JP2007071957A - カラーフィルタ及びパターン形成方法、並びに液晶表示装置 - Google Patents

カラーフィルタ及びパターン形成方法、並びに液晶表示装置 Download PDF

Info

Publication number
JP2007071957A
JP2007071957A JP2005256238A JP2005256238A JP2007071957A JP 2007071957 A JP2007071957 A JP 2007071957A JP 2005256238 A JP2005256238 A JP 2005256238A JP 2005256238 A JP2005256238 A JP 2005256238A JP 2007071957 A JP2007071957 A JP 2007071957A
Authority
JP
Japan
Prior art keywords
exposure
light
photosensitive layer
pattern
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005256238A
Other languages
English (en)
Inventor
Kazumori Minami
一守 南
Mitsutoshi Tanaka
光利 田中
Yoji Okazaki
洋二 岡崎
Katsuto Sumi
克人 角
Mitsuru Mushiyano
満 武者野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005256238A priority Critical patent/JP2007071957A/ja
Publication of JP2007071957A publication Critical patent/JP2007071957A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】 フォトマスクを用いることなく、走査方向と垂直方向の凹凸(ギザギザ)の発生を防止でき、ムラがなく、高精細に形成可能であるパターン形成方法、及びカラーフィルタ、並びに液晶表示装置の提供。
【解決手段】 バインダー、重合性化合物、光重合開始剤、及び顔料粒子を含有する感光性組成物からなる感光層に対し、光照射手段、及び前記光照射手段からの光を受光し出射するn個の2次元状に配列された描素部を有し、パターン情報に応じて前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査方向に対し、前記描素部の列方向が所定の設定傾斜角度θをなすように配置された露光ヘッドを用い、該露光ヘッドを走査方向に相対的に移動させて、感光層を露光する露光工程と、前記露光工程により露光された感光層を現像する現像工程とを含み、現像工程において、前記感光層をpH8〜13の現像液に浸漬したとき、該感光層の未露光部の初期表面が3秒間以上残存するパターン形成方法である。
【選択図】 図1

Description

本発明は、携帯端末、携帯ゲーム機、ノートパソコン、テレビモニター等の液晶表示装置(LCD)用、PALC(プラズマアドレス液晶)、プラズマディスプレイなどに好適なカラーフィルタ及び該カラーフィルタを形成するパターン形成方法、並びに液晶表示装置に関する。
カラー液晶表示装置は、CRTと比較するとコンパクトで性能面では同等以上であり、テレビやパソコン画面、携帯電話の表示部、その他の表示装置として、近年、非常に躍進を遂げている。カラーフィルタは、このようなカラー画像表示装置に不可欠な構成部品である。
このようなカラーフィルタは、通常、アルカリ可溶性バインダー、モノマー、オリゴマー、光重合開始剤、着色剤、及び溶剤を主体とする着色感光性樹脂組成物を基板上に塗布、乾燥(プリベーク)、パターン露光、現像工程、及び熱硬化処理(ポストベーク)の一連の工程により所定の画素パターンを形成する。これら工程を、赤(R)、緑(G)、及び青(B)などの各色毎に順次繰り返すことにより得られる。このように各色毎にそれぞれの工程を繰り返し行うため、各工程に費やす時間は短時間であることが好ましい。これらの中でも特に、現像工程を短時間とすることが要望されている。
一方、フルカラーの液晶ディスプレイやプラズマアドレッシング方式の液晶ディスプレイ等で使用されるカラーフィルタは、通常、光モレを防止し、コントラストを向上させる目的で赤(R)、緑(G)、及び青(B)の各画素の間、即ち、透明基板上の非画素部にブラックマトリックスと呼ばれる遮光膜を設けている。この遮光膜としては、クロムなどの金属のスパッタ膜を用いたものが知られている(非特許文献1参照)。しかし、クロム等の金属膜を用いる場合、工程が非常に複雑で歩留りも悪く、コスト的に問題があり、有害物質であるクロムを使用するため環境負荷が大きいという問題がある。
そこで、感光性樹脂とカーボンブラック等とを組み合わせた遮光性感光性組成物を用いてブラックマトリックスを形成する方法が知られている(特許文献1及び2参照)。前記特許文献1では、固形分中のカーボンブラック濃度が45%の感光性樹脂液を用いており、現像時間が60秒以上と長時間を要している。また、前記特許文献2では、固形分中のカーボンブラック濃度を約45%として感光性樹脂液を用いた1μmのブラックマトリックスが開示されているが、光学濃度(OD)が低いという問題がある。
また、前記感光性組成物を用いてパターンニングする際には、一般に、フォトリソグラフィー法が知られている。
前記フォトリソグラフィー法を行う露光装置として、フォトマスクを用いることなく、半導体レーザ、ガスレーザ等のレーザ光を、画素パターン等のデジタルデータに基づいて、感光性組成物上に直接スキャンして、パターニングを行うレーザダイレクトイメージングシステム(以下、「LDI」と称することがある)による露光装置が研究されている(非特許文献2参照)。
しかしながら、前記LDIによる露光装置を用いた露光においては、露光ヘッドから照射される光ビームが、レンズ系の要因で光軸の中心部に比べて周辺部の光強度が低下してしまう問題や、レンズの像面湾曲、非点隔差、歪曲等により結像させた像が歪んでしまうという問題がある。また、前記露光ヘッドの取付位置や取付角度のずれ等によって、パターン歪みによる露光量のばらつきや、解像度のばらつきや濃度のむら等が生じ、これを多重露光により軽減すると、露光回数を増やすことにより露光スピードの低下をもたらすとともに、画質の低下等の問題が発生し、露光性能低下の原因となるという問題もある。
従来より、光変調手段として、デジタル・マイクロミラー・デバイス(DMD)等の空間光変調素子を利用し、パターン情報(画像データ)に応じて変調された光ビームで描画パターン(画像)を形成するように露光を行う露光装置が種々提案されている。
前記DMDは、制御信号に応じて反射面の角度を変化させる多数のマイクロミラーをシリコン等の半導体基板上に二次元状に配列したミラーデバイスであり、このDMDを備えた露光ヘッドを被露光面に沿った走査方向に相対移動させることで、所望の範囲に対する露光が行われる。
一般に、DMDのマイクロミラーは、各行の並び方向と各列の並び方向とが直交するように配列されている。このようなDMDを、走査方向に対して傾斜させて配置することにより、走査線の間隔が密になり、解像度を上げることができる。
また、上記のようなデジタル(DI)露光機を用いて感光性組成物を描画すると、内部に組み込まれたDMDが走査方向に対して傾いているため、原理的に、走査方向と垂直方向の凹凸(ギザギザ)が発生する。
このギザギザの発生を低減するため、露光方法については種々検討されているが、感光性組成物の側からのアプローチについては何ら検討されていないのが現状である。
特開2004−280057号公報 特開2004−292672号公報 内田龍男、「次世代液晶ディスプレイ技術」、工業調査会、1994、123ページ 石川明人"マスクレス露光による開発短縮と量産適用化"、「エレクロトニクス実装技術」、株式会社技術調査会、Vol.18、No.6、2002年、p.74-79
本発明は、かかる現状に鑑みてなされたものであり、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、フォトマスクを用いることなく、走査方向と垂直方向の凹凸(ギザギザ)の発生を防止でき、ムラがなく、高精細に形成可能であり、低コスト、かつ表示特性に優れ、携帯端末、携帯ゲーム機等の液晶表示装置(LCD)用、PALC(プラズマアドレス液晶)、プラズマディスプレイなどに好適に用いられるパターン形成方法、及び該パターン形成方法により形成されたカラーフィルタ、並びに液晶表示装置を提供することを目的とする。
前記課題を解決するための手段としては以下の通りである。即ち、
<1> 少なくともバインダー、重合性化合物、光重合開始剤、及び顔料粒子を含有する感光性組成物からなり、基材の表面に位置する感光層に対し、
光照射手段、及び該光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、パターン情報に応じて前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査方向に対し、前記描素部の列方向が所定の設定傾斜角度θをなすように配置された露光ヘッドを用い、該露光ヘッドを走査方向に相対的に移動させて、前記感光層を露光する露光工程と、
前記露光工程により露光された前記感光層を現像する現像工程と、を含んでなり、
前記現像工程において、前記感光層をpH8〜13の現像液に浸漬したときの該感光層の未露光部の初期表面の残存時間が3秒間以上であることを特徴とするパターン形成方法である。
<2> 現像液が、無機アルカリ現像液である前記<1>に記載のパターン形成方法である。
<3> 顔料粒子の含有量が、感光層の総固形量に対し5〜60質量%である前記<1>から<2>のいずれかに記載のパターン形成方法である。
<4> 顔料粒子が黒色であり、かつ該黒色顔料粒子の含有量が感光層の総固形量に対し20〜60質量%である前記<1>から<3>のいずれかに記載のパターン形成方法である。
<5> 顔料粒子が赤色であり、かつ該赤色顔料粒子の含有量が感光層の総固形量に対し10〜50質量%である前記<1>から<3>のいずれかに記載のパターン形成方法である。
<6> 顔料粒子が緑色であり、かつ該緑色顔料粒子の含有量が感光層の総固形量に対し5〜60質量%である前記<1>から<3>のいずれかに記載のパターン形成方法である。
<7> 顔料粒子が青色であり、かつ該青色顔料粒子の含有量が感光層の総固形量に対し5〜40質量%である前記<1>から<3>のいずれかに記載のパターン形成方法である。
<8> 顔料粒子が無色であり、かつ該無色顔料粒子の含有量が感光層の総固形量に対し5〜70質量%である前記<1>から<3>のいずれかに記載のパターン形成方法である。
<9> 光変調手段が、空間光変調素子である前記<1>から<8>のいずれかに記載のパターン形成方法である。
<10> 空間光変調素子が、デジタル・マイクロミラー・デバイス(DMD)である前記<9>に記載のパターン形成方法である。
<11> 露光ヘッドが、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、
前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御を行う前記<1>から<10>のいずれかに記載のパターン形成方法である。
<12> 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域におけるN重露光を実現するために使用する前記描素部を指定する前記<11>に記載のパターン形成方法である。該<12>に記載のパターン形成方法においては、露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外におけるN重露光を実現するために使用する前記描素部が指定されることにより、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上のヘッド間つなぎ領域以外に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、前記感光層への露光が高精細に行われ、その後、前記感光層を現像することにより、高精細な画素パターンが形成される。
<13> 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域におけるN重露光を実現するために使用する前記描素部を指定する前記<11>に記載のパターン形成方法である。該<13>に記載のパターン形成方法においては、露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外におけるN重露光を実現するために使用する前記描素部が指定されることにより、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上のヘッド間つなぎ領域以外に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、前記感光層への露光が高精細に行われ、その後、前記感光層を現像することにより、高精細な画素パターンが形成される。
<14> 設定傾斜角度θが、N重露光数のN、描素部の列方向の個数s、前記描素部の列方向の間隔p、及び露光ヘッドを傾斜させた状態において該露光ヘッドの走査方向と直交する方向に沿った描素部の列方向のピッチδに対し、次式、spsinθideal≧Nδを満たすθidealに対し、θ≧θidealの関係を満たすように設定される前記<11>から<13>のいずれかに記載のパターン形成方法である。
<15> N重露光のNが、3以上7以下の自然数である前記<11>から<14>のいずれかに記載のパターン形成方法である。該<15>に記載のパターン形成方法においては、N重露光のNが、3以上7以下の自然数であることにより、多重描画が行われる。この結果、埋め合わせの効果により、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上に形成される前記画素パターンの解像度のばらつきや濃度のむらが、より精密に均一化される。
<16> 使用描素部指定手段が、
描素部により生成され、被露光面上の露光領域を構成する描素単位としての光点位置を、被露光面上において検出する光点位置検出手段と、
前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段と
を備える前記<11>から<15>のいずれかに記載のパターン形成方法である。
<17> 使用描素部指定手段が、N重露光を実現するために使用する使用描素部を行単位で指定する前記<11>から<16>のいずれかに記載のパターン形成方法である。
<18> 光点位置検出手段が、検出した少なくとも2つの光点位置に基づき、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす実傾斜角度θ’を特定し、描素部選択手段が、前記実傾斜角度θ’と設定傾斜角度θとの誤差を吸収するように使用描素部を選択する前記<11>から<17>のいずれかに記載のパターン形成方法である。
<19> 実傾斜角度θ’が、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす複数の実傾斜角度の平均値、中央値、最大値、及び最小値のいずれかである前記<18>に記載のパターン形成方法である。
<20> 描素部選択手段が、実傾斜角度θ’に基づき、ttanθ’=N(ただし、NはN重露光数のNを表す)の関係を満たすtに近い自然数Tを導出し、m行(ただし、mは2以上の自然数を表す)配列された描素部における1行目から前記T行目の前記描素部を、使用描素部として選択する前記<18>から<19>のいずれかに記載のパターン形成方法である。
<21> 描素部選択手段が、実傾斜角度θ’に基づき、ttanθ’=N(ただし、NはN重露光数のNを表す)の関係を満たすtに近い自然数Tを導出し、m行(ただし、mは2以上の自然数を表す)配列された描素部における、(T+1)行目からm行目の前記描素部を、不使用描素部として特定し、該不使用描素部を除いた前記描素部を使用描素部として選択する前記<18>から<19>のいずれかに記載のパターン形成方法である。
<22> 描素部選択手段が、複数の描素部列により形成される被露光面上の重複露光領域を少なくとも含む領域において、
(1)理想的なN重露光に対し、露光過多となる領域、及び露光不足となる領域の合計面積が最小となるように、使用描素部を選択する手段、
(2)理想的なN重露光に対し、露光過多となる領域の描素単位数と、露光不足となる領域の描素単位数とが等しくなるように、使用描素部を選択する手段、
(3)理想的なN重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光不足となる領域が生じないように、使用描素部を選択する手段、及び
(4)理想的なN重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光過多となる領域が生じないように、使用描素部を選択する手段
のいずれかである前記<11>から<21>に記載のパターン形成方法である。
<23> 描素部選択手段が、複数の露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域において、
(1)理想的なN重露光に対し、露光過多となる領域、及び露光不足となる領域の合計面積が最小となるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
(2)理想的なN重露光に対し、露光過多となる領域の描素単位数と、露光不足となる領域の描素単位数とが等しくなるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
(3)理想的なN重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光不足となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、及び、
(4)理想的なN重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光過多となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、のいずれかである前記<11>から<22>のいずれかに記載のパターン形成方法である。
<24> 使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、(N−1)列毎の描素部列を構成する前記描素部のみを使用して参照露光を行う前記<11>から<23>のいずれかに記載のパターン形成方法である。該<24>に記載のパターン形成方法においては、使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、(N−1)列毎の描素部列を構成する前記描素部のみを使用して参照露光が行われ、略1重描画の単純なパターンが得られる。この結果、前記ヘッド間つなぎ領域における前記描素部が容易に指定される。
<25> 使用描素部指定手段が、光点位置検出手段としてスリット及び光検出器、並びに描素部選択手段として前記光検出器と接続された演算装置を有する前記<11>から<24>のいずれかに記載のパターン形成方法である。
<26> 光変調手段が、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を更に有してなり、光照射手段から照射される光を該パターン信号生成手段が生成した制御信号に応じて変調させる前記<11>から<25>のいずれかに記載のパターン形成方法である。
<27> パターン情報が表す画素パターンの所定部分の寸法が、指定された使用描素部により実現できる対応部分の寸法と一致するように前記パターン情報を変換する変換手段を有する前記<11>から<26>のいずれかに記載のパターン形成方法である。
<28> 前記<1>から<27>のいずれかに記載のパターン方法により形成されたことを特徴とするカラーフィルタである。
<29> 前記<28>に記載のカラーフィルタを備えたことを特徴とする液晶表示装置である。
本発明によると、従来における問題を解決することができ、フォトマスクを用いることなく、走査方向と垂直方向の凹凸(ギザギザ)の発生を防止でき、ムラがなく、高精細に形成可能であり、低コスト、かつ表示特性に優れ、携帯端末、携帯ゲーム機等の液晶表示装置(LCD)用、PALC(プラズマアドレス液晶)、プラズマディスプレイなどに好適に用いられるカラーフィルタ及び該カラーフィルタを形成するパターン形成方法、並びに液晶表示装置を提供することができる。
(パターン形成方法及びカラーフィルタ)
本発明のパターン形成方法は、少なくともバインダー、重合性化合物、光重合開始剤、及び顔料粒子を含有する感光性組成物からなり、基材の表面に位置する感光層を形成する工程(以下、感光層形成工程と称する)、露光工程と、現像工程とを含んでなり、更に必要に応じてその他の工程を含んでなる。
本発明のカラーフィルタは、本発明の前記パターン形成方法により形成される。
以下、本発明のパターン形成方法の説明を通じて、本発明のカラーフィルタの詳細についても明らかにする。
本発明においては、前記現像工程において、前記感光層をpH8〜13の現像液に浸漬したときの該感光層の未露光部の初期表面の残存時間が3秒間以上であり、5秒間以上が好ましい。なお、上限値は、特に制限はないが、120秒間以下である。
前記感光層の未露光部の初期表面の残存時間が、3秒間未満であると、走査方向と垂直方向の凹凸(ギザギザ)の改良効果がでないことがある。
ここで、前記現像工程において、前記感光層を現像液に浸漬したときの該感光層の未露光部の初期表面の残存時間は、感光層が現像液に接触した時間をスタート時間とし、これ以後スペクトルを計測して膜厚の判断に用いる。干渉波形の山谷の差が、スタート時間から2秒内に測定した同山と谷の差の1/5以下になったときに初期表面が消失したと定義する。前記感光層の未露光部の初期表面の残存時間は、現象的には、感光層表面が現像液で溶解し、感光層と現像液の境界面が不明瞭な状態、即ち、濃度勾配ゾーンができたことを意味する。
また、走査方向に対して垂直なギザギザ(凹凸)の大きさは、図40に示すように、走査方向に対して垂直なパターンを形成し、LER(ジャギーの凹凸部の差)を光学顕微鏡で測定する。図40において、ライン幅Lに対するLERの大きさの比率〔(LER/L)×100〕を走査方向に対して垂直なギザギザ(凹凸)の大きさと定義する。
前記走査方向に対して垂直なギザギザ(凹凸)の大きさは、0〜15%が好ましい。
前記現像液としては、特に制限はなく、目的に応じて適宜選択することができるが、無機アルカリ現像液が好ましい。該無機アルカリ現像液としては、例えば、アルカリ性水溶液、水系現像液、などが挙げられ、これらの中でも、弱アルカリ性の水溶液が好ましい。該弱アルカリ水溶液の塩基成分としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸カリウム、硼砂などが挙げられ、これらの中でも、水酸化カリウム、炭酸ナトリウムが特に好ましい。
前記現像液は、界面活性剤、消泡剤、有機塩基(例えば、エチレンジアミン、エタノールアミン、テトラメチルアンモニウムハイドロキサイド、ジエチレントリアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラクトン類等)などと併用してもよい。
前記現像液としては、pHは8〜13が好ましく、9〜12がより好ましい。前記pHが8未満であると、現像性が低下することがあり、13を超えると、過現像となることがある。また、現像液の温度は20〜40℃が好ましい。
なお、現像の方式としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、パドル現像、シャワー現像、シャワー&スピン現像、ディプ現像等が挙げられる。
ここで、上記シャワー現像について説明すると、露光後の感光層に現像液をシャワーにより吹き付けることにより、未硬化部分を除去することができる。なお、現像の前に感光層の溶解性が低いアルカリ性の液をシャワーなどにより吹き付け、熱可塑性樹脂層、中間層などを除去しておくことが好ましい。また、現像の後に、洗浄剤などをシャワーにより吹き付け、ブラシなどで擦りながら、現像残渣を除去することが好ましい。具体的には、感光層までの距離は50〜200mm、水圧は0.03〜2MPa、ノズルの種類は、フラット型、フルコーン型、又はウォーターナイフ型、ノズルの数は、幅方向50〜150mm、長さ方向100〜200mmピッチである。現像時間としては、3秒間〜120秒間が好ましい。
[感光層形成工程]
前記感光層形成工程は、少なくともバインダー、重合性化合物、光重合開始剤、及び顔料粒子を含有する感光性組成物を用いて、基材の表面に、少なくとも感光層を形成するする工程であり、更に適宜選択されたその他の層を形成する工程である。
前記感光層、及びその他の層を形成する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、塗布により形成する方法、シート状の各層を加圧及び加熱の少なくともいずれかを行うことにより、ラミネートすることにより形成する方法、それらの併用などが挙げられる。
前記感光層形成工程としては、以下に示す第1の態様の感光層形成工程及び第2の態様の感光層形成工程が好適に挙げられる。
第1の態様の感光層形成工程としては、前記感光性組成物を基材の表面に塗布し、乾燥することにより、基材の表面に、少なくとも、感光層を形成し、更に、適宜選択されたその他の層を形成する工程が挙げられる。
第2の態様の感光層形成工程としては、前記感光性組成物をフィルム状に成形した感光性フィルム(以下、「感光性転写材料」と称することがある)を基材の表面に加熱及び加圧の少なくともいずれかの下において積層することにより、基材の表面に、少なくとも、感光層を形成し、更に、適宜選択されたその他の層を形成する工程が挙げられる。
第1の態様の感光層形成工程において、前記塗布及び乾燥の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記基材の表面に、前記感光性組成物を、水又は溶剤に溶解、乳化又は分散させて感光性組成物溶液を調製し、該溶液を直接塗布し、乾燥させることにより積層する方法が挙げられる。
前記感光性組成物溶液の溶剤としては、特に制限はなく、目的に応じて適宜選択することができる。
前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スピンコーター、スリットスピンコーター、ロールコーター、ダイコーター、カーテンコーターなどを用いて、前記基材に直接塗布する方法が挙げられる。本発明においては、液が吐出する部分にスリット状の穴を有するスリット状ノズルを用いた塗布装置(スリットコーター)によって行うことが好ましい。具体的には、特開2004−89851号公報、特開2004−17043号公報、特開2003−170098号公報、特開2003−164787号公報、特開2003−10767号公報、特開2002−79163号公報、特開2001−310147号公報等に記載のスリット状ノズル、及びスリットコーターが好適に用いられる。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、通常60〜110℃の温度で30秒間〜15分間程度である。
第1の態様の感光層形成工程において形成されるその他の層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸素遮断層、剥離層、接着層、光吸収層、表面保護層などが挙げられる。
前記その他の層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記感光層上に塗布する方法、シート状に形成されたその他の層を積層する方法などが挙げられる。
前記第2の態様の感光層形成工程において、基材の表面に感光層、及び必要に応じて適宜選択されるその他の層を形成する方法としては、前記基材の表面に支持体と該支持体上に感光性組成物が積層されてなる感光層と、必要に応じて適宜選択されるその他の層とを有する感光性フィルム(感光性転写材料)を加熱及び加圧の少なくともいずれかを行いながら積層する方法が挙げられる。前記感光性フィルムを、該感光性組成物からなる感光層が基材の表面側となるように積層し、次いで、支持体を感光性組成物からなる感光層上から剥離する方法が好適に挙げられる。
前記支持体を剥離することにより、支持体による光の散乱や屈折の等影響により、感光性組成物層上に結像させる像にボケ像が生じることが防止され、所定のパターンが高解像度で得られる。
なお、前記感光性フィルムが、後述する保護フィルムを有する場合には、該保護フィルムを剥離し、前記基材に前記感光層が重なるようにして積層するのが好ましい。
前記加熱温度としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、70〜160℃が好ましく、80〜130℃がより好ましい。
前記加圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.01〜1.0MPaが好ましく、0.05〜1.0MPaがより好ましい。
前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒートプレス、ヒートロールラミネーター(例えば、大成ラミネーター株式会社社製、VP−IIや、(株)日立インダストリイズ社、LamicII型)、真空ラミネーター(例えば、名機製作所製、MVLP500)などが好適に挙げられる。
前記支持体としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光層を剥離可能であり、かつ光の透過性が良好であるのが好ましく、更に表面の平滑性が良好であるのがより好ましい。
前記支持体の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、4〜300μmが好ましく、5〜175μmがより好ましく、10〜100μmが特に好ましい。
前記支持体の形状としては、特に制限はなく、目的に応じて適宜選択することができ、長尺状が好ましい。前記長尺状の支持体の長さとしては、特に制限はなく、例えば、10m〜20,000mの長さのものが挙げられる。
前記支持体は、合成樹脂製であり、かつ透明であるものが好ましく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢酸セルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ)アクリル酸エステル共重合体、ポリ塩化ビニル、ポリビニルアルコール、ポリカーボネート、ポリスチレン、セロファン、ポリ塩化ビニリデン共重合体、ポリアミド、ポリイミド、塩化ビニル−酢酸ビニル共重合体、ポリテトラフルオロエチレン、ポリトリフルオロエチレン、セルロース系フィルム、ナイロンフィルム等の各種のプラスチックフィルムが挙げられ、これらの中でも、ポリエチレンテレフタレートが特に好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
なお、前記支持体としては、例えば、特開平4−208940号公報、特開平5−80503号公報、特開平5−173320号公報、特開平5−72724号公報などに記載の支持体を用いることもできる。
前記感光性フィルムにおける感光層の形成は、前記基材への前記感光性組成物溶液の塗布及び乾燥(前記第1の態様の感光層形成方法)と同様な方法で行うことができる。
前記保護フィルムは、前記感光層の汚れや損傷を防止し、保護する機能を有するフィルムである。
前記保護フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、5〜100μmが好ましく、8〜50μmがより好ましく、10〜40μmが特に好ましい。
前記保護フィルムの前記感光性フィルムにおいて設けられる箇所としては、特に制限はなく、目的に応じて適宜選択することができ、通常、前記感光層上に設けられる。
前記保護フィルムを用いる場合、前記感光層及び前記支持体の接着力Aと、前記感光層及び保護フィルムの接着力Bとの関係としては、接着力A>接着力Bであることが好適である。
前記支持体と前記保護フィルムとの静摩擦係数としては、0.3〜1.4が好ましく、0.5〜1.2がより好ましい。
前記静摩擦係数が、0.3未満であると、滑り過ぎるため、ロール状にした場合に巻ズレが発生することがあり、1.4を超えると、良好なロール状に巻くことが困難となることがある。
前記保護フィルムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体に使用されるもの、シリコーン紙、ポリエチレン、ポリプロピレンがラミネートされた紙、ポリオレフィン又はポリテトラフルオロエチレンシート、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピレンフィルムなどが特に好ましいものとして挙げられる。
前記支持体と保護フィルムとの組合せ(支持体/保護フィルム)としては、例えば、特開2005−70767号公報の段落番号〔0151〕に記載の組合せや、ポリエチレンテレフタレート/ポリエチレンテレフタレートなどが挙げられる。
前記保護フィルムとしては、上述の接着力の関係を満たすために、前記保護フィルムと前記感光層との接着性を調製するために表面処理することが好ましく、例えば、該表面処理の方法としては、特開2005−70767号公報の段落番号〔0151〕に記載の方法等が挙げられる。
前記その他の層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱可塑性樹脂層、中間層、などが挙げられる。
−熱可塑性樹脂層−
前記熱可塑性樹脂層(以下、「クッション層」と称することもある)は、アルカリ現像を可能とし、また、転写時にはみ出した該熱可塑性樹脂層により被転写体が汚染されるのを防止可能とする観点からアルカリ可溶性であることが好ましく、前記感光性転写材料を被転写体上に転写させる際、該被転写体上に存在する凹凸に起因して発生する転写不良を効果的に防止するクッション材としての機能を有していることが好ましく、該感光性転写材料を前記被転写体上に加熱密着させた際に該被転写体上に存在する凹凸に応じて変形可能であるのがより好ましい。
前記熱可塑性樹脂層に用いる材料としては、例えば、特開平5−72724号公報に記載されている有機高分子物質が好ましく、ヴイカーVicat法(具体的には、アメリカ材料試験法エーエステーエムデーASTMD1235によるポリマー軟化点測定法)による軟化点が約80℃以下の有機高分子物質より選択されることが特に好ましい。具体的には、ポリエチレン、ポリプロピレンなどのポリオレフィン、エチレンと酢酸ビニル又はそのケン化物の様なエチレン共重合体、エチレンとアクリル酸エステル又はそのケン化物、ポリ塩化ビニル、塩化ビニルと酢酸ビニル又はそのケン化物の様な塩化ビニル共重合体、ポリ塩化ビニリデン、塩化ビニリデン共重合体、ポリスチレン、スチレンと(メタ)アクリル酸エステル又はそのケン化物の様なスチレン共重合体、ポリビニルトルエン、ビニルトルエンと(メタ)アクリル酸エステル又はそのケン化物の様なビニルトルエン共重合体、ポリ(メタ)アクリル酸エステル、(メタ)アクリル酸ブチルと酢酸ビニル等の(メタ)アクリル酸エステル共重合体、酢酸ビニル共重合体ナイロン、共重合ナイロン、N−アルコキシメチル化ナイロン、N−ジメチルアミノ化ナイロンの様なポリアミド樹脂等の有機高分子などが挙げられる。
前記熱可塑性樹脂層の乾燥厚みは、2〜30μmが好ましく、5〜20μmがより好ましく、7〜16μmが特に好ましい。
−中間層−
前記中間層は、前記感光層上に設けられ、前記感光性転写材料がアルカリ可溶な熱可塑性樹脂層を有する場合には該感光層と該熱可塑性樹脂層との間に設けられる。該感光層と該熱可塑性樹脂層との形成においては、有機溶剤を用いるため、該中間層がその間に位置すると、両層が互いに混ざり合うのを防止することができる。
前記中間層としては、水又はアルカリ水溶液に分散乃至溶解するものが好ましい。
前記中間層の材料としては、公知のものを使用することができ、例えば、特開昭46−2121号公報及び特公昭56−40824号公報に記載のポリビニルエーテル/無水マレイン酸重合体、カルボキシアルキルセルロースの水溶性塩、水溶性セルロースエーテル類、カルボキシアルキル澱粉の水溶性塩、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド類、水溶性ポリアミド、ポリアクリル酸の水溶性塩、ゼラチン、エチレンオキサイド重合体、各種澱粉及びその類似物からなる群の水溶性塩、スチレン/マレイン酸の共重合体、マレイネート樹脂、などが挙げられる。
これらは、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも親水性高分子を使用するのが好ましく、該親水性高分子の中でも、少なくともポリビニルアルコールを使用するのが好ましく、ポリビニルアルコールとポリビニルピロリドンとの併用が特に好ましい。
前記ポリビニルアルコールとしては、特に制限はなく、目的に応じて適宜選択することができ、その鹸化率は80%以上が好ましい。
前記ポリビニルピロリドンを使用する場合、その含有量としては、該中間層の固形分に対し、1〜75体積%が好ましく、1〜60体積%がより好ましく、10〜50体積%が特に好ましい。
前記含有量が、1体積%未満であると、前記感光層との十分な密着性が得られないことがあり、75体積%を超えると、酸素遮断能が低下することがある。
前記中間層は、酸素透過率が小さいことが好ましい。前記中間層の酸素透過率が大きく酸素遮断能が低い場合には、前記感光層に対する露光時における光量をアップする必要を生じたり、露光時間を長くする必要が生ずることがあり、解像度も低下してしまうことがある。
前記中間層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、0.1〜5μmが好ましく、0.5〜2μmがより好ましい。
前記厚みが、0.1μm未満であると、酸素透過性が高過ぎてしまうことがあり、5μmを超えると、現像時や中間層除去時に長時間を要することがある。
前記感光性フィルムの構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体上に、仮支持体上に、熱可塑性樹脂層と、中間層と、感光層とを、この順に有してなる形態などが挙げられる。なお、前記感光層は、単層であってもよいし、複数層であってもよい。
前記感光性フィルムは、例えば、円筒状の巻芯に巻き取って、長尺状でロール状に巻かれて保管されるのが好ましい。前記長尺状の感光性フィルムの長さとしては、特に制限はなく、例えば、10m〜20,000mの範囲から適宜選択することができる。また、ユーザーが使いやすいようにスリット加工し、100m〜1,000mの範囲の長尺体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になるように巻き取られるのが好ましい。また、前記ロール状の感光性フィルムをシート状にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端面にはセパレーター(特に防湿性のもの、乾燥剤入りのもの)を設置するのが好ましく、また梱包も透湿性の低い素材を用いるのが好ましい。
前記感光性フィルムは、カラーフィルタや柱材、リブ材、スペーサー、隔壁などのディスプレイ用部材などのパターン形成用として広く用いることができ、これらの中でも、本発明のパターン形成方法に好適に用いることができる。
なお、前記第2の態様の感光層形成方法により形成された感光層を有する積層体への露光方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、支持体上にクッション層を介して存在する感光層からなるフィルムの場合は、前記支持体、必要に応じてクッション層も剥離した後、前記酸素遮断層を介して前記感光層を露光することが好ましい。
<感光層>
前記感光層形成工程で形成される感光層(カラーレジスト層)としては、少なくともバインダー、重合性化合物、光重合開始剤、及び顔料粒子を含み、更に必要に応じて適宜選択されるその他の成分を含む感光性組成物を用いてなる。
<<バインダー>>
前記バインダーとしては、例えば、アルカリ性水溶液に対して膨潤性であるのが好ましく、アルカリ性水溶液に対して可溶性であるのがより好ましい。
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、酸性基を有するものが好適に挙げられる。
前記酸性基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルボキシル基、スルホン酸基、リン酸基などが挙げられ、これらの中でもカルボキシル基が好ましい。
前記カルボキシル基を有するバインダーとしては、例えば、カルボキシル基を有するビニル共重合体、ポリウレタン樹脂、ポリアミド酸樹脂、変性エポキシ樹脂などが挙げられ、これらの中でも、塗布溶媒への溶解性、アルカリ現像液への溶解性、合成適性、膜物性の調製の容易さ等の観点からカルボキシル基を有するビニル共重合体が好ましい。
前記カルボキシル基を有するビニル共重合体は、少なくとも(1)カルボキシル基を有するビニルモノマー、及び(2)これらと共重合可能なモノマーとの共重合により得ることができる。
前記カルボキシル基を有するビニルモノマーとしては、例えば、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマー、水酸基を有する単量体(例えば、2−ヒドロキシエチル(メタ)アクリレート等)と環状無水物(例えば、無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物)との付加反応物、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレートなどが挙げられる。これらの中でも、共重合性やコスト、溶解性などの観点から(メタ)アクリル酸が特に好ましい。
また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸等の無水物を有するモノマーを用いてもよい。
前記その他の共重合可能なモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、ビニルエーテル類、ビニルアルコールのエステル類、スチレン類、(メタ)アクリロニトリル、ビニル基が置換した複素環式基(例えば、ビニルピリジン、ビニルピロリドン、ビニルカルバゾール等)、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイミダゾール、ビニルカプロラクトン、2−アクリルアミド−2−メチルプロパンスルホン酸、リン酸モノ(2―アクリロイルオキシエチルエステル)、リン酸モノ(1−メチル−2―アクリロイルオキシエチルエステル)、官能基(例えば、ウレタン基、ウレア基、スルホンアミド基、フェノール基、イミド基)を有するビニルモノマーなどが挙げられる。
前記(メタ)アクリル酸エステル類としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、t−オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、アセトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−メトキシエトキシ)エチル(メタ)アクリレート、3−フェノキシ−2−ヒドロキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノフェニルエーテル(メタ)アクリレート、トリエチレングリコールモノメチルエーテル(メタ)アクリレート、トリエチレングリコールモノエチルエーテル(メタ)アクリレート、ポリエチレングリコールモノメチルエーテル(メタ)アクリレート、ポリエチレングリコールモノエチルエーテル(メタ)アクリレート、β−フェノキシエトキシエチルアクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、パーフルオロクチルエチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレートなどが挙げられる。
前記クロトン酸エステル類としては、例えば、クロトン酸ブチル、クロトン酸ヘキシルなどが挙げられる。
前記ビニルエステル類としては、例えば、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、安息香酸ビニルなどが挙げられる。
前記マレイン酸ジエステル類としては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどが挙げられる。
前記フマル酸ジエステル類としては、例えば、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチルなどが挙げられる。
前記イタコン酸ジエステル類としては、例えば、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチルなどが挙げられる。
前記(メタ)アクリルアミド類としては、例えば、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチルアクリル(メタ)アミド、N−t−ブチル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−(2−メトキシエチル)(メタ)アクリルアミド、N、N−ジメチル(メタ)アクリルアミド、N、N−ジエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミドなどが挙げられる。
前記スチレン類としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、酸性物質により脱保護可能な基(例えば、t-Boc等)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、α−メチルスチレンなどが挙げられる。
前記ビニルエーテル類としては、例えば、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテルなどが挙げられる。
前記官能基を有するビニルモノマーの合成方法としては、例えば、イソシアナート基と水酸基又はアミノ基の付加反応が挙げられ、具体的には、イソシアナート基を有するモノマーと、水酸基を1個含有する化合物又は1級若しくは2級アミノ基を1個有する化合物との付加反応、水酸基を有するモノマー又は1級若しくは2級アミノ基を有するモノマーと、モノイソシアネートとの付加反応が挙げられる。
前記イソシアナート基を有するモノマーとしては、例えば、下記構造式(1)〜(3)で表される化合物が挙げられる。
ただし、前記構造式(1)〜(3)中、Rは、水素原子、又はメチル基を表す。
前記モノイソシアネートとしては、例えば、シクロヘキシルイソシアネート、n−ブチルイソシアネート、トルイルイソシアネート、ベンジルイソシアネート、フェニルイソシアネートなどが挙げられる。
前記水酸基を有するモノマーとしては、例えば、下記構造式(4)〜(12)で表される化合物が挙げられる。
ただし、前記構造式(4)〜(12)中、Rは、水素原子、又はメチル基を表し、n、n1、n2は、1以上の整数を表す。
前記水酸基を1個含有する化合物としては、例えば、アルコール類(例えば、メタノール、エタノール、n−プロパノール、i―プロパノール、n−ブタノール、sec−ブタノール、t−ブタノール、n−ヘキサノール、2−エチルヘキサノール、n−デカノール、n−ドデカノール、n−オクタデカノール、シクロペンタノール、シクロへキサノール、ベンジルアルコール、フェニルエチルアルコール等)、フェノール類(例えば、フェノール、クレゾール、ナフトール等)、更に置換基を含むものとして、フルオロエタノール、トリフルオロエタノール、メトキシエタノール、フェノキシエタノール、クロロフェノール、ジクロロフェノール、メトキシフェノール、アセトキシフェノールなどが挙げられる。
前記1級又は2級アミノ基を有するモノマーとしては、例えば、ビニルベンジルアミンなどが挙げられる。
前記1級又は2級アミノ基を1個含有する化合物としては、例えば、アルキルアミン(メチルアミン、エチルアミン、n−プロピルアミン、i―プロピルアミン、n−ブチルアミン、sec−ブチルアミン、t−ブチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、デシルアミン、ドデシルアミン、オクタデシルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジオクチルアミン)、環状アルキルアミン(シクロペンチルアミン、シクロへキシルアミン等)、アラルキルアミン(ベンジルアミン、フェネチルアミン等)、アリールアミン(アニリン、トルイルアミン、キシリルアミン、ナフチルアミン等)、更にこれらの組合せ(N−メチル−N−ベンジルアミン等)、更に置換基を含むアミン(トリフルオロエチルアミン、ヘキサフルオロイソプロピルアミン、メトキシアニリン、メトキシプロピルアミン等)などが挙げられる。
また、上記以外の前記その他の共重合可能なモノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−エチルヘキシル、スチレン、クロルスチレン、ブロモスチレン、ヒドロキシスチレンなどが好適に挙げられる。
前記その他の共重合可能なモノマーは、1種単独で使用してもよく、2種以上を併用してもよい。
前記ビニル共重合体は、それぞれ相当するモノマーを公知の方法により常法に従って共重合させることで調製することができる。例えば、前記モノマーを適当な溶媒中に溶解し、ここにラジカル重合開始剤を添加して溶液中で重合させる方法(溶液重合法)を利用することにより調製することができる。また、水性媒体中に前記モノマーを分散させた状態でいわゆる乳化重合等で重合を利用することにより調製することができる。
前記溶液重合法で用いられる適当な溶媒としては、特に制限はなく、使用するモノマー、及び生成する共重合体の溶解性等に応じて適宜選択することができ、例えば、メタノール、エタノール、プロパノール、イソプロパノール、1−メトキシ−2−プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、メトキシプロピルアセテート、乳酸エチル、酢酸エチル、アセトニトリル、テトラヒドロフラン、ジメチルホルムアミド、クロロホルム、トルエンなどが挙げられる。これらの溶媒は、1種単独で使用してもよく、2種以上を併用してもよい。
前記ラジカル重合開始剤としては、特に制限はなく、例えば、2,2’−アゾビス(イソブチロニトリル)(AIBN)、2,2’−アゾビス−(2,4’−ジメチルバレロニトリル)等のアゾ化合物、ベンゾイルパーオキシド等の過酸化物、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩などが挙げられる。
前記ビニル共重合体におけるカルボキシル基を有する重合性化合物の含有率としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、5〜50モル%が好ましく、10〜40モル%がより好ましく、15〜35モル%が特に好ましい。
前記含有率が、5モル%未満であると、アルカリ水への現像性が不足することがあり、50モル%を超えると、硬化部(画像部)の現像液耐性が不足することがある。
前記カルボキシル基を有するバインダーの分子量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、重量平均分子量として、2,000〜300,000が好ましく、4,000〜150,000がより好ましい。
前記重量平均分子量が、2,000未満であると、膜の強度が不足しやすく、また安定な製造が困難になることがあり、300,000を超えると、現像性が低下することがある。
前記カルボキシル基を有するバインダーは、1種単独で使用してもよく、2種以上を併用してもよい。前記バインダーを2種以上併用する場合としては、例えば、異なる共重合成分からなる2種以上のバインダー、異なる重量平均分子量の2種以上のバインダー、異なる分散度の2種以上のバインダー、などの組合せが挙げられる。
前記カルボキシル基を有するバインダーは、そのカルボキシル基の一部又は全部が塩基性物質で中和されていてもよい。また、前記バインダーは、更にポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリビニルアルコール、ゼラチン等の構造の異なる樹脂を併用してもよい。
また、前記バインダーとしては、特許第2873889号公報に記載のアルカリ水溶液に可溶な樹脂などを用いることができる。
前記バインダーの酸価としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、60〜200mgKOH/gが好ましく、80〜120mgKOH/gがより好ましい。
前記酸価が、60mgKOH/g未満であると、現像性が不足したり、解像性が劣り、パターンを高精細に得ることができないことがあり、200mgKOH/gを超えると、パターンの耐現像液性及び密着性の少なくともいずれかが悪化し、パターンを高精細に得ることができないことがある。
前記バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開昭51−131706号、特開昭52−94388号、特開昭64−62375号、特開平2−97513号、特開平3−289656号、特開平61−243869号、特開2002−296776号などの各公報に記載の酸性基を有するエポキシアクリレート化合物が挙げられる。具体的には、フェノールノボラック型エポキシアクリレートモノテトラヒドロフタレート、あるいは、クレゾールノボラックエポキシアクリレートモノテトラヒドロフタレート、ビスフェノールA型エポキシアクリレートモノテトラヒドロフタレート等であって、例えばエポキシ樹脂や多官能エポキシ化合物に(メタ)アクリル酸等のカルボキシル基含有モノマーを反応させ、更に無水フタル酸等の二塩基酸無水物を付加させたものである。
前記エポキシアクリレート化合物の分子量は、1,000〜200,000が好ましく、2,000〜100,000がより好ましい。該分子量が1,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、200,000を超えると、現像性が劣化することがある。
また、特開平6−295060号公報に記載の酸性基及び二重結合等の重合可能な基を少なくとも1つ有するアクリル樹脂も用いることができる。具体的には、分子内に少なくとも1つの重合可能な二重結合、例えば、(メタ)アクリレート基又は(メタ)アクリルアミド基等のアクリル基、カルボン酸のビニルエステル、ビニルエーテル、アリルエーテル等の各種重合性二重結合を用いることができる。より具体的には、酸性基としてカルボキシル基を含有するアクリル樹脂に、グリシジルアクリレート、グリシジルメタクリレート、桂皮酸等の不飽和脂肪酸のグリシジルエステルや、同一分子中にシクロヘキセンオキシド等のエポキシ基と(メタ)アクリロイル基を有する化合物等のエポキシ基含有の重合性化合物を付加させて得られる化合物などが挙げられる。また、酸性基及び水酸基を含有するアクリル樹脂に、イソシアナートエチル(メタ)アクリレート等のイソシアネート基含有の重合性化合物を付加させて得られる化合物、無水物基を含有するアクリル樹脂に、ヒドロキシアルキル(メタ)アクリレート等の水酸基を含有する重合性化合物を付加させて得られる化合物なども挙げられる。これらの市販品としては、例えば、「カネカレジンAXE;鐘淵化学工業(株)製」、「サイクロマー(CYCLOMER) A−200;ダイセル化学工業(株)製」、「サイクロマー(CYCLOMER) M−200;ダイセル化学工業(株)製」などを用いることができる。
更に、特開昭50−59315号公報記載のヒドロキシアルキルアクリレート又はヒドロキシアルキルメタクリレートとポリカルボン酸無水物及びエピハロヒドリンのいずれかとの反応物などを用いることができる。
また、特開平5−70528号公報に記載のフルオレン骨格を有するエポキシアクリレートに酸無水物を付加させて得られる化合物、特開平11−288087号公報記載のポリアミド(イミド)樹脂、特開平2−097502号公報や特開2003−20310号公報記載のアミド基を含有するスチレン又はスチレン誘導体と酸無水物共重合体、特開平11−282155号公報記載のポリイミド前駆体などを用いることができる。これらは1種単独で使用してもよいし、2種以上を混合して使用してもよい。
前記アクリル樹脂、フルオレン骨格を有するエポキシアクリレート、ポリアミド(イミド)、アミド基含有スチレン/酸無水物共重合体、あるいは、ポリイミド前駆体などのバインダーの分子量は、3,000〜500,000が好ましく、5,000〜100,000がより好ましい。該分子量が3,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、500,000を超えると、現像性が劣化することがある。
前記バインダーの前記感光性組成物固形分中の固形分含有量は、5〜80質量%が好ましく、10〜70質量%がより好ましく、15〜50質量%が特に好ましい。該固形分含有量が、5質量%未満であると、アルカリ現像性が低下したり、感光層の膜強度が弱くなりやすく、該感光層の表面のタック性が悪化することがあり、80質量%を超えると、露光感度が低下したり、現像時間に対する安定性が低下することがある。
前記含有量は、前記バインダーと必要に応じて併用される高分子結合剤との合計の含有量であってもよい。
<<重合性化合物>>
前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができ、分子中に少なくとも1個の付加重合可能な基を有し、沸点が常圧で100℃以上である化合物が好ましく、例えば、(メタ)アクリル基を有するモノマーから選択される少なくとも1種が好適に挙げられる。
前記(メタ)アクリル基を有するモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の単官能アクリレートや単官能メタクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパンやグリセリン、ビスフェノール等の多官能アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で(メタ)アクリレート化したもの、特公昭48−41708号、特公昭50−6034号、特開昭51−37193号等の各公報に記載されているウレタンアクリレート類;特開昭48−64183号、特公昭49−43191号、特公昭52−30490号等の各公報に記載されているポリエステルアクリレート類;エポキシ樹脂と(メタ)アクリル酸の反応生成物であるエポキシアクリレート類等の多官能アクリレートやメタクリレートなどが挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレートが特に好ましい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記重合性化合物の前記感光性組成物固形分中の固形分含有量は、10〜60質量%が好ましく、15〜50質量%がより好ましく、20〜40質量%が特に好ましい。該固形分含有量が10質量%未満であると、現像性の悪化、露光感度の低下などの問題を生ずることがあり、60質量%を超えると、感光層の粘着性が強くなりすぎることがある。
前記重合性化合物と前記バインダーの比率は、質量比で、重合性化合物/バインダー=0.5〜1.5が好ましく、0.6〜1.2がより好ましく、0.65〜1.1が特に好ましい。この範囲を超えると、現像時に残渣が生じるなどの問題が生じることがあり、この範囲未満では、完成したカラーフィルタの耐性が低下することがある。
<<光重合開始剤>>
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができ、例えば、紫外線領域から可視の光線に対して感光性を有するものが好ましく、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。
また、前記光重合開始剤は、約300〜800nm(より好ましくは330〜500nm)の範囲内に少なくとも約50の分子吸光係数を有する成分を少なくとも1種含有していることが好ましい。
前記光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの等)、ホスフィンオキサイド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテルなどが挙げられる。
前記トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan、42、2924(1969)記載の化合物、英国特許第1388492号明細書に記載の化合物、特開昭53−133428号公報記載の化合物、独国特許第3337024号明細書に記載の化合物、F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載の化合物、米国特許第4212976号明細書に記載されている化合物、などが挙げられる。
更に、米国特許第2367660号明細書に記載されているビシナルポリケタルドニル化合物、米国特許第2448828号明細書に記載されているアシロインエーテル化合物、米国特許第2722512号明細書に記載されているα−炭化水素で置換された芳香族アシロイン化合物、米国特許第3046127号明細書及び米国特許第2951758号明細書に記載の多核キノン化合物、特開2002−229194号公報に記載の有機ホウ素化合物、ラジカル発生剤、トリアリールスルホニウム塩(例えば、ヘキサフルオロアンチモンやヘキサフルオロホスフェートとの塩)、ホスホニウム塩化合物〔例えば、(フェニルチオフェニル)ジフェニルスルホニウム塩等、カチオン重合開始剤として有効〕、国際公開第01/71428号パンフレットに記載のオニウム塩化合物などが挙げられる。
前記若林ら著、Bull.Chem.Soc.Japan、42、2924(1969)記載の化合物としては、例えば、2−フェニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−クロルフェニル)−4、6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−トリル)−4、6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(2,4−ジクロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2,4,6−トリス(トリクロルメチル)−1,3,5−トリアジン、2−メチル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−n−ノニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(α,α,β−トリクロルエチル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
前記英国特許第1388492号明細書に記載の化合物としては、例えば、2−スチリル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メチルスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4−アミノ−6−トリクロルメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭53−133428号公報に記載の化合物としては、例えば、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−エトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−〔4−(2−エトキシエチル)−ナフト−1−イル〕−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4,7−ジメトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(アセナフト−5−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
前記独国特許第3337024号明細書に記載の化合物としては、例えば、2−(4−スチリルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシスチリル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(1−ナフチルビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−クロロスチリルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−3−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−フラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ベンゾフラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物としては、例えば、2−メチル−4、6−ビス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(ジブロモメチル)−1,3,5−トリアジン、2−アミノ−4−メチル−6−トリ(ブロモメチル)−1,3,5−トリアジン、2−メトキシ−4−メチル−6−トリクロロメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭62−58241号公報に記載の化合物としては、例えば、2−(4−フェニルエチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ナフチル−1−エチニルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−トリルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシフェニル)エチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−イソプロピルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−エチルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記特開平5−281728号公報に記載の化合物としては、例えば、2−(4−トリフルオロメチルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジフルオロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジクロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジブロモフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記特開平5−34920号公報に記載の化合物としては、例えば、2,4−ビス(トリクロロメチル)−6−[4−(N、N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−1,3,5−トリアジン、米国特許第4239850号明細書に記載されているトリハロメチル−s−トリアジン化合物、更に2,4,6−トリス(トリクロロメチル)−s−トリアジン、2−(4−クロロフェニル)−4,6−ビス(トリブロモメチル)−s−トリアジンなどが挙げられる。
前記米国特許第4212976号明細書に記載の化合物としては、例えば、オキサジアゾール骨格を有する化合物(例えば、2−トリクロロメチル−5−フェニル−1、3、4−オキサジアゾール、2−トリクロロメチル−5−(4−クロロフェニル)−1、3、4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1、3、4−オキサジアゾール、2−トリクロロメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリブロモメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール;2−トリクロロメチル−5−スチリル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロルスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−メトキシスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−n−ブトキシスチリル)−1,3,4−オキサジアゾール、2−トリプロメメチル−5−スチリル−1,3,4−オキサジアゾール等)などが挙げられる。
前記オキシム誘導体としては、例えば、3−ベンゾイロキシイミノブタン−2−オン、3−アセトキシイミノブタン−2−オン、3−プロピオニルオキシイミノブタン−2−オン、2−アセトキシイミノペンタン−3−オン、2−アセトキシイミノ−1−フェニルプロパン−1−オン、2−ベンゾイロキシイミノ−1−フェニルプロパン−1−オン、3−(4−トルエンスルホニルオキシ)イミノブタン−2−オン、2−エトキシカルボニルオキシイミノ−1−フェニルプロパン−1−オンなどが挙げられる。
また、上記以外の光重合開始剤として、アクリジン誘導体(例えば、9−フェニルアクリジン、1,7−ビス(9,9’−アクリジニル)ヘプタン等)、N−フェニルグリシン等、ポリハロゲン化合物(例えば、四臭化炭素、フェニルトリブロモメチルスルホン、フェニルトリクロロメチルケトン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン、7−ベンゾトリアゾール−2−イルクマリン、また、特開平5−19475号、特開平7−271028号、特開2002−363206号、特開2002−363207号、特開2002−363208号、特開2002−363209号公報等に記載のクマリン化合物など)、アミン類(例えば、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸n−ブチル、4−ジメチルアミノ安息香酸フェネチル、4−ジメチルアミノ安息香酸2−フタルイミドエチル、4−ジメチルアミノ安息香酸2−メタクリロイルオキシエチル、ペンタメチレンビス(4−ジメチルアミノベンゾエート)、3−ジメチルアミノ安息香酸のフェネチル、ペンタメチレンエステル、4−ジメチルアミノベンズアルデヒド、2−クロル−4−ジメチルアミノベンズアルデヒド、4−ジメチルアミノベンジルアルコール、エチル(4−ジメチルアミノベンゾイル)アセテート、4−ピペリジノアセトフェノン、4−ジメチルアミノベンゾイン、N,N−ジメチル−4−トルイジン、N,N−ジエチル−3−フェネチジン、トリベンジルアミン、ジベンジルフェニルアミン、N−メチル−N−フェニルベンジルアミン、4−ブロム−N,N−ジメチルアニリン、トリドデシルアミン、アミノフルオラン類(ODB、ODBII等)、クリスタルバイオレットラクトン、ロイコクリスタルバイオレット等)、アシルホスフィンオキサイド類(例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフェニルホスフィンオキサイド、LucirinTPOなど)、メタロセン類(例えば、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ3−(1H−ピロール−1−イル)−フェニル)チタニウム、η5−シクロペンタジエニル−η6−クメニル−アイアン(1+)−ヘキサフルオロホスフェート(1−)等)、特開昭53−133428号公報、特公昭57−1819号公報、同57−6096号公報、米国特許第3615455号明細書に記載された化合物などが挙げられる。
前記ケトン化合物としては、例えば、ベンゾフェノン、2−メチルベンゾフェノン、3−メチルベンゾフェノン、4−メチルベンゾフェノン、4−メトキシベンゾフェノン、2−クロロベンゾフェノン、4−クロロベンゾフェノン、4−ブロモベンゾフェノン、2−カルボキシベンゾフェノン、2−エトキシカルボニルベンゾルフェノン、ベンゾフェノンテトラカルボン酸又はそのテトラメチルエステル、4,4’−ビス(ジアルキルアミノ)ベンゾフェノン類(例えば、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4、4’−ビスジシクロヘキシルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4’−ビス(ジヒドロキシエチルアミノ)ベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−ジメチルアミノベンゾフェノン、4−ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2−t−ブチルアントラキノン、2−メチルアントラキノン、フェナントラキノン、キサントン、チオキサントン、2−クロル−チオキサントン、2,4−ジエチルチオキサントン、フルオレノン、2−ベンジル−ジメチルアミノ−1−(4−モルホリノフェニル)−1−ブタノン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルホリノ−1−プロパノン、2−ヒドロキシ−2−メチル−〔4−(1−メチルビニル)フェニル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類(例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドン、などが挙げられる。
前記ヘキサアリールビイミダゾール化合物としては、例えば、2,2’−ビス(o−クロロフェニル)−4,5,4’,5’−テトラフェニル−1,2’−ビスイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’─テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2,4,6−トリクロロフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2,4,6−トリクロロフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−シアノフェニル)−4,4’,5.5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−シアノフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−メチルフェニル)−4,4’,5,5’−テトラキス(4−メトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−メチルフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−メチルフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−エチルフェニル)−4,4’,5,5’−テトラキス(4−メトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−エチルフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−エチルフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−フェニルフェニル)−4,4’,5,5’−テトラキス(4−メトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−フェニルフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−フェニルフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’─テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリクロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−ブロモフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジブロモフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリブロモフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−シアノフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジシアノフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリシアノフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−メチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジメチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリメチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−エチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジエチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリエチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−フェニルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジフェニルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリフェニルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、などが挙げられる。
前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が405nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記α−アミノアルキルケトン類、前記トリアジン骨格を有するハロゲン化炭化水素化合物と後述する増感剤としてのアミン化合物とを組合せた複合光開始剤、ヘキサアリールビイミダゾール化合物、あるいは、チタノセンなどが挙げられる。
前記光重合開始剤の含有量としては、前記感光性組成物中の全固形成分に対し、0.1〜50質量%が好ましく、0.5〜30質量%がより好ましく、1〜20質量%が特に好ましい。
前記光重合開始剤の含有量は、前記重合性化合物との質量比で表すと、光重合開始剤/重合性化合物=0.01〜0.2が好ましく、0.02〜0.1がより好ましく、0.03〜0.08が特に好ましい。この範囲を超えると、現像残渣が生じたり、析出故障が生じるという問題があり、この範囲未満であると、十分な感度が得られないことがある。
また、後述する感光層への露光における露光感度や感光波長を調製する目的で、前記光重合開始剤に加えて、増感剤を添加することが可能である。
前記増感剤は、後述する光照射手段としての可視光線や紫外光・可視光レーザなどにより適宜選択することができる。
前記増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)することにより、ラジカルや酸等の有用基を発生することが可能である。
前記増感剤としては、特に制限はなく、公知の増感剤の中から目的に応じて適宜選択することができるが、例えば、公知の多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン)、キサンテン類(例えば、フルオレセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル)、シアニン類(例えば、インドカルボシアニン、チアカルボシアニン、オキサカルボシアニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー)、アクリジン類(例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン)、アントラキノン類(例えば、アントラキノン)、スクアリウム類(例えば、スクアリウム)、アクリドン類(例えば、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5、7−ジ−n−プロポキシクマリン)、3、3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5、7−ジプロポキシクマリン等が挙げられ、他に特開平5−19475号、特開平7−271028号、特開2002−363206号、特開2002−363207号、特開2002−363208号、特開2002−363209号等の各公報に記載のクマリン化合物等)、などが挙げられる。
前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開2001−305734号公報に記載の電子移動型開始系[(1)電子供与型開始剤及び増感色素、(2)電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容型開始剤(三元開始系)]などの組合せが挙げられる。
前記増感剤の含有量としては、前記感光性組成物中の全成分に対し、0.05〜30質量%が好ましく、0.1〜20質量%がより好ましく、0.2〜10質量%が特に好ましい。該含有量が、0.05質量%未満であると、活性エネルギー線への感度が低下し、露光プロセスに時間がかかり、生産性が低下することがあり、30質量%を超えると、保存時に前記感光層から前記増感剤が析出することがある。
<<顔料粒子>>
前記顔料粒子の含有量は、前記感光層の総固形量に対し5〜60質量%であることが好ましい。前記顔料粒子の含有量が5質量%未満であると、膜現像されず走査方向と垂直方向の凹凸(ギザギザ)改良の効果が表れないことがあり、60質量%を超えると、パターンのプロファイルが悪くなることがある。
前記顔料粒子が黒色であり、かつ該黒色顔料粒子の含有量が前記感光層の総固形量に対し20〜60質量%であることが好ましく、30〜50質量%がより好ましい。前記黒色顔料粒子の含有量が20質量%未満であると、膜現像されず走査方向と垂直方向の凹凸(ギザギザ)改良の効果が表れないことがあり、60質量%を超えると、パターンのプロファイルが悪くなることがある。
前記顔料粒子が赤色であり、かつ該赤色顔料粒子の含有量が前記感光層の総固形量に対し10〜50質量%であることが好ましく、15〜40質量%がより好ましい。前記赤色顔料粒子の含有量が10質量%未満であると、膜現像されず走査方向と垂直方向の凹凸(ギザギザ)改良の効果が表れないことがあり、50質量%を超えると、パターンのプロファイルが悪くなることがある。
前記顔料粒子が緑色であり、かつ該緑色顔料粒子の含有量が前記感光層の総固形量に対し5〜60質量%であることが好ましく、5〜50質量%がより好ましい。前記緑色顔料粒子の含有量が5質量%未満であると、膜現像されず走査方向と垂直方向の凹凸(ギザギザ)改良の効果が表れないことがあり、60質量%を超えると、パターンのプロファイルが悪くなることがある。
前記顔料粒子が青色であり、かつ該青色顔料粒子の含有量が前記感光層の総固形量に対し5〜40質量%であることが好ましく、5〜30質量%がより好ましい。前記青色顔料粒子の含有量が5質量%未満であると、膜現像されず走査方向と垂直方向の凹凸(ギザギザ)改良の効果が表れないことがあり、40質量%を超えると、パターンのプロファイルが悪くなることがある。
前記顔料粒子が無色であり、かつ該無色顔料粒子の含有量が前記感光層の総固形量に対し5〜70質量%であることが好ましく、5〜60質量%がより好ましい。前記無色顔料粒子の含有量が5質量%未満であると、膜現像されず走査方向と垂直方向の凹凸(ギザギザ)改良の効果が表れないことがあり、70質量%を超えると、パターンのプロファイルが悪くなることがある。
黄色顔料として、例えば、C.I.ピグメントイエロー20、C.I.ピグメントイエロー24、C.I.ピグメントイエロー83、C.I.ピグメントイエロー86、C.I.ピグメントイエロー93、C.I.ピグメントイエロー109、C.I.ピグメントイエロー110、C.I.ピグメントイエロー117、C.I.ピグメントイエロー125、C.I.ピグメントイエロー137、C.I.ピグメントイエロー138、C.I.ピグメントイエロー139、C.I.ピグメントイエロー185、C.I.ピグメントイエロー147、C.I.ピグメントイエロー148、C.I.ピグメントイエロー153、C.I.ピグメントイエロー、C.I.ピグメントイエロー154、C.I.ピグメントイエロー166、C.I.ピグメントイエロー168、モノライト・イエローGT(C.I.ピグメントイエロー12)、パーマネント・イエローGR(C.I.ピグメントイエロー17)などが挙げられる。
オレンジ色顔料として、例えば、C.I.ピグメントオレンジ36、C.I.ピグメントオレンジ43、C.I.ピグメントオレンジ51、C.I.ピグメントオレンジ55、C.I.ピグメントオレンジ59、C.I.ピグメントオレンジ61などが挙げられる。
赤色顔料として、例えば、C.I.ピグメントレッド9、C.I.ピグメントレッド97、C.I.ピグメントレッド122、C.I.ピグメントレッド123、C.I.ピグメントレッド149、C.I.ピグメントレッド168、C.I.ピグメントレッド177、C.I.ピグメントレッド180、C.I.ピグメントレッド192、C.I.ピグメントレッド209、C.I.ピグメントレッド215、C.I.ピグメントレド216、C.I.ピグメントレッド217、C.I.ピグメントレッド220、C.I.ピグメントレッド223、C.I.ピグメントレッド224、C.I.ピグメントレッド226、C.I.ピグメントレッド227、C.I.ピグメントレッド228、C.I.ピグメントレッド240、C.I.ピグメントレッド48:1、パーマネント・カーミンFBB(C.I.ピグメントレッド146)、パーマネント・ルビーFBH(C.I.ピグメントレッド11)、ファステル・ピンクBスプラ(C.I.ピグメントレッド81)などが挙げられる。
バイオレット顔料として、例えば、C.I.ピグメントバイオレット19、C.I.ピグメントバイオレット23、C.I.ピグメントバイオレット29、C.I.ピグメントバイオレット30、C.I.ピグメントバイオレット37、C.I.ピグメントバイオレット40、C.I.ピグメントバイオレット50などが挙げられる。
青色顔料として、例えば、C.I.ピグメントブルー15、C.I.ピグメントブルー15:1、C.I.ピグメントブルー15:4、C.I.ピグメントブルー15:6、C.I.ピグメントブルー22、C.I.ピグメントブルー60、C.I.ピグメントブルー64、ビクトリア・ピュアーブルーBO(C.I.42595)などが挙げられる。
緑色顔料として、例えば、C.I.ピグメントグリーン7、C.I.ピグメントグリーン36などが挙げられる。
ブラウン顔料として、例えば、C.I.ピグメントブラウン23、C.I.ピグメントブラウン25、C.I.ピグメントブラウン26などが挙げられる。
黒色顔料として、例えば、モノライト・ファースト・ブラックB(C.I.ピグメントブラック1)、C.I.ピグメントブラック7、ファット・ブラックHB(C.I.26150)などが挙げられる。
その他、カーボンブラック、オーラミン(C.I.41000)などを挙げることができる。
無色顔料としては、例えば、シリカ、酸化亜鉛、硫酸バリウム、炭酸バリウム、アルミナホワイト、炭酸カルシウム、ステアリン酸カルシウムなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよく、これらの中でも、無着色なものが好ましく、シリカ、酸化亜鉛などが特に好ましい。
前記シリカの具体例としては、R−972、#200(日本アエロジル社製)、シーホスターKE(日本触媒化学工業(株)製)、スノーテックス(商品名:メタノールシリカゾル、MA−ST−M、IPA−ST、MEK−ST、MIBK−ST、日産化学工業(株)製)等の市販品が好適に挙げられる。
前記酸化亜鉛の具体例としては、ZnO−100、ZnO−200(住友セメント(株)製)等の市販品が好適に挙げられる。
これらの中でも、スノーテックスに代表されるコロイダルシリカが特に好ましい。
<<その他の成分>>
前記感光性組成物には、その他の成分として、例えば、熱架橋剤、可塑剤、界面活性剤、紫外線吸収剤、熱重合禁止剤等の成分を含有してもよい。
前記熱架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光性組成物を用いて形成される感光層の硬化後の膜強度を改良するために、現像性等などに悪影響を与えない範囲で、例えば、1分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂化合物、1分子内に少なくとも2つのオキセタニル基を有するオキセタン化合物、メラミン樹脂化合物などを用いることができる。
前記エポキシ樹脂化合物としては、例えば、ビキシレノール型もしくはビフェノール型エポキシ樹脂(「YX4000;ジャパンエポキシレジン社製」等)又はこれらの混合物、イソシアヌレート骨格等を有する複素環式エポキシ樹脂(「TEPIC;日産化学工業(株)製」、「アラルダイトPT810;チバ・スペシャルティ・ケミカルズ社製」等)、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、グリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂(「ESN−190、ESN−360;新日鉄化学(株)製」、「HP−4032、EXA−4750、EXA−4700;大日本インキ化学工業(株)製」等)、ジシクロペンタジエン骨格を有するエポキシ樹脂(「HP−7200、HP−7200H;大日本インキ化学工業社製」等)、グリシジルメタアクリレート共重合系エポキシ樹脂(「CP−50S、CP−50M;日本油脂(株)製」等)、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂などが挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
前記オキセタン化合物としては、例えば、ビス[(3−メチル−3−オキセタニルメトキシ)メチル]エーテル、ビス[(3−エチル−3−オキセタニルメトキシ)メチル]エーテル、1、4−ビス[(3−メチル−3−オキセタニルメトキシ)メチル]ベンゼン、1、4−ビス[(3−エチル−3−オキセタニルメトキシ)メチル]ベンゼン、(3−メチル−3−オキセタニル)メチルアクリレート、(3−エチル−3−オキセタニル)メチルアクリレート、(3−メチル−3−オキセタニル)メチルメタクリレート、(3−エチル−3−オキセタニル)メチルメタクリレート又はこれらのオリゴマーあるいは共重合体等の多官能オキセタン類の他、オキセタン基と、ノボラック樹脂、ポリ(p−ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、シルセスキオキサン等の水酸基を有する樹脂など、とのエーテル化合物が挙げられ、この他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体なども挙げられる。
前記メラミン樹脂化合物としては、例えば、アルキル化メチロールメラミン、ヘキサメチル化メチロールメラミンなどが挙げられる。
前記エポキシ樹脂化合物又はオキセタン化合物の前記感光性組成物固形分中の固形分含有量は、1〜50質量%が好ましく、3〜30質量%がより好ましい。該固形分含有量が1質量%未満であると、硬化膜の吸湿性が高くなり、絶縁性の劣化が生じることがあり、50質量%を超えると、現像性の悪化や露光感度の低下が生ずることがあり、好ましくない。
また、前記エポキシ樹脂化合物や前記オキセタン化合物の熱硬化を促進するため、例えば、ジシアンジアミド、ベンジルジメチルアミン、4−(ジメチルアミノ)−N,N−ジメチルベンジルアミン、4−メトキシ−N,N−ジメチルベンジルアミン、4−メチル−N,N−ジメチルベンジルアミン等のアミン化合物;トリエチルベンジルアンモニウムクロリド等の4級アンモニウム塩化合物;ジメチルアミン等のブロックイソシアネート化合物;イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、4−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール等のイミダゾール誘導体二環式アミジン化合物又はその塩;トリフェニルホスフィン等のリン化合物;メラミン、グアナミン、アセトグアナミン、ベンゾグアナミン等のグアナミン化合物;2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン、2−ビニル−2,4−ジアミノ−S−トリアジン、2−ビニル−4,6−ジアミノ−S−トリアジン・イソシアヌル酸付加物、2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン・イソシアヌル酸付加物等のS−トリアジン誘導体;などを用いることができる。これらは1種単独で使用してもよく、2種以上を併用してもよい。なお、前記エポキシ樹脂化合物や前記オキセタン化合物の硬化触媒、あるいは、これらとカルボキシル基の反応を促進することができるものであれば、特に制限はなく、上記以外の熱硬化を促進可能な化合物を用いてもよい。
前記エポキシ樹脂化合物、前記オキセタン化合物、及びこれらとカルボン酸との熱硬化を促進可能な化合物の前記感光性組成物固形分中の固形分含有量は、通常0.01〜15質量%である。
また、前記熱架橋剤としては、特開平5−9407号公報記載のポリイソシアネート化合物を用いることができ、該ポリイソシアネート化合物は、少なくとも2つのイソシアネート基を含む脂肪族、環式脂肪族又は芳香族基置換脂肪族化合物から誘導されていてもよい。前記熱架橋剤としては、例えば、1,3−フェニレンジイソシアネートと1,4−フェニレンジイソシアネートとの混合物、2,4−及び2,6−トルエンジイソシアネート、1,3−及び1,4−キシリレンジイソシアネート、ビス(4−イソシアネート−フェニル)メタン、ビス(4−イソシアネートシクロヘキシル)メタン、イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等の2官能イソシアネート;該2官能イソシアネートと、トリメチロールプロパン、ペンタリスルトール、グリセリン等との多官能アルコール;該多官能アルコールのアルキレンオキサイド付加体と、前記2官能イソシアネートとの付加体;ヘキサメチレンジイソシアネート、ヘキサメチレン−1,6−ジイソシアネート又はその誘導体等の環式三量体;などが挙げられる。
更に、本発明の感光性組成物、あるいは、本発明の感光性フィルムの保存性を向上させることを目的として、前記ポリイソシアネート及びその誘導体のイソシアネート基にブロック剤を反応させて得られる化合物を用いてもよい。
前記イソシアネート基ブロック剤としては、イソプロパノール、tert.−ブタノール等のアルコール類;ε−カプロラクタム等のラクタム類、フェノール、クレゾール、p−tert.−ブチルフェノール、p−sec.−ブチルフェノール、p−sec.−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール等のフェノール類;3−ヒドロキシピリジン、8−ヒドロキシキノリン等の複素環式ヒドロキシル化合物;ジアルキルマロネート、メチルエチルケトキシム、アセチルアセトン、アルキルアセトアセテートオキシム、アセトオキシム、シクロヘキサノンオキシム等の活性メチレン化合物;などが挙げられる。これらの他、特開平6−295060号公報記載の分子内に少なくとも1つの重合可能な二重結合及び少なくとも1つのブロックイソシアネート基のいずれかを有する化合物などを用いることができる。
また、アルデヒド縮合生成物、樹脂前駆体などを用いることができる。具体的には、N,N’−ジメチロール尿素、N,N’−ジメチロールマロンアミド、N,N’−ジメチロールスクシンイミド、トリメチロールメラミン、テトラメチロールメラミン、ヘキサメチロールメラミン、1,3−N,N’−ジメチロールテレフタルアミド、2,4,6−トリメチロールフェノール、2,6−ジメチロール−4−メチロアニソール、1,3−ジメチロール−4,6−ジイソプロピルベンゼンなどが挙げられる。なお、これらのメチロール化合物の代わりに、対応するエチルもしくはブチルエーテル、又は酢酸あるいはプロピオン酸のエステルを使用してもよい。また、メラミンと尿素とのホルムアルデヒド縮合生成物とからなるヘキサメトキシメチルメラミンや、メラミンとホルムアルデヒド縮合生成物のブチルエーテルなどを使用してもよい。
前記熱架橋剤の添加量としては、本発明の効果を損なわない範囲で加えることができ、前記熱架橋剤の含有量としては、感光性組成物の全固形分の0.01〜10質量%が好ましく、0.02〜5質量%がより好ましく、0.05〜3質量%が更に好ましい。
前記可塑剤は、前記感光層の膜物性(可撓性)をコントロールするために添加してもよい。
前記可塑剤としては、例えば、ジメチルフタレート、ジブチルフタレート、ジイソブチルフタレート、ジヘプチルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジトリデシルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジフェニルフタレート、ジアリルフタレート、オクチルカプリールフタレート等のフタル酸エステル類;トリエチレングリコールジアセテート、テトラエチレングリコールジアセテート、ジメチルグリコースフタレート、エチルフタリールエチルグリコレート、メチルフタリールエチルグリコレート、ブチルフタリールブチルグリコレート、トリエチレングリコールジカブリル酸エステル等のグリコールエステル類;トリクレジルホスフェート、トリフェニルホスフェート等のリン酸エステル類;4−トルエンスルホンアミド、ベンゼンスルホンアミド、N−n−ブチルベンゼンスルホンアミド、N−n−ブチルアセトアミド等のアミド類;ジイソブチルアジペート、ジオクチルアジペート、ジメチルセバケート、ジブチルセパケート、ジオクチルセパケート、ジオクチルアゼレート、ジブチルマレート等の脂肪族二塩基酸エステル類;クエン酸トリエチル、クエン酸トリブチル、グリセリントリアセチルエステル、ラウリン酸ブチル、4,5−ジエポキシシクロヘキサン−1,2−ジカルボン酸ジオクチル;ポリエチレングリコール、ポリプロピレングリコール等のグリコール類が挙げられる。
前記可塑剤の含有量としては、前記感光層の全成分に対して0.1〜50質量%が好ましく、0.5〜40質量%がより好ましく、1〜30質量%が更に好ましい。
前記界面活性剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤などから適宜選択できる。
更に、前記界面活性剤としては、次式、C17SON(R)CHCHO(CHCH)で表されるフッ素系界面活性剤が好適に挙げられる。
ただし、式中、R及びRは、各々水素原子、又は炭素数1〜4のアルキル基を表し、nは2〜30の整数を表す。
前記Rとしては、メチル基、エチル基、イソプロピル基が好適に挙げられ、前記Rとしては、水素原子が好適に挙げられる。
前記nとしては、10〜25が好ましく、10〜20がより好ましい。
前記式で表される界面活性剤の具体例としては、メガファックF−141(n=5)、F−142(n=10)、F=143(n=15)、F−144(n=20)(いずれも商品名:大日本インキ化学工業株式会社製)が挙げられる。
更に、前記界面活性剤としては、次式(1)〜(5)で表される界面活性剤が好適に挙げられる。
Rf1−X−(CHCHO)・・・(1)
Rf1−X−(CHCHO)・・・(2)
Rf1−X−(CHCHO)(CHCHCHO)・・・(3)
Rf1−X−(CHCHO)(CHCHCHO)Rf2・・・(4)
前記式(1)〜(4)において、R及びRは、炭素素1〜18、好ましくは、炭素数1〜10、より好ましくは、炭素数1〜4のアルキル基を表す。
前記アルキル基としては、飽和アルキル基、不飽和アルキル基が挙げられる。
前記アルキル基の構造としては、直鎖構造、分岐構造を有するものが挙げられ、これらの中でも分岐構造を有するものが好適に挙げられる。
前記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ヘプチル基、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ヘキサデシル基、オタタデシル基、エイコサニル基、ドコサニル基、2−クロロエチル基、2−プロモエチル基、2−シアノエチル基、2−メトキシカルボニルエチル基、2−メトキシエチル基、3−プロモプロピル基などが挙げられる。また、これらのアルキル基は、ハロゲン原子、アシル基、アミノ基、シアノ基、アルキル基、アルコキシ基、アルキル若しくはハロアルキルで置換されていてもよいアリール基、アミド基等で置換されていてもよい。
前記式(1)〜(4)において、Rf1及びRf2は、それぞれ独立して、炭素数1〜18、好ましく2〜12、より好ましくは4〜10のパーフルオロ基を表す。
前記パーフルオロ基としては、飽和パーフルオロ基、不飽和パーフルオロ基が挙げられる。
前記パーフルオロ基の構造としては、直鎖構造、分岐構造を有するものが挙げられ、これらの中でも分岐構造を有するものが好適に挙げられ、前記Rf1及びRf2の少なくともいずれかが、分岐構造を有するものがより好適に挙げられる。
前記パーフルオロ基としては、例えば、パーフルオロノネニル、パーフルオロメチル、パーフルオロプロピレン、パーフルオロノニネル、パーフルオロ安息香酸、パーフルオロプロピレン、パーフルオロプロピル、パーフルオロ(9−メチルオクチル)、パーフルオロメチルオクチル、パーフルオロブチル、パーフルオロ3−メチルブチル、パーフルオロヘキシル、パーフルオロクチル、パーフルオロ7−オクチルエチル、フルオロヘプチル、パーフルオロデシル、パーフルオロブチルなどが挙げられる。また、これらのパーフルオロ基は、ハロゲン原子、アシル基、アミノ基、シアノ基、アルキル基、アルコキシ基、アルキル若しくはハロアルキルで置換されていてもよく、アリール基、アミド基等で置換されていてもよい。
前記Rf1及びRf2は互い同じであってもよく、異なっていてもよい。
前記式(1)〜(4)において、nは、1〜40の整数、好ましくは4〜25の整数を表す。
前記式(1)〜(4)において、mは、0〜40の整数、好ましくは0〜25の整数を表す。
前記式(1)〜(4)において、−X−は、−(CH−(lは1〜10、好ましくは、1〜5の整数を表す)、−CO−O−、−O−、−NHCO−、−NHCOO−のいずれかを表す。
前記式(5)において、R,R,及びRは水素原子、又はメチル基を表し、a,b,c,p,qは任意の正数を表し、必要に応じて適宜選ばれるが、例として、a=50、b=c=25、p=q=10等が挙げられる。r,及びsは任意の正の整数を表し、必要に応じて適宜選ばれるが、例として、r=2、s=6等が挙げられる。C2r、C2s+1としては、r、及びsが3以上のとき、直鎖構造、分岐構造のいずれもが含まれる。前記式(5)で表される界面活性剤の具体例としては、メガファックF−780F(a=40、b=5、c=55、r=2、s=6、p=q=7;大日本インキ化学工業(株)製)などが挙げられる。
前記式(1)〜(5)で表される界面活性剤は、1種単独又は2種以上の組合せで用いることができる。
前記界面活性剤の含有量としては、感光性組成物の固形分に対し、0.001〜10質量%が好ましい。
前記含有量が、0.001質量%未満になると、面状改良の効果が得られなくことがあり、10質量%を超えると、密着性が低下することがある。
前記感光性組成物が前記界面活性剤を含有することにより、塗布液としての流動性が良好となり、塗布工程で使用されるスピンコーターやスリットコーターのノズルや配管、容器中での液の付着性が改善され、前記ノズル内に汚れとして残る残渣を効果的に減少させることができるので、塗布液の切り替え時に洗浄に要する洗浄液の量や作業時間を軽減でき、カラーフィルタの生産性を向上させることができる。また、前記カラーレジスト層を形成する際に発生する面状ムラ等を改善することができる。
前記熱重合禁止剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、4−メトキシフェノール、ハイドロキノン、アルキル又はアリール置換ハイドロキノン、t−ブチルカテコール、ピロガロール、2−ヒドロキシベンゾフェノン、4−メトキシ−2−ヒドロキシベンゾフェノン、塩化第一銅、フェノチアジン、クロラニル、ナフチルアミン、β−ナフトール、2,6−ジ−t−ブチル−4−クレゾール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、ピリジン、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、4−トルイジン、メチレンブルー、銅と有機キレート剤反応物、サリチル酸メチル、及びフェノチアジン、ニトロソ化合物、ニトロソ化合物とAlとのキレートなどが挙げられる。
前記熱重合禁止剤の含有量としては、感光性組成物の全成分に対し、0.0001〜10質量%が好ましく、0.0005〜5質量%がより好ましく、0.001〜1質量%が特に好ましい。
前記紫外線吸収剤としては、特開平5−72724号公報記載の化合物のほか、サリシレート系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系、ニッケルキレート系、ヒンダードアミン系などが挙げられる。
具体的には、フェニルサリシレート、4−t−ブチルフェニルサリシレート、2,4−ジ−t−ブチルフェニル−3’,5’−ジ−t−4’−ヒドロキシベンゾエート、4−t−ブチルフェニルサリシレート、2,4−ジ−ヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、エチル−2−シアノ−3,3−ジ−フェニルアクリレート、2,2’−ヒドロキシ−4−メトキシベンゾフェノン、ニッケルジブチルジチオカーバメート、ビス(2,2,6,6−テトラメトル−4−ピリジン)−セバケート、4−t−ブチルフェニルサリシレート、サルチル酸フェニル、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン縮合物、コハク酸−ビス(2,2,6,6−テトラメチル−4−ピペリデニル)−エステル、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、7−{[4−クロロ−6−(ジエチルアミノ)−5−トリアジン−2−イル]アミノ}−3−フェニルクマリンなどが挙げられる。
前記紫外線吸収剤の前記感光性組成物の全固形分に対する含有量は、0.5〜15質量%が好ましく、1〜12質量%がより好ましく、1.2〜10質量%が特に好ましい。
前記感光層を形成する感光性組成物は、溶剤を用いて調製することができる。
前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、n−ヘキサノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどのケトン類;酢酸エチル、酢酸ブチル、酢酸−n−アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、及びメトキシプロピルアセテートなどのエステル類;トルエン、キシレン、ベンゼン、エチルベンゼンなどの芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1−トリクロロエタン、塩化メチレン、モノクロロベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1−メトキシ−2−プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3−メトキシプロピオン酸メチル、2−ヘプタノン、シクロヘキサン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテルアセテートなどが好適に挙げられる。これらの溶剤は、単独又2種以上の組合せで用いることができる。
前記感光性組成物の調製時における前記溶剤の添加量としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光性組成物の全固形分濃度が5〜80質量%となるように添加されることが好ましく、10〜60質量%となるように添加されることがより好ましく、15〜50質量%となるように添加されることが特に好ましい。
前記感光層の厚みは、0.3〜10μmが好ましく、0.75〜6μmがより好まく、1.0〜3μmが特に好ましい。
前記層の厚みが0.3μm未満であると、感光層用塗布液の塗布時にピンホールが発生しやすく、製造適性が低下することがあり、10μmを超えると、現像時に未露光部を除去するのに長時間を要することがある
<基材>
前記感光層形成工程で用いられる前記基材としては、特に制限はなく、公知の材料の中から表面平滑性の高いものから凸凹のある表面を有するものまで、目的に応じて適宜選択することができ、板状の基材(基板)が好ましく、具体的には、ガラス板(例えば、ソーダガラス板、酸化ケイ素をスパッタしたガラス板、無アルカリガラス板、石英ガラス板等)、合成樹脂性のフィルム、紙、金属板などが挙げられる。
前記基材は、該基材上に前記感光層における感光層が重なるようにして積層してなる積層体を形成して用いることができる。即ち、前記積層体における感光層の前記感光層に対して露光することにより、露光した領域を硬化させ、後述する現像工程によりパターンを形成することができる。
[露光工程]
前記露光工程としては、光照射手段及び光変調手段を少なくとも備えた露光ヘッドと、前記感光層の少なくともいずれかを移動させつつ、前記感光層に対して、前記光照射手段から出射した光を前記光変調手段によりパターン情報に応じて変調しながら前記露光ヘッドから照射して、前記感光層を露光する工程であり、該露光はマスクレス露光である。
前記マスクレス露光(「マスクレスパターン露光」ともいう)とは、パターン情報(「画像データ」ともいう)に基づいて、光照射手段からの光を変調しながら、露光ヘッドと前記感光層の被露光面とを相対走査することにより、前記感光層の被露光面上に二次元パターン(「画像」ともいう)を形成する露光方法である。これに対し、マスクを用いた従来の露光方法は、露光光を透過させない材質、又は露光光を弱めて透過させる材質でパターンを形成してなるマスクを、前記感光層の被露光面上の光路に配置して露光を行う方法である。
前記光照射手段から照射される光の光源としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、超高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機用などの蛍光管、LED、及びレーザ光(半導体レーザ、固体レーザ、液体レーザ、気体レーザ)等が挙げられ、これらの中でも、超高圧水銀灯及びレーザ光が好ましく、光のオンオフ制御が短時間で行え、光の干渉制御が容易ある観点から、レーザ光がより好ましい。
前記光源の波長としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記超高圧水銀灯としては、i線(365nm)が好ましく、固体レーザとしては、YAG−SHG固体レーザ(532nm)、半導体励起固体レーザ(532nm、355nm、266nm)が好ましく、気体レーザとしては、KrFレーザ(249nm)、ArFレーザ(193nm)が好ましい。半導体レーザとしては、感光性組成物の露光時間の短縮を図る目的、及び入手のしやすさの観点から、300〜500nmが好ましく、340〜450nmがより好ましく、405nm又は410nmであることが特に好ましい。
前記レーザ光のビーム径としては、特に制限はなく、目的に応じて適宜選択することができるが、前記感光層における解像度の観点から、ガウシアンビームの1/e値で5〜30μnが好ましく、7〜20μmがより好ましい。
また、前記レーザ光の光エネルギー量としては、特に制限はなく、目的に応じて適宜選択することができるが、露光時間の短縮と解像度の観点から、1〜100mJ/cmが好ましく、5〜20mJ/cmがより好ましい。
前記光源としては、光を一端から入射し、入射した前記光を他端から出射する光ファイバを複数本束ねてなるバンドル状のファイバ光源が好ましく、前記光ファイバが、光源からの光を2以上合成した合波レーザ光を出射可能であることがより好ましい。
前記合波レーザ光の照射方法としては、特に制限はなく、目的に応じて適宜選択することができるが、複数のレーザ光源と、マルチモード光ファイバと、該複数のレーザ光源から照射されるレーザ光を集光して前記マルチモード光ファイバに結合させるレンズ系とにより合波レーザ光を合成し、照射する方法が挙げられる。
前記露光工程において、前記光照射手段からの光を変調する光変調手段としては、前記光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、前記描素部をパターン情報に基づいて制御可能であるものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、空間変調素子、及び光多面鏡(ポリゴンミラー)等が挙げられる。
前記空間光変調素子としては、特に制限はなく、目的に応じて適宜選択することができるが、デジタル・マイクロミラー・デバイス(DMD)、MEMS(Micro Electro Mechanical Systems)タイプの空間光変調素子(SLM;Special Light Modulator)、ミラー階調型空間変調素子、電気光学効果により透過光を変調する光学素子(PLZT素子)、液晶光シャッタ(FLC)などが好適に挙げられる。
なお、MEMSとは、IC製造プロセスを基板としたマイクロマシニング技術によるマイクロサイズのセンサ、アクチュエータ、及び制御回路を集積化した微細システムの総称であり、MEMSタイプの空間光変調素子とは、静電気力を利用した電気機械動作により駆動される空間光変調素子を意味している。更に、Grating Light Valve(GLV)を複数並べて二次元状に構成したものを用いることもできる。これらの反射型空間光変調素子(GLV)や、透過型空間光変調素子(LCD)を使用する構成においては、前記光源として、レーザのほかにランプ等を使用することができる。
これらの空間光変調素子の中でもDMD、及びミラー階調型空間変調素子がより好適に挙げられ、DMDが特に好適に挙げられる。
前記光多面鏡(ポリゴンミラー)としては、複数面(例えば6面)の平面反射面を有する回転部材であって、回転によって光を走査させることが可能な限り、特に制限はなく、目的に応じて適宜選択することができる。なお、前記光多面体(ポリゴンミラー)を用いる露光においては、前記感光層の被露光面を、前記光多面体(ポリゴンミラー)の走査方向に対して直角に移動させることにより、前記被露光面前面を露光することができる。
前記露光工程において、感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、デジタル露光、アナログ露光などが挙げられるが、デジタル露光が好適である。
前記デジタル露光の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、所定のパターン情報に基づいて生成される制御信号に応じて変調されたレーザ光を用いて行われることが好適である。
更に、前記露光工程において、感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができるが、短時間、かつ高速露光を可能とする観点から、露光光と感光層とを相対的に移動させながら行うことが好ましく、前記デジタル・マイクロミラー・デバイス(DMD)と併用されることが特に好ましい。
前記露光工程において、不活性ガス雰囲気下行うことが好ましい。前記感光層形成工程により形成された感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、不活性ガスを前記感光層表面に直接吹きかける方法、枠状フレームの一辺が開放され、不活性ガスの導入孔が少なくとも残りの1辺に形成された試料台中の露光空間に、露光対象である感光層が形成された試料を載置し、前記不活性ガスの導入孔から不活性ガスを導入して、感光層表面を不活性ガスで覆いつつ、露光を行う方法などが挙げられる。
また、前記露光空間を密封空間として、減圧下で該密封空間内に不活性ガスを導入することも可能である。
前記不活性ガスとしては、酸素の影響により前記感光層の重合反応が阻害されることを防止できれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、窒素、ヘリウム、アルゴンなどが挙げられる。
以下、本発明のカラーフィルタの製造方法の態様、及び該カラーフィルタの製造方法に好適に用いられる露光装置を、図面を参照しながら説明する。
前記露光装置としては、いわゆるフラットベッドタイプの露光装置の他、感光材料がドラムの外周面に巻きつけられるアウタードラムタイプの露光装置、及び感光材料がシリンダの内周面に装着されるインナードラムタイプの露光装置であってもよい。以下、一例として、フラットベットタイプの露光装置について説明する。
<露光装置>
前記露光装置は、図1に示すように、前記感光層を前記基体上に積層してなる積層体12(以下、「感光層12」、又は「感光材料12」と表す)を表面に吸着して保持する平板状の移動ステージ14を備えている。4本の脚部16に支持された厚い板状の設置台18の上面には、ステージ移動方向に沿って延びた2本のガイド20が設置されている。ステージ14は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド20によって往復移動可能に支持されている。なお、この露光装置10には、ステージ14をガイド20に沿って駆動するステージ駆動装置(図示せず)が設けられている。
設置台18の中央部には、ステージ14の移動経路を跨ぐようにコの字状のゲート22が設けられている。コの字状のゲート22の端部の各々は、設置台18の両側面に固定されている。このゲート22を挟んで一方の側にはスキャナ24が設けられ、他方の側には感光層12の先端及び後端を検知する複数(例えば2個)のセンサ26(又はカメラ26)が設けられている。スキャナ24及びセンサ26(又はカメラ26)は、ゲート22に各々取り付けられて、ステージ14の移動経路の上方に固定配置されている。なお、スキャナ24及びセンサ26(又はカメラ26)は、これらを制御する図示しないコントローラに接続されている。
スキャナ24には、図2及び図3Bに示すように、m行n列(例えば、2行5列)の略マトリックス状に配列された10個の露光ヘッドが備えられている。
図2に示すように、各露光ヘッド30が、後述する内部のデジタル・マイクロミラー・デバイス(DMD)36の各描素部(マイクロミラー)列方向が、走査方向と所定の設定傾斜角度θをなすように、スキャナ24に取り付けられている場合には、各露光ヘッド30による露光エリア32は、走査方向に対して傾斜した矩形状のエリアとなる。
ステージ14の移動に伴い、感光層12には露光ヘッド30ごとに帯状の露光済み領域34が形成される。
なお、以下において、m行目のn列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド30mnと表記し、m行目のn列目に配列された個々の露光ヘッドによる露光エリアを示す場合は、露光エリア32mnと表記する。
また、図3A及び図3Bに示すように、帯状の露光済み領域34のそれぞれが、隣接する露光済み領域34と部分的に重なるように、ライン状に配列された各行の露光ヘッド30の各々は、その配列方向に所定間隔(露光エリアの長辺の自然数倍、本実施形態では2倍)ずらして配置されている。このため、1行目の露光エリア3211と露光エリア3212との間の露光できない部分は、2行目の露光エリア3221により露光することができる。
スキャナ24による感光層12の副走査が終了し、センサ26(又はカメラ26)で感光層12の後端が検出されると、ステージ14は、ステージ駆動装置304により、ガイド20に沿ってゲート22の最上流側にある原点に復帰し、再度、ガイド20に沿ってゲート22の上流側から下流側に一定速度で移動される。
ここで、説明のため、ステージ14の表面と平行な平面内に、図1に示すように、互いに直交するX軸及びY軸を規定する。
ステージ14の走査方向に沿って上流側(以下、単に「上流側」ということがある。)の端縁部には、X軸の方向に向かって開く「く」の字型に形成されたスリット28が、等間隔で10本形成されていてもよい。
各スリット28は、上流側に位置するスリット28aと下流側に位置するスリット28bとからなっている。スリット28aとスリット28bとは互いに直交するとともに、X軸に対してスリット28aは−45度、スリット28bは+45度の角度を有している。
スリット28の位置は、前記露光ヘッド30の中心と略一致させられている。また、各スリット28の大きさは、対応する露光ヘッド30による露光エリア32の幅を十分覆う大きさとされている。また、スリット28の位置としては、隣接する露光済み領域34間の重複部分の中心位置と略一致させてもよい。この場合、各スリット28の大きさは、露光済み領域34間の重複部分の幅を十分覆う大きさとする。
ステージ14内部の各スリット28の下方の位置には、N重露光を行う場合、理想のN重露光を実現するために描素部を選択する後述の使用描素部指定処理において、描素単位としての光点を検出する光点位置検出手段としての単一セル型の光検出器(図示せず)が組み込まれていてもよい。また、前記光検出器は、後述する使用描素部指定処理において、前記描素部の選択を行う描素部選択手段としての演算装置(図示せず)に接続されている。
露光時における前記露光装置の動作形態はとしては、露光ヘッドを常に移動させながら連続的に露光を行う形態であってもよいし、露光ヘッドを段階的に移動させながら、各移動先の位置で露光ヘッドを静止させて露光動作を行う形態であってもよい。
また、前記露光の方法として、露光光と前記感光層とを相対的に移動しながら行うことが好ましく、この場合、前記高速変調と併用することが好ましい。これにより、短時間で高速の露光を行うことができる。
<<露光ヘッド>>
露光ヘッド30の概略構成の一例を、図4、図5A、及び図5Bに示す。図4、図5A、及び図5Bでは、前記露光ヘッド30中を伝播する光の光路に沿って、各構成要素を示している。
本例では、入射された光を画像データに応じて描素部ごとに変調する光変調手段(描素部ごとに変調する空間光変調素子)として、DMD36(米国テキサス・インスツルメンツ社製)を備え、光照射手段として、ファイバアレイ光源38を備えている。
図4に示すように、DMD36の光入射側には、光ファイバの出射端部(発光点)が露光エリア32の長辺方向と一致する方向に沿って一列に配列されたレーザ出射部を備えたファイバアレイ光源38、ファイバアレイ光源38から出射されたレーザ光を補正してDMD上に集光させる集光レンズ系40、この集光レンズ系40を透過したレーザ光をDMD36に向けて反射するミラー42がこの順に配置されている。なお図4では、集光レンズ系40を概略的に示してある。
また、DMD36の光反射側には、DMD36で反射されたレーザ光を感光層12の露光面上に結像する結像レンズ系50が配置されている。なお図4では、結像レンズ系50を概略的に示してある。
前記集光レンズ系40は、例えば、図5A及び図5Bに示すように、ファイバアレイ光源38から出射されたレーザ光を平行光化する1対の組合せレンズ44、平行光化されたレーザ光の光量分布が均一になるように補正する1対の組合せレンズ46、及び光量分布が補正されたレーザ光をDMD36上に集光する集光レンズ48で構成され、更に後述する他の部材等からなる。
前記結像レンズ系50は、例えば、DMD36と感光層12の露光面とが共役な関係となるように配置された2枚のレンズ52及び54で構成され、更に、マイクロレンズアレイ、及びアパーチャアレイ等の後述する他のレンズ群からなる。
−光変調手段−
前記光変調手段としてのDMD36は、図6に示すように、SRAMセル(メモリセル)56上に、各々描素(ピクセル)を構成する描素部として、多数のマイクロミラー58が格子状に配列されてなるミラーデバイスである。各マイクロミラー58は支柱に支えられており、その表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお、本実施形態では、各マイクロミラー58の反射率は90%以上であり、その配列ピッチは縦方向、横方向ともに13.7μmである。SRAMセル56は、ヒンジ及びヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのものであり、全体はモノリシック(一体型)に構成されている。
DMD36のSRAMセル(メモリセル)56に、所望の2次元パターンを構成する各点の濃度を2値で表した画像信号が書き込まれると、支柱に支えられた各マイクロミラー58が、対角線を中心としてDMD36が配置された基板側に対して±α度(例えば±10度)のいずれかに傾く。図7Aは、マイクロミラー58がオン状態である+α度に傾いた状態を示し、図7Bは、マイクロミラー58がオフ状態である−α度に傾いた状態を示す。このように、画像信号に応じて、DMD36の各ピクセルにおけるマイクロミラー58の傾きを制御することによって、DMD36に入射したレーザ光Bはそれぞれのマイクロミラー58の傾き方向へ反射される。
それぞれのマイクロミラー58のオンオフ制御は、DMD36に接続された図8のコントローラ302によって行われる。また、オフ状態のマイクロミラー58で反射したレーザ光Bが進行する方向には、光吸収体(図示せず)が配置されている。
また、DMD36は、その短辺が副走査方向と所定角度θ(例えば、0.1°〜5°)を成すように僅かに傾斜させて配置するのが好ましい。図9AはDMD36を傾斜させない場合の各マイクロミラーによる反射光像(露光ビーム)53の走査軌跡を示し、図9BはDMD36を傾斜させた場合の露光ビーム53の走査軌跡を示している。
DMD36には、長手方向にマイクロミラーが多数個(例えば、1024個)配列されたマイクロミラー列が、短手方向に多数組(例えば、756組)配列されているが、図9Bに示すように、DMD36を傾斜させることにより、各マイクロミラーによる露光ビーム53の走査軌跡(走査線)のピッチPが、DMD36を傾斜させない場合の走査線のピッチPより狭くなり、解像度を大幅に向上させることができる。一方、DMD36の傾斜角は微小であるので、DMD36を傾斜させた場合の走査幅Wと、DMD36を傾斜させない場合の走査幅Wとは略同一である。
異なるマイクロミラー列により同じ走査線上が重ねて露光されることにより、アライメントマークに対する露光位置の微少量を制御することができ、高精細な露光を実現することができる、また、主走査方向に配列された複数の露光ヘッドの間のつなぎ目(ヘッド間つなぎ領域)を微少量の制御により段差なくつなぐことができる。
DMDを傾斜させるかわりに、各マイクロミラー列を副走査方向と直交する方向に所定間隔ずらし、図10に示すように千鳥情に配置しても、同様の効果を得ることができる。
なお、図10に示すように、スキャナ24によるX方向への1回の走査で感光層12の全面を露光してもよく、図11A及び図11Bに示すように、スキャナ24により感光層12をX方向へ走査した後、スキャナ24をY方向に1ステップ移動し、X方向へ走査を行うというように、走査と移動を繰り返して、複数回の走査で感光層12の全面を露光するようにしてもよい。
−光照射手段−
前記光照射手段の好適な例として、合波レーザを照射可能な手段、例えば、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射したレーザビームを集光して前記マルチモード光ファイバに結合させるレンズ系とを有する手段(ファイバアレイ光源)について説明する。
ファイバアレイ光源38は、図12に示すように、複数(例えば14個)のレーザモジュール60を備えており、各レーザモジュール60には、マルチモード光ファイバ62の一端が結合されている。マルチモード光ファイバ62の他端には、マルチモード光ファイバ62より小さいクラッド径を有する光ファイバ64が結合されている。図13に詳しく示すように、光ファイバ64のマルチモード光ファイバ62と反対側の端部は走査方向と直交する方向に沿って7個並べられ、それが2列に配列されてレーザ出射部66が構成されている。
光ファイバ64の端部で構成されるレーザ出射部66は、図13に示すように、表面が平坦な2枚の支持板68に挟み込まれて固定されている。また、光ファイバ64の光出射端面には、その保護のために、ガラス等の透明な保護板が配置されるのが望ましい。光ファイバ64の光出射端面は、光密度が高いため集塵しやすく劣化しやすいが、上述のような保護板を配置することにより、端面への塵埃の付着を防止し、また劣化を遅らせることができる。
このような光ファイバは、例えば、図14に示すように、クラッド径が大きいマルチモード光ファイバ62のレーザ光出射側の先端部分に、長さ1〜30cmのクラッド径が小さい光ファイバ64を同軸的に結合することにより得ることができる。2本の光ファイバは、光ファイバ64の入射端面が、マルチモード光ファイバ62の出射端面に、両光ファイバの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ64のコア64aの径は、マルチモード光ファイバ62のコア62aの径と同じ大きさである。
また、長さが短くクラッド径が大きい光ファイバにクラッド径が小さい光ファイバを融着させた短尺光ファイバを、フェルールや光コネクタ等を介してマルチモード光ファイバ62の出射端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、クラッド径が小さい光ファイバが破損した場合等に先端部分の交換が容易になり、露光ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ64を、マルチモード光ファイバ62の出射端部と称する場合がある。
マルチモード光ファイバ62及び光ファイバ64としては、ステップインデックス型光ファイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いることができる。本実施の形態では、マルチモード光ファイバ62及び光ファイバ64は、ステップインデックス型光ファイバであり、マルチモード光ファイバ62は、クラッド径=125μm、コア径=50μm、NA=0.2、入射端面コートの透過率=99.5%以上であり、光ファイバ64は、クラッド径=60μm、コア径=50μm、NA=0.2である。
一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されている。しかしながら、波長が短いほど伝搬損失は少なくなり、GaN系半導体レーザから出射された波長405nmのレーザ光では、クラッドの厚み{(クラッド径−コア径)/2}を800nmの波長帯域の赤外光を伝搬させる場合の1/2程度、通信用の1.5μmの波長帯域の赤外光を伝搬させる場合の約1/4にしても、伝搬損失は殆ど増加しない。従って、クラッド径を60μmと小さくすることができる。
但し、光ファイバのクラッド径は60μmには限定されない。従来のファイバアレイ光源に使用されている光ファイバのクラッド径は125μmであるが、クラッド径が小さくなるほど焦点深度がより深くなるので、光ファイバのクラッド径は80μm以下が好ましく、60μm以下がより好ましく、40μm以下が更に好ましい。一方、コア径は少なくとも3〜4μm必要であることから、光ファイバ64のクラッド径は10μm以上が好ましい。
レーザモジュール60は、図15に示す合波レーザ光源(ファイバアレイ光源)によって構成されている。この合波レーザ光源は、ヒートブロック110上に配列固定された複数(例えば、7個)のチップ状の横マルチモード又はシングルモードのGaN系半導体レーザLD1、LD2、LD3、LD4、LD5、LD6、及びLD7と、GaN系半導体レーザLD1〜LD7の各々に対応して設けられたコリメータレンズL1、L2、L3、L4、L5、L6及びL7と、1つの集光レンズ200と、1本のマルチモード光ファイバ62と、から構成されている。なお、半導体レーザの個数は7個には限定されない。例えば、クラッド径=60μm、コア径=50μm、NA=0.2のマルチモード光ファイバには、20個もの半導体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、且つ光ファイバ本数をより減らすことができる。
GaN系半導体レーザLD1〜LD7は、発振波長が総て共通(例えば、405nm)であり、最大出力も総て共通(例えば、マルチモードレーザでは100mW、シングルモードレーザでは30mW)である。なお、GaN系半導体レーザLD1〜LD7としては、350nm〜450nmの波長範囲で、上記の405nm以外の発振波長を備えるレーザを用いてもよい。
前記合波レーザ光源は、図16及び図17に示すように、他の光学要素と共に、上方が開口した箱状のパッケージ400内に収納されている。パッケージ400は、その開口を閉じるように作成されたパッケージ蓋410を備えており、脱気処理後に封止ガスを導入し、パッケージ400の開口をパッケージ蓋410で閉じることにより、パッケージ400とパッケージ蓋410とにより形成される閉空間(封止空間)内に上記合波レーザ光源が気密封止されている。
パッケージ400の底面にはベース板420が固定されており、このベース板420の上面には、前記ヒートブロック110と、集光レンズ200を保持する集光レンズホルダー450と、マルチモード光ファイバ62の入射端部を保持するファイバホルダー460とが取り付けられている。マルチモード光ファイバ62の出射端部は、パッケージ400の壁面に形成された開口からパッケージ外に引き出されている。
また、ヒートブロック110の側面にはコリメータレンズホルダー440が取り付けられており、コリメータレンズL1〜L7が保持されている。パッケージ400の横壁面には開口が形成され、この開口を通してGaN系半導体レーザLD1〜LD7に駆動電流を供給する配線470がパッケージ外に引き出されている。
なお、図17においては、図の煩雑化を避けるために、複数のGaN系半導体レーザのうちGaN系半導体レーザLD7にのみ番号を付し、複数のコリメータレンズのうちコリメータレンズL7にのみ番号を付している。
図18は、前記コリメータレンズL1〜L7の取り付け部分の正面形状を示すものである。コリメータレンズL1〜L7の各々は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメータレンズは、例えば、樹脂又は光学ガラスをモールド成形することによって形成することができる。コリメータレンズL1〜L7は、長さ方向がGaN系半導体レーザLD1〜LD7の発光点の配列方向(図18の左右方向)と直交するように、上記発光点の配列方向に密接配置されている。
一方、GaN系半導体レーザLD1〜LD7としては、発光幅が2μmの活性層を備え、活性層と平行な方向、直角な方向の拡がり角が各々例えば10°、30°の状態で各々レーザビームB1〜B7を発するレーザが用いられている。これらGaN系半導体レーザLD1〜LD7は、活性層と平行な方向に発光点が1列に並ぶように配設されている。
したがって、各発光点から発せられたレーザビームB1〜B7は、上述のように細長形状の各コリメータレンズL1〜L7に対して、拡がり角度が大きい方向が長さ方向と一致し、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入射することになる。つまり、各コリメータレンズL1〜L7の幅が1.1mm、長さが4.6mmであり、それらに入射するレーザビームB1〜B7の水平方向、垂直方向のビーム径は各々0.9mm、2.6mmである。また、コリメータレンズL1〜L7の各々は、焦点距離f1=3mm、NA=0.6、レンズ配置ピッチ=1.25mmである。
集光レンズ200は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取って、コリメータレンズL1〜L7の配列方向、つまり水平方向に長く、それと直角な方向に短い形状に形成されている。この集光レンズ200は、焦点距離f=23mm、NA=0.2である。この集光レンズ200も、例えば、樹脂又は光学ガラスをモールド成形することにより形成される。
また、DMDを照明する光照射手段に、合波レーザ光源の光ファイバの出射端部をアレイ状に配列した高輝度のファイバアレイ光源を用いているので、高出力で且つ深い焦点深度を備えた露光装置を実現することができる。更に、各ファイバアレイ光源の出力が大きくなることで、所望の出力を得るために必要なファイバアレイ光源数が少なくなり、露光装置の低コスト化が図られる。
また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、より深い焦点深度を備えた露光装置を実現することができる。例えば、ビーム径1μm以下、解像度0.1μm以下の超高解像度露光の場合にも、深い焦点深度を得ることができ、高速且つ高精細な露光が可能となる。したがって、高解像度が必要とされる薄膜トランジスタ(TFT)の露光工程に好適である。
また、前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ光源に限定されず、例えば、1個の発光点を有する単一の半導体レーザから入射されたレーザ光を出射する1本の光ファイバを備えたファイバ光源をアレイ化したファイバアレイ光源を用いることができる。
また、複数の発光点を備えた光照射手段としては、例えば、図19に示すように、ヒートブロック110上に、複数(例えば、7個)のチップ状の半導体レーザLD1〜LD7を配列したレーザアレイを用いることができる。また、図20Aに示す、複数(例えば、5個)の発光点111aが所定方向に配列されたチップ状のマルチキャビティレーザ110が知られている。マルチキャビティレーザ111は、チップ状の半導体レーザを配列する場合と比べ、発光点を位置精度良く配列できるので、各発光点から出射されるレーザビームを合波し易い。但し、発光点が多くなるとレーザ製造時にマルチキャビティレーザ111に撓みが発生し易くなるため、発光点111aの個数は5個以下とするのが好ましい。
前記光照射手段としては、このマルチキャビティレーザ111や、図20Bに示すように、ヒートブロック110上に、複数のマルチキャビティレーザ111が各チップの発光点111aの配列方向と同じ方向に配列されたマルチキャビティレーザアレイを、レーザ光源として用いることができる。
また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光を合波するものには限定されない。例えば、図21に示すように、複数(例えば、3個)の発光点111aを有するチップ状のマルチキャビティレーザ111を備えた合波レーザ光源を用いることができる。この合波レーザ光源は、マルチキャビティレーザ111と、1本のマルチモード光ファイバ62と、集光レンズ200と、を備えて構成されている。マルチキャビティレーザ111は、例えば、発振波長が405nmのGaN系レーザダイオードで構成することができる。
前記構成では、マルチキャビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、集光レンズ200によって集光され、マルチモード光ファイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。
マルチキャビティレーザ111の複数の発光点111aを、上記マルチモード光ファイバ62のコア径と略等しい幅内に並設すると共に、集光レンズ200として、マルチモード光ファイバ62のコア径と略等しい焦点距離の凸レンズや、マルチキャビティレーザ111からの出射ビームをその活性層に垂直な面内のみでコリメートするロッドレンズを用いることにより、レーザビームBのマルチモード光ファイバ62への結合効率を上げることができる。
また、図22に示すように、複数(例えば、3個)の発光点を備えたマルチキャビティレーザ111を用い、ヒートブロック110上に複数(例えば、9個)のマルチキャビティレーザ111が互いに等間隔で配列されたレーザアレイ140を備えた合波レーザ光源を用いることができる。複数のマルチキャビティレーザ111は、各チップの発光点111aの配列方向と同じ方向に配列されて固定されている。
この合波レーザ光源は、レーザアレイ140と、各マルチキャビティレーザ111に対応させて配置した複数のレンズアレイ114と、レーザアレイ140と複数のレンズアレイ114との間に配置された1本のロッドレンズ113と、1本のマルチモード光ファイバ62と、集光レンズ200と、を備えて構成されている。レンズアレイ114は、マルチキャビティレーザ110の発光点に対応した複数のマイクロレンズを備えている。
上記の構成では、複数のマルチキャビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、ロッドレンズ113により所定方向に集光された後、レンズアレイ114の各マイクロレンズにより平行光化される。平行光化されたレーザビームLは、集光レンズ200によって集光され、マルチモード光フアイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光フアイバ内を伝搬し、1本に合波されて出射する。
更に、他の合波レーザ光源の例を示す。この合波レーザ光源は、図23A及び図23Bに示すように、略矩形状のヒートブロック180上に光軸方向の断面がL字状のヒートブロック182が搭載され、2つのヒートブロック間に収納空間が形成されている。L字状のヒートブロック182の上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ111が、各チップの発光点111aの配列方向と同じ方向に等間隔で配列されて固定されている。
略矩形状のヒートブロック180には凹部が形成されており、ヒートブロック180の空間側上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、その発光点がヒートブロック182の上面に配置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。
マルチキャビティレーザ111のレーザ光出射側には、各チップの発光点111aに対応してコリメートレンズが配列されたコリメートレンズアレイ184が配置されている。コリメートレンズアレイ184は、各コリメートレンズの長さ方向とレーザビームの拡がり角が大きい方向(速軸方向)とが一致し、各コリメートレンズの幅方向が拡がり角が小さい方向(遅軸方向)と一致するように配置されている。このように、コリメートレンズをアレイ化して一体化することで、レーザ光の空間利用効率が向上し合波レーザ光源の高出力化が図られると共に、部品点数が減少し低コスト化することができる。
また、コリメートレンズアレイ184のレーザ光出射側には、1本のマルチモード光ファイバ62と、このマルチモード光ファイバ62の入射端にレーザビームを集光して結合する集光レンズ200と、が配置されている。
前記構成では、レーザブロック180、182上に配置された複数のマルチキヤビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、コリメートレンズアレイ184により平行光化され、集光レンズ200によって集光されて、マルチモード光フアイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光フアイバ内を伝搬し、1本に合波されて出射する。
前記合波レーザ光源は、上記の通り、マルチキャビティレーザの多段配置とコリメートレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成することができるので、本発明の露光装置のレーザ光源を構成するファイバ光源として特に好適である。
なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ62の出射端部をそのケーシングから引き出したレーザモジュールを構成することができる。
また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモード光ファイバと同一で且つクラッド径がマルチモード光ファイバより小さい他の光ファイバを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、クラッド径が125μm、80μm、60μm等のマルチモード光ファイバを、出射端に他の光ファイバを結合せずに使用してもよい。
−−輝度−−
各レーザモジュールにおいて、レーザビームB1〜B7のマルチモード光ファイバ30への結合効率が0.85で、GaN系半導体レーザLD1〜LD7の各出力が30mWの場合には、アレイ状に配列された光ファイバ64の各々について、出力180mW(=30mW×0.85×7)の合波レーザビームBを得ることができる。従って、6本の光ファイバ64がアレイ状に配列されたレーザ出射部での出力は約1W(=180mW×6)である。
ファイバアレイ光源のレーザ出射部には、この通り高輝度の発光点が主走査方向に沿って一列に配列されている。単一の半導体レーザからのレーザ光を1本の光ファイバに結合させる従来のファイバ光源は低出力であるため、多数列配列しなければ所望の出力を得ることができなかったが、前記合波レーザ光源は高出力であるため、少数列、例えば1列でも所望の出力を得ることができる。
例えば、半導体レーザと光ファイバを1対1で結合させた従来のファイバ光源では、通常、半導体レーザとしては出力30mW(ミリワット)程度のレーザが使用され、光ファイバとしてはコア径50μm、クラッド径125μm、NA(開口数)0.2のマルチモード光ファイバが使用されている。約1W(ワット)の出力を得ようとすれば、マルチモード光ファイバを48本(8×6)束ねなければならず、発光領域の面積は0.62mm(0.675mm×0.925mm)であるから、レーザ出射部での輝度は1.6×10(W/m)、光ファイバ1本当りの輝度は3.2×10(W/m)である。
これに対し、前記光照射手段が合波レーザを照射可能な手段である場合には、マルチモード光ファイバ6本で約1Wの出力を得ることができ、レーザ出射部での発光領域の面積は0.0081mm(0.325mm×0.025mm)であるから、レーザ出射部68での輝度は123×10(W/m)となり、従来に比べ約80倍の高輝度化を図ることができる。また、光ファイバ1本当りの輝度は90×10(W/m)であり、従来に比べて約28倍の高輝度化を図ることができる。
−−焦点深度−−
ここで、図24A及び図24Bを参照して、従来の露光ヘッドと本実施の形態の露光ヘッドとの焦点深度の違いについて説明する。従来の露光ヘッドのバンドル状ファイバ光源の発光領域の副走査方向の径は0.675mmであり、露光ヘッドのファイバアレイ光源の発光領域の副走査方向の径は0.025mmである。図24Aに示すように、従来の露光ヘッドでは、光照射手段(バンドル状ファイバ光源)38aの発光領域が大きいので、DMD36へ入射する光束の角度が大きくなり、結果として走査面(感光層12)へ入射する光束の角度が大きくなる。このため、集光方向(ピント方向のずれ)に対してビーム径が太りやすい。
一方、図24Bに示すように、本発明の露光装置における露光ヘッドでは、ファイバアレイ光源38bの発光領域の副走査方向の径が小さいので、集光レンズ系40を通過してDMD36へ入射する光束の角度が小さくなり、結果として走査面(感光層12)へ入射する光束の角度が小さくなる。即ち、焦点深度が深くなる。この例では、発光領域の副走査方向の径は従来の約30倍になっており、略回折限界に相当する焦点深度を得ることができる。従って、微小スポットの露光に好適である。この焦点深度への効果は、露光ヘッドの必要光量が大きいほど顕著であり、有効である。この例では、露光面に投影された1描素サイズは10μm×10μmである。なお、DMDは反射型の空間光変調素子であるが、図24A及び図24Bは、光学的な関係を説明するために展開図とした。
〔光量分布の補正方法〕
前記光変調手段を備えるデジタル露光装置では、各描画単位で微細なパターンを高精度に形成するために、露光ヘッド内の各描画単位の光量が均一であることが重要である。ただし実際には、露光ヘッドから照射される光ビームは、レンズ系の要因で光軸の中心部に比べて周辺部の光強度が低下してしまうという問題がある。
そこで、前記光照射手段から前記光変調手段に照射される光の光量分布を補正し、被露光面上での露光光の光量分布を均一に補正する方法を以下に説明する。
なお、この方法に好適な露光ヘッドの構成概略図を、図25に示す。
前記光量分布補正方法は、集光レンズ系により光照射手段から光変調手段に照射される光の照射領域内における光量に分布を持たせ、前記光変調手段により変調された光の感光層の被露光面における光量分布が均一になるように補正する方法であり、以下に説明する第1の形態、及び第2の形態が好適に挙げられる。
−第1の実施形態−
DMDの光反射側には投影光学系が設けられ、この投影光学系は、DMDの光反射側の露光面にある感光層上に光源像を投影するため、DMD側から感光層へ向って順に、レンズ系、マイクロレンズアレイ、対物レンズ系の各露光用の光学部材が配置されて構成されている。
前記レンズ系及び前記対物レンズ系は、複数枚のレンズ(凸レンズや凹レンズ等)を組み合せた拡大光学系として構成されており、DMDにより反射されるレーザビーム(光線束)の断面積を拡大することで、DMDにより反射されたレーザビームによる感光層上の露光エリアの面積を所定の大きさに拡大している。なお、感光層は、対物レンズ系の後方焦点位置に配置される。
通常は、この光ビームの光量(光強度)分布は、レンズ系の要因により光軸の中心部に比べて周辺部が低下してしまうが、本実施形態の露光ヘッドには、ファイバアレイ光源から出射されたレーザ光の光量分布を均一化してDMDに照射するために、DMDの光入射側の光路上に配置した集光レンズ系にロッドインテグレータを設けている。ただし、このロッドインテグレータによっても、本実施形態のように各描画単位をマイクロレンズアレイによって集光する系では、光軸中心部に対する周辺部の光強度低下が顕著となり、より高い精度で画像露光を行う場合に光量分布を要求精度まで補正することが難しい。また、この光量分布の補正精度を高めるために、ロッドインテグレータを長尺化することも考えられるが、その場合、ロッドインテグレータは非常に高価な光学部品であるため、装置コストが上昇し、また、露光ヘッドが大型化してしまう弊害がある。
これに対し、本実施形態の露光ヘッドでは、前述したように、ファイバアレイ光源38から集光レンズ系へ入射されたレーザ光が、主光線の角度に分布を持ち光軸中心に比べて周辺部の光輝度が高められたレーザ光とされて集光レンズ系から出射され、DMDに照射されるため、DMDのレーザ光照射領域における光量分布は、光軸中心に比べて周辺部の光量が高められる。そのため、DMDにより画素毎に変調された光ビームが、光軸中心から周辺部に行くに従って光の透過量を低下させる特性を持つマイクロレンズアレイを透過して感光層の露光面に照射されると、露光面での光ビームの光量分布は均一になるよう補正される。
−第2の実施形態−
第2の実施形態は、上述した第1の実施形態に係る露光装置の露光ヘッドにおいて、集光レンズ系に、非球面レンズを有するテレセントリック光学系を設けることで、第1の実施形態と同様に露光面での光ビームの光量分布を均一化する技術である。
第2の実施形態に係る露光ヘッドでは、例えば集光レンズ系に、2枚で一組の平凸レンズにより構成されたテレセントリック光学系が設けられており、このテレセントリック光学系は、例えばロッドインテグレータと集光レンズの間に配置されている。
平凸レンズは、凸面側が非球面状に形成された非球面レンズとされている。レーザ光の入射側(ファイバアレイ光源側)に配置された平凸レンズは、入射面の面形状が、曲率半径が光軸(光軸中心)から離れるに従い大きくなる非球面、換言すれば、曲率が光軸Xから離れるに従い小さくなる非球面とされ、出射面が平面状とされている。また、レーザ光の出射側(DMD側)に配置された平凸レンズは、入射面が平面状とされ、出射面の面形状が、曲率半径が光軸Xから離れるに従い小さくなる非球面、換言すれば、曲率が光軸Xから離れるに従い大きくなる非球面とされている。
〔焦点位置精度の補正方法〕
前記結像レンズ系を構成する投影レンズの像面湾曲、非点隔差、歪曲等は、テレセントリック性を低下させ、露光光の焦点位置精度を悪化させるという問題がある。この影響を排除するために多重露光を行うと、露光スピードの低下、画質の低下等が生じるという問題がある。
そこで、結像レンズ系において、被露光面上での露光光の焦点位置精度を補正する方法を以下に説明する。
なお、この方法に好適な露光ヘッドの構成概略図を、図29、図35A、及び図35Bに示す。
前記焦点位置精度の補正方法としては、例えば、光変調手段により変調された光の光路長を変更し、感光層の被露光面に結像する露光光の焦点を調節する焦点調節手段を用いる方法、及び、前記結像レンズ系の中央部を含む略矩形状の領域のみにおいて、光変調手段により変調された光を結像する方法が好適に挙げられる。また、前記感光層(感光材料)の相対移動の方向を、該感光材料のうねり方向に向けて移動させる方法も好適に挙げられる。
〔露光パターン像歪みの補正方法〕
前記空間光変調素子の各描素部の面の歪みは、集光位置における光ビームに歪みをもたらすという問題があり、特に、前記DMDを空間光変調素子として用いた場合には顕著であり、高精細な露光パターンが形成されないという問題がある。
そこで、前記DMDからの光を収束するマイクロレンズアレイにおいて該DMDの出射面の歪みを補正することにより、前記感光層の被露光面上に結像される像の歪みを補正する方法を以下に説明する。
前記露光パターン像歪みの補正方法としては、例えば、前記マイクロレンズアレイの各マイクロレンズを、前記描素部の面の歪みによる収差を補正する特性を有するものとすることが挙げられ、そのようなマイクロレンズとしては、具体的には、非球面を有するマイクロレンズ、屈折率分布を有するマイクロレンズ、及び周辺部からの光を入射させないレンズ開口形状を有するマイクロレンズ等が挙げられる。
また、以上説明した実施形態では、マイクロレンズの光出射側の端面が非球面(トーリック面)とされているが、2つの光通過端面の一方を球面とし、他方をシリンドリカル面としたマイクロレンズからマイクロレンズアレイを構成して、上記実施形態と同様の効果を得ることもできる。
更に、以上説明した実施形態においては、マイクロレンズアレイのマイクロレンズが、マイクロミラーの反射面の歪みによる収差を補正する非球面形状とされているが、このような非球面形状を採用する代わりに、マイクロレンズアレイを構成する各マイクロレンズに、マイクロミラーの反射面の歪みによる収差を補正する屈折率分布を持たせても、同様の効果を得ることができる。
なお、先に述べたマイクロレンズのように、面形状を非球面としたマイクロレンズにおいて、併せて上述のような屈折率分布を与え、面形状と屈折率分布の双方によって、マイクロミラーの反射面の歪みによる収差を補正するようにしてもよい。
次に、前記描素部の周辺部からの光を入射させないレンズ開口形状を有するマイクロレンズからなるマイクロレンズアレイについて説明する。
先に説明した通り、DMDのマイクロミラーの反射面には歪みが存在するが、その歪み変化量はマイクロミラーの中心から周辺部に行くにつれて次第に大きくなる傾向を有している。そしてマイクロミラーの1つの対角線方向(y方向)の周辺部歪み変化量は、別の対角線方向(x方向)の周辺部歪み変化量と比べて大きく、上記の傾向もより顕著となっている。この問題に対処するために、アレイ状に配設されたマイクロレンズが、円形のレンズ開口を有することが好ましい。
そこで、上述のように歪みが大きいマイクロミラーの反射面の周辺部、特に、四隅部で反射したレーザ光はマイクロレンズによって集光されなくなり、集光されたレーザ光の集光位置における形状が歪んでしまうことを防止できる。したがって、歪みの無い、より高精細な画像を感光層に露光可能となる。
〔多重露光による補正〕
上述のとおり、前記露光ヘッドを構成する各種レンズ系に起因する露光光の歪みの影響は、使用するマイクロミラーを選択し、N重露光による埋め合わせの効果で均すこともできる。更に、前記露光ヘッドの取付け位置や取付け角度のズレに起因する解像度のばらつきや濃度ムラも、使用するマイクロミラーを選択し、N重露光による埋め合わせの効果で均すこともできる。
具体的には、走査方向に対し描素部の列方向が所定の設定傾斜角度θをなすように配置されてなる露光ヘッドを用い、前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、前記露光ヘッドについて、使用描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御し、前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光を行う方法が好適に挙げられる。
前記N重露光とは、前記感光層上の被露光面の略すべての領域において、前記露光ヘッドの走査方向に平行な直線が、該被露光面上に照射されたN本の光線列と交わる露光をいう。
前記N重露光のNとしては、2以上の自然数であれば、特に制限はなく、目的に応じて適宜選択することができるが、3以上の自然数が好ましく、3以上7以下の自然数がより好ましい。
<<使用描素部指定手段>>
前記使用描素部指定手段としては、描素単位としての光点の位置を被露光面上において検出する光点位置検出手段と、前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段とを少なくとも備えることが好ましい。
以下、前記使用描素部指定手段による、N重露光に使用する描素部の指定方法の例について説明する。
(1)単一露光ヘッド内における使用描素部の指定方法
本実施形態(1)では、露光装置10により、感光層12に対して2重露光を行う場合であって、各露光ヘッド30の取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
露光ヘッド30の走査方向に対する描素部(マイクロミラー58)の列方向の設定傾斜角度θとしては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部を使用してちょうど2重露光となる角度θidealよりも、若干大きい角度を採用するものとする。
この角度θidealは、N重露光の数N、使用可能なマイクロミラー58の列方向の個数s、使用可能なマイクロミラー58の列方向の間隔p、及び露光ヘッド30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッチδに対し、下記式1、
spsinθideal≧Nδ・・・(式1)
により与えられる。本実施形態におけるDMD36は、上記のとおり、縦横の配置間隔が等しい多数のマイクロミラー58が矩形格子状に配されたものであるので、
pcosθideal=δ・・・(式2)
であり、上記式1は、
stanθideal=N・・・(式3)
となる。本実施形態(1)では、上記のとおりs=256、N=2であるので、前記式3より、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、例えば0.50度程度の角度を採用するとよい。露光装置10は、調整可能な範囲内で、各露光ヘッド30即ち各DMD36の取付角度がこの設定傾斜角度θに近い角度となるように、初期調整されているものとする。
図25は、上記のように初期調整された露光装置10において、1つの露光ヘッド30の取付角度誤差、及びパターン歪みの影響により、露光面上のパターンに生じるむらの例を示した説明図である。以下の図面及び説明においては、各描素部(マイクロミラー)により生成され、被露光面上の露光領域を構成する描素単位としての光点について、第m行目の光点をr(m)、第n列目の光点をc(n)、第m行第n列の光点をP(m、n)とそれぞれ表記するものとする。
図25の上段部分は、ステージ14を静止させた状態で感光層12の被露光面上に投影される、使用可能なマイクロミラー58からの光点群のパターンを示し、下段部分は、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を示したものである。
なお、図25では、説明の便宜のため、使用可能なマイクロミラー58の奇数列による露光パターンと偶数列による露光パターンを分けて示してあるが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
図25の例では、設定傾斜角度θを上記の角度θidealよりも若干大きい角度を採用した結果として、また露光ヘッド30の取付角度の微調整が困難であるために、実際の取付角度と上記の設定傾斜角度θとが誤差を有する結果として、被露光面上のいずれの領域においても濃度むらが生じている。具体的には、奇数列のマイクロミラーによる露光パターン及び偶数列のマイクロミラーによる露光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領域において、理想的な2重露光に対して露光過多となり、描画が冗長となる領域が生じ、濃度むらが生じている。
更に、図25の例では、露光面上に現れるパターン歪みの一例であって、露光面上に投影された各画素列の傾斜角度が均一ではなくなる「角度歪み」が生じている。このような角度歪みが生じる原因としては、DMD36と露光面間の光学系の各種収差やアラインメントずれ、及びDMD36自体の歪みやマイクロミラーの配置誤差等が挙げられる。
図25の例に現れている角度歪みは、走査方向に対する傾斜角度が、図の左方の列ほど小さく、図の右方の列ほど大きくなっている形態の歪みである。この角度歪みの結果として、露光過多となっている領域は、図の左方に示した被露光面上ほど小さく、図の右方に示した被露光面上ほど大きくなっている。
上記したような、複数の描素部列により形成された、被露光面上の重複露光領域における濃度むらを軽減するために、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド30ごとに実傾斜角度θ’を特定し、該実傾斜角度θ’に基づき、前記描素部選択手段として前記光検出器に接続された前記演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
実傾斜角度θ’は、光点位置検出手段が検出した少なくとも2つの光点位置に基づき、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす角度により特定される。
以下、図26及び70を用いて、前記実傾斜角度θ’の特定、及び使用画素選択処理について説明する。
−実傾斜角度θ’の特定−
図26は、1つのDMD36による露光エリア32と、対応するスリット28との位置関係を示した上面図である。スリット28の大きさは、露光エリア32の幅を十分覆う大きさとされている。
本実施形態(1)の例では、露光エリア32の略中心に位置する第512列目の光点列と露光ヘッド30の走査方向とがなす角度を、上記の実傾斜角度θ’として測定する。具体的には、DMD36上の第1行目第512列目のマイクロミラー58、及び第256行目第512列目のマイクロミラー58をオン状態とし、それぞれに対応する被露光面上の光点P(1、512)及びP(256、512)の位置を検出し、それらを結ぶ直線と露光ヘッドの走査方向とがなす角度を実傾斜角度θ’として特定する。
図27は、光点P(256、512)の位置の検出手法を説明した上面図である。
まず、第256行目第512列目のマイクロミラー58を点灯させた状態で、ステージ14をゆっくり移動させてスリット28をY軸方向に沿って相対移動させ、光点P(256、512)が上流側のスリット28aと下流側のスリット28bの間に来るような任意の位置に、スリット28を位置させる。このときのスリット28aとスリット28bとの交点の座標を(X0、Y0)とする。この座標(X0、Y0)の値は、ステージ14に与えられた駆動信号が示す上記の位置までのステージ14の移動距離、及び、既知であるスリット28のX方向位置から決定され、記録される。
次に、ステージ14を移動させ、スリット28をY軸に沿って図27における右方に相対移動させる。そして、図27において二点鎖線で示すように、光点P(256、512)の光が左側のスリット28bを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0、Y1)を、光点P(256、512)の位置として記録する。
次いで、ステージ14を反対方向に移動させ、スリット28をY軸に沿って図27における左方に相対移動させる。そして、図27において二点鎖線で示すように、光点P(256、512)の光が右側のスリット28aを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0、Y2)を光点P(256、512)の位置として記録する。
以上の測定結果から、光点P(256、512)の被露光面上における位置を示す座標(X、Y)を、X=X0+(Y1−Y2)/2、Y=(Y1+Y2)/2の計算により決定する。同様の測定により、P(1、512)の位置を示す座標も決定し、それぞれの座標を結ぶ直線と、露光ヘッド30の走査方向とがなす傾斜角度を導出し、これを実傾斜角度θ´として特定する。
−使用描素部の選択−
このようにして特定された実傾斜角度θ’を用い、前記光検出器に接続された前記演算装置は、下記式4
ttanθ’=N・・・(式4)
の関係を満たす値tに最も近い自然数Tを導出し、DMD36上の1行目からT行目のマイクロミラーを、本露光時に実際に使用するマイクロミラーとして選択する処理を行う。これにより、第512列目付近の露光領域において、理想的な2重露光に対して、露光過多となる領域と、露光不足となる領域との面積合計が最小となるようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
ここで、上記の値tに最も近い自然数を導出することに代えて、値t以上の最小の自然数を導出することとしてもよい。その場合、第512列目付近の露光領域において、理想的な2重露光に対して、露光過多となる領域の面積が最小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
また、値t以下の最大の自然数を導出することとしてもよい。その場合、第512列目付近の露光領域において、理想的な2重露光に対して、露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
図28は、上記のようにして実際に使用するマイクロミラーとして選択されたマイクロミラーが生成した光点のみを用いて行った露光において、図25に示した露光面上のむらがどのように改善されるかを示した説明図である。
この例では、上記の自然数TとしてT=253が導出され、第1行目から第253行目のマイクロミラーが選択されたものとする。選択されなかった第254行目から第256行目のマイクロミラーに対しては、前記使用描素部制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。図28に示すとおり、第512列目付近の露光領域では、露光過多及び露光不足は、ほぼ完全に解消され、理想的な2重露光に極めて近い均一な露光が実現される。
一方、図28の左方の領域(図中のc(1)付近)では、前記角度歪みにより、被露光面上における光点列の傾斜角度が中央付近(図中のc(512)付近)の領域における光線列の傾斜角度よりも小さくなっている。したがって、c(512)を基準として測定された実傾斜角度θ´に基づいて選択されたマイクロミラーのみによる露光では、偶数列による露光パターン及び奇数列による露光パターンのそれぞれにおいて、理想的な2重露光に対して露光不足となる領域がわずかに生じてしまう。
しかしながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重ね合わせてなる実際の露光パターンにおいては、露光量不足となる領域が互いに補完され、前記角度歪みによる露光むらを、2重露光による埋め合わせの効果で最小とすることができる。
また、図28の右方の領域(図中のc(1024)付近)では、前記角度歪みにより、被露光面上における光線列の傾斜角度が、中央付近(図中のc(512)付近)の領域における光線列の傾斜角度よりも大きくなっている。したがって、c(512)を基準として測定された実傾斜角度θ´に基づいて選択されたマイクロミラーによる露光では、図に示すように、理想的な2重露光に対して露光過多となる領域がわずかに生じてしまう。
しかし、図示の奇数列による露光パターンと偶数列による露光パターンとを重ね合わせてなる実際の露光パターンにおいては、露光過多となる領域が互いに補完され、前記角度歪による濃度むらを、2重露光による埋め合わせの効果で最小とすることができる。
本実施形態(1)では、上述のとおり、第512列目の光線列の実傾斜角度θ’が測定され、該実傾斜角度θ’を用い、前記式(4)により導出されたTに基づいて使用するマイクロミラー58を選択したが、前記実傾斜角度θ’の特定方法としては、複数の描素部の列方向(光点列)と、前記露光ヘッドの走査方向とがなす複数の実傾斜角度をそれぞれ測定し、それらの平均値、中央値、最大値、及び最小値のいずれかを実傾斜角度θ’として特定し、前記式4等によって実際の露光時に実際に使用するマイクロミラーを選択する形態としてもよい。
前記平均値又は前記中央値を実傾斜角度θ’とすれば、理想的なN重露光に対して露光過多となる領域と露光不足となる領域とのバランスがよい露光を実現することができる。例えば、露光過多となる領域と、露光量不足となる領域との合計面積が最小に抑えられ、かつ、露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるような露光を実現することが可能である。
また、前記最大値を実傾斜角度θ’とすれば、理想的なN重露光に対して露光過多となる領域の排除をより重要視した露光を実現することができ、例えば、露光不足となる領域の面積を最小に抑え、かつ、露光過多となる領域が生じないような露光を実現することが可能である。
更に、前記最小値を実傾斜角度θ’とすれば、理想的なN重露光に対して露光不足となる領域の排除をより重要視した露光を実現することができ、例えば、露光過多となる領域の面積を最小に抑え、かつ、露光不足となる領域が生じないような露光を実現することが可能である。
一方、前記実傾斜角度θ’の特定は、同一の描素部の列(光点列)中の少なくとも2つの光点の位置に基づく方法に限定されない。例えば、同一描素部列c(n)中の1つ又は複数の光点の位置と、該c(n)近傍の列中の1つ又は複数の光点の位置とから求めた角度を、実傾斜角度θ’として特定してもよい。
具体的には、c(n)中の1つの光点位置と、露光ヘッドの走査方向に沿って直線上かつ近傍の光点列に含まれる1つ又は複数の光点位置とを検出し、これらの位置情報から、実傾斜角度θ’を求めることができる。更に、c(n)列近傍の光点列中の少なくとも2つの光点(例えば、c(n)を跨ぐように配置された2つの光点)の位置に基づいて求めた角度を、実傾斜角度θ’として特定してもよい。
以上のように、露光装置10を用いた本実施形態(1)の使用描素部の指定方法によれば、各露光ヘッドの取付角度誤差やパターン歪みの影響による解像度のばらつきや濃度のむらを軽減し、理想的なN重露光を実現することができる。
(2)複数露光ヘッド間における使用描素部の指定方法<1>
本実施形態(2)では、露光装置10により、感光層12に対して2重露光を行う場合であって、複数の露光ヘッド30により形成された被露光面上の重複露光領域であるヘッド間つなぎ領域において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の、理想的な状態からのずれに起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
各露光ヘッド30、即ち、各DMD36の設定傾斜角度θとしては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部マイクロミラー58を使用して、ちょうど2重露光となる角度θidealを採用するものとする。
この角度θidealは、上記の実施形態(1)と同様にして前記式1〜3から求められる。本実施形態(2)において、露光装置10は、各露光ヘッド30即ち各DMD36の取付角度がこの角度θidealとなるように、初期調整されているものとする。
図29は、上記のように初期調整された露光装置10において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の、理想的な状態からのずれの影響により、被露光面上のパターンに生じる濃度むらの例を示した説明図である。各露光ヘッドのX軸方向に関する相対位置のずれは、露光ヘッド間の相対位置の微調整が困難であるために生じ得るものである。
図29の上段部分は、ステージ14を静止させた状態で感光層12の被露光面上に投影される、露光ヘッド3012と3021が有するDMD36の使用可能なマイクロミラー58からの光点群のパターンを示した図である。図29の下段部分は、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を、露光エリア3212と3221について示したものである。
なお、図29では、説明の便宜のため、使用可能なマイクロミラー58の1列おきの露光パターンを、画素列群Aによる露光パターンと画素列群Bによる露光パターンとに分けて示してあるが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
図29の例では、上記したX軸方向に関する露光ヘッド3012と3021との間の相対位置の、理想的な状態からのずれの結果として、画素列群Aによる露光パターンと画素列群Bによる露光パターンとの双方で、露光エリア3212と3221の前記ヘッド間つなぎ領域において、理想的な2重露光の状態よりも露光量過多な部分が生じてしまっている。
上記したような、複数の前記露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域に現れる濃度むらを軽減するために、本実施形態(2)では、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012と3021からの光点群のうち、被露光面上に形成される前記ヘッド間つなぎ領域を構成する光点のいくつかについて、その位置(座標)を検出する。該位置(座標)に基づいて、前記描素部選択手段として前記光検出器に接続された演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
−位置(座標)の検出−
図30は、図29と同様の露光エリア3212及び3221と、対応するスリット28との位置関係を示した上面図である。スリット28の大きさは、露光ヘッド3012と3021による露光済み領域34間の重複部分の幅を十分覆う大きさ、即ち、露光ヘッド3012と3021により被露光面上に形成される前記ヘッド間つなぎ領域を十分覆う大きさとされている。
図31は、一例として露光エリア3221の光点P(256、1024)の位置を検出する際の検出手法を説明した上面図である。
まず、第256行目第1024列目のマイクロミラーを点灯させた状態で、ステージ14をゆっくり移動させてスリット28をY軸方向に沿って相対移動させ、光点P(256、1024)が上流側のスリット28aと下流側のスリット28bの間に来るような任意の位置に、スリット28を位置させる。このときのスリット28aとスリット28bとの交点の座標を(X0、Y0)とする。この座標(X0、Y0)の値は、ステージ14に与えられた駆動信号が示す上記の位置までのステージ14の移動距離、及び、既知であるスリット28のX方向位置から決定され、記録される。
次に、ステージ14を移動させ、スリット28をY軸に沿って図31における右方に相対移動させる。そして、図31において二点鎖線で示すように、光点P(256、1024)の光が左側のスリット28bを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0、Y1)を、光点P(256、1024)の位置として記録する。
次いで、ステージ14を反対方向に移動させ、スリット28をY軸に沿って図31における左方に相対移動させる。そして、図31において二点鎖線で示すように、光点P(256、1024)の光が右側のスリット28aを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0、Y2)を、光点P(256、1024)として記録する。
以上の測定結果から、光点P(256、1024)の被露光面における位置を示す座標(X、Y)を、X=X0+(Y1−Y2)/2、Y=(Y1+Y2)/2の計算により決定する。
−不使用描素部の特定−
図29の例では、まず、露光エリア3212の光点P(256、1)の位置を、上記の光点位置検出手段としてスリット28と光検出器の組により検出する。続いて、露光エリア3221の第256行目の光点行r(256)上の各光点の位置を、P(256、1024)、P(256、1023)・・・と順番に検出していき、露光エリア3212の光点P(256、1)よりも大きいX座標を示す露光エリア3221の光点P(256、n)が検出されたところで、検出動作を終了する。そして、露光エリア3221の光点列c(n+1)からc(1024)を構成する光点に対応するマイクロミラーを、本露光時に使用しないマイクロミラー(不使用描素部)として特定する。
例えば、図29において、露光エリア3221の光点P(256、1020)が、露光エリア3212の光点P(256、1)よりも大きいX座標を示し、その露光エリア3221の光点P(256、1020)が検出されたところで検出動作が終了したとすると、図32において斜線で覆われた部分70に相当する露光エリア3221の第1021行から第1024行を構成する光点に対応するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定される。
次に、N重露光の数Nに対して、露光エリア3212の光点P(256、N)の位置が検出される。本実施形態(2)では、N=2であるので、光点P(256、2)の位置が検出される。
続いて、露光エリア3221の光点列のうち、上記で本露光時に使用しないマイクロミラーに対応する光点列として特定されたものを除き、最も右側の第1020列を構成する光点の位置を、P(1、1020)から順番にP(1、1020)、P(2、1020)・・・と検出していき、露光エリア3212の光点P(256、2)よりも大きいX座標を示す光点P(m、1020)が検出されたところで、検出動作を終了する。
その後、前記光検出器に接続された演算装置において、露光エリア3212の光点P(256、2)のX座標と、露光エリア3221の光点P(m、1020)及びP(m−1、1020)のX座標とが比較され、露光エリア3221の光点P(m、1020)のX座標の方が露光エリア3212の光点P(256、2)のX座標に近い場合は、露光エリア3221の光点P(1、1020)からP(m−1、1020)に対応するマイクロミラーが本露光時に使用しないマイクロミラーとして特定される。
また、露光エリア3221の光点P(m−1、1020)のX座標の方が露光エリア3212の光点P(256、2)のX座標に近い場合は、露光エリア3221の光点P(1、1020)からP(m−2、1020)に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。
更に、露光エリア3212の光点P(256、N−1)即ち光点P(256、1)の位置と、露光エリア3221の次列である第1019列を構成する各光点の位置についても、同様の検出処理及び使用しないマイクロミラーの特定が行われる。
その結果、例えば、図32において網掛けで覆われた領域72を構成する光点に対応するマイクロミラーが、実際の露光時に使用しないマイクロミラーとして追加される。これらのマイクロミラーには、常時、そのマイクロミラーの角度をオフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に使用されない。
このように、実際の露光時に使用しないマイクロミラーを特定し、該使用しないマイクロミラーを除いたものを、実際の露光時に使用するマイクロミラーとして選択することにより、露光エリア3212と3221の前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができ、図32の下段に示すように、理想的な2重露光に極めて近い均一な露光を実現することができる。
なお、上記の例においては、図32において網掛けで覆われた領域72を構成する光点の特定に際し、露光エリア3212の光点P(256、2)のX座標と、露光エリア3221の光点P(m、1020)及びP(m−1、1020)のX座標との比較を行わずに、ただちに、露光エリア3221の光点P(1、1020)からP(m−2、1020)に対応するマイクロミラーを、本露光時に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光過多となる領域の面積が最小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
また、露光エリア3221の光点P(1、1020)からP(m−1、1020)に対応するマイクロミラーを、本露光に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
更に、前記ヘッド間つなぎ領域において、理想的な2重描画に対して露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるように、実際に使用するマイクロミラーを選択することとしてもよい。
以上のように、露光装置10を用いた本実施形態(2)の使用描素部の指定方法によれば、複数の露光ヘッドのX軸方向に関する相対位置のずれに起因する解像度のばらつきと濃度むらとを軽減し、理想的なN重露光を実現することができる。
(3)複数露光ヘッド間における使用描素部の指定方法<2>
本実施形態(3)では、露光装置10により、感光層12に対して2重露光を行う場合であって、複数の露光ヘッド30により形成された被露光面上の重複露光領域であるヘッド間つなぎ領域において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の理想的な状態からのずれ、並びに各露光ヘッドの取付角度誤差、及び2つの露光ヘッド間の相対取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
各露光ヘッド30即ち各DMD36の設定傾斜角度としては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部(マイクロミラー58)を使用してちょうど2重露光となる角度θidealよりも若干大きい角度を採用するものとする。
この角度θidealは、前記式1〜3を用いて上記(1)の実施形態と同様にして求められる値であり、本実施形態では、上記のとおりs=256、N=2であるので、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、例えば0.50度程度の角度を採用するとよい。露光装置10は、調整可能な範囲内で、各露光ヘッド30即ち各DMD36の取付角度がこの設定傾斜角度θに近い角度となるように、初期調整されているものとする。
図33は、上記のように各露光ヘッド30、即ち、各DMD36の取付角度が初期調整された露光装置10において、2つの露光ヘッド(一例として露光ヘッド3012と3021)の取付角度誤差、並びに各露光ヘッド3012と3021間の相対取付角度誤差、及び相対位置のずれの影響により、露光面上のパターンに生じるむらの例を示した説明図である。
図33の例では、図29の例と同様の、X軸方向に関する露光ヘッド3012と3021の相対位置のずれの結果として、一列おきの光点群(画素列群A及びB)による露光パターンの双方で、露光エリア3212と3221の被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域において、理想的な2重露光の状態よりも露光量過多な領域74が生じ、これが濃度むらを引き起こしている。
更に、図33の例では、各露光ヘッドの設定傾斜角度θを前記式(1)を満たす角度θidealよりも若干大きくしたことによる結果、及び各露光ヘッドの取付角度の微調整が困難であるために、実際の取付角度が上記の設定傾斜角度θからずれてしまったことの結果として、被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域以外の領域でも、一列おきの光点群(画素列群A及びB)による露光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領域である描素部列間つなぎ領域において、理想的な2重露光の状態よりも露光過多となる領域76が生じ、これがさらなる濃度むらを引き起こしている。
本実施形態(3)では、まず、各露光ヘッド3012と3021の取付角度誤差及び相対取付角度のずれの影響による濃度むらを軽減するための使用画素選択処理を行う。
具体的には、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012と3021のそれぞれについて、実傾斜角度θ’を特定し、該実傾斜角度θ’に基づき、前記描素部選択手段として光検出器に接続された演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
−実傾斜角度θ’の特定−
実傾斜角度θ’の特定は、露光ヘッド3012ついては露光エリア3212内の光点P(1、1)とP(256、1)の位置を、露光ヘッド3021については露光エリア3221内の光点P(1、1024)とP(256、1024)の位置を、それぞれ上述した実施形態(2)で用いたスリット28と光検出器の組により検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定することにより行われる。
−不使用描素部の特定−
そのようにして特定された実傾斜角度θ’を用いて、光検出器に接続された演算装置は、上述した実施形態(1)における演算装置と同様、下記式4
ttanθ’=N・・・(式4)
の関係を満たす値tに最も近い自然数Tを、露光ヘッド3012と3021のそれぞれについて導出し、DMD36上の第(T+1)行目から第256行目のマイクロミラーを、本露光に使用しないマイクロミラーとして特定する処理を行う。
例えば、露光ヘッド3012についてはT=254、露光ヘッド3021についてはT=255が導出されたとすると、図34において斜線で覆われた部分78及び80を構成する光点に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。これにより、露光エリア3212と3221のうちヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができる。
ここで、上記の値tに最も近い自然数を導出することに代えて、値t以上の最小の自然数を導出することとしてもよい。その場合、露光エリア3212と3221の、複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光量過多となる面積が最小になり、かつ露光量不足となる面積が生じないようになすことができる。
あるいは、値t以下の最大の自然数を導出することとしてもよい。その場合、露光エリア3212と3221の、複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようになすことができる。
複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して、露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるように、本露光時に使用しないマイクロミラーを特定することとしてもよい。
その後、図34において斜線で覆われた領域78及び80を構成する光点以外の光点に対応するマイクロミラーに関して、図29から17を用いて説明した本実施形態(3)と同様の処理がなされ、図34において斜線で覆われた領域82及び網掛けで覆われた領域84を構成する光点に対応するマイクロミラーが特定され、本露光時に使用しないマイクロミラーとして追加される。
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。
以上のように、露光装置10を用いた本実施形態(3)の使用描素部の指定方法によれば、複数の露光ヘッドのX軸方向に関する相対位置のずれ、並びに各露光ヘッドの取付角度誤差、及び露光ヘッド間の相対取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的なN重露光を実現することができる。
以上、露光装置10による使用描素部指定方法ついて詳細に説明したが、上記実施形態(1)〜(3)は一例に過ぎず、本発明の範囲を逸脱することなく種々の変更が可能である。
また、上記の実施形態(1)〜(3)では、被露光面上の光点の位置を検出するための手段として、スリット28と単一セル型の光検出器の組を用いたが、これに限られずいかなる形態のものを用いてもよく、例えば、2次元検出器等を用いてもよい。
更に、上記の実施形態(1)〜(3)では、スリット28と光検出器の組による被露光面上の光点の位置検出結果から実傾斜角度θ’を求め、その実傾斜角度θ’に基づいて使用するマイクロミラーを選択したが、実傾斜角度θ’の導出を介さずに使用可能なマイクロミラーを選択する形態としてもよい。更には、例えばすべての使用可能なマイクロミラーを用いた参照露光を行い、参照露光結果の目視による解像度や濃度のむらの確認等により、操作者が使用するマイクロミラーを手動で指定する形態も、本発明の範囲に含まれるものである。
なお、被露光面上に生じ得るパターン歪みには、上記の例で説明した角度歪みの他にも、種々の形態が存在する。
一例としては、図35Aに示すように、DMD36上の各マイクロミラー58からの光線が、異なる倍率で露光面上の露光エリア32に到達してしまう倍率歪みの形態がある。
また、別の例として、図35Bに示すように、DMD36上の各マイクロミラー58からの光線が、異なるビーム径で露光面上の露光エリア32に到達してしまうビーム径歪みの形態もある。これらの倍率歪み及びビーム径歪みは、主として、DMD36と露光面間の光学系の各種収差やアラインメントずれに起因して生じる。
更に別の例として、DMD36上の各マイクロミラー58からの光線が、異なる光量で露光面上の露光エリア32に到達してしまう光量歪みの形態もある。この光量歪みは、各種収差やアラインメントずれのほか、DMD36と露光面間の光学要素(例えば1枚レンズである図5A及び図5Bのレンズ52及び54)の透過率の位置依存性や、DMD36自体による光量むらに起因して生じる。これらの形態のパターン歪みも、露光面上に形成されるパターンに解像度や濃度のむらを生じさせる。
上記の実施形態(1)〜(3)によれば、本露光に実際に使用するマイクロミラーを選択した後の、これらの形態のパターン歪みの残留要素も、上記の角度歪みの残留要素と同様、2重露光による埋め合わせの効果で均一化することができる。
<<参照露光>>
上記の実施形態(1)〜(3)の変更例として、使用可能なマイクロミラーのうち、(N−1)列おきのマイクロミラー列、又は全光点行のうち1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行い、均一な露光を実現できるように、前記参照露光に使用されたマイクロミラー中、実際の露光時に使用しないマイクロミラーを特定することとしてもよい。
前記参照露光手段による参照露光の結果をサンプル出力し、該出力された参照露光結果に対し、解像度のばらつきや濃度のむらを確認し、実傾斜角度を推定するなどの分析を行う。前記参照露光の結果の分析は、操作者の目視による分析であってもよい。
図36A及び図36Bは、単一露光ヘッドを用い、(N−1)列おきのマイクロミラーのみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図36Aに実線で示した奇数列の光点列に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したりすることで、本露光時において使用するマイクロミラーを指定することができる。
例えば、図36Bに斜線で覆って示す光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点列を構成するマイクロミラー中、本露光において実際に使用されるものとして指定される。偶数列の光点列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列の光点列に対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、奇数列及び偶数列双方のマイクロミラーを使用した本露光においては、理想的な2重露光に近い状態が実現できる。
図37は、複数の露光ヘッドを用い、(N−1)列おきのマイクロミラーのみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図37に実線で示した、X軸方向に関して隣接する2つの露光ヘッド(一例として露光ヘッド3012と3021)の奇数列の光点列に対応するマイクロミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記出力された参照露光結果に基づき、2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したりすることで、本露光時において使用するマイクロミラーを指定することができる。
例えば、図37に斜線で覆って示す領域86及び網掛けで示す領域88内の光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点を構成するマイクロミラー中、本露光時において実際に使用されるものとして指定される。偶数列の光点列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列目の画素列に対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に実際に使用するマイクロミラーを指定することにより、奇数列及び偶数列双方のマイクロミラーを使用した本露光においては、2つの露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において、理想的な2重露光に近い状態が実現できる。
図38A及び図38Bは、単一露光ヘッドを用い、全光点行数の1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図38Aに実線で示した1行目から128(=256/2)行目の光点に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、本露光時において使用するマイクロミラーを指定することができる。
例えば、図38Bに斜線で覆って示す光点群に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定され得る。第129行目から第256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、第1行目から第128行目のマイクロミラーに対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、全体のマイクロミラーを使用した本露光においては、理想的な2重露光に近い状態が実現できる。
図39は、複数の露光ヘッドを用い、X軸方向に関して隣接する2つの露光ヘッド(一例として露光ヘッド3012と3021)について、それぞれ全光点行数の1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図39に実線で示した第1行目から第128(=256/2)行目の光点に対応するマイクロミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむらを最小限に抑えた本露光が実現できるように、本露光時において使用するマイクロミラーを指定することができる。
例えば、図39に斜線で覆って示す領域90及び網掛けで示す領域92内の光点列に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定される。第129行目から第256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光に使用するマイクロミラーを指定してもよいし、第1行目から第128行目のマイクロミラーに対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、2つの露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において理想的な2重露光に近い状態が実現できる。
以上の実施形態(1)〜(3)及び変更例においては、いずれも本露光を2重露光とする場合について説明したが、これに限定されず、2重露光以上のいかなる多重露光としてもよい。特に3重露光から7重露光程度とすることにより、高解像度を確保し、解像度のばらつき及び濃度むらが軽減された露光を実現することができる。
また、上記の実施形態及び変更例に係る露光装置には、更に、画像データが表す2次元パターンの所定部分の寸法が、選択された使用画素により実現できる対応部分の寸法と一致するように、画像データを変換する機構が設けられていることが好ましい。そのように画像データを変換することによって、所望の2次元パターンどおりの高精細なパターンを露光面上に形成することができる。
〔ジャギー低減方法〕
解像度を高めるために、前記露光ヘッドを傾斜させて露光を行うと、形成する露光パターンによっては、無視できないジャギーが発生してしまうという問題がある。例えば、走査方向又はそれと直交する方向に延在する直線状のパターンを形成する場合、前記光変調手段によって形成される各描素部の位置と、パターンの所望の描画位置との間のずれがジャギーとして視認されてしまうことがある。
この問題に対し、単位面積当たりの描画画素数を増加させる等の手段を講じることなく、最適な描画条件を設定することにより、ジャギーの発生を抑制する方法を説明する。
露光ヘッドは、シートフイルム(感光材料)の走査方向と直交する方向に2列で千鳥状に配列される。各露光ヘッドに組み込まれるDMDは、高い解像度を実現すべく、走査方向に対して所定角度傾斜した状態に設定される。即ち、DMDをシートフイルムの走査方向に対して傾斜させることにより、DMDを構成するマイクロミラーの走査方向と直交する方向に対する間隔が狭くなり、これによって、走査方向と直交する方向に対する解像度を高くすることができる。なお、露光ヘッド間の継ぎ目が生じることのないよう、各露光ヘッドによる露光エリアが走査方向と直交する方向に重畳するように設定される。
露光装置を制御する制御ユニット(制御手段)は、エンコーダにより検出した移動ステージの位置データに基づいて同期信号を生成する同期信号生成部と、生成された同期信号に基づいて移動ステージを走査方向に移動させる露光ステージ駆動部と、シートフイルムに描画される画像の描画データを記憶する描画データ記憶部と、同期信号及び描画データに基づいてDMDのSRAMセルを変調制御し、マイクロミラーを駆動するDMD変調部とを備える。
また、制御ユニットは、同期信号生成部により生成される同期信号を調整する周波数変更部(描画タイミング変更手段)、位相差変更部(位相差変更手段)及び移動速度変更部(移動速度変更手段)を備える。
周波数変更部は、DMDを構成するマイクロミラーの走査方向に対するオンオフ制御のタイミングを決定する周波数を変更して同期信号生成部に供給し、シートフイルムに描画される画素の走査方向の間隔を調整する。位相差変更部は、走査方向と略直交する方向に隣接して配列されたマイクロミラーのオンオフ制御のタイミングの位相差を変更して同期信号生成部に供給し、シートフイルムに描画される画素の走査方向に対する位相差を調整する。移動速度変更部は、移動ステージの移動速度を変更して同期信号生成部に供給することで移動ステージの移動速度を調整する。
更に、制御ユニットには、必要に応じて、露光ヘッド回転駆動部(描画画素群回転手段)及び光学倍率変更部(描画倍率変更手段)を配設することができる。露光ヘッド回転駆動部は、露光ヘッドをレーザビームLの光軸の回りに所定角度回転させ、シートフイルム上に形成される画素配列の走査方向に対する傾斜角度を調整する。なお、露光ヘッドの一部の光学部材を回転させることによって、画素配列の傾斜角度を調整するようにしてもよい。光学倍率変更部は、露光ヘッドの第2結像光学レンズにより構成されるズーム光学系を制御して光学倍率を変更し、隣接するマイクロミラーによりシートフイルム上に形成される画素の配列ピッチ又は同一のマイクロミラーによる描画ピッチを調整する。
[現像工程]
前記現像工程としては、前記露光工程により前記感光層を露光し、未露光部分を除去することにより現像する工程を有する。
前記未硬化領域の除去方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、現像液を用いて除去する方法などが挙げられる。前記現像液及び現像条件などについては、上述したとおりである。
[その他の工程]
前記その他の工程としては、特に制限はなく、公知のカラーフィルタ製造方法における工程の中から適宜選択することが挙げられるが、例えば、硬化処理工程、などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
−硬化処理工程−
前記現像工程後に、感光層に対して硬化処理を行う硬化処理工程を備えることが好ましい。
前記硬化処理工程としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、全面露光処理、全面加熱処理などが好適に挙げられる。
前記全面露光処理の方法としては、例えば、前記現像工程の後に、前記パターンが形成された前記積層体上の全面を露光する方法が挙げられる。該全面露光により、前記感光層を形成する感光性組成物中の樹脂の硬化が促進され、形成されたパターンの表面が硬化される。
前記全面露光を行う装置としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、超高圧水銀灯などのUV露光機が好適に挙げられる。
前記全面加熱処理の方法としては、前記現像工程の後に、前記パターンが形成された前記積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前記パターンの表面の膜強度が高められる。
前記全面加熱における加熱温度としては、120〜250℃が好ましく、120〜200℃がより好ましい。該加熱温度が120℃未満であると、加熱処理による膜強度の向上が得られないことがあり、250℃を超えると、前記感光性組成物中の樹脂の分解が生じ、膜質が弱く脆くなることがある。
前記全面加熱における加熱時間としては、10〜120分間が好ましく、15〜60分間がより好ましい。
前記全面加熱を行う装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、IRヒーターなどが挙げられる。
本発明のカラーフィルタ製造方法は、感光層の被露光面上に結像させる像の歪みを抑制することにより、パターンを高精細に、かつ、効率よく形成可能であるため、高精細な露光が必要とされる各種パターンの形成などに好適に使用することができ、特に高精細なカラーフィルタパターンの形成に好適に使用することができる。
本発明のカラーフィルタの製造方法においては、上述したように、ガラス基板等の透明基板上に、本発明のパターン形成方法により、RGBの3原色の画素をモザイク状又はストライプ状に配置することができる。
各画素の寸法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、40〜200μmとすることが好適に挙げられる。ストライプ状であれば40〜200μm巾が通常用いられる。
前記カラーフィルタの製造方法としては、例えば、透明基板上に黒色に着色された感光層を用いて、露光及び現像を行いブラックマトリックスを形成し、次いで、RGBの3原色のいずれかに着色された感光層を用いて、前記ブラックマトリックスに対して所定の配置で、各色毎に、順次、露光及び現像を繰り返して、前記透明基板上にRGBの3原色がモザイク状又はストライプ状に配置されたカラーフィルタを形成する方法が挙げられる。
(液晶表示装置)
本発明の液晶表示装置は、互いに対向して配される一対の基板間に液晶が封入されてなり、本発明の前記カラーフィルタを有してなり、更に必要に応じてその他の部材を有してなる。
本発明のカラーフィルタは、液晶表示装置の対向基板(TFTなどの能動素子が無い側の基板)に形成するものを対象としている他、TFT基板側に形成するCOA方式、TFT基板側に黒だけを形成するBOA方式、又はTFT基板にハイアパーチャー構造を有するHA方式も対象とすることができる。
前記カラーフィルタ上には、更に必要に応じて、オーバーコート膜や透明導電膜を形成することができる。その後、カラーフィルタと対向基板との間に液晶が封入され、液晶表示装置が作製される。液晶の表示方式としては、特に制限はなく、目的に応じて適宜選定することができるが、例えば、ECB(Electrically Controlled Birefringence)、TN(Twisted Nematic)、OCB(Optically Compensatory Bend)、VA(Vertically Aligned)、HAN(Hybrid Aligned Nematic)、STN(Supper Twisted Nematic)、IPS(In-Plane Switching)、GH(Guest Host)、FLC(強誘電性液晶)、AFLC(反強誘電性液晶)、PDLC(高分子分散型液晶)、などの表示方式に適用可能である。
前記液晶表示装置としては、例えば、(1)薄膜トランジスタ(以下、「TFT」という。)等の駆動素子と画素電極(導電層)とが配列形成された駆動側基板と、カラーフィルタ及び対向電極(導電層)を備えるカラーフィルタ側基板とをスペーサを介在させて対向配置し、その間隙部に液晶材料を封入して構成される装置、(2)カラーフィルタが前記駆動側基板に直接形成されたカラーフィルタ一体型駆動基板と、対向電極(導電層)を備える対向基板とをスペーサを介在させて対向配置し、その間隙部に液晶材料を封入して構成される装置(特開2003−241178号公報参照)、などが挙げられる。
以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、実施例中の「部」及び「%」は、それぞれ「質量部」及び「質量%」を示す。
まず、以下のようにして、着色感光性樹脂組成物K1〜K3、着色感光性樹脂組成物R1〜R3、着色感光性樹脂組成物G1〜G3、着色感光性樹脂組成物B1〜B3、及び無色感光性樹脂組成物X1〜X3をそれぞれ調製した。
<着色感光性樹脂組成物K1〜K3の調製>
まず、表1に記載の量のK顔料分散物1、プロピレングリコールモノメチルエーテルアセテートをはかり取り、温度24℃(±2℃)で混合して150rpmで10分間攪拌した。
次いで、メチルエチルケトン、バインダー1、ハイドロキノンモノメチルエーテル、DPHA液、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−s−トリアジン、及び界面活性剤1をはかり取り、温度25℃(±2℃)で、この順に添加して、温度40℃(±2℃)にて、150rpmで30分間攪拌することによって得られた。
なお、表1の処方K1に記載の組成物の内、以下の意味を表す。
*K顔料分散物1:
・カーボンブラック(デグッサ社製、商品名Special Black 250)・・・13.05部
・N,N’−ビス−(3−ジエチルアミノプロピル)−5−[4−[2−オキソ−1−(2−オキソ−2,3−ジヒドロ−1H−ベンゾイミダゾール−5−イルカルバモイル)−プロピルアゾ]−ベンゾイルアミノ]−イソフタルアミド・・・0.65部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万)・・・6.72部
・プロピレングリコールモノメチルエーテルアセテート・・・79.53部
*K顔料分散物2:
・カーボンブラック(デグッサ社製、商品名Special Black 250)・・・13.05部
・N,N’−ビス−(3−ジエチルアミノプロピル)−5−[4−[2−オキソ−1−(2−オキソ−2,3−ジヒドロ−1H−ベンゾイミダゾール−5−イルカルバモイル)−プロピルアゾ]−ベンゾイルアミノ]−イソフタルアミド・・・0.65部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万)・・・4.0部
・プロピレングリコールモノメチルエーテルアセテート・・・79.53部
*バインダー1:
・ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万・・・27部
・プロピレングリコールモノメチルエーテルアセテート・・・82部
*DPHA液:
・ジペンタエリスリトールヘキサアクリレート(重合禁止剤MEHQを500ppm含有、日本化薬株式会社製、商品名:KAYARAD DPHA)・・・76部
・プロピレングリコールモノメチルエーテルアセテート・・・24部
*界面活性剤1:
・C13CHCHOCOCH=CH:40部と、H(OCH(CH)CH)OCOCH=CH:55部と、H(OCHCH)OCOCH=CH:5部との共重合体、重量平均分子量3万・・・30部
・メチルエチルケトン・・・70部
なお、表1中の各成分の単位は質量部である。
<着色感光性樹脂組成物R1〜R3の調製>
まず、表2に記載の量のR顔料分散物1、R顔料分散物2、プロピレングリコールモノメチルエーテルアセテートをはかり取り、温度24℃(±2℃)で混合して150rpmで10分間攪拌した。次いで、表2に記載の量のメチルエチルケトン、バインダー2、DPHA液、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−s−トリアジン、フェノチアジンをはかり取り、温度24℃(±2℃)でこの順に添加して150rpm10分間攪拌した。次いで、表2に記載の量のED152をはかり取り、温度24℃(±2℃)で混合して150rpm20分間攪拌した。次に、表2に記載の量の界面活性剤1をはかり取り、温度24℃(±2℃)で添加して30rpm、30分間攪拌し、ナイロンメッシュ#200で濾過することによって得られた。
なお、表2に記載の組成物の内、以下の意味を表す。
*R顔料分散物1:
・C.I.ピグメント・レッド254・・・8部
・N,N’−ビス−(3−ジエチルアミノプロピル)−5−[4−[2−オキソ−1−(2−オキソ−2,3−ジヒドロ−1H−ベンゾイミダゾール−5−イルカルバモイル)−プロピルアゾ]−ベンゾイルアミノ]−イソフタルアミド・・・0.8部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万)・・・8部
・プロピレングリコールモノメチルエーテルアセテート・・・83.2部
*R顔料分散物2:
・C.I.ピグメント・レッド177・・・18部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万))・・・12部
・プロピレングリコールモノメチルエーテルアセテート・・・70部
*R顔料分散物3:
・C.I.ピグメント・レッド254・・・19.9部
・N,N’−ビス−(3−ジエチルアミノプロピル)−5−[4−[2−オキソ−1−(2−オキソ−2,3−ジヒドロ−1H−ベンゾイミダゾール−5−イルカルバモイル)−プロピルアゾ]−ベンゾイルアミノ]−イソフタルアミド・・・2.2部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万)・・・5.9部
・プロピレングリコールモノメチルエーテルアセテート・・・72部
*バインダー2:
・ベンジルメタクリレート/メタクリル酸/メチルメタクリレート=38/25/37モル比のランダム共重合物、重量平均分子量3万・・・27部
・プロピレングリコールモノメチルエーテルアセテート・・・73部
なお、表2中の各成分の単位は質量部である。
<着色感光性樹脂組成物G1〜G3の調製>
まず、表3に記載の量のG顔料分散物1、Y顔料分散物1、プロピレングリコールモノメチルエーテルアセテートをはかり取り、温度24℃(±2℃)で混合して150rpmで10分間攪拌した。次いで、表3に記載の量のメチルエチルケトン、シクロヘキサノン、バインダー3、DPHA液、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−s−トリアジン、及びフェノチアジンをはかり取り、温度24℃(±2℃)でこの順に添加して150rpmで30分間攪拌した。次いで、表3に記載の量の界面活性剤1をはかり取り、温度24℃(±2℃)で添加して30rpmで5分間攪拌し、ナイロンメッシュ#200で濾過することによって得られる。
なお、表3に記載の組成物の内、以下の意味を表す。
*G顔料分散物1:
・C.I.ピグメント・グリーン36・・・18部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万)・・・12部
・シクロヘキサノン・・・35部
・プロピレングリコールモノメチルエーテルアセテート・・・35部
*G顔料分散物2:
・C.I.ピグメント・グリーン36・・・24部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万)・・・12部
・シクロヘキサノン・・・32部
・プロピレングリコールモノメチルエーテルアセテート・・・32部
*Y顔料分散物1:(御国色素社製、商品名:CFエローEX3393)
*バインダー3:
・ベンジルメタクリレート/メタクリル酸=78/22モル比のランダム共重合物、重量平均分子量4.4万 ・・・27部
・プロピレングリコールモノメチルエーテルアセテート・・・73部
なお、表3中の各成分の単位は質量部である。
<着色感光性樹脂組成物B1〜B3の調製>
まず、表4に記載の量のB顔料分散物1、B顔料分散物2、プロピレングリコールモノメチルエーテルアセテートをはかり取り、温度24℃(±2℃)で混合して150rpm10分間攪拌した。次いで、表4に記載の量のメチルエチルケトン、バインダー4、DPHA液、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−s−トリアジン、フェノチアジンをはかり取り、温度25℃(±2℃)でこの順に添加して、温度40℃(±2℃)で150rpm30分間攪拌した。更に、表4に記載の量の界面活性剤1をはかり取り、温度24℃(±2℃)で添加して30rpmで5分間攪拌し、ナイロンメッシュ#200で濾過することによって得られた。
なお、表4に記載の組成物の内、以下の意味を表す。
*B顔料分散物1:(御国色素社製、商品名:CFブルーEX3357)
*B顔料分散物2:(御国色素社製、商品名:CFブルーEX3383)
*バインダー4:
・ベンジルメタクリレート/メタクリル酸/メチルメタクリレート=36/22/42モル比のランダム共重合物、重量平均分子量3万・・・27部
・プロピレングリコールモノメチルエーテルアセテート・・・73部
なお、表4中の各成分の単位は質量部である。
<無色感光性樹脂組成物X1〜X3の調製>
まず、表5に記載の量の無色顔料としてのシリカゾルの30%メチルイソブチルケトン分散物(商品名:MIBK−ST、日産化学工業(株)製))、プロピレングリコールモノメチルエーテルアセテートをはかり取り、温度24℃(±2℃)で混合して150rpm10分間攪拌した。次いで、表5に記載の量のメチルエチルケトン、バインダー5、DPHA液、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−s−トリアジン、ハイドロキノンモノメチルエーテルをはかり取り、温度25℃(±2℃)でこの順に添加して、温度40℃(±2℃)で150rpm30分間攪拌した。更に、表5に記載の量の界面活性剤1と着色染料をはかり取り、温度24℃(±2℃)で添加して30rpmで5分間攪拌し、ナイロンメッシュ#200で濾過することによって得られた。
なお、表5に記載の組成物の内、以下の意味を表す。
*バインダー5:
・メタクリル酸/アリルメタクリレート共重合体
(=20/80[モル比]、分子量36000;高分子物質)
*着色染料
・ビクトリアピュアブルーBOH−M(保土谷化学工業(株)製)
なお、DPHA液と界面活性剤1は上記説明したものと同様である。
なお、表5中の各成分の単位は質量部である。
(実施例1)
−ブラック(K)画素の形成−
無アルカリガラス基板を、UV洗浄装置で洗浄後、洗浄剤を用いてブラシ洗浄し、次に超純水で超音波洗浄した。該基板を120℃にて3分間熱処理して表面状態を安定化させた。該基板を冷却し23℃に温調後、スリット状ノズルを有するガラス基板用コーター(エフ エー エス ジャパン社製、商品名:MH−1600)にて、上記表1に記載の組成よりなる着色感光性樹脂組成物K1を塗布した。引き続き、VCD(真空乾燥装置、東京応化工業社製)で30秒間、溶媒の一部を乾燥して塗布層の流動性を無くした後、EBR(エッジ ビード リムーバー)にて基板周囲の不要な塗布液を除去し、120℃にて3分間プリベークして、厚み2.4μmの黒色感光層を形成した。
−露光工程−
基材上の前記黒色感光層に対し、図1に示す露光装置を用い、前記黒色感光層と露光ヘッドとを相対移動させながら、80mJ/cm相当の黒色画像パターンの露光を行った。露光は405nmで行った。
光源として、波長が405nmのレーザ光を、15段ステップウエッジパターン(ΔlogE=0.15)、及び直径の異なる多数の穴部が形成されるパターンが得られるように照射して露光し、前記感光層の一部の領域を硬化させた。
−現像工程−
露光が終了した前記黒色感光層を室温にて10分間静置した後、黒色感光層の全面に、炭酸Na系現像液(0.06モル/リットルの炭酸水素ナトリウム、0.06モル/リットルの炭酸ナトリウム、1質量%のジブチルナフタレンスルホン酸ナトリウム、アニオン界面活性剤、消泡剤、及び安定剤含有、pH=10.2、商品名:T−CD1、富士写真フイルム株式会社製)を5倍希釈したもの(使用時のpHは10.2)を用い、25℃にて60秒間、フラットノズル圧力0,04MPaでシャワー現像し、次いで超純水を、超高圧洗浄ノズルを用いて9.8MPaの圧力で噴射して残渣の除去を行い、ブラックマトリクスパターンを得た。その後、220℃にて30分間熱処理を行った。
(実施例2)
−ブラック(K)画素の形成−
実施例1において、着色感光性樹脂組成物K1の代わりに着色感光性樹脂組成物K2を用いた以外は、実施例1と同様にして、実施例2の黒(K)画素パターンを形成した。
(実施例3)
−ブラック(K)画素の形成−
実施例1において、着色感光性樹脂組成物K1の代わりに着色感光性樹脂組成物K3を用いた以外は、実施例1と同様にして、実施例3の黒(K)画素パターンを形成した。
(実施例4)
−レッド(R)画素の形成−
実施例1において、着色感光性樹脂組成物K1の代わりに着色感光性樹脂組成物R1を用いた以外は、実施例1と同様にして、実施例4のレッド(R)画素パターンを形成した。
(実施例5)
−レッド(R)画素の形成−
実施例1において、着色感光性樹脂組成物K1の代わりに着色感光性樹脂組成物R2を用いた以外は、実施例1と同様にして、実施例5のレッド(R)画素パターンを形成した。
(実施例6)
−レッド(R)画素の形成−
実施例1において、着色感光性樹脂組成物K1の代わりに着色感光性樹脂組成物R3を用いた以外は、実施例1と同様にして、実施例6のレッド(R)画素パターンを形成した。
(実施例7)
−緑(G)画素の形成−
実施例1において、着色感光性樹脂組成物K1の代わりに着色感光性樹脂組成物G1を用いた以外は、実施例1と同様にして、実施例7の緑(G)画素パターンを形成した。
(実施例8)
−緑(G)画素の形成−
実施例1において、着色感光性樹脂組成物K1の代わりに着色感光性樹脂組成物G2を用いた以外は、実施例1と同様にして、実施例8の緑(G)画素パターンを形成した。
(実施例9)
−緑(G)画素の形成−
実施例1において、着色感光性樹脂組成物K1の代わりに着色感光性樹脂組成物G3を用いた以外は、実施例1と同様にして、実施例9の緑(G)画素パターンを形成した。
(実施例10)
−青(B)画素の形成−
実施例1において、着色感光性樹脂組成物K1の代わりに着色感光性樹脂組成物B1を用いた以外は、実施例1と同様にして、実施例10の青(B)画素パターンを形成した。
(実施例11)
−青(B)画素の形成−
実施例1において、着色感光性樹脂組成物K1の代わりに着色感光性樹脂組成物B2を用いた以外は、実施例1と同様にして、実施例11の青(B)画素パターンを形成した。
(実施例12)
−青(B)画素の形成−
実施例1において、着色感光性樹脂組成物K1の代わりに着色感光性樹脂組成物B3を用いた以外は、実施例1と同様にして、実施例12の青(B)画素パターンを形成した。
(実施例13)
−スペーサ画素の形成−
実施例1において、着色感光性樹脂組成物K1の代わりに感光性樹脂組成物X1を用いた以外は、実施例1と同様にして、実施例13のスペーサ画素パターンを形成した。
(実施例14)
−スペーサ画素の形成−
実施例1において、着色感光性樹脂組成物K1の代わりに感光性樹脂組成物X2を用いた以外は、実施例1と同様にして、実施例14のスペーサ画素パターンを形成した。
(実施例15)
−スペーサ画素の形成−
実施例1において、着色感光性樹脂組成物K1の代わりに感光性樹脂組成物X3を用いた以外は、実施例1と同様にして、実施例15のスペーサ画素パターンを形成した。
(実施例16)
−ブラック(K)画素の形成−
実施例1の現像工程において、現像液として下記組成のKOH系現像液を用いた以外は、実施例1と同様にして、実施例16のブラック(K)画素パターンを形成した。
<KOH系現像液>
KOH系現像液(KOH、ノニオン界面活性剤含有、商品名:CDK−1、富士フイルムエレクトロニクスマテリアルズ社製、pH=13〜14)を100倍希釈したもの(使用時のpH=11〜12)
(実施例17)
−ブラック(K)画素の形成−
実施例1の露光工程において、露光機として下記のパターン形成装置(多重露光機)を用いた以外は、実施例1と同様にして、実施例17のブラック(K)画素パターンを形成した。
<パターン形成装置>
前記光照射手段として図12〜18に示した合波レーザ光源と、前記光変調手段として図6に概略図を示した主走査方向にマイクロミラー58が1024個配列されたマイクロミラー列が、副走査方向に768組配列された内、1024個×256列のみを駆動するように制御したDMD36と、図5A及び図5Bに示した光を前記パターン形成材料に結像する光学系とを有する露光ヘッド30を備えたパターン形成装置10を用いた。
各露光ヘッド30、即ち、各DMD36の設定傾斜角度としては、使用可能な1024列×256行のマイクロミラー58を使用してちょうど2重露光となる角度θidealよりも若干大きい角度を採用した。この角度θidealは、N重露光の数N、使用可能なマイクロミラー58の列方向の個数s、使用可能なマイクロミラー58の列方向の間隔p、及び露光ヘッド30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッチδに対し、下記式1、
spsinθideal≧Nδ・・・(式1)
により与えられる。本実施形態におけるDMD36は、上記のとおり、縦横の配置間隔が等しい多数のマイクロミラー58が矩形格子状に配されたものであるので、
pcosθideal=δ・・・(式2)
であり、上記式1は、
stanθideal=N・・・(式3)
であり、s=256、N=2であるので、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、0.45度を採用した。
まず、2重露光における解像度のばらつきと露光むらを補正するため、被露光面の露光パターンの状態を調べた。結果を図33に示した。この図33においては、ステージ14を静止させた状態でパターン形成材料12の被露光面上に投影される、露光ヘッド3012と3021が有するDMD36の使用可能なマイクロミラー58からの光点群のパターンを示した。また、下段部分に、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を、露光エリア3212と3221について示した。なお、図33では、説明の便宜のため、使用可能なマイクロミラー58の1列おきの露光パターンを、画素列群Aによる露光パターンと画素列群Bによる露光パターンとに分けて示したが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
図33に示したとおり、露光ヘッド3012と3021の間の相対位置の、理想的な状態からのずれの結果として、画素列群Aによる露光パターンと画素列群Bによる露光パターンとの双方で、露光エリア3212と3221の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域において、理想的な2重露光の状態よりも露光過多な領域が生じていることが判る。
前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012ついては露光エリア3212内の光点P(1,1)とP(256,1)の位置を、露光ヘッド3021については露光エリア3221内の光点P(1,1024)とP(256,1024)の位置を検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定した。
実傾斜角度θ´を用いて、下記式4
ttanθ´=N・・・(式4)
の関係を満たす値tに最も近い自然数Tを、露光ヘッド3012と3021のそれぞれについて導出した。露光ヘッド3012についてはT=254、露光ヘッド3021についてはT=255がそれぞれ導出された。その結果、図19において斜線で覆われた部分78及び80を構成するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定された。
その後、図34において斜線で覆われた領域78及び80を構成する光点以外の光点に対応するマイクロミラーに関して、同様にして図34において斜線で覆われた領域82及び網掛けで覆われた領域84を構成する光点に対応するマイクロミラーが特定され、本露光時に使用しないマイクロミラーとして追加された。
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しないように制御した。
これにより、露光エリア3212と3221のうち、複数の前記露光ヘッドで形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができる。
(比較例1)
実施例1において、顔料を添加しない以外は、実施例1と同様にして、比較例1のパターンを形成した。
(比較例2)
実施例1において、黒色顔料の代わりに黒色染料(Diamira Black B、三菱化成工業(株)製)を用いた以外は、実施例1と同様にして、比較例2のブラック(K)画素パターンを形成した。
(比較例3)
実施例1の露光工程において、露光機として超高圧水銀灯を有すプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製)を用いた以外は、実施例1と同様にして、比較例3のブラック(K)画素パターンを形成した。
次に、実施例1〜17及び比較例1〜3について、以下のようにして、諸特性を評価した。結果を表6に示す。
<走査方向に対して垂直なギザギザ(凹凸)の大きさの測定方法>
図40に示すように、走査方向に対して垂直なパターンを形成し、LER(ジャギーの凹凸部の差)を光学顕微鏡で測定する。図40において、ライン幅Lに対するLERの大きさの比率〔(LER/L)×100〕を走査方向に対して垂直なギザギザ(凹凸)の大きさと定義し、その値を算出した。
<現像液浸漬時の初期感光層表面の残存時間の測定>
以下のようにして、現像液浸漬時の初期感光層表面の残存時間を測定した。
装置:光干渉膜厚計(大塚電子社製)の瞬間マルチ測定システム(MCPD−2000、MCPD−3000、MCPD−7000)
温度:33℃±0.5℃
測定波長、赤:600〜700nmの範囲、緑:500〜600nmの範囲、青:400〜500nmの範囲、無色:550〜650nmの範囲
<膜厚均一性>
感光性組成物の1mの膜厚を無作為に30点測定し、〔(最大値−最小値)/平均値〕×100を膜厚均一性と定義する。
<50枚露光後の異物>
前記形成したパターン面(50μm×50μm)について走査型電子顕微鏡(SEM)により撮影し、形成したパターン表面について、以下の評価基準に従って異物の有無の評価を行った。
−評価基準−
なし・・・・・異物が全くなく、形成したパターンの形状に影響がない。
あり・・・・・異物があり、該欠陥がパターンの端面において形状異常を生じさせた。
*注1:炭酸Na系現像液(0.06モル/リットルの炭酸水素ナトリウム、0.06モル/リットルの炭酸ナトリウム、1質量%のジブチルナフタレンスルホン酸ナトリウム、アニオン界面活性剤、消泡剤、及び安定剤含有、pH=10.2、商品名:T−CD1、富士写真フイルム株式会社製)を5倍希釈したもの
*注2:KOH系現像剤(ノニオン界面活性剤含有、pH=13〜14、商品名:CDK−1、富士フイルムエレクトロニクスマテリアルズ社製)を100倍希釈したもの
[液晶表示装置の作製及び評価]
実施例1〜17、及び比較例1〜3で作製したR、G、B、及びK画素、並びにスペーサを有するカラーフィルタを用いてLEDバックライトを有する液晶表示装置を作製した。実施例1〜17を用いた液晶表示装置は、比較例1〜3を用いた液晶表示装置に比べて、良好な表示特性を示すことが認められた。
本発明のパターン形成方法により製造されるカラーフィルタは、反射モード及び透過モードのいずれにおいても良好な表示特性を備え、特に、携帯端末、携帯ゲーム機等の液晶表示装置(LCD)用に好適であり、また、PALC(プラズマアドレス液晶)、プラズマディスプレイ用としても好適に用いられる。
図1は、露光装置の一例の外観を示す斜視図である。 図2は、露光装置のスキャナの構成の一例を示す斜視図である。 図3Aは、感光層の被露光面上に形成される露光済み領域を示す平面図である。 図3Bは、各露光ヘッドによる露光エリアの配列を示す平面図である。 図4は、露光ヘッドの概略構成の一例を示す斜視図である。 図5Aは、露光ヘッドの詳細な構成の一例を示す上面図である。 図5Bは、露光ヘッドの詳細な構成の一例を示す側面図である。 図6は、図1の露光装置のDMDの一例を示す部分拡大図である。 図7Aは、マイクロミラーがオン状態である+α度に傾いた状態を示す図である。 図7Bは、マイクロミラーがオフ状態である−α度に傾いた状態を示す図である。 図8は、パターン情報に基づいて、DMDの制御をするコントローラの一例である。 図9Aは、DMDを傾斜させない場合の各マイクロミラーによる反射光像(露光ビーム)の走査軌跡を示す図である。 図9Bは、DMDを傾斜させた場合の露光ビームの走査軌跡を示す図である。 図10は、スキャナによる1回の走査で感光層を露光する露光方式を説明するための平面図の一例である。 図11Aは、スキャナによる複数回の走査で感光層を露光する露光方式を説明するための図であって、スキャナにより感光層をX方向へ走査した後、スキャナをY方向に1ステップ移動した状態を示す図である。 図11Bは、スキャナによる複数回の走査で感光層を露光する露光方式を説明するための図であって、図11Aの後、X方向へ走査を行う状態を示す図である。 図12は、ファイバアレイ光源の構成の一例を示す斜視図である。 図13は、ファイバアレイ光源のレーザ出射部における発光点の配列の一例を示す正面図である。 図14は、マルチモード光ファイバの構成を示す図の一例である。 図15は、合波レーザ光源の構成を示す平面図の一例である。 図16は、レーザモジュールの構成を示す平面図の一例である。 図17は、図16に示すレーザモジュールの構成を示す側面図の一例である。 図18は、図16に示すレーザモジュールの構成を示す部分側面図の一例である。 図19は、レーザアレイの構成を示す斜視図の一例である。 図20Aは、マルチキャビティレーザの構成の一例を示す斜視図である。 図20Bは、図20Aに示すマルチキャビティレーザをアレイ状に配列したマルチキャビティレーザアレイの一例を示す斜視図である。 図21は、合波レーザ光源の他の構成を示す平面図の一例である。 図22は、合波レーザ光源の他の構成を示す平面図の一例である。 図23Aは、合波レーザ光源の他の構成の一例を示す平面図である。 図23Bは、図23Aの光軸に沿った構成の一例を示す断面図である。 図24Aは、従来の露光装置における光軸に沿った断面図の一例である。 図24Bは、本発明のパターン形成方法(露光装置)おける光軸に沿った断面図の一例である。 図25は、露光ヘッドの取付角度誤差及びパターン歪みがある際に、露光面上のパターンに生じるむらの例を示した説明図である。 図26は、1つのDMDによる露光エリアと、対応するスリットとの位置関係を示した上面図である。 図27は、被露光面上の光点の位置を、スリットを用いて測定する手法を説明するための上面図である。 図28は、選択されたマイクロミラーのみが露光に使用された結果、露光面上のパターンに生じるむらが改善された状態を示す説明図である。 図29は、隣接する露光ヘッド間に相対位置のずれがある際に、露光面上のパターンに生じるむらの例を示した説明図である。 図30は、隣接する2つの露光ヘッドによる露光エリアと、対応するスリットとの位置関係を示した上面図である。 図31は、露光面上の光点の位置を、スリットを用いて測定する手法を説明するための上面図である。 図32は、図29の例において選択された使用画素のみが実動され、露光面上のパターンに生じるむらが改善された状態を示す説明図である。 図33は、隣接する露光ヘッド間に相対位置のずれ及び取付角度誤差がある際に、露光面上のパターンに生じるむらの例を示した説明図である。 図34は、図33の例において選択された使用描素部のみを用いた露光を示す説明図である。 図35Aは、倍率歪みの一例を示す説明図である。 図35Bは、ビーム径歪みの一例を示す説明図である。 図36Aは、単一露光ヘッドを用いた参照露光の第一の例を示し、実線で示した奇数列の光点列に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する状態を説明する図である。 図36Bは、単一露光ヘッドを用いた参照露光の第一の例を示し、斜線で覆って示す光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点列を構成するマイクロミラー中、本露光において実際に使用されるものとして指定される状態を示す図である。 図37は、複数露光ヘッドを用いた参照露光の第一の例を示した説明図である。 図38Aは、単一露光ヘッドを用いた参照露光の第二の例を示し、実線で示した1行目から128(=256/2)行目の光点に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する状態を示す説明図である。 図38Bは、単一露光ヘッドを用いた参照露光の第二の例を示し、斜線で覆って示す光点群に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定され得る状態を示す図である。 図39は、複数露光ヘッドを用いた参照露光の第二の例を示した説明図である。 図40は、走査方向に対し垂直なパターンを形成した際の凹凸(ギザギザ)の測定方法を示す概念図である。
符号の説明
B1〜B7 レーザビーム
L1〜L7 コリメータレンズ
LD1〜LD7 GaN系半導体レーザ
10 露光装置
12 感光層
14 移動ステージ
18 設置台
20 ガイド
22 ゲート
24 スキャナ
26 センサ(カメラ)
28 スリット
30 露光ヘッド
36 デジタル・マイクロミラー・デバイス(DMD)
38 ファイバアレイ光源
40 集光レンズ系
50 結像レンズ系
58 マイクロミラー(描素部)
60 レーザモジュール
62 マルチモード光ファイバ
64 光ファイバ
66 レーザ出射部
110 ヒートブロック
111 マルチキャビティレーザ
113 ロッドレンズ
114 レンズアレイ
140 レーザアレイ
200 集光レンズ

Claims (18)

  1. 少なくともバインダー、重合性化合物、光重合開始剤、及び顔料粒子を含有する感光性組成物からなり、基材の表面に位置する感光層に対し、
    光照射手段、及び該光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、パターン情報に応じて前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査方向に対し、前記描素部の列方向が所定の設定傾斜角度θをなすように配置された露光ヘッドを用い、該露光ヘッドを走査方向に相対的に移動させて、前記感光層を露光する露光工程と、
    前記露光工程により露光された前記感光層を現像する現像工程と、を含んでなり、
    前記現像工程において、前記感光層をpH8〜13の現像液に浸漬したときの該感光層の未露光部の初期表面の残存時間が、3秒間以上であることを特徴とするパターン形成方法。
  2. 現像液が、無機アルカリ現像液である請求項1に記載のパターン形成方法。
  3. 顔料粒子の含有量が、感光層の総固形量に対し5〜60質量%である請求項1から2のいずれかに記載のパターン形成方法。
  4. 顔料粒子が黒色であり、かつ該黒色顔料粒子の含有量が感光層の総固形量に対し20〜60質量%である請求項1から3のいずれかに記載のパターン形成方法。
  5. 顔料粒子が赤色であり、かつ該赤色顔料粒子の含有量が感光層の総固形量に対し10〜50質量%である請求項1から3のいずれかに記載のパターン形成方法。
  6. 顔料粒子が緑色であり、かつ該緑色顔料粒子の含有量が感光層の総固形量に対し5〜60質量%である請求項1から3のいずれかに記載のパターン形成方法。
  7. 顔料粒子が青色であり、かつ該青色顔料粒子の含有量が感光層の総固形量に対し5〜40質量%である請求項1から3のいずれかに記載のパターン形成方法。
  8. 顔料粒子が無色であり、かつ該無色顔料粒子の含有量が感光層の総固形量に対し5〜70質量%である請求項1から3のいずれかに記載のパターン形成方法。
  9. 光変調手段が、空間光変調素子である請求項1から8のいずれかに記載のパターン形成方法。
  10. 空間光変調素子が、デジタル・マイクロミラー・デバイス(DMD)である請求項9に記載のパターン形成方法。
  11. 露光ヘッドが、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、
    前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御を行う請求項1から10のいずれかに記載のパターン形成方法。
  12. 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域の露光に関与する描素部のうち、前記ヘッド間つなぎ領域におけるN重露光を実現するために使用する前記描素部を指定する請求項11に記載のパターン形成方法。
  13. 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域におけるN重露光を実現するために使用する前記描素部を指定する請求項11に記載のパターン形成方法。
  14. 使用描素部指定手段が、
    描素部により生成されて被露光面上の露光領域を構成する描素単位としての光点位置を、被露光面上において検出する光点位置検出手段と、
    前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段と
    を備える請求項11から13のいずれかに記載のパターン形成方法。
  15. 使用描素部指定手段が、光点位置検出手段としてスリット及び光検出器、並びに描素部選択手段として前記光検出器と接続された演算装置を有する請求項11から14のいずれかに記載のパターン形成方法。
  16. N重露光のNが、3以上7以下の自然数である請求項11から15のいずれかに記載のパターン形成方法。
  17. 請求項1から16のいずれかに記載のパターン方法により形成されたことを特徴とするカラーフィルタ。
  18. 請求項17に記載のカラーフィルタを備えたことを特徴とする液晶表示装置。
JP2005256238A 2005-09-05 2005-09-05 カラーフィルタ及びパターン形成方法、並びに液晶表示装置 Pending JP2007071957A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256238A JP2007071957A (ja) 2005-09-05 2005-09-05 カラーフィルタ及びパターン形成方法、並びに液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005256238A JP2007071957A (ja) 2005-09-05 2005-09-05 カラーフィルタ及びパターン形成方法、並びに液晶表示装置

Publications (1)

Publication Number Publication Date
JP2007071957A true JP2007071957A (ja) 2007-03-22

Family

ID=37933479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256238A Pending JP2007071957A (ja) 2005-09-05 2005-09-05 カラーフィルタ及びパターン形成方法、並びに液晶表示装置

Country Status (1)

Country Link
JP (1) JP2007071957A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044318A (ja) * 2008-08-18 2010-02-25 Hitachi High-Technologies Corp 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2012118443A (ja) * 2010-12-03 2012-06-21 Toppan Printing Co Ltd 着色感光性組成物、それを用いた固体撮像素子用カラーフィルタ及びその製造方法
JP2013195697A (ja) * 2012-03-19 2013-09-30 Fujifilm Corp 着色感光性組成物、カラーフィルタ、カラーフィルタの製造方法、および液晶表示装置
CN111596531A (zh) * 2020-06-18 2020-08-28 京东方科技集团股份有限公司 一种曝光机的曝光方法及显示基板

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044318A (ja) * 2008-08-18 2010-02-25 Hitachi High-Technologies Corp 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2012118443A (ja) * 2010-12-03 2012-06-21 Toppan Printing Co Ltd 着色感光性組成物、それを用いた固体撮像素子用カラーフィルタ及びその製造方法
JP2013195697A (ja) * 2012-03-19 2013-09-30 Fujifilm Corp 着色感光性組成物、カラーフィルタ、カラーフィルタの製造方法、および液晶表示装置
CN111596531A (zh) * 2020-06-18 2020-08-28 京东方科技集团股份有限公司 一种曝光机的曝光方法及显示基板
CN111596531B (zh) * 2020-06-18 2023-08-01 京东方科技集团股份有限公司 一种曝光机的曝光方法及显示基板

Similar Documents

Publication Publication Date Title
JP2007041239A (ja) カラーフィルタの製造方法、及びカラーフィルタ並びに液晶表示装置
KR20070051335A (ko) 감광성 전자재료, 패턴형성방법 및 패턴
JP2007093785A (ja) 表示装置用部材の製造方法、及び表示装置用部材並びに表示装置
KR20070020283A (ko) 패턴형성방법, 컬러필터의 제조방법, 컬러필터 및액정표시장치
JP2006285108A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2008233112A (ja) カラーフィルタの製造方法、及びカラーフィルタ並びに表示装置
JP2006243543A (ja) 永久パターン形成方法
JP2007101607A (ja) 表示装置用部材及びその製造方法、並びに表示装置
JP2007071957A (ja) カラーフィルタ及びパターン形成方法、並びに液晶表示装置
JPWO2006075633A1 (ja) パターン形成材料、並びにパターン形成装置及び永久パターン形成方法
JP4494243B2 (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP4916141B2 (ja) カラーフィルタ形成材料及びカラーフィルタの製造方法、カラーフィルタ、並びに液晶表示装置
JP2007041281A (ja) 黒色画像及びその製造方法、並びに遮光膜付き基板及び液晶表示素子
JP2007025597A (ja) カラーフィルタの製造方法及びカラーフィルタ並びに表示装置
JP2006048031A (ja) 感光性フィルム及びその製造方法、並びに永久パターンの形成方法
JP2007171246A (ja) 感光性組成物及びパターン形成材料、並びに、パターン形成装置及びパターン形成方法
JP2006018221A (ja) カラーフィルタの製造方法、及びカラーフィルタ並びに液晶表示装置
KR20070017039A (ko) 감광성 조성물, 및 컬러필터 및 그 제조방법, 액정표시장치
JP2007041282A (ja) 感光性組成物、並びにカラーフィルタ及びその製造方法、液晶表示装置
JP2007025003A (ja) カラーフィルタの製造方法及びカラーフィルタ並びに表示装置
JP2005309247A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP4950453B2 (ja) カラーフィルタ及びその製造方法、並びに液晶表示装置
JP2007057717A (ja) カラーフィルタの製造方法、及びカラーフィルタ並びに表示装置
JP2006023715A (ja) カラーフィルタの製造方法、及びカラーフィルタ並びに液晶表示装置
JP4546349B2 (ja) パターン形成材料、並びにパターン形成方法及びパターン

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061207