より感光材料12のうねり方向に向いていればよい。
〔露光パターン像歪みの補正方法〕
前記空間光変調素子の各描素部の面の歪みは、集光位置における光ビームに歪みをもたらすという問題があり、特に、前記DMDを空間光変調素子として用いた場合には顕著であり、高精細な露光パターンが形成されないという問題がある。
そこで、前記DMDからの光を収束するマイクロレンズアレイにおいて該DMDの出射面の歪みを補正することにより、前記感光層の被露光面上に結像される像の歪みを補正する方法を以下に説明する。
なお、この方法に好適な露光ヘッドの構成概略図を、図39に示す。
前記露光パターン像歪みの補正方法としては、例えば、前記マイクロレンズアレイの各マイクロレンズを、前記描素部の面の歪みによる収差を補正する特性を有するものとすることが挙げられ、そのようなマイクロレンズとしては、具体的には、非球面を有するマイクロレンズ、屈折率分布を有するマイクロレンズ、及び周辺部からの光を入射させないレンズ開口形状を有するマイクロレンズなどが挙げられる。
図39に詳しく示すように、ファイバアレイ光源38から出射した照明光としてのレーザ光Bを集光する集光レンズ710、集光レンズ710を通過した光の光路に挿入されたロッド状オプティカルインテグレータ(以下、ロッドインテグレータという)720、及びロッドインテグレータ720の前方つまりミラー42側に配置された結像レンズ740から構成されている。集光レンズ710、ロッドインテグレータ720及び結像レンズ740は、ファイバアレイ光源38から出射したレーザ光を、平行光に近くかつビーム断面内強度が均一化された光束としてDMD36に入射させる。
レンズ系700から出射したレーザ光Bはミラー42で反射し、TIR(全反射)プリズム750を介してDMD36に照射される。なお、図4では、このTIRプリズム75は省略してある。
DMD36の光反射側には、DMD36で反射されたレーザ光Bを、感光層12上に結像する結像レンズ系が配置されている。結像レンズ系500の例では、レンズ系520、540からなる第1結像レンズ系と、レンズ系570、580からなる第2結像レンズ系と、これらの結像レンズ系の間に挿入されたマイクロレンズアレイ55と、アパーチャアレイ59とから構成されている。
マイクロレンズアレイ55は、DMD36の各描素に対応する多数のマイクロレンズ55aが2次元状に配列されてなるものである。本例では、後述するようにDMD36の1024個×768列のマイクロミラーのうち1024個×256列だけが駆動されるので、それに対応させてマイクロレンズ55aは1024個×256列配置されている。またマイクロレンズ55aの配置ピッチは縦方向、横方向とも41μmである。このマイクロレンズ55aは、一例として焦点距離が0.19mm、NA(開口数)が0.11で、光学ガラスBK7から形成されている。なおマイクロレンズ55aの形状については、後に詳しく説明する。
そして、各マイクロレンズ55aの位置におけるレーザ光Bのビーム径は、41μmである。
また、アパーチャアレイ59は、マイクロレンズアレイ55の各マイクロレンズ55aに対応する多数のアパーチャ(開口)59aが形成されてなるものである。アパーチャ59aの径は、例えば、10μmである。
前記第1結像レンズ系は、DMD36による像を3倍に拡大してマイクロレンズアレイ55上に結像する。そして、前記第2結像レンズ系は、マイクロレンズアレイ55を経た像を1.6倍に拡大して感光層12上に結像、投影する。したがって全体では、DMD36による像が4.8倍に拡大して感光層12上に結像、投影されることになる。
なお、前記第2結像レンズ系と感光層12との間にプリズムペア73が配設され、このプリズムペア73を図39中で上下方向に移動させることにより、感光層12上における像のピントを調節可能となっている。なお同図中において、感光層12は矢印F方向に副走査送りされる。
−マイクロレンズアレイ−
図40Aは、DMD36、DMD36にレーザ光を照射する光照射手段144、DMD36で反射されたレーザ光を拡大して結像するレンズ系(結像レンズ系)454、458、DMD36の各描素部に対応して多数のマイクロレンズ474が配置されたマイクロレンズアレイ472、マイクロレンズアレイ472の各マイクロレンズに対応して多数のアパーチャ478が設けられたアパーチャアレイ476、アパーチャを通過したレーザ光を被露光面56に結像するレンズ系(結像レンズ系)480、482で構成される露光ヘッドを表す。
ここで図41に、DMD36を構成するマイクロミラー58の反射面の平面度を測定した結果を示す。同図においては、反射面の同じ高さ位置を等高線で結んで示してあり、等高線のピッチは5nmである。なお同図に示すx方向及びy方向は、マイクロミラー58の2つ対角線方向であり、マイクロミラー58はy方向に延びる回転軸を中心として前述のように回転する。また、図42A及び図42Bにはそれぞれ、上記x方向、y方向に沿ったマイクロミラー58の反射面の高さ位置変位を示す。
図41及び図42A及び図42Bに示した通り、マイクロミラー58の反射面には歪みが存在し、そして特にミラー中央部に注目してみると、1つの対角線方向(y方向)の歪みが、別の対角線方向(x方向)の歪みよりも大きくなっている。このため、マイクロレンズアレイ55のマイクロレンズ55aで集光されたレーザ光Bの集光位置における形状が歪むという問題が発生し得る。
本発明のパターン形成方法においては前記問題を防止するために、マイクロレンズアレイ55のマイクロレンズ55aが、従来とは異なる特殊な形状とされている。以下、その点について詳しく説明する。
図43A及び図43Bはそれぞれ、マイクロレンズアレイ55全体の正面形状及び側面形状を詳しく示すものである。これらの図にはマイクロレンズアレイ55の各部の寸法も記入してあり、それらの単位はmmである。本発明のパターン形成方法では、先に図4を参照して説明したようにDMD36の1024個×256列のマイクロミラー58が駆動されるものであり、それに対応させてマイクロレンズアレイ55は、横方向に1024個並んだマイクロレンズ55aの列を縦方向に256列並設して構成されている。なお、同図43Aでは、マイクロレンズアレイ55の並び順を横方向についてはjで、縦方向についてはkで示している。
また、図44A及び図44Bはそれぞれ、マイクロレンズアレイ55における1つのマイクロレンズ55aの正面形状及び側面形状を示すものである。なお同図44Aには、マイクロレンズ55aの等高線を併せて示してある。各マイクロレンズ55aの光出射側の端面は、マイクロミラー58の反射面の歪みによる収差を補正する非球面形状とされている。より具体的には、マイクロレンズ55aはトーリックレンズとされており、上記x方向に光学的に対応する方向の曲率半径Rx=−0.125mm、上記y方向に対応する方向の曲率半径Ry=−0.1mmである。
したがって、上記x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態は、概略、それぞれ図45の(A)及び(B)に示す通りとなる。つまり、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ55aの曲率半径がより小であって、焦点距離がより短くなっている。
マイクロレンズ55aを前記形状とした場合の、該マイクロレンズ55aの集光位置(焦点位置)近傍におけるビーム径を計算機によってシミュレーションした結果を図46、47、48、及び49に示す。また比較のために、マイクロレンズ55aが曲率半径Rx=Ry=−0.1mmの球面形状である場合について、同様のシミュレーションを行った結果を図50、51、52及び53に示す。なお、各図におけるzの値は、マイクロレンズ55aのピント方向の評価位置を、マイクロレンズ55aのビーム出射面からの距離で示している。
また、前記シミュレーションに用いたマイクロレンズ55aの面形状は、下記計算式で計算される。
ただし、前記計算式において、Cxは、x方向の曲率(=1/Rx)を意味し、Cyは、y方向の曲率(=1/Ry)を意味し、Xは、x方向に関するレンズ光軸Oからの距離を意味し、Yは、y方向に関するレンズ光軸Oからの距離を意味する。
図46〜49と図50〜53とを比較すると明らかなように、本発明のパターン形成方法ではマイクロレンズ55aを、y方向に平行な断面内の焦点距離がx方向に平行な断面内の焦点距離よりも小さいトーリックレンズとしたことにより、その集光位置近傍におけるビーム形状の歪みが抑制される。そうであれば、歪みの無い、より高精細な画像を感光層12に露光可能となる。また、図46〜49に示す本実施形態の方が、ビーム径の小さい領域がより広い、即ち焦点深度がより大であることが分かる。
なお、マイクロミラー58のx方向及びy方向に関する中央部の歪の大小関係が、上記と逆になっている場合は、x方向に平行な断面内の焦点距離がy方向に平行な断面内の焦点距離よりも小さいトーリックレンズからマイクロレンズを構成すれば、同様に、歪みの無い、より高精細な画像を感光層12に露光可能となる。
また、マイクロレンズアレイ55の集光位置近傍に配置されたアパーチャアレイ59は、その各アパーチャ59aに、それと対応するマイクロレンズ55aを経た光のみが入射するように配置されたものである。即ち、このアパーチャアレイ59が設けられていることにより、各アパーチャ59aに、それと対応しない隣接のマイクロレンズ55aからの光が入射することが防止され、消光比が高められる。
本来、上記目的で設置されるアパーチャアレイ59のアパーチャ59aの径をある程度小さくすれば、マイクロレンズ55aの集光位置におけるビーム形状の歪みを抑制する効果も得られる。しかしそのようにした場合は、アパーチャアレイ59で遮断される光量がより多くなり、光利用効率が低下することになる。それに対してマイクロレンズ55aを非球面形状とする場合は、光を遮断することがないので、光利用効率も高く保たれる。
なお、本発明のパターン形成方法においては、マイクロミラー58の2つの対角線方向に光学的に対応するx方向およびy方向の曲率が異なるトーリックレンズであるマイクロレンズ55aが適用されているが、マイクロミラー58の歪みに応じて、図54A、図54Bにそれぞれ等高線付き正面形状、側面形状を示すように、矩形のマイクロミラー58の2つの辺方向に光学的に対応するxx方向およびyy方向の曲率が互いに異なるトーリックレンズからなるマイクロレンズ55a’が適用されてもよい。
また、本発明のパターン形成方法において、マイクロレンズ55aは、2次の非球面形状であってもよく、より高次(4次、6次・・・)の非球面形状であってもよい。前記高次の非球面形状を採用することにより、ビーム形状をさらに高精細にすることができる。
さらには、マイクロミラー58の反射面の歪みに応じて、前述したx方向及びy方向の曲率が互いに一致しているようなレンズ形状を採用することも可能である。以下、そのようなレンズ形状の例について詳しく説明する。
図55A及び図55Bにそれぞれ等高線付き正面形状、側面形状を示すマイクロレンズ55a”は、x方向及びy方向の曲率が互いに等しく、かつ、該曲率が、球面レンズの曲率Cyをレンズ中心からの距離hに応じて補正したものとなっている。即ち、このマイクロレンズ55a”のレンズ形状の基となる球面レンズ形状は、例えば、下記計算式(数2)でレンズ高さ(レンズ曲面の光軸方向位置)zを規定したものを採用する。
なお、上記曲率Cy=(1/0.1mm)である場合の、レンズ高さzと距離hとの関係をグラフにして図56に示す。
そして、上記球面レンズ形状の曲率Cyをレンズ中心からの距離hに応じて下記計算式(数3)のように補正して、マイクロレンズ55a”のレンズ形状とする。
前記計算式(数4)においても、zの意味するところは上述の計算式(数3)と同じであり、ここでは4次係数aおよび6次係数bを用いて曲率Cyを補正している。なお、上記曲率Cy=(1/0.1mm)、4次係数a=1.2×10、6次係数a=5.5×107である場合の、レンズ高さzと距離hとの関係をグラフにして図57に示す。
また、以上説明した実施形態では、マイクロレンズ55aの光出射側の端面が非球面(トーリック面)とされているが、2つの光通過端面の一方を球面とし、他方をシリンドリカル面としたマイクロレンズからマイクロレンズアレイを構成して、上記実施形態と同様の効果を得ることもできる。
さらに、以上説明した実施形態においては、マイクロレンズアレイ55のマイクロレンズ55aが、マイクロミラー58の反射面の歪みによる収差を補正する非球面形状とされているが、このような非球面形状を採用する代わりに、マイクロレンズアレイを構成する各マイクロレンズに、マイクロミラー58の反射面の歪みによる収差を補正する屈折率分布を持たせても、同様の効果を得ることができる。
そのようなマイクロレンズ155aの一例を図58A及び図58Bに示す。図58A及び図58Bはそれぞれ、このマイクロレンズ155aの正面形状及び側面形状を示すものであり、図示の通りこのマイクロレンズ155aの外形形状は平行平板状である。なお、同図におけるx、y方向は、既述した通りである。
また、図59A及び図59Bは、このマイクロレンズ155aによる上記x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態を概略的に示している。このマイクロレンズ155aは、光軸Oから外方に向かって次第に増大する屈折率分布を有するものであり、同図においてマイクロレンズ155a内に示す破線は、その屈折率が光軸Oから所定の等ピッチで変化した位置を示している。図示の通り、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ155aの屈折率変化の割合がより大であって、焦点距離がより短くなっている。このような屈折率分布型レンズから構成されるマイクロレンズアレイを用いても、前記マイクロレンズアレイ55を用いる場合と同様の効果を得ることが可能である。
なお、先に図44A、図44B及び図45に示したマイクロレンズ55aのように面形状を非球面としたマイクロレンズにおいて、併せて上述のような屈折率分布を与え、面形状と屈折率分布の双方によって、マイクロミラー58の反射面の歪みによる収差を補正するようにしてもよい。
次に、図60に示すように、前記描素部の周辺部からの光を入射させないレンズ開口形状を有するマイクロレンズからなるマイクロレンズアレイについて説明する。
先に図41及び図42A及び図42Bを参照して説明した通り、DMD36のマイクロミラー58の反射面には歪みが存在するが、その歪み変化量はマイクロミラー58の中心から周辺部に行くにつれて次第に大きくなる傾向を有している。そしてマイクロミラー58の1つの対角線方向(y方向)の周辺部歪み変化量は、別の対角線方向(x方向)の周辺部歪み変化量と比べて大きく、上記の傾向もより顕著となっている。この問題に対処するために、図60に示すように、アレイ状に配設されたマイクロレンズ255aが、円形のレンズ開口を有することが好ましい。
そこで、上述のように歪みが大きいマイクロミラー58の反射面の周辺部、特に、四隅部で反射したレーザ光Bはマイクロレンズ255aによって集光されなくなり、集光されたレーザ光Bの集光位置における形状が歪んでしまうことを防止できる。したがって、歪みの無い、より高精細な画像を感光層12に露光可能となる。
また前記マイクロレンズアレイ255においては、同図に示される通り、マイクロレンズ255aを保持している透明部材255b(これは通常、マイクロレンズ255aと一体的に形成される)の裏面、つまりマイクロレンズ255aが形成されている面と反対側の面に、互いに離れた複数のマイクロレンズ255aのレンズ開口の外側領域を埋める状態にして、遮光性のマスク255cが形成されている。このようなマスク255cが設けられていることにより、マイクロミラー58の反射面の周辺部、特に四隅部で反射したレーザ光Bはそこで吸収、遮断されるので、集光されたレーザ光Bの形状が歪んでしまうという問題がより確実に防止される。
前記マイクロレンズアレイ255において、マイクロレンズの開口形状は上述した円形に限られるものではなく、例えば図61に示すように、楕円形の開口を有するマイクロレンズ455aを複数並設してなるマイクロレンズアレイ455や、図62に示すように多角形(図示の例では四角形)の開口を有するマイクロレンズ555aを複数並設してなるマイクロレンズアレイ555等を適用することもできる。なお上記マイクロレンズ455aおよび555aは、通常の軸対称球面レンズの一部を円形あるいは多角形に切り取った形のものであり、通常の軸対称球面レンズと同様の集光機能を有する。
さらに、本発明においては、図63A、図63B及び図63Cに示すようなマイクロレンズアレイを適用することも可能である。同図63Aに示すマイクロレンズアレイ655は、透明部材655bのレーザ光Bが出射する側の面に、上記マイクロレンズ55a、455aおよび555aと同様の複数のマイクロレンズ655aが互いに密接するように並設され、レーザ光Bが入射する側の面に上記マスク255cと同様のマスク655cが形成されてなる。なお、図60のマスク255cはレンズ開口の外側部分に形成されているのに対し、このマスク655cはレンズ開口内に設けられている。また同図63Bに示すマイクロレンズアレイ755は、透明部材455bのレーザ光Bが出射する側の面に、互いに離して複数のマイクロレンズ755aが並設され、それらのマイクロレンズ755aどうしの間にマスク755cが形成されてなる。また同図63Cに示すマイクロレンズアレイ855は、透明部材855bのレーザ光Bが出射する側の面に、互いに接する状態にして複数のマイクロレンズ855aが並設され、各マイクロレンズ855aの周辺部にマスク855cが形成されてなる。
なお、前記マスク655c、755cおよび855cは全て、前述のマスク255cと同様に円形の開口を有するものであり、それによりマイクロレンズの開口が円形に規定されるようになっている。
以上説明したマイクロレンズ255a、455a、555a、655aおよび755aのように、マスクを設ける等によって、DMD36のマイクロミラー58の周辺部からの光を入射させないレンズ開口形状とする構成は、図44A及び図44Bに示す既述のマイクロレンズ55aのようにマイクロミラー58の面の歪みによる収差を補正する非球面形状のレンズや、図58A及び図58Bに示すマイクロレンズ155aのように上記収差を補正する屈折率分布を有するレンズに併せて採用することも可能である。そのようにすれば、マイクロミラー58の反射面の歪みによる露光画像の歪みを防止する効果が相乗的に高められる。
特に、図63Cに示すようにマイクロレンズ855aのレンズ面にマスク855cが形成される構成において、マイクロレンズ855aが上述のような非球面形状や屈折率分布を有するものとされ、その上で、例えば、図39に示したレンズ系52、54のような第1結像レンズ系の結像位置が、マイクロレンズ855aのレンズ面に設定されているときは、特に光利用効率が高くなり、より高強度の光で感光層12を露光することができる。即ち、そのときは、第1の結像レンズ系により、マイクロミラー58の反射面の歪みによる迷光が該光学系の結像位置で1点に集束するように光が屈折するが、この位置にマスク855cが形成されていれば、迷光以外の光が遮光されることがなくなり、光利用効率が向上する。
また、上記の実施形態では、DMD36を構成するマイクロミラー58の反射面の歪みによる収差を補正しているが、DMD以外の空間光変調素子を用いる本発明のパターン形成方法においても、その空間光変調素子の描素部の面に歪みが存在する場合は、本発明を適用してその歪みによる収差を補正し、ビーム形状に歪みが生じることを防止可能である。
次に、前記結像レンズ系について更に説明する。
前記露光ヘッドでは、光照射手段144からレーザ光が照射されると、DMD36によりオン方向に反射される光束線の断面積が、レンズ系454、458により数倍(例えば、2倍)に拡大される。拡大されたレーザ光は、マイクロレンズアレイ472の各マイクロレンズによりDMD36の各描素部に対応して集光され、アパーチャアレイ476の対応するアパーチャを通過する。アパーチャを通過したレーザ光は、レンズ系480、482により被露光面56上に結像される。
この結像レンズ系では、DMD36により反射されたレーザ光は、拡大レンズ454、458により数倍に拡大されて被露光面56に投影されるので、全体の画像領域が広くなる。このとき、マイクロレンズアレイ472及びアパーチャアレイ476が配置されていなければ、図40Bに示すように、被露光面56に投影される各ビームスポットBSの1描素サイズ(スポットサイズ)が露光エリア468のサイズに応じて大きなものとなり、露光エリア468の鮮鋭度を表すMTF(Modulation Transfer Function)特性が低下する。
一方、マイクロレンズアレイ472及びアパーチャアレイ476を配置した場合には、DMD36により反射されたレーザ光は、マイクロレンズアレイ472の各マイクロレンズによりDMD36の各描素部に対応して集光される。これにより、図40Cに示すように、露光エリアが拡大された場合でも、各ビームスポットBSのスポットサイズを所望の大きさ(例えば、10μm×10μm)に縮小することができ、MTF特性の低下を防止して高精細な露光を行うことができる。なお、露光エリア468が傾いているのは、描素間の隙間を無くす為にDMD36を傾けて配置しているからである。
また、マイクロレンズの収差によるビームの太りがあっても、アパーチャアレイによって被露光面56上でのスポットサイズが一定の大きさになるようにビームを整形することができると共に、各描素に対応して設けられたアパーチャアレイを通過させることにより、隣接する描素間でのクロストークを防止することができる。
更に、光照射手段144に後述する高輝度光源を使用することにより、レンズ458からマイクロレンズアレイ472の各マイクロレンズに入射する光束の角度が小さくなるので、隣接する描素の光束の一部が入射するのを防止することができる。即ち、高消光比を実現することができる。
〔その他の光学系による補正方法〕
上述した以外の光学系による露光光の補正方法としては、特に制限はなく、公知の光学系の中から適宜選択したその他の光学系と併用してもよく、例えば、1対の組合せレンズからなる光量分布補正光学系などが挙げられる。
前記光量分布補正光学系は、光軸に近い中心部の光束幅に対する周辺部の光束幅の比が入射側に比べて出射側の方が小さくなるように各出射位置における光束幅を変化させて、光照射手段からの平行光束をDMDに照射するときに、被照射面での光量分布が略均一になるように補正する。以下、前記光量分布補正光学系について図面を参照しながら説明する。
まず、図64Aに示したように、入射光束と出射光束とで、その全体の光束幅(全光束幅)H0、H1が同じである場合について説明する。なお、図64Aにおいて、符号91、92で示した部分は、前記光量分布補正光学系における入射面及び出射面を仮想的に示したものである。
前記光量分布補正光学系において、光軸Z1に近い中心部に入射した光束と、周辺部に入射した光束とのそれぞれの光束幅h0、h1が、同一であるものとする(h0=hl)。前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光に対し、中心部の入射光束については、その光束幅h0を拡大し、逆に、周辺部の入射光束に対してはその光束幅h1を縮小するような作用を施す。即ち、中心部の出射光束の幅h10と、周辺部の出射光束の幅h11とについて、h11<h10となるようにする。光束幅の比率で表すと、出射側における中心部の光束幅に対する周辺部の光束幅の比「h11/h10」が、入射側における比(h1/h0=1)に比べて小さくなっている((h11/h10)<1)。
このように光束幅を変化させることにより、通常では光量分布が大きくなっている中央部の光束を、光量の不足している周辺部へと生かすことができ、全体として光の利用効率を落とさずに、被照射面での光量分布が略均一化される。均一化の度合いは、例えば、有効領域内における光量ムラが30%以内、好ましくは20%以内となるようにする。
前記光量分布補正光学系による作用、効果は、入射側と出射側とで、全体の光束幅を変える場合(図64B、図64C)においても同様である。
図64Bは、入射側の全体の光束幅H0を、幅H2に“縮小”して出射する場合(H0>H2)を示している。このような場合においても、前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光を、出射側において、中央部の光束幅h10が周辺部に比べて大きくなり、逆に、周辺部の光束幅h11が中心部に比べて小さくなるようにする。光束の縮小率で考えると、中心部の入射光束に対する縮小率を周辺部に比べて小さくし、周辺部の入射光束に対する縮小率を中心部に比べて大きくするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光束幅の比「H11/H10」が、入射側における比(h1/h0=1)に比べて小さくなる((h11/h10)<1)。
図64Cは、入射側の全体の光束幅H0を、幅Η3に“拡大”して出射する場合(H0<H3)を示している。このような場合においても、前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光を、出射側において、中央部の光束幅h10が周辺部に比べて大きくなり、逆に、周辺部の光束幅h11が中心部に比べて小さくなるようにする。光束の拡大率で考えると、中心部の入射光束に対する拡大率を周辺部に比べて大きくし、周辺部の入射光束に対する拡大率を中心部に比べて小さくするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光束幅の比「h11/h10」が、入射側における比(h1/h0=1)に比べて小さくなる((h11/h10)<1)。
このように、前記光量分布補正光学系は、各出射位置における光束幅を変化させ、光軸Z1に近い中心部の光束幅に対する周辺部の光束幅の比を入射側に比べて出射側の方が小さくなるようにしたので、入射側において同一の光束幅であった光が、出射側においては、中央部の光束幅が周辺部に比べて大きくなり、周辺部の光束幅は中心部に比べて小さくなる。これにより、中央部の光束を周辺部へと生かすことができ、光学系全体としての光の利用効率を落とさずに、光量分布の略均一化された光束断面を形成することができる。
次に、前記光量分布補正光学系として使用する1対の組合せレンズの具体的なレンズデータの1例を示す。この例では、前記光照射手段がレーザアレイ光源である場合のように、出射光束の断面での光量分布がガウス分布である場合のレンズデータを示す。なお、シングルモード光ファイバの入射端に1個の半導体レーザを接続した場合には、光ファイバからの射出光束の光量分布がガウス分布になる。本発明のパターン形成方法では、このような場合の適用も可能である。また、マルチモード光ファイバのコア径を小さくしてシングルモード光ファイバの構成に近付ける等により光軸に近い中心部の光量が周辺部の光量よりも大きい場合にも適用可能である。
下記表1に基本レンズデータを示す。
表3から分かるように、1対の組合せレンズは、回転対称の2つの非球面レンズから構成されている。光入射側に配置された第1のレンズの光入射側の面を第1面、光出射側の面を第2面とすると、第1面は非球面形状である。また、光出射側に配置された第2のレンズの光入射側の面を第3面、光出射側の面を第4面とすると、第4面が非球面形状である。
表3において、面番号Siはi番目(i=1〜4)の面の番号を示し、曲率半径riはi番目の面の曲率半径を示し、面間隔diはi番目の面とi+1番目の面との光軸上の面間隔を示す。面間隔di値の単位はミリメートル(mm)である。屈折率Niはi番目の面を備えた光学要素の波長405nmに対する屈折率の値を示す。
下記表4に、第1面及び第4面の非球面データを示す。
上記の非球面データは、非球面形状を表す下記式(A)における係数で表される。
上記式(A)において各係数を以下の通り定義する。
Z:光軸から高さρの位置にある非球面上の点から、非球面の頂点の接平面(光軸に垂直な平面)に下ろした垂線の長さ(mm)
ρ:光軸からの距離(mm)
K:円錐係数
C:近軸曲率(1/r、r:近軸曲率半径)
ai:第i次(i=3〜10)の非球面係数
表4に示した数値において、記号“E”は、その次に続く数値が10を底とした“べき指数″であることを示し、その10を底とした指数関数で表される数値が“E”の前の数値に乗算されることを示す。例えば、「1.0E−02」であれば、「1.0×10−2」であることを示す。
図65は、前記表3及び表4に示す1対の組合せレンズによって得られる照明光の光量分布を示している。横軸は光軸からの座標を示し、縦軸は光量比(%)を示す。なお、比較のために、図66に、補正を行わなかった場合の照明光の光量分布(ガウス分布)を示す。図66及び図65から分かるように、光量分布補正光学系で補正を行うことにより、補正を行わなかった場合と比べて、略均一化された光量分布が得られている。これにより、光の利用効率を落とさずに、均一なレーザ光でムラなく露光を行うことができる。
<パターン信号生成手段>
前記光変調手段は、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を更に有してなり、光照射手段から照射される光を該パターン信号生成手段が生成した制御信号に応じて変調させることが好ましい。
前記パターン信号生成手段を有することにより、前記光変調手段の使用描素部の選択や、露パターンの形成においてグレースケーリングが可能となる。
−高速変調−
前記光変調手段のデータ処理速度には限界があり、使用する描素数に比例して1ライン当りの変調速度が決定されるので、連続的に配列された任意のn個未満の描素部だけを使用することで1ライン当りの変調速度が速くなる。
なお本例では、図67A及び図67Bに示すように、DMD36には、主走査方向にマイクロミラーが1024個配列されたマイクロミラー列が副走査方向に768組配列されているが、本例では、図8に示すコントローラ302により一部のマイクロミラー列(例えば、1024個×256列)だけが駆動するように制御がなされる。
この場合、図67Aに示すようにDMD36の中央部に配置されたマイクロミラー列を使用してもよく、図67Bに示すように、DMD36の端部に配置されたマイクロミラー列を使用してもよい。また、一部のマイクロミラーに欠陥が発生した場合は、欠陥が発生していないマイクロミラー列を使用するなど、状況に応じて使用するマイクロミラー列を適宜変更してもよい。
DMD36のデータ処理速度には限界があり、使用する描素数に比例して1ライン当りの変調速度が決定されるので、一部のマイクロミラー列だけを使用することで1ライン当りの変調速度が速くなる。一方、連続的に露光ヘッドを露光面に対して相対移動させる露光方式の場合には、副走査方向の描素を全部使用する必要はない。
例えば、768組のマイクロミラー列の内、384組だけ使用する場合には、768組全部使用する場合と比較すると1ライン当り2倍速く変調することができる。また、768組のマイクロミラー列の内、256組だけ使用する場合には、768組全部使用する場合と比較すると1ライン当り3倍速く変調することができる。
このように、コントローラにより一部のマイクロミラー列だけが駆動されるように制御することにより、全部のマイクロミラー列を駆動する場合に比べて、1ライン当りの変調速度が速くなる。
〔多重露光による補正〕
上述のとおり、前記露光ヘッドを構成する各種レンズ系に起因する露光光の歪みの影響は、使用するマイクロミラーを選択し、N重露光による埋め合わせの効果で均すこともできる。さらに、前記露光ヘッドの取付け位置や取付け角度のズレに起因する解像度のばらつきや濃度ムラも、使用するマイクロミラーを選択し、N重露光による埋め合わせの効果で均すこともできる。
具体的には、走査方向に対し描素部の列方向が所定の設定傾斜角度θをなすように配置されてなる露光ヘッドを用い、前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、前記露光ヘッドについて、使用描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御し、前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光を行う方法が好適に挙げられる。
前記N重露光とは、前記感光層上の被露光面の略すべての領域において、前記露光ヘッドの走査方向に平行な直線が、該被露光面上に照射されたN本の光線列と交わる露光をいう。
前記N重露光のNとしては、2以上の自然数であれば、特に制限はなく、目的に応じて適宜選択することができ、3以上の自然数が好ましく、3以上7以下の自然数がより好ましい。
<<使用描素部指定手段>>
前記使用描素部指定手段としては、描素単位としての光点の位置を被露光面上において検出する光点位置検出手段と、前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段とを少なくとも備えることが好ましい。
以下、前記使用描素部指定手段による、N重露光に使用する描素部の指定方法の例について説明する。
(1)単一露光ヘッド内における使用描素部の指定方法
本実施形態(1)では、露光装置10により、感光層12に対して2重露光を行う場合であって、各露光ヘッド30の取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
露光ヘッド30の走査方向に対する描素部(マイクロミラー58)の列方向の設定傾斜角度θとしては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部を使用してちょうど2重露光となる角度θidealよりも、若干大きい角度を採用するものとする。
この角度θidealは、N重露光の数N、使用可能なマイクロミラー58の列方向の個数s、使用可能なマイクロミラー58の列方向の間隔p、及び露光ヘッド30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッチδに対し、下記式1、
spsinθideal≧Nδ(式1)
により与えられる。本実施形態におけるDMD36は、上記のとおり、縦横の配置間隔が等しい多数のマイクロミラー58が矩形格子状に配されたものであるので、
pcosθideal=δ(式2)
であり、上記式1は、
stanθideal=N(式3)
となる。本実施形態(1)では、上記のとおりs=256、N=2であるので、前記式3より、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、たとえば0.50度程度の角度を採用するとよい。露光装置10は、調整可能な範囲内で、各露光ヘッド30即ち各DMD36の取付角度がこの設定傾斜角度θに近い角度となるように、初期調整されているものとする。
図68は、上記のように初期調整された露光装置10において、1つの露光ヘッド30の取付角度誤差、及びパターン歪みの影響により、露光面上のパターンに生じるむらの例を示した説明図である。以下の図面及び説明においては、各描素部(マイクロミラー)により生成され、被露光面上の露光領域を構成する描素単位としての光点について、第m行目の光点をr(m)、第n列目の光点をc(n)、第m行第n列の光点をP(m、n)とそれぞれ表記するものとする。
図68の上段部分は、ステージ14を静止させた状態で感光層12の被露光面上に投影される、使用可能なマイクロミラー58からの光点群のパターンを示し、下段部分は、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を示したものである。
なお、図68では、説明の便宜のため、使用可能なマイクロミラー58の奇数列による露光パターンと偶数列による露光パターンを分けて示してあるが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
図68の例では、設定傾斜角度θを上記の角度θidealよりも若干大きい角度を採用した結果として、また露光ヘッド30の取付角度の微調整が困難であるために、実際の取付角度と上記の設定傾斜角度θとが誤差を有する結果として、被露光面上のいずれの領域においても濃度むらが生じている。具体的には、奇数列のマイクロミラーによる露光パターン及び偶数列のマイクロミラーによる露光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領域において、理想的な2重露光に対して露光過多となり、描画が冗長となる領域が生じ、濃度むらが生じている。
さらに、図68の例では、露光面上に現れるパターン歪みの一例であって、露光面上に投影された各画素列の傾斜角度が均一ではなくなる「角度歪み」が生じている。このような角度歪みが生じる原因としては、DMD36と露光面間の光学系の各種収差やアラインメントずれ、及びDMD36自体の歪みやマイクロミラーの配置誤差などが挙げられる。
図68の例に現れている角度歪みは、走査方向に対する傾斜角度が、図の左方の列ほど小さく、図の右方の列ほど大きくなっている形態の歪みである。この角度歪みの結果として、露光過多となっている領域は、図の左方に示した被露光面上ほど小さく、図の右方に示した被露光面上ほど大きくなっている。
上記したような、複数の描素部列により形成された、被露光面上の重複露光領域における濃度むらを軽減するために、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド30ごとに実傾斜角度θ´を特定し、該実傾斜角度θ´に基づき、前記描素部選択手段として前記光検出器に接続された前記演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
実傾斜角度θ´は、光点位置検出手段が検出した少なくとも2つの光点位置に基づき、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす角度により特定される。
以下、図69及び70を用いて、前記実傾斜角度θ´の特定、及び使用画素選択処理について説明する。
−実傾斜角度θ´の特定−
図69は、1つのDMD36による露光エリア32と、対応するスリット28との位置関係を示した上面図である。スリット28の大きさは、露光エリア32の幅を十分覆う大きさとされている。
本実施形態(1)の例では、露光エリア32の略中心に位置する第512列目の光点列と露光ヘッド30の走査方向とがなす角度を、上記の実傾斜角度θ´として測定する。具体的には、DMD36上の第1行目第512列目のマイクロミラー58、及び第256行目第512列目のマイクロミラー58をオン状態とし、それぞれに対応する被露光面上の光点P(1,512)及びP(256,512)の位置を検出し、それらを結ぶ直線と露光ヘッドの走査方向とがなす角度を実傾斜角度θ´として特定する。
図70は、光点P(256,512)の位置の検出手法を説明した上面図である。
まず、第256行目第512列目のマイクロミラー58を点灯させた状態で、ステージ14をゆっくり移動させてスリット28をY軸方向に沿って相対移動させ、光点P(256,512)が上流側のスリット28aと下流側のスリット28bの間に来るような任意の位置に、スリット28を位置させる。このときのスリット28aとスリット28bとの交点の座標を(X0,Y0)とする。この座標(X0,Y0)の値は、ステージ14に与えられた駆動信号が示す上記の位置までのステージ14の移動距離、及び、既知であるスリット28のX方向位置から決定され、記録される。
次に、ステージ14を移動させ、スリット28をY軸に沿って図70における右方に相対移動させる。そして、図70において二点鎖線で示すように、光点P(256、512)の光が左側のスリット28bを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0、Y1)を、光点P(256,512)の位置として記録する。
次いで、ステージ14を反対方向に移動させ、スリット28をY軸に沿って図70における左方に相対移動させる。そして、図70において二点鎖線で示すように、光点P(256,512)の光が右側のスリット28aを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0,Y2)を光点P(256,512)の位置として記録する。
以上の測定結果から、光点P(256,512)の被露光面上における位置を示す座標(X,Y)を、X=X0+(Y1−Y2)/2、Y=(Y1+Y2)/2の計算により決定する。同様の測定により、P(1,512)の位置を示す座標も決定し、それぞれの座標を結ぶ直線と、露光ヘッド30の走査方向とがなす傾斜角度を導出し、これを実傾斜角度θ´として特定する。
‐使用描素部の選択‐
このようにして特定された実傾斜角度θ´を用い、前記光検出器に接続された前記演算装置は、下記式4
ttanθ´=N(式4)
の関係を満たす値tに最も近い自然数Tを導出し、DMD36上の1行目からT行目のマイクロミラーを、本露光時に実際に使用するマイクロミラーとして選択する処理を行う。これにより、第512列目付近の露光領域において、理想的な2重露光に対して、露光過多となる領域と、露光不足となる領域との面積合計が最小となるようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
ここで、上記の値tに最も近い自然数を導出することに代えて、値t以上の最小の自然数を導出することとしてもよい。その場合、第512列目付近の露光領域において、理想的な2重露光に対して、露光過多となる領域の面積が最小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
また、値t以下の最大の自然数を導出することとしてもよい。その場合、第512列目付近の露光領域において、理想的な2重露光に対して、露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
図71は、上記のようにして実際に使用するマイクロミラーとして選択されたマイクロミラーが生成した光点のみを用いて行った露光において、図68に示した露光面上のむらがどのように改善されるかを示した説明図である。
この例では、上記の自然数TとしてT=253が導出され、第1行目から第253行目のマイクロミラーが選択されたものとする。選択されなかった第254行目から第256行目のマイクロミラーに対しては、前記使用描素部制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。図71に示すとおり、第512列目付近の露光領域では、露光過多及び露光不足は、ほぼ完全に解消され、理想的な2重露光に極めて近い均一な露光が実現される。
一方、図71の左方の領域(図中のc(1)付近)では、前記角度歪みにより、被露光面上における光点列の傾斜角度が中央付近(図中のc(512)付近)の領域における光線列の傾斜角度よりも小さくなっている。したがって、c(512)を基準として測定された実傾斜角度θ´に基づいて選択されたマイクロミラーのみによる露光では、偶数列による露光パターン及び奇数列による露光パターンのそれぞれにおいて、理想的な2重露光に対して露光不足となる領域がわずかに生じてしまう。
しかしながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重ね合わせてなる実際の露光パターンにおいては、露光量不足となる領域が互いに補完され、前記角度歪みによる露光むらを、2重露光による埋め合わせの効果で最小とすることができる。
また、図71の右方の領域(図中のc(1024)付近)では、前記角度歪みにより、被露光面上における光線列の傾斜角度が、中央付近(図中のc(512)付近)の領域における光線列の傾斜角度よりも大きくなっている。したがって、c(512)を基準として測定された実傾斜角度θ´に基づいて選択されたマイクロミラーによる露光では、図に示すように、理想的な2重露光に対して露光過多となる領域がわずかに生じてしまう。
しかし、図示の奇数列による露光パターンと偶数列による露光パターンとを重ね合わせてなる実際の露光パターンにおいては、露光過多となる領域が互いに補完され、前記角度歪による濃度むらを、2重露光による埋め合わせの効果で最小とすることができる。
本実施形態(1)では、上述のとおり、第512列目の光線列の実傾斜角度θ´が測定され、該実傾斜角度θ´を用い、前記式(4)により導出されたTに基づいて使用するマイクロミラー58を選択したが、前記実傾斜角度θ´の特定方法としては、複数の描素部の列方向(光点列)と、前記露光ヘッドの走査方向とがなす複数の実傾斜角度をそれぞれ測定し、それらの平均値、中央値、最大値、及び最小値のいずれかを実傾斜角度θ´として特定し、前記式4等によって実際の露光時に実際に使用するマイクロミラーを選択する形態としてもよい。
前記平均値又は前記中央値を実傾斜角度θ´とすれば、理想的なN重露光に対して露光過多となる領域と露光不足となる領域とのバランスがよい露光を実現することができる。例えば、露光過多となる領域と、露光量不足となる領域との合計面積が最小に抑えられ、かつ、露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるような露光を実現することが可能である。
また、前記最大値を実傾斜角度θ´とすれば、理想的なN重露光に対して露光過多となる領域の排除をより重要視した露光を実現することができ、例えば、露光不足となる領域の面積を最小に抑え、かつ、露光過多となる領域が生じないような露光を実現することが可能である。
さらに、前記最小値を実傾斜角度θ´とすれば、理想的なN重露光に対して露光不足となる領域の排除をより重要視した露光を実現することができ、例えば、露光過多となる領域の面積を最小に抑え、かつ、露光不足となる領域が生じないような露光を実現することが可能である。
一方、前記実傾斜角度θ´の特定は、同一の描素部の列(光点列)中の少なくとも2つの光点の位置に基づく方法に限定されない。例えば、同一描素部列c(n)中の1つ又は複数の光点の位置と、該c(n)近傍の列中の1つ又は複数の光点の位置とから求めた角度を、実傾斜角度θ´として特定してもよい。
具体的には、c(n)中の1つの光点位置と、露光ヘッドの走査方向に沿って直線上かつ近傍の光点列に含まれる1つ又は複数の光点位置とを検出し、これらの位置情報から、実傾斜角度θ´を求めることができる。さらに、c(n)列近傍の光点列中の少なくとも2つの光点(たとえば、c(n)を跨ぐように配置された2つの光点)の位置に基づいて求めた角度を、実傾斜角度θ´として特定してもよい。
以上のように、露光装置10を用いた本実施形態(1)の使用描素部の指定方法によれば、各露光ヘッドの取付角度誤差やパターン歪みの影響による解像度のばらつきや濃度のむらを軽減し、理想的なN重露光を実現することができる。
(2)複数露光ヘッド間における使用描素部の指定方法<1>
本実施形態(2)は、露光装置10により、感光層12に対して2重露光を行う場合である。以下、複数の露光ヘッド30により形成された被露光面上の重複露光領域であるヘッド間つなぎ領域において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の、理想的な状態からのずれに起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
各露光ヘッド30即ち各DMD36の設定傾斜角度θとしては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部マイクロミラー58を使用してちょうど2重露光となる角度θidealを採用するものとする。
この角度θidealは、上記の実施形態(1)と同様にして前記式1〜3から求められる。本実施形態(2)において、露光装置10は、各露光ヘッド30即ち各DMD36の取付角度がこの角度θidealとなるように、初期調整されているものとする。
図72は、上記のように初期調整された露光装置10において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の、理想的な状態からのずれの影響により、被露光面上のパターンに生じる濃度むらの例を示した説明図である。各露光ヘッドのX軸方向に関する相対位置のずれは、露光ヘッド間の相対位置の微調整が困難であるために生じ得るものである。
図72の上段部分は、ステージ14を静止させた状態で感光層12の被露光面上に投影される、露光ヘッド3012と3021が有するDMD36の使用可能なマイクロミラー58からの光点群のパターンを示した図である。図72の下段部分は、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を、露光エリア3212と3221について示したものである。
なお、図72では、説明の便宜のため、使用可能なマイクロミラー58の1列おきの露光パターンを、画素列群Aによる露光パターンと画素列群Bによる露光パターンとに分けて示してあるが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
図72の例では、上記したX軸方向に関する露光ヘッド3012と3021との間の相対位置の、理想的な状態からのずれの結果として、画素列群Aによる露光パターンと画素列群Bによる露光パターンとの双方で、露光エリア3212と3221の前記ヘッド間つなぎ領域において、理想的な2重露光の状態よりも露光量過多な部分が生じてしまっている。
上記したような、複数の前記露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域に現れる濃度むらを軽減するために、本実施形態(2)では、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012と3021からの光点群のうち、被露光面上に形成される前記ヘッド間つなぎ領域を構成する光点のいくつかについて、その位置(座標)を検出する。該位置(座標)に基づいて、前記描素部選択手段として前記光検出器に接続された演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
−位置(座標)の検出−
図73は、図72と同様の露光エリア3212及び3221と、対応するスリット28との位置関係を示した上面図である。スリット28の大きさは、露光ヘッド3012と3021による露光済み領域34間の重複部分の幅を十分覆う大きさ、即ち、露光ヘッド3012と3021により被露光面上に形成される前記ヘッド間つなぎ領域を十分覆う大きさとされている。
図74は、一例として露光エリア3221の光点P(256,1024)の位置を検出する際の検出手法を説明した上面図である。
まず、第256行目第1024列目のマイクロミラーを点灯させた状態で、ステージ14をゆっくり移動させてスリット28をY軸方向に沿って相対移動させ、光点P(256,1024)が上流側のスリット28aと下流側のスリット28bの間に来るような任意の位置に、スリット28を位置させる。このときのスリット28aとスリット28bとの交点の座標を(X0,Y0)とする。この座標(X0,Y0)の値は、ステージ14に与えられた駆動信号が示す上記の位置までのステージ14の移動距離、及び、既知であるスリット28のX方向位置から決定され、記録される。
次に、ステージ14を移動させ、スリット28をY軸に沿って図74における右方に相対移動させる。そして、図74において二点鎖線で示すように、光点P(256,1024)の光が左側のスリット28bを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0,Y1)を、光点P(256,1024)の位置として記録する。
次いで、ステージ14を反対方向に移動させ、スリット28をY軸に沿って図74における左方に相対移動させる。そして、図74において二点鎖線で示すように、光点P(256,1024)の光が右側のスリット28aを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0,Y2)を、光点P(256,1024)として記録する。
以上の測定結果から、光点P(256,1024)の被露光面における位置を示す座標(X、Y)を、X=X0+(Y1−Y2)/2、Y=(Y1+Y2)/2の計算により決定する。
−不使用描素部の特定−
図72の例では、まず、露光エリア3212の光点P(256,1)の位置を、上記の光点位置検出手段としてスリット28と光検出器の組により検出する。続いて、露光エリア3221の第256行目の光点行r(256)上の各光点の位置を、P(256,1024)、P(256,1023)・・・と順番に検出していき、露光エリア3212の光点P(256,1)よりも大きいX座標を示す露光エリア3221の光点P(256,n)が検出されたところで、検出動作を終了する。そして、露光エリア3221の光点列c(n+1)からc(1024)を構成する光点に対応するマイクロミラーを、本露光時に使用しないマイクロミラー(不使用描素部)として特定する。
例えば、図72において、露光エリア3221の光点P(256,1020)が、露光エリア3212の光点P(256,1)よりも大きいX座標を示し、その露光エリア3221の光点P(256,1020)が検出されたところで検出動作が終了したとすると、図75において斜線で覆われた部分70に相当する露光エリア3221の第1021行から第1024行を構成する光点に対応するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定される。
次に、N重露光の数Nに対して、露光エリア3212の光点P(256,N)の位置が検出される。本実施形態(2)では、N=2であるので、光点P(256,2)の位置が検出される。
続いて、露光エリア3221の光点列のうち、上記で本露光時に使用しないマイクロミラーに対応する光点列として特定されたものを除き、最も右側の第1020列を構成する光点の位置を、P(1,1020)から順番にP(1,1020)、P(2,1020)・・・と検出していき、露光エリア3212の光点P(256,2)よりも大きいX座標を示す光点P(m,1020)が検出されたところで、検出動作を終了する。
その後、前記光検出器に接続された演算装置において、露光エリア3212の光点P(256,2)のX座標と、露光エリア3221の光点P(m,1020)及びP(m−1,1020)のX座標とが比較され、露光エリア3221の光点P(m,1020)のX座標の方が露光エリア3212の光点P(256,2)のX座標に近い場合は、露光エリア3221の光点P(1,1020)からP(m−1,1020)に対応するマイクロミラーが本露光時に使用しないマイクロミラーとして特定される。
また、露光エリア3221の光点P(m−1,1020)のX座標の方が露光エリア3212の光点P(256,2)のX座標に近い場合は、露光エリア3221の光点P(1、1020)からP(m−2,1020)に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。
さらに、露光エリア3212の光点P(256,N−1)即ち光点P(256,1)の位置と、露光エリア3221の次列である第1019列を構成する各光点の位置についても、同様の検出処理及び使用しないマイクロミラーの特定が行われる。
その結果、たとえば、図75において網掛けで覆われた領域72を構成する光点に対応するマイクロミラーが、実際の露光時に使用しないマイクロミラーとして追加される。これらのマイクロミラーには、常時、そのマイクロミラーの角度をオフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に使用されない。
このように、実際の露光時に使用しないマイクロミラーを特定し、該使用しないマイクロミラーを除いたものを、実際の露光時に使用するマイクロミラーとして選択することにより、露光エリア3212と3221の前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができ、図75の下段に示すように、理想的な2重露光に極めて近い均一な露光を実現することができる。
なお、上記の例においては、図75において網掛けで覆われた領域72を構成する光点の特定に際し、露光エリア3212の光点P(256,2)のX座標と、露光エリア3221の光点P(m,1020)及びP(m−1,1020)のX座標との比較を行わずに、ただちに、露光エリア3221の光点P(1,1020)からP(m−2,1020)に対応するマイクロミラーを、本露光時に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光過多となる領域の面積が最小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
また、露光エリア3221の光点P(1,1020)からP(m−1,1020)に対応するマイクロミラーを、本露光に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
さらに、前記ヘッド間つなぎ領域において、理想的な2重描画に対して露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるように、実際に使用するマイクロミラーを選択することとしてもよい。
以上のように、露光装置10を用いた本実施形態(2)の使用描素部の指定方法によれば、複数の露光ヘッドのX軸方向に関する相対位置のずれに起因する解像度のばらつきと濃度むらとを軽減し、理想的なN重露光を実現することができる。
(3)複数露光ヘッド間における使用描素部の指定方法<2>
本実施形態(3)は、露光装置10により、感光層12に対して2重露光を行う場合である。以下、複数の露光ヘッド30により形成された被露光面上の重複露光領域であるヘッド間つなぎ領域において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の理想的な状態からのずれ、並びに各露光ヘッドの取付角度誤差、及び2つの露光ヘッド間の相対取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
各露光ヘッド30即ち各DMD36の設定傾斜角度としては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部(マイクロミラー58)を使用してちょうど2重露光となる角度θidealよりも若干大きい角度を採用するものとする。
この角度θidealは、前記式1〜3を用いて上記(1)の実施形態と同様にして求められる値であり、本実施形態では、上記のとおりs=256、N=2であるので、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、たとえば0.50度程度の角度を採用するとよい。露光装置10は、調整可能な範囲内で、各露光ヘッド30即ち各DMD36の取付角度がこの設定傾斜角度θに近い角度となるように、初期調整されているものとする。
図76は、上記のように各露光ヘッド30即ち各DMD36の取付角度が初期調整された露光装置10において、2つの露光ヘッド(一例として露光ヘッド3012と3021)の取付角度誤差、並びに各露光ヘッド3012と3021間の相対取付角度誤差及び相対位置のずれの影響により、露光面上のパターンに生じるむらの例を示した説明図である。
図76の例では、図72の例と同様の、X軸方向に関する露光ヘッド3012と3021の相対位置のずれの結果として、一列おきの光点群(画素列群A及びB)による露光パターンの双方で、露光エリア3212と3221の被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域において、理想的な2重露光の状態よりも露光量過多な領域74が生じ、これが濃度むらを引き起こしている。
さらに、図76の例では、各露光ヘッドの設定傾斜角度θを前記式(1)を満たす角度θidealよりも若干大きくしたことによる結果、及び各露光ヘッドの取付角度の微調整が困難であるために、実際の取付角度が上記の設定傾斜角度θからずれてしまったことの結果として、被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域以外の領域でも、一列おきの光点群(画素列群A及びB)による露光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領域である描素部列間つなぎ領域において、理想的な2重露光の状態よりも露光過多となる領域76が生じ、これがさらなる濃度むらを引き起こしている。
本実施形態(3)では、まず、各露光ヘッド3012と3021の取付角度誤差及び相対取付角度のずれの影響による濃度むらを軽減するための使用画素選択処理を行う。
具体的には、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012と3021のそれぞれについて、実傾斜角度θ´を特定し、該実傾斜角度θ´に基づき、前記描素部選択手段として光検出器に接続された演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
−実傾斜角度θ´の特定−
実傾斜角度θ´の特定は、露光ヘッド3012ついては露光エリア3212内の光点P(1,1)とP(256,1)の位置を、露光ヘッド3021については露光エリア3221内の光点P(1,1024)とP(256,1024)の位置を、それぞれ上述した実施形態(2)で用いたスリット28と光検出器の組により検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定することにより行われる。
−不使用描素部の特定−
そのようにして特定された実傾斜角度θ´を用いて、光検出器に接続された演算装置は、上述した実施形態(1)における演算装置と同様、下記式4
ttanθ´=N(式4)
の関係を満たす値tに最も近い自然数Tを、露光ヘッド3012と3021のそれぞれについて導出し、DMD36上の第(T+1)行目から第256行目のマイクロミラーを、本露光に使用しないマイクロミラーとして特定する処理を行う。
例えば、露光ヘッド3012についてはT=254、露光ヘッド3021についてはT=255が導出されたとすると、図77において斜線で覆われた部分78及び80を構成する光点に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。これにより、露光エリア3212と3221のうちヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができる。
ここで、上記の値tに最も近い自然数を導出することに代えて、値t以上の最小の自然数を導出することとしてもよい。その場合、露光エリア3212と3221の、複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光量過多となる面積が最小になり、かつ露光量不足となる面積が生じないようになすことができる。
あるいは、値t以下の最大の自然数を導出することとしてもよい。その場合、露光エリア3212と3221の、複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようになすことができる。
複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して、露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるように、本露光時に使用しないマイクロミラーを特定することとしてもよい。
その後、図77において斜線で覆われた領域78及び80を構成する光点以外の光点に対応するマイクロミラーに関して、図72から17を用いて説明した本実施形態(3)と同様の処理がなされ、図77において斜線で覆われた領域82及び網掛けで覆われた領域84を構成する光点に対応するマイクロミラーが特定され、本露光時に使用しないマイクロミラーとして追加される。
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。
以上のように、露光装置10を用いた本実施形態(3)の使用描素部の指定方法によれば、複数の露光ヘッドのX軸方向に関する相対位置のずれ、並びに各露光ヘッドの取付角度誤差、及び露光ヘッド間の相対取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的なN重露光を実現することができる。
以上、露光装置10による使用描素部指定方法ついて詳細に説明したが、上記実施形態(1)〜(3)は一例に過ぎず、本発明の範囲を逸脱することなく種々の変更が可能である。
また、上記の実施形態(1)〜(3)では、被露光面上の光点の位置を検出するための手段として、スリット28と単一セル型の光検出器の組を用いたが、これに限られずいかなる形態のものを用いてもよく、たとえば2次元検出器等を用いてもよい。
さらに、上記の実施形態(1)〜(3)では、スリット28と光検出器の組による被露光面上の光点の位置検出結果から実傾斜角度θ´を求め、その実傾斜角度θ´に基づいて使用するマイクロミラーを選択したが、実傾斜角度θ´の導出を介さずに使用可能なマイクロミラーを選択する形態としてもよい。さらには、たとえばすべての使用可能なマイクロミラーを用いた参照露光を行い、参照露光結果の目視による解像度や濃度のむらの確認等により、操作者が使用するマイクロミラーを手動で指定する形態も、本発明の範囲に含まれるものである。
なお、被露光面上に生じ得るパターン歪みには、上記の例で説明した角度歪みの他にも、種々の形態が存在する。
一例としては、図78Aに示すように、DMD36上の各マイクロミラー58からの光線が、異なる倍率で露光面上の露光エリア32に到達してしまう倍率歪みの形態がある。
また、別の例として、図78Bに示すように、DMD36上の各マイクロミラー58からの光線が、異なるビーム径で露光面上の露光エリア32に到達してしまうビーム径歪みの形態もある。これらの倍率歪み及びビーム径歪みは、主として、DMD36と露光面間の光学系の各種収差やアラインメントずれに起因して生じる。
更に別の例として、DMD36上の各マイクロミラー58からの光線が、異なる光量で露光面上の露光エリア32に到達してしまう光量歪みの形態もある。この光量歪みは、各種収差やアラインメントずれのほか、DMD36と露光面間の光学要素(たとえば1枚レンズである図5A及び図5Bのレンズ52及び54)の透過率の位置依存性や、DMD36自体による光量むらに起因して生じる。これらの形態のパターン歪みも、露光面上に形成されるパターンに解像度や濃度のむらを生じさせる。
上記の実施形態(1)〜(3)によれば、本露光に実際に使用するマイクロミラーを選択した後の、これらの形態のパターン歪みの残留要素も、上記の角度歪みの残留要素と同様、2重露光による埋め合わせの効果で均すことができる。
<<参照露光>>
上記の実施形態(1)〜(3)の変更例として、使用可能なマイクロミラーのうち、(N−1)列おきのマイクロミラー列、又は全光点行のうち1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行い、均一な露光を実現できるように、前記参照露光に使用されたマイクロミラー中、実際の露光時に使用しないマイクロミラーを特定することとしてもよい。
前記参照露光手段による参照露光の結果をサンプル出力し、該出力された参照露光結果に対し、解像度のばらつきや濃度のむらを確認し、実傾斜角度を推定するなどの分析を行う。前記参照露光の結果の分析は、操作者の目視による分析であってもよい。
図79A及び図79Bは、単一露光ヘッドを用い、(N−1)列おきのマイクロミラーのみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがって、N=2である。まず、図79Aに実線で示した奇数列の光点列に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したりすることで、本露光時において使用するマイクロミラーを指定することができる。
例えば、図79Bに斜線で覆って示す光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点列を構成するマイクロミラー中、本露光において実際に使用されるものとして指定される。偶数列の光点列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列の光点列に対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、奇数列及び偶数列双方のマイクロミラーを使用した本露光においては、理想的な2重露光に近い状態が実現できる。
図80は、複数の露光ヘッドを用い、(N−1)列おきのマイクロミラーのみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがって、N=2である。まず、図80に実線で示した、X軸方向に関して隣接する2つの露光ヘッド(一例として露光ヘッド3012と3021)の奇数列の光点列に対応するマイクロミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記出力された参照露光結果に基づき、2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したりすることで、本露光時において使用するマイクロミラーを指定することができる。
例えば、図80に斜線で覆って示す領域86及び網掛けで示す領域88内の光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点を構成するマイクロミラー中、本露光時において実際に使用されるものとして指定される。偶数列の光点列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列目の画素列に対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に実際に使用するマイクロミラーを指定することにより、奇数列及び偶数列双方のマイクロミラーを使用した本露光においては、2つの露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において、理想的な2重露光に近い状態が実現できる。
図81A及び図81Bは、単一露光ヘッドを用い、全光点行数の1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図81Aに実線で示した1行目から128(=256/2)行目の光点に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、本露光時において使用するマイクロミラーを指定することができる。
例えば、図81Bに斜線で覆って示す光点群に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定され得る。第129行目から第256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、第1行目から第128行目のマイクロミラーに対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、全体のマイクロミラーを使用した本露光においては、理想的な2重露光に近い状態が実現できる。
図82は、複数の露光ヘッドを用い、X軸方向に関して隣接する2つの露光ヘッド(一例として露光ヘッド3012と3021)について、それぞれ全光点行数の1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図82に実線で示した第1行目から第128(=256/2)行目の光点に対応するマイクロミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむらを最小限に抑えた本露光が実現できるように、本露光時において使用するマイクロミラーを指定することができる。
例えば、図82に斜線で覆って示す領域90及び網掛けで示す領域92内の光点列に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定される。第129行目から第256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光に使用するマイクロミラーを指定してもよいし、第1行目から第128行目のマイクロミラーに対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、2つの露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において理想的な2重露光に近い状態が実現できる。
以上の実施形態(1)〜(3)及び変更例においては、いずれも本露光を2重露光とする場合について説明したが、これに限定されず、2重露光以上のいかなる多重露光としてもよい。特に3重露光から7重露光程度とすることにより、高解像度を確保し、解像度のばらつき及び濃度むらが軽減された露光を実現することができる。
また、上記の実施形態及び変更例に係る露光装置には、さらに、画像データが表す2次元パターンの所定部分の寸法が、選択された使用画素により実現できる対応部分の寸法と一致するように、画像データを変換する機構が設けられていることが好ましい。そのように画像データを変換することによって、所望の2次元パターンどおりの高精細なパターンを露光面上に形成することができる。
〔ジャギー低減方法〕
解像度を高めるために、前記露光ヘッドを傾斜させて露光を行うと、形成する露光パターンによっては、無視できないジャギーが発生してしまうという問題がある。例えば、走査方向又はそれと直交する方向に延在する直線状のパターンを形成する場合、前記光変調手段によって形成される各描素部の位置と、パターンの所望の描画位置との間のずれがジャギーとして視認されてしまうことがある。
この問題に対し、単位面積当たりの描画画素数を増加させる等の手段を講じることなく、最適な描画条件を設定することにより、ジャギーの発生を抑制する方法を説明する。
図83は、図84に示す各露光ヘッド24a〜24jの構成を示す。前記露光ヘッド24a〜24jは、図84に示すように、シートフイルムF(感光材料12)の走査方向(移動ステージ14の移動方向)と直交する方向に2列で千鳥状に配列される。各露光ヘッド24a〜24jに組み込まれるDMD36は、図85に示すように、高い解像度を実現すべく、走査方向に対して所定角度傾斜した状態に設定される。即ち、DMD36をシートフイルムF(感光材料12)の走査方向に対して傾斜させることにより、DMD36を構成するマイクロミラーの走査方向と直交する方向に対する間隔が狭くなり、これによって、走査方向と直交する方向に対する解像度を高くすることができる。なお、露光ヘッド24a〜24j間の継ぎ目が生じることのないよう、各露光ヘッド24a〜24jによる露光エリア58a〜58jが走査方向と直交する方向に重畳するように設定される。
図86は、図1に示す露光装置10の制御回路の要部構成ブロック図である。露光装置10を制御する制御ユニット42(制御手段)は、エンコーダ62により検出した移動ステージ14の位置データに基づいて同期信号を生成する同期信号生成部64と、生成された同期信号に基づいて移動ステージ14を走査方向に移動させる露光ステージ駆動部66と、シートフイルムF(感光材料12)に描画される画像の描画データを記憶する描画データ記憶部68と、同期信号及び描画データに基づいてDMDのSRAMセルを変調制御し、マイクロミラーを駆動するDMD変調部70とを備える。
また、制御ユニット42は、同期信号生成部64により生成される同期信号を調整する周波数変更部72(描画タイミング変更手段)、位相差変更部74(位相差変更手段)及び移動速度変更部75(移動速度変更手段)を備える。
周波数変更部72は、DMDを構成するマイクロミラーの走査方向に対するオンオフ制御のタイミングを決定する周波数を変更して同期信号生成部64に供給し、シートフイルムF(感光材料12)に描画される画素の走査方向の間隔を調整する。位相差変更部74は、走査方向と略直交する方向に隣接して配列されたマイクロミラー40のオンオフ制御のタイミングの位相差を変更して同期信号生成部64に供給し、シートフイルムF(感光材料12)に描画される画素の走査方向に対する位相差を調整する。移動速度変更部75は、移動ステージ14の移動速度を変更して同期信号生成部64に供給することで移動ステージ14の移動速度を調整する。
さらに、制御ユニット42には、必要に応じて、露光ヘッド回転駆動部76(描画画素群回転手段)及び光学倍率変更部78(描画倍率変更手段)を配設することができる。露光ヘッド回転駆動部76は、露光ヘッド24a〜24jをレーザビームLの光軸の回りに所定角度回転させ、シートフイルムF(感光材料12)上に形成される画素配列の走査方向に対する傾斜角度を調整する。なお、露光ヘッド24a〜24jの一部の光学部材を回転させることによって、画素配列の傾斜角度を調整するようにしてもよい。光学倍率変更部78は、露光ヘッド24a〜24jの第2結像光学レンズ50、52により構成されるズーム光学系79を制御して光学倍率を変更し、隣接するマイクロミラーによりシートフイルムF(感光材料12)上に形成される画素の配列ピッチ又は同一のマイクロミラーによる描画ピッチを調整する。
本実施形態の露光装置10は、基本的には以上のように構成されるものであり、次に、
その動作について説明する。
移動ステージ14に感光材料12を吸着保持させた後、制御ユニット42は、露光ステージ駆動部66を駆動し、移動ステージ14を定盤14のガイドレール20に沿って一方の方向に移動させる。移動ステージ14がコラム22間を通過する際、カメラ26が感光材料12)の所定位置に記録されているアライメントマークを読み取る。制御ユニット42は、読み取ったアライメントマークの位置データに基づき、シートフイルムFの位置補正データを算出する。
位置補正データが算出された後、制御ユニット42は、移動ステージ14を他方の方向に移動させ、スキャナ26によりシートフイルムF(感光材料12)に対する画像の露光記録を開始する。
即ち、光源ユニット28から出力されたレーザビームLは、光ファイバ30を介して各露光ヘッド24a〜24jに導入される。導入されたレーザビームLは、ロッドレンズ32から反射ミラー34を介してDMD36に入射する。
一方、描画データ記憶部68から読み出され、位置補正データにより補正された描画データは、DMD変調部70において、同期信号生成部64から供給される同期信号に従ったタイミングで変調されてDMD36に供給される。この結果、DMD36を構成する各マイクロミラーが描画データに従い同期信号に応じたタイミングでオンオフ制御される。
図7に示すように、DMD36を構成する各マイクロミラー40により所望の方向に選択的に反射されたレーザビームLは、第1結像光学レンズ44、46によって拡大された後、マイクロアパーチャアレー54、マイクロレンズアレー48及びマイクロアパーチャアレー56を介して所定の径に調整され、次いで、光学倍率変更部78を構成する第2結像光学レンズ50、52により所定の倍率に調整されて感光材料12に導かれる。
この場合、移動ステージ14は移動し、シートフイルムF(感光材料12)には、露光ステージ18の移動方向と直交する方向に配列される複数の露光ヘッド24a〜24jにより所望の二次元画像が描画される。
ところで、前記のようにしてシートフイルムF(感光材料12)上に描画される二次元画像は、DMD36を構成するマイクロミラーに基づく離散的な多数の画素の集合によって構成されている。この場合、描画前のオリジナル画像は、シートフイルムF(感光材料12)上の離散的な描画点にマッピングされて再現されるため、オリジナル画像と描画点の配置との関係で、再現画像にジャギーが発生し、あるいは、オリジナル画像の線幅の精度が低下する、といった不具合の発生するおそれがある。
本発明は、シートフイルムF(感光材料12)上に形成される描画点の配置を調整することにより、ジャギーの発生を抑制し、適切な画像の描画を可能とするものであり、次にその調整方法について説明する。
図87は、1つのDMD36を構成する多数のマイクロミラー40の配列を模式的に示した図である。図87において、感光材料12の走査方向をy、走査方向yと直交する方向をxとし、略走査方向yに沿って配列されるマイクロミラー40の列をスワス77と定義する。この場合、スワス77は、描画される画像のx方向に対する解像度を高めるため、x方向に対して所定の角度θs(以下、スワス傾斜角度θs(≠90゜)という。)に設定される。なお、スワス77上で隣接する2つのマイクロミラー40をDMD画素A、Bとする。
図88は、図87に示すように設定されたDMD36を用いた感光材料12上での描画可能な描画点であるアドレス格子点(制御点)(実線丸及び点線丸で示す。)と、描画したい直線状のオリジナル画像80との関係を模式的に示した図である。この場合、オリジナル画像80は、実線丸で示される複数のアドレス格子点によって再現される。なお、レーザビームLは、各アドレス格子点を中心とする所定のビーム径(ドット径)で画素を形成する。従って、シートフイルムF(感光材料12)上に実際に形成される画像は、外郭線82で示すように、実線で示すアドレス格子点の輪郭よりも広がった画像となる。
アドレス格子点の並びには、図88に示すように、格子点列1〜3の3種類がある。各格子点列1〜3を特徴づけるパラメータとしては、格子点列1〜3のx方向に対する傾斜角度θgi(i=1〜3)、格子点列1〜3を構成するアドレス格子点の格子点ピッチpgi(i=1〜3)、及び、格子点列1〜3の列ピッチdgi(i=1〜3)がある。
これらのパラメータは、スワス77上での隣接するDMD画素A、B(図87参照)により感光材料12上に形成されるアドレス格子点(以下、アドレス格子点A、Bとも言う。)の配列ピッチps、スワス傾斜角度θs(x方向を基準として反時計回りを+とする。)、各アドレス格子点のy方向に対する描画ピッチpyにより決定される。以下、これらのパラメータ間の関係を説明する。
(a) 傾斜角度θgi(i=1〜3)
図89に示す3つの隣接するアドレス格子点A、B′、B″を考える。格子点列3の傾
斜角度θg3は、
θg3=90゜ (1)
である。また、格子点列1、2の傾斜角度θg1、θg2については、
N1=integer(ps・sinθs/py)
(integerは、切り捨て演算を表す。)
N2=N1+1
とすると、アドレス格子点Aに対するアドレス格子点B′、B″のy方向の距離Δy1、Δy2(位相差)は、
Δyi=ps・sinθs−py・N1 (i=1、2)
となる。また、アドレス格子点A、B′、B″のx方向の描画ピッチpxは、
px=ps・cosθs
であるから、
tanθgi=Δyi/py (i=1、2) (2)
となる。従って、格子点列1〜3の傾斜角度θg1、θg2は、
θgi=tan-1{(ps・sinθs−py・Ni)/(ps・cosθs)}
(i=1、2) (3)
として求まる。
(b) 格子点ピッチpgi(i=1〜3)
格子点列3は、y方向に配列されたアドレス格子点で構成されるから、
pg3=py (4)
である。また、
pgi=px/cosθgi (i=1、2) (5)
である。
(c) 列ピッチdgi(i=1〜3)
格子点列3の列ピッチdg3は、
dg3=px (6)
である。また、
dgi=py・cosθgi (i=1、2) (7)
である。
一方、オリジナル画像80をアドレス格子点によって再現した際に発生するジャギーは、格子点列1〜3によって発生するため、上記で求めた格子点列1〜3のパラメータ及びオリジナル画像80のx方向に対する傾斜角度θLを用いて定義することができる。この場合、ジャギーをジャギーピッチpj1〜pj3、ジャギー振幅aj1〜aj3で表す。
(d) ジャギーピッチpji(i=1〜3)
ジャギーピッチpjiは、格子点列1〜3の列ピッチdgiと、格子点列1〜3の傾斜角度θgi及びオリジナル画像80の傾斜角度θLの差(θgi−θL)とで決まる。この場合、各格子点列1〜3上にアドレス格子点が連続的に形成されるものと仮定して、平均値としてのジャギーピッチpjiは、
pji=dgi/sin(θgi−θL) (i=1〜3) (8)
となる。
(e) ジャギー振幅aji(i=1〜3)
図90は、格子点列1とオリジナル画像80との間で発生するジャギーの説明図である。この場合、オリジナル画像80の境界と格子点列1との交点間の距離がジャギーピッチpj1となる。また、ジャギー振幅aj1は、格子点列1及び格子点列2と、格子点列1及び格子点列3との間でそれぞれ定義できる。これらのジャギー振幅aj1のうち、小さい方を代表値としてのジャギー振幅aj1に選択すると、図90に示す関係から、
aj1=pj1・tanθ′1・tanθ′2/(tanθ′2−tanθ′1)
(θ′1=θg1−θL)
となる。従って、ジャギー振幅ajiは、
aji=pji・tanθ′i・tanθ′k/(tanθ′k−tanθ′i)
(i=1〜3、θ′i=θgi−θL、k=1〜3、i≠k)
(9)
である。なお、θ′kは、選択されたジャギー振幅ajiの小さい格子点列とオリジナル画像80とのなす角度である。
感光材料12上に再現される画像におけるジャギーは、ジャギーピッチpji及びジャギー振幅ajiがともにある程度大きい場合に視認される。画像を構成する各画素は、図88に示すアドレス格子点を中心として、レーザビームLのビーム径に基づく所定の径で描画されるため、ジャギーピッチpjiが小さい場合には、ジャギー振幅ajiが大きくてもジャギーが視認されることはない。従って、ジャギーの視認を低下させるためには、ジャギーピッチpji又はジャギー振幅ajiのいずれかが所定値以下となるように、パラメータを設定すればよいことになる。なお、所定値としては、レーザビームLのビーム径を所定値として設定することができる。
ジャギーピッチpji及びジャギー振幅ajiは、(1)〜(9)式から、オリジナル画像80のx方向に対する傾斜角度θL、スワス傾斜角度θs、スワス77上での隣接するDMD画素A、Bの配列ピッチps、アドレス格子点のy方向に対する描画ピッチpyの各パラメータによって決定される。従って、これらのパラメータを個別に調整し、あるいは、2つ以上のパラメータを同時に調整することにより、ジャギーの視認を低下させた画像を再現することができる。
この場合、傾斜角度θLは、感光材料12に描画するオリジナル画像80によって予め決まっている。スワス傾斜角度θsは、露光ヘッド24a〜24jに組み込まれたDMD36の傾斜角度によって決定されるが、この傾斜角度は、露光ヘッド回転駆動部76により露光ヘッド24a〜24jを光軸の回りに所定角度回転させて調整することができる。なお、露光ヘッド24a〜24jの一部の光学部材、例えば、マイクロレンズアレー48、マイクロアパーチャアレー54、56を回転させることで前記傾斜角度を調整することもできる。また、光学像を回転させるダブプリズム等の像回転素子を配設し、この像回転素子を回転させて前記傾斜角度を調整することもできる。像回転素子は、第2結像光学レンズ50、52の後に配置することができる。また、第2結像光学レンズ50、52を配設することなく、マイクロレンズアレー48により直接シートフイルムF(感光材料12)上にレーザビームLを結像させるような装置構成の場合、像回転素子をマイクロレンズアレー48の後に配置することができる。
配列ピッチpsは、DMDを構成するマイクロミラーの間隔に依存しているが、光学倍率変更部78によりズーム光学系79を構成する第2結像光学レンズ50、52の位置を変更させることで、感光材料12上での配列ピッチpsを調整することができる。描画ピッチpyは、同期信号生成部64により生成される同期信号の出力タイミングを周波数変更部72からの周波数変更信号によって調整し、あるいは、移動速度変更部75からの移動速度変更信号を同期信号生成部64に供給して同期信号の出力タイミングを変更し、露光ステージ駆動部66により移動ステージのy方向への移動速度を変更することで調整することができる。
なお、傾斜角度θLがy方向の位置によって変化するオリジナル画像80に対しては、
スワス傾斜角度θsをオリジナル画像80の傾斜角度θLに応じて迅速に変更することは困難であるため、例えば、周波数変更部72によって描画ピッチpyを変更するのが適当である。
さらに、ジャギーピッチpji及びジャギー振幅ajiは、例えば、図88において、DMD画素A及びBを同時に描画するのではなく、位相差変更部74によってy方向に対するDMD画素A及びBの描画タイミングを所定時間ずらすことにより、DMD画素Aのx方向に隣接して形成されるDMD画素B′、B″の位相差Δyiを変更し、この結果として傾斜角度θgiを変更して調整することもできる。
図91〜図93及び図94〜図96は、各パラメータを所定の値に設定し、(8)及び(9)式に従って、各格子点列1〜3のジャギーピッチpji及びジャギー振幅ajiを計算した結果を示す。なお、格子点列間で生じるジャギー振幅については、小さい方の値の絶対値を選択するものとする。また、ジャギーピッチpjiの許容範囲を−5μm〜+5μm、ジャギー振幅ajiの許容範囲を−1μm〜+1μmとする。
図91に示す格子点列1では、オリジナル画像80の傾斜角度θL=0゜〜55゜の範囲で許容されないジャギーが発生し、図92に示す格子点列2では、オリジナル画像80の傾斜角度θL=110゜〜135゜の範囲で許容されないジャギーが発生し、図93に示す格子点列3では、ジャギーが発生しないことが予測される。この場合、例えば、オリジナル画像80に傾斜角度15゜前後の直線が含まれていると、この直線に格子点列1に起因する許容できないジャギーが発生するおそれがある。
これに対して、パラメータを変更した図94〜図96に示す格子点列1〜3では、オリジナル画像80の傾斜角度15゜の前後でいずれもジャギーが発生することがなく、従って、良好な画像の得られることが期待される。
ここで、上述した実施形態では、1つのDMDによって生じるジャギーを抑制する場合について説明したが、複数の露光ヘッド24a〜24jを構成する各DMD36に対し、同様の調整処理を施すことができることは勿論である。この場合、露光ヘッド24a〜24j毎に個別に各パラメータの調整を行ってもよいが、描画される画像全体としてジャギーを低減させるため、各露光ヘッド24a〜24jによって生じるジャギーのジャギーピッチ又はジャギー振幅の平均値が所定値以下となるように、例えば、移動ステージの移動速度を調整するようにしてもよい。
また、各パラメータは、オリジナル画像80のパターン、例えば、各オリジナル画像80のy方向に対する傾斜角度θLに応じて設定又は変更するようにしてもよい。特に、オリジナル画像80のパターンがジャギーの目立ち易いx方向又はx方向に近い方向に延在するライン状のパターンである場合、このパターンに対するジャギーが最も低減されるようにパラメータを調整すると好適である。
また、ジャギーピッチ又はジャギー振幅によって規定されるオリジナル画像80のジャギーの形状と、ジャギーを調整するための各パラメータとの相関関係を求めておき、この相関関係に基づいて最適なパラメータを設定し、あるいは、パラメータが既に設定されている場合には、そのパラメータを変更することにより、適切な画像を容易に得ることが可能となる。
また、前記ジャギーの形状を許容範囲内とすることのできる各パラメータの条件を選択条件として求めておき、オリジナル画像80に応じた所望のパラメータを選択して設定し、あるいは、前記ジャギーの形状を許容範囲外とする各パラメータの条件を禁止条件として求めておき、オリジナル画像80に応じて当該パラメータの選択を禁止するようにすることもできる。
オリジナル画像80とパラメータとの相関関係は、オリジナル画像80を構成するパターンの方向、例えば、オリジナル画像80の所定の領域内における支配的なパターンの方向、平均値、方向のヒストグラムが最大となる方向等を選択して求めることができる。なお、オリジナル画像80を複数の領域に分割し、各領域毎に前記相関関係を求め、各領域毎にジャギーを低減することのできるパラメータを設定するようにしてもよい。
さらに、ジャギーを低減させるためのパラメータは、初期パラメータを設定した状態で画像を描画し、その画像から、各パラメータとジャギー形状等との相関関係を計測し、最適なパラメータを探索して設定することも可能である。
上述した実施形態では、マイクロミラーを直交する格子上に配列したDMDを使用したが、傾斜角度θsで交差する格子上にマイクロミラー40を配列したDMDを使用すれば、DMDを傾斜させることなく露光ヘッド24a〜24jに組み込んでジャギーの抑制された画像を形成することができる。
[現像工程]
前記現像工程としては、前記露光工程により前記感光層を露光し、未露光部分を除去することにより現像する工程を有する。
前記未硬化領域の除去方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、現像液を用いて除去する方法などが挙げられる。
前記現像液としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルカリ性水溶液、水系現像液、有機溶剤などが挙げられ、これらの中でも、弱アルカリ性の水溶液が好ましい。該弱アルカリ水溶液の塩基成分としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、硼砂などが挙げられる。
前記弱アルカリ性の水溶液のpHとしては、例えば、約8〜12が好ましく、約9〜11がより好ましい。前記弱アルカリ性の水溶液としては、例えば、0.1〜5質量%の炭酸ナトリウム水溶液又は炭酸カリウム水溶液、0.01〜0.1質量%の水酸化カリウム水溶液などが挙げられる。
前記現像液の温度としては、前記感光層の現像性に合わせて適宜選択することができ、例えば、約25〜40℃が好ましい。
前記現像液は、界面活性剤、消泡剤、有機塩基(例えば、エチレンジアミン、エタノールアミン、テトラメチルアンモニウムハイドロキサイド、ジエチレントリアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラクトン類等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を混合した水系現像液であってもよく、有機溶剤単独であってもよい。
なお、現像の方式としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、パドル現像、シャワー現像、シャワー&スピン現像、ディプ現像などが挙げられる。
ここで、上記シャワー現像について説明すると、露光後の感光性樹脂層に現像液をシャワーにより吹き付けることにより、未硬化部分を除去することができる。尚、現像の前に感光性樹脂層の溶解性が低いアルカリ性の液をシャワーなどにより吹き付け、熱可塑性樹脂層、中間層などを除去しておくことが好ましい。また、現像の後に、洗浄剤などをシャワーにより吹き付け、ブラシなどで擦りながら、現像残渣を除去することが好ましい。
[その他の工程]
前記その他の工程としては、特に制限はなく、公知のカラーフィルタ製造方法における工程の中から適宜選択することが挙げられるが、例えば、硬化処理工程、などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
−硬化処理工程−
前記現像工程後に、感光層に対して硬化処理を行う硬化処理工程を備えることが好ましい。
前記硬化処理工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、全面露光処理、全面加熱処理などが好適に挙げられる。
前記全面露光処理の方法としては、例えば、前記現像工程の後に、前記パターンが形成された前記積層体上の全面を露光する方法が挙げられる。該全面露光により、前記感光層を形成する感光性組成物中の樹脂の硬化が促進され、形成されたパターンの表面が硬化される。
前記全面露光を行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、超高圧水銀灯などのUV露光機が好適に挙げられる。
前記全面加熱処理の方法としては、前記現像工程の後に、前記パターンが形成された前記積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前記パターンの表面の膜強度が高められる。
前記全面加熱における加熱温度としては、120〜250℃が好ましく、120〜200℃がより好ましい。該加熱温度が120℃未満であると、加熱処理による膜強度の向上が得られないことがあり、250℃を超えると、前記感光性組成物中の樹脂の分解が生じ、膜質が弱く脆くなることがある。
前記全面加熱における加熱時間としては、10〜120分が好ましく、15〜60分がより好ましい。
前記全面加熱を行う装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、IRヒーターなどが挙げられる。
本発明のカラーフィルタ製造方法は、感光層の被露光面上に結像させる像の歪みを抑制することにより、パターンを高精細に、かつ、効率よく形成可能であるため、高精細な露光が必要とされる各種パターンの形成などに好適に使用することができ、特に高精細なカラーフィルタパターンの形成に好適に使用することができる。
本発明のカラーフィルタの製造方法においては、上述したように、ガラス基板等の透明基板上に、本発明のパターン形成方法により、少なくとも3原色から構成される(例えば、RGB)画素をモザイク状又はストライプ状に配置することができる。
各画素の寸法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、40〜200μmとすることが好適に挙げられる。ストライプ状であれば40〜200μm巾が通常用いられる。
前記カラーフィルタの製造方法としては、例えば、透明基板上に黒色に着色された感光層を用いて、露光及び現像を行いブラックマトリックスを形成し、次いで、RGBの3原色のいずれかに着色された感光層を用いて、前記ブラックマトリックスに対して所定の配置で、各色毎に、順次、露光及び現像を繰り返して、前記透明基板上にRGBの3原色がモザイク状又はストライプ状に配置されたカラーフィルタを形成する方法が挙げられる。
(カラーフィルタ)
本発明のカラーフィルタは、本発明の前記カラーフィルタの製造方法により製造される。
前記カラーフィルタは、赤色(R)着色に顔料C.I.ピグメントレッド254、緑色(G)着色に顔料C.I.ピグメントグリーン36及び顔料C.I.ピグメントイエロー150、並びに青色(B)着色に顔料C.I.ピグメントブルー15:6及び、顔料C.I.ピグメントバイオレッド23を用いて製造した場合には、色再現域が広く、色温度が高いTV用のカラーフィルタが作製できる。
(液晶表示装置)
本発明の液晶表示装置は、互いに対向して配される一対の基板間に液晶が封入されてなり、本発明の前記カラーフィルタを有してなり、更に必要に応じてその他の部材を有してなる。
本発明のカラーフィルタは、液晶表示装置の対向基板(TFTなどの能動素子が無い側の基板)に形成するものを対象としている他、TFT基板側に形成するCOA方式、TFT基板側に黒だけを形成するBOA方式、又はTFT基板にハイアパーチャー構造を有するHA方式も対象とすることができる。
前記カラーフィルタ上には、更に必要に応じて、オーバーコート膜や透明導電膜を形成することができる。その後、カラーフィルタと対向基板との間に液晶が封入され、液晶表示装置が作製される。適用される液晶の表示方式としては、特に制限はなく、目的に応じて適宜選定され、例えば、ECB(Electrically Controlled Birefringence)、TN(Twisted Nematic)、OCB(Optically Compensatory Bend)、VA(Vertically Aligned)、HAN(Hybrid Aligned Nematic)、STN(Supper Twisted Nematic)、IPS(In-Plane Switching)、GH(Guest Host)、FLC(強誘電性液晶)、AFLC(反強誘電性液晶)、及びPDLC(高分子分散型液晶)などが挙げられる。
前記液晶表示装置の基本的な構成態様としては、(1)薄膜トランジスタ(以下、「TFT」という。)等の駆動素子と画素電極(導電層)とが配列形成された駆動側基板と、カラーフィルタ及び対向電極(導電層)を備えるカラーフィルタ側基板とをスペーサーを介在させて対向配置し、その間隙部に液晶材料を封入して構成されるもの、(2)カラーフィルタが前記駆動側基板に直接形成されたカラーフィルタ一体型駆動基板と、対向電極(導電層)を備える対向基板とをスペーサーを介在させて対向配置し、その間隙部に液晶材料を封入して構成されるものなどが挙げられる。
本発明の液晶表示装置は、D65光源視野2度において良好な色度を有する本発明のカラーフィルタを用いることにより、透過モード及び反射モードのいずれにおいても鮮明な色を表示することができ、透過モードと反射モードを兼用する携帯端末や携帯ゲーム機等の機器に好適に用いることができる。
また、本発明の液晶表示装置は、F10光源視野2度において良好な色度を有する本発明のカラーフィルタを用いることにより、高い色純度と色温度を実現でき、例えば、ノートパソコン、テレビモニター等の液晶表示装置などに好適に用いることができる。
以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
<カラーフィルタパターンの形成(塗布法)>
(1)ブラック(K)画像の形成
無アルカリガラス基板を、UV洗浄装置で洗浄後、洗浄剤を用いてブラシ洗浄し、更に超純水で超音波洗浄した。該基板を120℃3分熱処理して表面状態を安定化させた。
該基板を冷却し23℃に温調後、スリット状ノズルを有すガラス基板用コーター(エフ・エー・エス・ジャパン社製、商品名:MH−1600)にて、下記表5に記載の組成よりなる下記着色感光性組成物K1を塗布した。引き続き、VCD(真空乾燥装置;東京応化工業(株)製)で30秒間、溶媒の一部を乾燥して塗布層の流動性を無くした後、EBR(エッジ・ビード・リムーバー)にて基板周囲の不要な塗布液を除去し、120℃3分間プリベークして厚み1.5μmの感光層K1を得た。
−感光性組成物K1の調製−
感光性組成物K1は、まず表5に記載の量のK顔料分散物1、プロピレングリコールモノメチルエーテルアセテートをはかり取り、温度24℃(±2℃)で混合して150rpmで10分間攪拌し、次いで、メチルエチルケトン、バインダー4、フェノチアジン、DPHA液、2,4−ビス(トリクロロメチル)−6−[4’−(N,N−ビスエトキシカルボニルメチル)−3’−ブロモフェニル]−s−トリアジン、界面活性剤1をはかり取り、温度25℃(±2℃)でこの順に添加して、温度40℃(±2℃)で150rpmで30分間攪拌することによって得られる。
なお、表5に記載の組成物のうち、
・K顔料分散物1の組成は、カーボンブラック(デグッサ社製)13.1質量%、分散剤(下記化学式1)0.65質量%、ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、分子量3.7万)6.72質量%、及びプロピレングリコールモノメチルエーテルアセテート79.53質量%からなる。
・K顔料分散物2の組成は、カーボンブラック(デグッサ社製)13.1質量%、分散剤(下記化学式1)0.65質量%、ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、分子量3.7万)4.0質量%、及びプロピレングリコールモノメチルエーテルアセテート82.25質量%からなる。
・バインダー4の組成は、ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、分子量3.8万)27質量部、プロピレングリコールモノメチルエーテルアセテート73質量部からなる。
・DPHA液の組成は、ジペンタエリトリトールヘキサアクリレート(重合禁止剤MEHQ 500ppm含有、日本化薬(株)製、商品名:KAYARAD DPHA)76質量%、及びプロピレングリコールモノメチルアセテート24質量%からなる。
・界面活性剤1の組成は、下記構造物1 30質量%、及びメチルエチルケトン(MEK)70質量%からなる。
ただし、前記構造物1の式中、x及びyの数値はモル比を表す。
上記K顔料分散物を、モーターミルM−50(アイガー社製)と、直径0.65mmのジルコニアビーズを用い、周速9m/sで27時間分散し、顔料分散組成物を調製した。この時の顔料の数平均粒径を表10に示す。
−露光工程−
基材上の前記感光層K1に対し、図1に示す露光装置を用い、前記感光層K1と露光ヘッドとを相対移動させながら、200mJ/cm相当のカラーフィルタパターンの露光を行った。露光は、波長405nmのレーザ光で行った。
光源として、波長が405nmのレーザ光を、長辺、短辺の長さがそれぞれ異なる長方形パターンが得られるように照射して露光し、前記感光層の一部の領域を硬化させた。
−現像工程−
露光が終了した前記感光層を室温にて10分間静置した後、感光層の全面に、富士フイルムエレクトロニクスマテリアルズ(株)製のKOH現像液(商品名;CDK−1)を用い、23℃で80秒間、フラットノズル圧力0,04MPaでシャワー現像し、次いで超純水を、超高圧洗浄ノズルを用いて9.8MPaの圧力で噴射して残渣の除去を行い、ブラックマトリクスパターンを得た。その後、220℃で30分間熱処理を行った。
(2)レッド(R)画素の形成
前記Kの画像を形成した基板に、下記表6に記載の組成よりなる下記感光性組成物R1−1を用い、前記ブラック(K)画像の形成と同様の工程により、熱処理済みR画素を形成した。該R1感光層の厚みは1.6μm、及び顔料(C.I.ピグメントレッド254)の塗布量は、0.88g/m、顔料(C.I.ピグメントレッド177の塗布量は、0.22g/mであった。
−感光性組成物R1の調製−
表6記載の量のR顔料分散物1、R顔料分散物2、プロピレングリコールモノメチルエーテルアセテートをはかり取り、温度24℃(±2℃)で混合して150RPMで10分間攪拌した。次いで、表6記載の量のメチルエチルケトン、バインダー1、DPHA液、2−トリクロロメチル−5−(p−スチリルスチリル)−1,3,4−オキサジアゾール、2,4−ビス(トリクロロメチル)−6−[4’−(N,N−ビスエトキシカルボニルメチル)−3’−ブロモフェニル]−s−トリアジン、フェノチアジンをはかり取り、温度24℃(±2℃)でこの順に添加して150RPMで30分間攪拌した。更に、表8に記載の量の界面活性剤1を計り取り、温度24℃(±2℃)で添加して30RPMで5分間攪拌し、ナイロンメッシュ#200で濾過した。以上により、感光性組成物R1を調製した。
なお、表6に記載の組成物のうち、
・R顔料分散物1の組成は、C.I.ピグメントレッド254(チバスペシャリティケミカルズ社製)8質量%、上記分散剤0.8質量%、ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物)8質量%、及びプロピレングリコールモノメチルエーテル83.2質量%からなる。
・R顔料分散物2の組成は、C.I.ピグメントレッド177(チバスペシャリティケミカルズ社製)18質量部、ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物)12質量部、及びプロピレングリコールモノメチルエーテルアセテート70質量部からなる。
・バインダー1の組成は、ポリマー(ベンジルメタクリレート/メタクリル酸/メチルメタクリレート=38/25/37のランダム共重合物、分子量3.8万)27質量部、プロピレングリコールモノメチルエーテルアセテート73質量部からなる。
・添加剤1は、燐酸エステル系特殊活性剤(楠本化成(株)製、商品名:HIPLAAD ED152)を用いた。
−露光工程及び現像工程−
基板上の前記感光層R1に対し、K1と同様に露光した。露光量は50mJ/cmであった。また、評価のため、Kを形成しない基板にも、これと同様に感光層R1を形成し、カラーフィルタパターンを用いて同様の処理をした。その後、Kと同様に現像した。
(3)グリーン(G)画素の形成
前記Kの画像とRの画素を形成した基板に、下記表7に記載の組成よりなる下記感光性組成物G1を用い、前記ブラック(K)画像の形成と同様の工程により、熱処理済みG画素を形成した。該G1感光層の厚みは1.4μm、及び顔料(C.I.ピグメントグリーン36)の塗布量は1.12g/m、顔料(C.I.ピグメントイエロー150)の塗布量は0.48g/mであった。Kと同様に露光し、現像した。露光量は40mJ/cm相当であった。
−感光性組成物G1の調製−
表7に記載の量のG顔料分散物1、Y顔料分散物1、プロピレングリコールモノメチルエーテルアセテートをはかり取り、温度24℃(±2℃)で混合して150RPMで10分間攪拌した。次いで、表7に記載の量のメチルエチルケトン、シクロヘキサン、バインダー1、DPHA液、2−トリクロロメチル−5−(p−スチリルスチリル)−1,3,4−オキサジアゾール、7−[2−[4−(3−ヒドロキシメチルピペリジノ)−6−ジエチルアミノ]トリアジニルアミノ]−3−フェニルクマリン、フェノチアジンをはかり取り、温度24℃(±2℃)でこの順に添加して150RPMで30分間攪拌した。更に、表9に記載の量の界面活性剤1をはかり取り、温度24℃(±2℃)で添加して30RPMで5分間攪拌し、ナイロンメッシュ#200で濾過した。以上により、感光性組成物G1を調製した。

なお、表7に記載の組成物のうち、
・G顔料分散物1の組成は、C.I.ピグメントグリーン36(東洋インキ製造(株)製、分散物)18質量%、ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、分子量3.8万)12質量%、シクロヘキサノン35質量%、プロピレングリコールモノメチルエーテルアセテート35質量%からなる。
・Y顔料分散物1の組成は、C.I.ピグメントイエロー150、15質量部、ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、分子量3.7万)9質量部、分散剤(上記化学式1)1.5質量部、プロピレングリコールモノメチルエーテルアセテート74.5質量部からなる。
・バインダー2の組成は、ポリマー(ベンジルメタクリレート/メタクリル酸=78/22、モル比のランダム共重合物、重量平均分子量3.7万)27質量部、プロピレングリコールモノメチルエーテルアセテート73質量部からなる。
(4)ブルー(B)画素の形成
前記Kの画像、R及びGの画素を形成した基板に、下記表8に記載の組成よりなる下記感光性組成物B1−1を用い、前記ブラック(K)画像の形成と同様の工程により、熱処理済みB画素を形成し、目的のカラーフィルタを作製した。
該B1感光層の厚みは1.4μm、及び顔料(C.I.ピグメントブルー15:6)の塗布量は0.67g/m、顔料(C.I.ピグメントバイオレッド23)の塗布量は0.03g/mであった。Kと同様に露光し、現像した。露光量は50mJ/cmであった。
−感光性組成物B1の調製−
表8に記載の量のB顔料分散物1、プロピレングリコールモノメチルエーテルアセテートを計り取り、温度24℃(±2℃)で混合して150RPMで10分間攪拌した。次いで、表8に記載の量のメチルエチルケトン、バインダー2、バインダー3、バインダー4、DPHA液、2−トリクロロメチル−5−(p−スチリルスチリル)−1,3,4−オキサジアゾール、2,4,6−トリス[2,4−ビス(メトキシカルボニルオキシ)フェニル]−1,3,5−トリアジン、フェノチアジンをはかり取り、温度25℃(±2℃)でこの順に添加して、温度40℃(±2℃)で150RPM、30分間攪拌した。更に、表8に記載の量の界面活性剤1をはかり取り、温度24℃(±2℃)で添加して30RPMで5分間攪拌し、ナイロンメッシュ#200で濾過した。以上により、感光性組成物B1を調製した。

なお、表8に記載の組成物のうち、
・B顔料分散物1の組成は、C.I.ピグメントブルー15:6(東洋インキ製造(株)製)15質量%、分散剤1(EFKA−6745、EFKA ADDITIVES B.V社製)0.5質量%、分散剤2(ディスパロンDA−725、楠本化成(株)製)0.63質量%、ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、分子量3.8万)12.5質量%、プロピレングリコールモノメチルエーテルアセテート71.37質量%からなる。
・B顔料分散物2の組成は、C.I.P.B.15:6(東洋インキ製造(株)製) 11.28質量部、C.I.P.V.23 0.72質量部、分散剤1(EFKA−6745、EFKA ADDITIVES B.V社製)0.6質量部、分散剤2(ディスパロンDA−725、楠本化成(株)製)0.75質量部、プロピレングリコールモノメチルエーテルアセテート 86.65質量部からなる。
・バインダー2の組成は、ポリマー(ベンジルメタクリレート/メタクリル酸=78/22モル比のランダム共重合物、分子量3.7万)27質量部、プロピレングリコールモノメチルエーテルアセテート73質量部からなる。
・バインダー3の組成は、ポリマー(ベンジルメタクリレート/メタクリル酸/メチルメタクリレート=36/22/42モル比のランダム共重合物、分子量3.8万)27質量部、プロピレングリコールモノメチルエーテルアセテート73質量部からなる。
・バインダー4の組成は、ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、分子量3.8万)27質量部、プロピレングリコールモノメチルエーテルアセテート73質量部からなる。
<感光層の光学特性−吸光度と厚みの関係>
前記感光層の光学特性として、該感光層の記録に用いるレーザ光の吸収波長における該感光層の吸光度をAとし、該感光層の厚みをX(μm)とすると、前記感光層の光学特性は、A/Xとして表すことができる。該A/Xの値は表10及び11に示す。
該吸光度Aの測定は、(株)島津製作所製UV−分光光度計UV−240を用いた。また、上記吸光度Aは支持体込みのものから支持体単独の値を差し引いた値とする。
前記感光層の厚みXは、触針式段差膜厚計(Tencor Instruments製P−10)を用いて測定した。
(実施例2〜20、比較例1〜3)
実施例1において、用いたK1、R1、G1、B1の処方を表10及び11に記載の処方に変更した以外は、実施例1と同様の方法でカラーフィルタを作製した。
なお、表10及び11に特に指示していない感光性組成物の処方は、実施例1と同様の処方(表5〜表8に記載)である。
なお、粒径の異なる顔料分散物は分散時間を下記表9のように変更して得た。
(実施例21〜40)(比較例4〜6)
<カラーフィルタパターンの形成(フィルム法)>
−感光性転写材料の作製−
厚み75μmのポリエチレンテレフタレートフィルム仮支持体の上に、スリット状ノズルを用いて、下記処方H1からなる熱可塑性樹脂層用塗布液を塗布、乾燥させた。次に、下記処方P1から成る中間層用塗布液を塗布、乾燥させた。更に、前記着色感光性組成物K1を塗布、乾燥させ、該仮支持体の上に乾燥厚みが14.6μmの熱可塑性樹脂層と、乾燥厚みが1.6μmの中間層と、乾燥厚みが1.5μmの感光層を設け、保護フィルム(厚み12μmのポリプロピレンフィルム)を圧着した。
こうして仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)とブラック(K)の感光層とが一体となった感光性転写材料を作製し、サンプル名を感光性転写材料K1とした。
熱可塑性樹脂層用塗布液:処方H1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
・メタノール 11.1質量部
・プロピレングリコールモノメチルエーテルアセテート
6.36質量部
・メチルエチルケトン 52.4質量部
・メチルメタクリレート/2−エチルヘキシルアクリレート/ベンジルメタクリレート
/メタクリル酸共重合体(共重合組成比(モル比)=55/11.7/4.5/28.8、分子量=9万、Tg≒70℃) 5.83質量部
・スチレン/アクリル酸共重合体(共重合組成比(モル比)=63/37、分子量=
1万、Tg≒100℃) 13.6質量部
・ビスフェノールAにペンタエチレングリコールモノメタクリートを2当量脱水縮合
した化合物(新中村化学工業(株)製)商品名:2,2−ビス[4−(メタクリロキシ
ポリエトキシ)フェニル]プロパン) 9.1質量部
・前記界面活性剤1 0.54質量部
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
中間層用塗布液:処方P1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
・PVA205(ポリビニルアルコール、(株)クラレ製、鹸化度=88%、重合度550)
32.2質量部
・ポリビニルピロリドン(アイエスピー・ジャパン(株)製、K−30)
14.9質量部
・蒸留水 524質量部
・メタノール 429質量部
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
次に、前記感光性転写材料K1の作製において用いた前記着色感光性組成物K1を、上記表5〜表8に記載の組成よりなる下記着色感光性組成物R3、G1及びB1に変更し、それ以外は上記と同様の方法により、感光性転写材料R101、G101及びB101を作製した。
なお、着色感光性組成物R3、G1及びB1の調製方法は、それぞれ前記着色感光性組成物R3、G1及びB1の調製方法に準ずる。
−ブラック(K)画像の形成−
無アルカリガラス基板を、25℃に調整したガラス洗浄剤液をシャワーにより20秒間吹き付けながらナイロン毛を有する回転ブラシで洗浄し、純水シャワー洗浄後、シランカップリング液(N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン0.3%水溶液、商品名:KBM603、信越化学工業(株)製)をシャワーにより20秒間吹き付け、純水シャワー洗浄した。この基板を基板予備加熱装置で100℃2分加熱して次のラミネーターに送った。
前記感光性転写材料K1の保護フィルムを剥離後、ラミネーター((株)日立インダストリイズ製(LamicII型))を用い、前記100℃に加熱した基板に、ゴムローラー温度130℃、線圧100N/cm、搬送速度2.2m/分でラミネートした。
−露光工程−
仮支持体を剥離後、実施例1の露光装置を用いて、波長が405nmのレーザ光を、長辺、短辺の長さがそれぞれ異なる長方形パターンが得られるように照射して露光し、前記感光層の一部の領域を硬化させた。実施例1と同様にカラーフィルタパターンを作製した。また、露光量は50mJ/cmで、大気雰囲気下で行った。
−現像工程−
次に、トリエタノールアミン系現像液(2.5質量%のトリエタノールアミン含有、ノニオン界面活性剤含有、ポリプロピレン系消泡剤含有、商品名:T−PD1、富士写真フイルム(株)製)を用いて、30℃にて50秒、フラットノズル圧力0.04MPaでシャワー現像し熱可塑性樹脂層を除去した。
引き続き、炭酸Na系現像液(0.06モル/リットルの炭酸水素ナトリウム、同濃度の炭酸ナトリウム、1%のジブチルナフタレンスルホン酸ナトリウム、アニオン界面活性剤、消泡剤、安定剤含有、商品名:T−CD1、富士写真フイルム(株)製)を用い、35℃にて35秒、コーン型ノズル圧力0.15MPaでシャワー現像し感光層を現像しパターニング画像を得た。
引き続き、洗浄剤(燐酸塩、珪酸塩、ノニオン界面活性剤、消泡剤、安定剤含有、商品名:T−SD1、富士写真フイルム(株)製、あるいは、炭酸ナトリウム、フェノキシオキシエチレン系界面活性剤含有、商品名:T−SD2、富士写真フイルム(株)製)を用い、33℃にて20秒、コーン型ノズル圧力0.02MPaでシャワーとナイロン毛を有す回転ブラシにより残渣除去を行い、ブラック(K)の画像を得た。その後220℃、15分熱処理(ベーク)した。
このKの画像を形成した基板を再び、前記のようにブラシで洗浄し、純水シャワー洗浄後、シランカップリング液は使用せずに、基板予備加熱装置に送った。
(1)レッド(R)画素の形成
前記感光性転写材料R3を用い、前記感光性転写材料K1と同様の工程で、熱処理済みのレッド(R)画素を得た。ただし露光量は40mJ/cm2、炭酸Na系現像液による現像は35℃35秒とした。
該R3感光層の厚みは2.0μm、顔料(C.I.ピグメントレッド254)の塗布量は0.88g/m、顔料(C.I.ピグメントレッド177)の塗布量は、0.22g/mであった。
このKの画像とRの画素を形成した基板を再び、前記のようにブラシで洗浄し、純水シャワー洗浄後、シランカップリング液は使用せずに、基板予備加熱装置に送った。
(2)グリーン(G)画素の形成
前記感光性転写材料G1を用い、前記感光性転写材料R1と同様の工程で、熱処理済みのグリーン(G)の画素を作製した。露光量は40mJ/cmとした。
該G1の感光層の厚みは2.0μm、及び顔料(C.I.ピグメントグリーン36)の塗布量1.12g/m、顔料(C.I.ピグメントイエロー150)の塗布量は0.48g/mであった。
このK画像とRとGの画素を形成した基板を再び、前記のようにブラシで洗浄し、純水シャワー洗浄後、シランカップリング液は使用せずに、基板予備加熱装置に送った。
(3)ブルー(B)画素の形成
前記感光性転写材料B1を用い、前記感光性転写材料R1と同様の工程で、熱処理済みのブルー(B)の画素を作製した。露光量は50mJ/cmとした。
該B1感光層の厚みは2.0μm、及び顔料(C.I.ピグメントブルー15:6)の塗布量は0.67g/m、顔料(C.I.ピグメントバイオレット23)の塗布量は0.03g/mであった。
このK画像とRとGとBの画素を形成した基板を240℃で50分ベークして、目的のカラーフィルタを得た。
<感光層の光学特性−吸光度と厚みの関係>
前記感光層の光学特性として、該感光層の記録に用いるレーザ光の吸収波長における該感光層の吸光度をAとし、該感光層の厚みをX(μm)とすると、前記感光層の光学特性は、A/Xとして表すことができる。該A/Xの値は表10及び11に示す。
該吸光度Aの測定は、(株)島津製作所製UV−分光光度計UV−240を用いた。また、上記吸光度Aは支持体込みのものから支持体単独の値を差し引いた値とする。
前記感光層の厚みXは、触針式段差膜厚計(Tencor Instruments製P−10)を用いて測定した。
〔評価〕
<パターン線幅のばらつき>
前記パターン線幅のばらつきは、図98で示すように、被露光部210の中心線212に対して線幅214が大小にばらつき、線幅が太くなったり、細くなったりする部分(エッジラフネス:μm)を測定し評価した。
前記エッジラフネスの評価方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ライン幅30μmのラインの任意の5箇所について、レーザ顕微鏡(VK−9500、キーエンス(株)製;対物レンズ50倍)を用いて観察し、視野内のエッジ位置のうち、最も膨らんだ箇所(山頂部)と、最もくびれた箇所(谷底部)との差を絶対値として求め、観察した5箇所の平均値を算出した。この場合のエッジラフネスとしては、値が小さい程、良好な性能を示すため好ましい。結果を表10及び11に示す。
(実施例41)
実施例1において、以下に説明する露光装置を使用した以外は、実施例1と同様にして、目的とするカラーフィルタを作製し、ブラック(B)画像の線幅ばらつきを以下の方法により評価した。結果を表10に示す。
<画像の線幅ばらつきの評価>
ストライプ状に形成されたブラックマトリクスにおいて、画面中央付近の1本について10cmの長さに亘って線幅測定を行い、そのばらつきを求めた。
図25に概略構成図を示す露光ヘッドであって、ファイバアレイ光源38から入射されるレーザ光に対し、主光線の角度に所定の分布を持たせたレーザ光を出射してDMD36に照射する機能を備えた集光レンズを備えた露光装置を用いて露光を行った。
(実施例42)
実施例1において、以下に説明する露光装置を使用した以外は、実施例1と同様にして、目的とするカラーフィルタを作製し、ブラック(B)画像の線幅ばらつきを評価した。結果を表10に示す。
図30Aに示すように、投影レンズ300の周辺領域である領域320に像面湾曲、領域330に歪曲が大きいという特性を持たせた投影レンズが組み込まれ、図29に概略図を示す露光ヘッドを備えた露光装置を用いて露光を行った。
(実施例43)
実施例1において、以下に説明する露光装置を使用した以外は、実施例1と同様にして、目的とするカラーフィルタを作製し、ブラック(B)画像の線幅ばらつきを評価した。結果を表10に示す。
前記光照射手段として合波レーザ光源と、前記光変調手段として図67A及び図67Bに示す主走査方向にマイクロミラーが1024個配列されたマイクロミラー列が、副走査方向に768組配列された前記光変調手段の内、1024個×256列のみを駆動するように制御されたDMD50と、図40A〜図40Cに示した一方の面がトーリック面であるマイクロレンズをアレイ状に配列したマイクロレンズアレイ472及び該マイクロレンズアレイを通した光を前記感光層に結像する光学系480、482とを有するパターン形成装置を用いた。
前記マイクロレンズとしては、図44A、図44B及び図45に示すように、トーリックレンズ55aが用いられており、前記x方向に光学的に対応する方向の曲率半径Rx=−0.125mm、前記y方向に対応する方向の曲率半径Ry=−0.1mmである。
また、マイクロレンズアレイ55の集光位置近傍に配置されるアパーチャアレイ59は、その各アパーチャ59aに、それと対応するマイクロレンズ55aを経た光のみが入射するように配置されている。
(実施例44)
実施例1において、以下に説明する露光方法により露光を行った以外は、実施例1と同様にして、目的とするカラーフィルタを作製し、ブラック(B)画像の線幅ばらつきを評価した。結果を表10に示す。
前記光照射手段として合波レーザ光源と、前記光変調手段として主走査方向にマイクロミラー58が1024個配列されたマイクロミラー列が、副走査方向に768組配列された内、1024個×256列のみを駆動するように制御したDMDと、図5A及び図5Bに概略図を示した集光レンズ系及び結像レンズ系とを有する露光ヘッドを備えた露光装置を用いた。
前記DMDの設定傾斜角度としては、使用可能な1024列×256行のマイクロミラーを使用してちょうど2重露光となる角度θidealよりも若干大きい角度を採用した。
この角度θidealを、N重露光の数N、使用可能なマイクロミラーの列方向の個数s、使用可能なマイクロミラーの列方向の間隔p、及び露光ヘッドを傾斜させた状態においてマイクロミラーによって形成される走査線のピッチδに対し、下記式1〜式3を用いて求めた。
spsinθideal≧Nδ(式1)
pcosθideal=δ(式2)
stanθideal=N(式3)
s=256、N=2であるので、角度θidealは約0.45度である。したがって、設定傾斜角度θとして、0.50度を採用した。
まず、2重露光における解像度のばらつきと露光むらを補正するため、被露光面の露光パターンの状態を調べた。結果を図76に示した。ただし、図76では、説明の便宜のため、使用可能なマイクロミラー58の1列おきの露光パターンを、画素列群Aによる露光パターンと画素列群Bによる露光パターンとに分けて示したが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
図76に示したとおり、露光ヘッド3012と3021の間の相対位置の、理想的な状態からのずれの結果として、画素列群Aによる露光パターンと画素列群Bによる露光パターンとの双方で、露光エリア3212と3221の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域において、理想的な2重露光の状態よりも露光過多な領域が生じていることが判る。
前記光点位置検出手段として図1に示すスリット28及び光検出器の組を用い、露光ヘッド3012ついては露光エリア3212内の光点P(1,1)とP(256,1)の位置を、露光ヘッド3021については露光エリア3221内の光点P(1,1024)とP(256,1024)の位置を検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定した。
実傾斜角度θ´を用いて、下記式4
ttanθ´=N(式4)
の関係を満たす値tに最も近い自然数Tを、露光ヘッド3012と3021のそれぞれについて導出した。露光ヘッド3012についてはT=254、露光ヘッド3021についてはT=255がそれぞれ導出された。その結果、図77において斜線で覆われた部分78及び80を構成するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定された。
その後、図72において斜線で覆われた領域78及び80を構成する光点以外の光点に対応するマイクロミラーに関して、同様にして図72において斜線で覆われた領域82及び網掛けで覆われた領域84を構成する光点に対応するマイクロミラーが特定され、本露光時に使用しないマイクロミラーとして追加された。
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しないように制御した。
(実施例45)
実施例1において、以下に説明する露光方法により露光を行った以外は、実施例1と同様にして、目的とするカラーフィルタを作製し、ブラック(B)画像の線幅ばらつきを評価した。結果を表10に示す。
露光装置として、図86の制御ユニットを備えた図62の露光ヘッドを用いて露光を行った。ジャギーピッチ又はジャギー振幅のいずれかが、露光光のビーム径以下となるように、露光ヘッド回転駆動部76により露光ヘッド24a〜24jを光軸の回りに所定角度回転させて傾斜角を設定し、露光を行った。
(実施例46)
実施例1において、デジタルダイレクト露光機(DE−S、日立ビアメカトロニクス社製)を使用した以外は、実施例1と同様にして、目的とするカラーフィルタを作製し、ブラック(B)画像の線幅ばらつきを評価した。結果を表10に示す。
(実施例47)
実施例1において、デジタルダイレクト露光機(DI−2080、ペンタックス社製)を使用した以外は、実施例1と同様にして、目的とするカラーフィルタを作製し、ブラック(B)画像の線幅ばらつきを評価した。結果を表10に示す。
(実施例48)
実施例1において、デジタルダイレクト露光機(DP−100M、オルボテック社製)を使用した以外は、実施例1と同様にして、目的とするカラーフィルタを作製し、ブラック(B)画像の線幅ばらつきを評価した。結果を表10に示す。


表10及び表11中の総合評価欄は、OD/厚みとエッジラフネスから判断した。具体的には、黒画像用感光性組成物の場合には、OD/厚みが2.0以上でエッジラフネスが1.0以下のものを○、OD/厚みが1.0から2.0でエッジラフネスが1.0以下のものを△、エッジラフネスが1.0を超えるものを×とした。また、黒画像以外の赤緑青画素用感光性組成物の場合には、OD/厚みが1.0以上でエッジラフネスが1.0以下のものを○、OD/厚みが1.0未満でエッジラフネスが1.0以下のものを△、エッジラフネスが1.0を超えるものを×とした。
表10及び表11の、比較例1〜6と比べ実施例1〜48のカラーフィルタパターンはエッジラフネスが小さく、露光感度及び解像度が高く、良好なカラーフィルタが製造できることが認められた。
[液晶表示装置の作製及び評価]
実施例1〜48、比較例1〜6のカラーフィルタを用いてLEDバックライトを有する反射、透過兼用の液晶表示装置を作製した。実施例1〜48のカラーフィルタは、比較例1〜6と比べ液晶表示装置が、良好な表示特性を示すことを確認した。
本発明のカラーフィルタの製造方法により製造されるカラーフィルタは、透過モード及び反射モードのいずれにおいても良好な表示特性を備え、携帯端末、携帯ゲーム機等の液晶表示装置(LCD)用に好適であり、また、ノートパソコン、テレビモニター等の液晶表示装置(LCD)用、PALC(プラズマアドレス液晶)、プラズマディスプレイ用としても好適に用いられる。また、ここに実例として挙げたカラーフィルタの他に、特開平11−248921号公報、特許第3255107号公報などに記載の、少なくともRGBのいずれかの色を重ねてスペーサーを形成することもできる。
図1は、露光装置の一例の外観を示す斜視図である。 図2は、露光装置のスキャナの構成の一例を示す斜視図である。 図3Aは、感光層の被露光面上に形成される露光済み領域を示す平面図である。 図3Bは各露光ヘッドによる露光エリアの配列を示す平面図である。 図4は、露光ヘッドの概略構成の一例を示す斜視図である。 図5Aは、露光ヘッドの詳細な構成の一例を示す上面図である。 図5Bは、露光ヘッドの詳細な構成の一例を示す側面図である。 図6は、図1の露光装置のDMDの一例を示す部分拡大図である。 図7Aは、DMDの動作を説明するための斜視図である。 図7Bは、DMDの動作を説明するための斜視図である。 図8は、パターン情報に基づいて、DMDの制御をするコントローラの一例である。 図9Aは、DMDを傾斜配置しない場合と傾斜配置する場合とで、露光ビームの配置及び走査線を比較して示した平面図の一例である。 図9Bは、DMDを傾斜配置しない場合と傾斜配置する場合とで、露光ビームの配置及び走査線を比較して示した平面図の一例である。 図10は、スキャナによる1回の走査で感光層を露光する露光方式を説明するための平面図の一例である。 図11Aは、スキャナによる複数回の走査で感光層を露光する露光方式を説明するための平面図の一例である。 図11Bは、スキャナによる複数回の走査で感光層を露光する露光方式を説明するための平面図の一例である。 図12は、ファイバアレイ光源の構成の一例を示す斜視図である。 図13は、ファイバアレイ光源のレーザ出射部における発光点の配列の一例を示す正面図である。 図14は、マルチモード光ファイバの構成を示す図の一例である。 図15は、合波レーザ光源の構成を示す平面図の一例である。 図16は、レーザモジュールの構成を示す平面図の一例である。 図17は、図16に示すレーザモジュールの構成を示す側面図の一例である。 図18は、図16に示すレーザモジュールの構成を示す部分側面図である。 図19は、レーザアレイの構成を示す斜視図の一例である。 図20Aは、マルチキャビティレーザの構成を示す斜視図の一例である。 図20Bは、図20Aに示すマルチキャビティレーザをアレイ状に配列したマルチキャビティレーザアレイの斜視図の一例である。 図21は、合波レーザ光源の他の構成を示す平面図の一例である。 図22は、合波レーザ光源の他の構成を示す平面図の一例である。 図23Aは、合波レーザ光源の他の構成を示す平面図の一例である。 図23Bは、図23Aの光軸に沿った断面図の一例である。 図24Aは、従来の露光装置における焦点深度と本発明のパターン形成方法(露光装置)による焦点深度との相違を示す光軸に沿った断面図の一例である。 図24Bは、従来の露光装置における焦点深度と本発明のパターン形成方法(露光装置)による焦点深度との相違を示す光軸に沿った断面図の一例である。 図25は、光量補正方法に好適な露光ヘッドの概略構成図の一例である。 図26Aは、DMD上に照射されるレーザ光の主光線の傾きを模式的に示す模式図である。 図26Bは、DMD上に照射されるレーザ光の主光線角度の分布を示すグラフ図である。 図27は、図26Bに示したDMD上に照射されるレーザ光の主光線角度の分布(1)に対応する、主光線角度の分布を有するレーザ光をDMD上に照射したときの光量分布を示すグラフ図(2)、DMD−マイクロレンズアレイ間の光透過特性を示すグラフ図(3)、前記グラフ図(3)のように調整したレーザ光で画像露光を行うことにより露光エリアでの光量分布が均一化されて補正された状態を示すグラフ図(4)である。 図28Aは、光量補正方法の第2の実施形態に係る非球面レンズを有するテレセントリック光学系を示す構成図である。 図28Bは、図27Aのテレセントリック光学系のベースとなる球面レンズを有するテレセントリック光学系を示す構成図である。 図29は、焦点位置精度補正方法に好適な露光ヘッドを構成概略図である。 図30Aは、投影レンズを示した平面図である。 図30Bは、投影レンズを示した平面図である。 図31は、結像光学系を備える鏡筒の概略側面断面図と鏡筒の概略平面図である。 図32Aは、DMDを構成するマイクロミラーの使用領域を説明するための図である。 図32Bは、DMDを構成するマイクロミラーの使用領域を説明するための図である。 図33は、くさび型プリズムペアの構成を示す側面図である。 図34は、くさび型プリズムペアの概略斜視図である。 図35は、露光ヘッドを構成する光学要素を説明するための図である。 図36Aは、ピエゾ素子を備えたマイクロレンズアレイの構成を示す図である。 図36Bは、ピエゾ素子を備えたマイクロレンズアレイの構成を示す図である。 図37Aは、ピエゾ素子を備えたマイクロレンズアレイの構成を示す図である。 図37Bは、ピエゾ素子を備えたマイクロレンズアレイの構成を示す図である。 図38Aは、感光材料とDMDの位置関係を概略的に示した斜視図と側面図である。 図38Bは、感光材料とDMDの位置関係を概略的に示した斜視図と側面図である。 図39は、図4に示す露光ヘッドの構成を示す光軸に沿った副走査方向の断面図の一例である。 図40Aは、結合光学系の異なる他の露光ヘッドの構成を示す光軸に沿った断面図の一例である。 図40Bは、マイクロレンズアレイ等を使用しない場合に被露光面に投影される光像を示す平面図の一例である。 図40Cは、マイクロレンズアレイ等を使用した場合に被露光面に投影される光像を示す平面図の一例である。 図41は、DMDを構成するマイクロミラーの反射面の歪みを等高線で示す図の一例である。 図42Aは、前記マイクロミラーの反射面の歪みを、該ミラーの2つの対角線方向について示すグラフの一例である。 図42Bは、前記マイクロミラーの反射面の歪みを、該ミラーの2つの対角線方向について示すグラフの一例である。 図43Aは、露光装置に用いられたマイクロレンズアレイの正面図の一例である。 図43Bは、露光装置に用いられたマイクロレンズアレイの側面図の一例である。 図44Aは、マイクロレンズアレイを構成するマイクロレンズの正面図の一例である。 図44Bは、マイクロレンズアレイを構成するマイクロレンズの側面図の一例である。 図45Aは、マイクロレンズによる集光状態を1つの断面内について示す概略図の一例である。 図45Bは、マイクロレンズによる集光状態を別の断面内について示す概略図の一例である。 図46は、マイクロレンズの集光位置近傍におけるビーム径をシミュレーションした結果を示す図の一例である。 図47は、図46と同様のシミュレーション結果を、別の位置について示す図の一例である。 図48は、図46と同様のシミュレーション結果を、別の位置について示す図の一例である。 図49は、図46と同様のシミュレーション結果を、別の位置について示す図の一例である。 図50は、従来のパターン形成方法において、マイクロレンズの集光位置近傍におけるビーム径をシミュレーションした結果を示す図の一例である。 図51は、図50と同様のシミュレーション結果を、別の位置について示す図の一例である。 図52は、図50と同様のシミュレーション結果を、別の位置について示す図の一例である。 図53は、図50と同様のシミュレーション結果を、別の位置について示す図の一例である。 図54Aは、マクロアレイを構成するマイクロアレイレンズの他の例を示す正面図である。 図54Bは、マクロアレイを構成するマイクロアレイレンズの他の例を示す側面図である。 図55Aは、マクロアレイを構成するマイクロアレイレンズの正面図の一例である。 図55Bは、マクロアレイを構成するマイクロアレイレンズの側面図の一例である。 図56は、球面レンズ形状例を示すグラフである。 図57は、他のレンズ面形状例を示すグラフである。 図58Aは、マイクロレンズアレイを構成するマイクロレンズの正面図の一例である。 図58Bは、マイクロレンズアレイを構成するマイクロレンズの側面図の一例である。 図59Aは、図58Aのマイクロレンズによる集光状態の断面の一例である。 図59Bは、図58Aのマイクロレンズによる集光状態の別の断面について示す概略図の一例である。 図60は、マイクロアレイレンズアレイの他の例を示す斜視図である。 図61は、マイクロアレイレンズアレイの他の例を示す平面図である。 図62は、マイクロアレイレンズアレイの他の例を示す平面図である。 図63Aは、いずれもマイクロアレイレンズアレイの他の例を示す縦断面図である。 図63Bは、いずれもマイクロアレイレンズアレイの他の例を示す縦断面図である。 図63Cは、いずれもマイクロアレイレンズアレイの他の例を示す縦断面図である。 図64Aは、光量分布補正光学系による補正の概念についての説明図の一例である。 図64Bは、光量分布補正光学系による補正の概念についての説明図の一例である。 図64Cは、光量分布補正光学系による補正の概念についての説明図の一例である。 図65は、光量分布補正光学系による補正後の光量分布を示すグラフの一例である。 図66は、光照射手段がガウス分布で且つ光量分布の補正を行わない場合の光量分布を示すグラフの一例である。 図67Aは、DMDの使用領域の例を示す図の一例である。 図67Bは、DMDの使用領域の例を示す図の一例である。 図68は、露光ヘッドの取付角度誤差及びパターン歪みがある際に、露光面上のパターンに生じるむらの例を示した説明図である。 図69は、1つのDMDによる露光エリアと、対応するスリットとの位置関係を示した上面図である。 図70は、被露光面上の光点の位置を、スリットを用いて測定する手法を説明するための上面図である。 図71は、選択されたマイクロミラーのみが露光に使用された結果、露光面上のパターンに生じるむらが改善された状態を示す説明図である。 図72は、隣接する露光ヘッド間に相対位置のずれがある際に、露光面上のパターンに生じるむらの例を示した説明図である。 図73は、隣接する2つの露光ヘッドによる露光エリアと、対応するスリットとの位置関係を示した上面図である。 図74は、露光面上の光点の位置を、スリットを用いて測定する手法を説明するための上面図である。 図75は、図72の例において選択された使用画素のみが実動され、露光面上のパターンに生じるむらが改善された状態を示す説明図である。 図76は、隣接する露光ヘッド間に相対位置のずれ及び取付角度誤差がある際に、露光面上のパターンに生じるむらの例を示した説明図である。 図77は、図76の例において選択された使用描素部のみを用いた露光を示す説明図である。 図78Aは、倍率歪みの例を示した説明図である。 図78Bは、ビーム径歪みの例を示した説明図である。 図79Aは、単一露光ヘッドを用いた参照露光の第一の例を示した説明図である。 図79Bは、単一露光ヘッドを用いた参照露光の第一の例を示した説明図である。 図80は、複数露光ヘッドを用いた参照露光の第一の例を示した説明図である。 図81Aは、単一露光ヘッドを用いた参照露光の第二の例を示した説明図である。 図81Bは、単一露光ヘッドを用いた参照露光の第二の例を示した説明図である。 図82は、複数露光ヘッドを用いた参照露光の第二の例を示した説明図である。 図83は、ジャギー低減方法に好適な露光装置における露光ヘッドの概略構成図である。 図84は、露光装置における露光ヘッドと、露光ステージに位置決めされたシートフイルム(感光材料)との関係説明図である。 図85は、露光装置における露光ヘッドと、シートフイルム上の露光エリアとの関係説明図である。 図86は、ジャギー低減方法に好適な露光装置の制御回路ブロック図である。 図87は、露光装置における露光ヘッドに使用されるDMDを構成するマイクロミラーの配列状態の説明図である。 図88は、露光装置における露光ヘッドにより形成される画像のパラメータの説明図である。 図89は、露光装置における露光ヘッドにより形成される画像のパラメータの説明図である。 図90は、露光装置における露光ヘッドにより形成される画像のパラメータの説明図である。 図91は、露光装置における露光ヘッドにより形成される画像のジャギーピッチ及びジャギー振幅の計算結果説明図である。 図92は、露光装置における露光ヘッドにより形成される画像のジャギーピッチ及びジャギー振幅の計算結果説明図である。 図93は、露光装置における露光ヘッドにより形成される画像のジャギーピッチ及びジャギー振幅の計算結果説明図である。 図94は、露光装置における露光ヘッドにより形成される画像のジャギーピッチ及びジャギー振幅の計算結果説明図である。 図95は、露光装置における露光ヘッドにより形成される画像のジャギーピッチ及びジャギー振幅の計算結果説明図である。 図96は、露光装置における露光ヘッドにより形成される画像のジャギーピッチ及びジャギー振幅の計算結果説明図である。 図97は、露光装置における露光ヘッドにより形成される画像のエッジラフネスの説明図である。 図98は、露光装置における露光ヘッドにより形成される被露光部のエッジラフネスの説明図である。
符号の説明
B1〜B7 レーザビーム
L1〜L7 コリメータレンズ
LD1〜LD7 GaN系半導体レーザ
10 露光装置
12 感光層
14 移動ステージ
18 設置台
20 ガイド
22 ゲート
24 スキャナ
26 センサ(カメラ)
28 スリット
30 露光ヘッド
36 デジタル・マイクロミラー・デバイス(DMD)
38 ファイバアレイ光源
40 集光レンズ系
50 結像レンズ系
58 マイクロミラー(描素部)
60 レーザモジュール
62 マルチモード光ファイバ
64 光ファイバ
66 レーザ出射部
110 ヒートブロック
111 マルチキャビティレーザ
113 ロッドレンズ
114 レンズアレイ
140 レーザアレイ
200 集光レンズ
205 露光
210 被露光部
212 被露光部中心線
214 線幅

Claims (26)

  1. 感光性組成物からなり基材の表面に位置する感光層に対して、
    光照射手段及び光変調手段を少なくとも備えた露光ヘッドと、前記感光層の少なくともいずれかを移動させつつ、前記光照射手段から出射された光を前記光変調手段によりパターン情報に応じて変調しながら前記露光ヘッドから照射して、前記感光層を露光する露光工程を含み、
    前記感光性組成物が、バインダー、重合性化合物、着色剤、及び光重合開始剤を含んでなり、前記着色剤に含まれる顔料の数平均粒径が、大きくとも100nmであり、かつ該顔料の前記感光性組成物の固形分中の含有量が、少なくとも30質量%であることを特徴とするカラーフィルタの製造方法。
  2. 光変調手段が、光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、前記描素部をパターン情報に基づいて制御可能である請求項1に記載のカラーフィルタの製造方法。
  3. 光照射手段が、半導体レーザ素子から生ずるレーザ光を出射するレーザ光源である請求項1から2のいずれかに記載のカラーフィルタの製造方法。
  4. 露光ヘッドが、光照射手段からの光を集光して光変調手段に照射する集光レンズ系と、前記光変調手段により変調された光による像を感光層の被露光面上に結像する結像レンズ系とを備える請求項1から3のいずれかに記載のカラーフィルタの製造方法。
  5. 結像レンズ系が、マイクロレンズがアレイ状に配されてなるマイクロレンズアレイを含む請求項4に記載のカラーフィルタの製造方法。
  6. 結像レンズ系が、マイクロレンズの集光位置近傍に、該マイクロレンズを経た光のみが入射するように配列されたアパーチャが配置されてなるアパーチャアレイを含む請求項4から5のいずれかに記載のカラーフィルタの製造方法。
  7. 集光レンズ系により光照射手段から光変調手段に照射される光の照射領域内における光量に分布を持たせ、前記光変調手段により変調された光の感光層の被露光面における光量分布が均一になるように補正する請求項1から6のいずれかに記載のカラーフィルタの製造方法。
  8. 露光が、光変調手段により変調された光の光路長を変更し、感光層の被露光面に結像する露光光の焦点を調節する焦点調節手段を用いて行われる請求項1から7のいずれかに記載のカラーフィルタの製造方法。
  9. 結像レンズ系の中央部を含む略矩形状の領域のみにおいて、光変調手段により変調された光を結像する請求項8に記載のカラーフィルタの製造方法。
  10. 焦点調節手段が、光変調手段により変調された光の光軸方向の厚さが変化するように形成されたくさび型プリズムペアを有し、該くさび型プリズムペアを構成する各くさび型プリズムを移動することによって、前記変調された光を感光層の被露光面上に結像する際の焦点を調節する請求項8から9のいずれかに記載のカラーフィルタの製造方法。
  11. マイクロレンズアレイの各マイクロレンズが、描素部の面の歪みによる収差を補正する非球面を有する請求項5から10のいずれかに記載のカラーフィルタの製造方法。
  12. 非球面がトーリック面である請求項11に記載のカラーフィルタの製造方法。
  13. マイクロレンズアレイの各マイクロレンズが、前記画素部の面の歪みによる収差を補正する屈折率分布を有する請求項5から10のいずれかに記載のカラーフィルタの製造方法。
  14. マイクロレンズアレイの各マイクロレンズが、前記画素部の周辺部からの光を入射させないレンズ開口形状を有する請求項5から10のいずれかに記載のカラーフィルタの製造方法。
  15. 走査方向に対し描素部の列方向が所定の設定傾斜角度θをなすように配置されてなる露光ヘッドを用い、
    前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、
    前記露光ヘッドについて、使用描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御し、
    前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光を行う請求項1から14のいずれかに記載のカラーフィルタの製造方法。
  16. 光変調手段が、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を更に有してなり、光照射手段から照射される光を該パターン信号生成手段が生成した制御信号に応じて変調させる請求項1から15のいずれかに記載のカラーフィルタの製造方法。
  17. 感光層の被露光面に対する描画画素の配置と、パターン情報に係る描画パターンとの関係で生じるジャギーのジャギーピッチ又はジャギー振幅が所定値以下となるよう、
    隣接する前記描素部により描画される前記描画画素間の配列ピッチ(A)、
    複数の前記描画画素からなる二次元状の描画画素群の走査方向に対する傾斜角度(B)、
    前記走査方向に対する前記描画画素の描画ピッチ(C)、及び
    前記走査方向と略直交する方向に隣接して描画される前記描画画素の前記走査方向に対する描画位置の位相差(D)の少なくともいずれかを設定し、
    前記パターン情報に従い、前記各描素部を所定のタイミングで変調制御することを特徴とする請求項1から16のいずれかに記載のカラーフィルタの製造方法。
  18. 少なくともオンオフ制御可能な二次元配列の制御点を感光層の被露光面上に設定し、
    前記制御点と、前記感光層の被露光面上とを相対走査するとともに、前記制御点を制御して描画を行う描画方法であって、
    前記制御点の略走査方向に沿った点列のピッチ(E)、
    前記点列の並び方向(F)、
    前記制御点の前記走査方向に対するピッチ(G)、及び
    前記走査方向と略直交する方向に隣接する前記制御点の前記走査方向に対する位相差(H)の少なくともいずれかと、描画する描画パターンにより生じるジャギーの形状との相関関係を求め、
    前記相関関係に基づいて、前記点列のピッチ(E)、前記点列の並び方向(F)、前記制御点の前記走査方向に対するピッチ(G)、及び前記位相差(H)の少なくともいずれかを設定又は変更する請求項1から16のいずれかに記載のカラーフィルタの製造方法。
  19. 少なくともオンオフ制御可能な二次元配列の制御点を感光層の被露光面上に設定し、
    前記制御点と前記感光層の被露光面上とを相対走査するとともに前記制御点を制御して描画を行う描画方法であって、
    前記制御点の配列状態と、描画する描画パターンにより生じるジャギーの形状との相関
    関係を求め、前記相関関係に基づいて前記配列状態を設定又は変更する請求項1から16のいずれかに記載のカラーフィルタの製造方法。
  20. 少なくともオンオフ制御可能な二次元配列の制御点を感光層の被露光面上に設定し、
    前記制御点と前記感光層の被露光面上とを相対走査するとともに前記制御点を制御して描画を行う描画方法であって、
    描画する描画パターンにより生じるジャギーが低減されるよう、前記制御点の配列状態
    を設定又は変更することを特徴とする請求項1から16のいずれかに記載のカラーフィルタの製造方法。
  21. 感光層が、感光性組成物を基材の表面に塗布し、乾燥することにより形成される請求項1から20のいずれかに記載のカラーフィルタの製造方法。
  22. 支持体上に少なくとも一層の感光性組成物層を設けた感光性フィルムを、感光層の表面と基材とが当接するように該基材上に積層し、次いで、支持体を剥離することにより形成される請求項1から20のいずれかに記載のカラーフィルタの製造方法。
  23. 感光性組成物が、少なくとも、黒色(K)に着色されている請求項1から22のいずれかに記載のカラーフィルタの製造方法。
  24. 少なくとも、赤色(R)、緑色(G)、及び青色(B)の3原色に着色された感光性組成物を用いて、基材の表面に所定の配置で、R、G及びBの各色毎に、順次、感光層形成工程、露光工程、及び現像工程を繰り返してカラーフィルタを形成する請求項1から23のいずれかに記載のカラーフィルタの製造方法。
  25. 請求項1から24のいずれかに記載のカラーフィルタの製造方法により製造されたことを特徴とするカラーフィルタ。
  26. 請求項25に記載のカラーフィルタを用いたことを特徴とする液晶表示装置。
JP2005224734A 2005-08-02 2005-08-02 カラーフィルタの製造方法、及びカラーフィルタ並びに液晶表示装置 Pending JP2007041239A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005224734A JP2007041239A (ja) 2005-08-02 2005-08-02 カラーフィルタの製造方法、及びカラーフィルタ並びに液晶表示装置
KR1020087005150A KR20080044846A (ko) 2005-08-02 2006-07-25 칼라필터의 제조 방법, 칼라필터 및 액정표시장치
CNA2006800286182A CN101238398A (zh) 2005-08-02 2006-07-25 滤色片的制造方法及滤色片以及液晶显示装置
PCT/JP2006/314664 WO2007015393A1 (ja) 2005-08-02 2006-07-25 カラーフィルタの製造方法及びカラーフィルタ並びに液晶表示装置
TW095127580A TW200710449A (en) 2005-08-02 2006-07-28 Process for proudcing color filter, color filter and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224734A JP2007041239A (ja) 2005-08-02 2005-08-02 カラーフィルタの製造方法、及びカラーフィルタ並びに液晶表示装置

Publications (1)

Publication Number Publication Date
JP2007041239A true JP2007041239A (ja) 2007-02-15

Family

ID=37708672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224734A Pending JP2007041239A (ja) 2005-08-02 2005-08-02 カラーフィルタの製造方法、及びカラーフィルタ並びに液晶表示装置

Country Status (5)

Country Link
JP (1) JP2007041239A (ja)
KR (1) KR20080044846A (ja)
CN (1) CN101238398A (ja)
TW (1) TW200710449A (ja)
WO (1) WO2007015393A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061619A (ja) * 2011-08-24 2013-04-04 Toray Ind Inc カラーフィルター用青色着色剤組成物およびそれを用いたカラーフィルター基板。
JP2013520817A (ja) * 2010-02-23 2013-06-06 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
JP2013520816A (ja) * 2010-02-23 2013-06-06 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
JP2013520818A (ja) * 2010-02-23 2013-06-06 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
JP2015503234A (ja) * 2011-12-27 2015-01-29 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びデバイス製造方法
WO2024062790A1 (ja) * 2022-09-21 2024-03-28 ウシオ電機株式会社 光測定装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5417994B2 (ja) * 2008-07-17 2014-02-19 Jsr株式会社 着色層形成用感放射線性組成物、カラーフィルタおよびカラー液晶表示素子
CN102169091B (zh) * 2011-05-23 2012-06-06 同济大学 废弃电器电路板中典型金属的分析测定方法
CN102890426B (zh) * 2012-09-18 2014-05-14 天津芯硕精密机械有限公司 一种直写式光刻系统中倾斜扫描显示方法
KR102173148B1 (ko) * 2015-02-04 2020-11-02 동우 화인켐 주식회사 감광성 수지 조성물, 이로부터 형성된 광경화 패턴 및 이를 포함하는 화상 표시 장치
JP7023601B2 (ja) * 2016-11-14 2022-02-22 株式会社アドテックエンジニアリング ダイレクトイメージング露光装置及びダイレクトイメージング露光方法
CN108227404B (zh) * 2018-01-11 2020-09-22 合肥微睿光电科技有限公司 液晶显示装备的基板曝光机用台板
US11681228B2 (en) * 2018-06-19 2023-06-20 Ev Group E. Thallner Gmbh Method and apparatus for illuminating image points
JP7198659B2 (ja) * 2018-12-26 2023-01-04 株式会社オーク製作所 露光装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776642A (en) * 1995-06-27 1998-07-07 Agfa Gevaert, N.V. Method for manufacturing a multicolor filter array element
JPH10142417A (ja) * 1996-11-06 1998-05-29 Canon Inc カラーフィルターの製造方法、及びカラー液晶ディスプレイパネル
JP2004176000A (ja) * 2002-11-28 2004-06-24 Mikuni Color Ltd 顔料分散液及び感光性樹脂組成物
JP2005202252A (ja) * 2004-01-16 2005-07-28 Dainippon Printing Co Ltd 固体撮像素子カラーフィルター用感光性着色組成物、固体撮像素子カラーフィルター、固体撮像素子、及び固体撮像素子カラーフィルターの製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520817A (ja) * 2010-02-23 2013-06-06 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
JP2013520816A (ja) * 2010-02-23 2013-06-06 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
JP2013520818A (ja) * 2010-02-23 2013-06-06 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
KR101496878B1 (ko) * 2010-02-23 2015-03-02 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치 및 디바이스 제조 방법
JP2013061619A (ja) * 2011-08-24 2013-04-04 Toray Ind Inc カラーフィルター用青色着色剤組成物およびそれを用いたカラーフィルター基板。
JP2015503234A (ja) * 2011-12-27 2015-01-29 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びデバイス製造方法
US9494869B2 (en) 2011-12-27 2016-11-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2024062790A1 (ja) * 2022-09-21 2024-03-28 ウシオ電機株式会社 光測定装置

Also Published As

Publication number Publication date
WO2007015393A1 (ja) 2007-02-08
CN101238398A (zh) 2008-08-06
KR20080044846A (ko) 2008-05-21
TW200710449A (en) 2007-03-16

Similar Documents

Publication Publication Date Title
JP2007041239A (ja) カラーフィルタの製造方法、及びカラーフィルタ並びに液晶表示装置
KR20070020283A (ko) 패턴형성방법, 컬러필터의 제조방법, 컬러필터 및액정표시장치
JP2007093785A (ja) 表示装置用部材の製造方法、及び表示装置用部材並びに表示装置
JP2006285108A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2006085116A (ja) 感光性転写材料並びにパターン形成方法及びパターン
JP2006243543A (ja) 永久パターン形成方法
JP2008233112A (ja) カラーフィルタの製造方法、及びカラーフィルタ並びに表示装置
JP2007025275A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2007101607A (ja) 表示装置用部材及びその製造方法、並びに表示装置
JP2007071957A (ja) カラーフィルタ及びパターン形成方法、並びに液晶表示装置
JP2005311305A (ja) 永久パターン形成方法
JP4546368B2 (ja) 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法
JP4494243B2 (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2007025597A (ja) カラーフィルタの製造方法及びカラーフィルタ並びに表示装置
JP4916141B2 (ja) カラーフィルタ形成材料及びカラーフィルタの製造方法、カラーフィルタ、並びに液晶表示装置
JP2007041281A (ja) 黒色画像及びその製造方法、並びに遮光膜付き基板及び液晶表示素子
JP2006018221A (ja) カラーフィルタの製造方法、及びカラーフィルタ並びに液晶表示装置
JP2006048031A (ja) 感光性フィルム及びその製造方法、並びに永久パターンの形成方法
KR20070017039A (ko) 감광성 조성물, 및 컬러필터 및 그 제조방법, 액정표시장치
JP2007025003A (ja) カラーフィルタの製造方法及びカラーフィルタ並びに表示装置
JP2007041282A (ja) 感光性組成物、並びにカラーフィルタ及びその製造方法、液晶表示装置
JP4950453B2 (ja) カラーフィルタ及びその製造方法、並びに液晶表示装置
JP2006023715A (ja) カラーフィルタの製造方法、及びカラーフィルタ並びに液晶表示装置
JP4546349B2 (ja) パターン形成材料、並びにパターン形成方法及びパターン
JP2007033675A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061207