JP2007035743A - Circuit connection method and connection structure - Google Patents

Circuit connection method and connection structure Download PDF

Info

Publication number
JP2007035743A
JP2007035743A JP2005213814A JP2005213814A JP2007035743A JP 2007035743 A JP2007035743 A JP 2007035743A JP 2005213814 A JP2005213814 A JP 2005213814A JP 2005213814 A JP2005213814 A JP 2005213814A JP 2007035743 A JP2007035743 A JP 2007035743A
Authority
JP
Japan
Prior art keywords
connection
conductive particles
electrodes
conductive
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005213814A
Other languages
Japanese (ja)
Other versions
JP2007035743A5 (en
JP5099987B2 (en
Inventor
Taketoshi Usui
健敏 臼井
Hitoshi Shimada
仁 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2005213814A priority Critical patent/JP5099987B2/en
Publication of JP2007035743A publication Critical patent/JP2007035743A/en
Publication of JP2007035743A5 publication Critical patent/JP2007035743A5/ja
Application granted granted Critical
Publication of JP5099987B2 publication Critical patent/JP5099987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit connection method that has excellent conductivity between connection electrodes having a minute area and prevents insulation failure, such as short-circuit at the space section between fine adjacent electrodes and ion migration from occurring easily in the electrical connection of a fine circuit using an anisotropic conductive adhesive, and to provide a connection structure obtained by the circuit connection method. <P>SOLUTION: In the circuit connection method for connecting circuit electrodes that oppose each other by the anisotropic conductive adhesive with conductive particles and an insulating adhesive as main constituents, the circuit electrodes are connected so that the conductive particle capture rate between the connection electrodes becomes three times larger than the conductive particle retention rate of the space section between adjacent electrodes. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、異方導電性接着剤を用いて、微細パターンの回路電極同士を電気的に接続する際の接続方法、および接続構造体に関する。   The present invention relates to a connection method and a connection structure for electrically connecting fine pattern circuit electrodes to each other using an anisotropic conductive adhesive.

液晶ディスプレイとICチップやTCP(Tape Carrier Package)との接続、FPC(Flexible Printed Circuit)とTCPとの接続、又は、TCPとプリント配線板との接続を簡便に行うための接続材料として、絶縁性接着剤中に導電粒子を分散させた異方導電性接着剤が使用されている。例えば、ノート型パソコンや携帯電話の液晶ディスプレイと制御ICとの接続用として、異方導電性接着剤が広範に用いられ、最近では、ICチップを直接プリント基板やフレキシブル配線板に搭載するフリップチップ実装にも用いられている(特許文献1、2、3)。   Insulating as a connection material for easy connection between liquid crystal display and IC chip or TCP (Tape Carrier Package), FPC (Flexible Printed Circuit) and TCP, or TCP and printed wiring board An anisotropic conductive adhesive in which conductive particles are dispersed in an adhesive is used. For example, anisotropic conductive adhesives are widely used to connect liquid crystal displays of notebook computers and mobile phones to control ICs. Recently, flip chips that mount IC chips directly on printed circuit boards or flexible wiring boards. It is also used for mounting (Patent Documents 1, 2, and 3).

この分野では近年、接続される配線パターンやバンプパターンの寸法が益々微細化され、導電粒子をランダムに分散した従来の異方導電性接着剤では、接続信頼性の高い接続は困難になっている。即ち、微小面積の電極を接続するために導電粒子密度を高めると、導電粒子が凝集し隣接電極間の絶縁性を保持できなくなる。逆に、絶縁性を保持するために導電粒子の密度を下げると、今度は接続されない電極が生じ、接続信頼性を保ったまま微細化に対応することは困難とされていた(特許文献4)。   In recent years, in this field, the size of wiring patterns and bump patterns to be connected has been increasingly miniaturized, and connection with high connection reliability has become difficult with the conventional anisotropic conductive adhesive in which conductive particles are randomly dispersed. . That is, when the density of the conductive particles is increased to connect electrodes having a small area, the conductive particles are aggregated and the insulation between adjacent electrodes cannot be maintained. On the contrary, if the density of the conductive particles is lowered in order to maintain insulation, an electrode that is not connected is generated this time, and it has been difficult to cope with miniaturization while maintaining connection reliability (Patent Document 4). .

一方、導電粒子を絶縁性接着剤中に配列することで、微細パターンの接続に対応する試みが成されている(特許文献5)。しかし、微細パターンの接続において、接着性や酸素や湿気に対する封止性を確保するために、接続時に絶縁性接着剤を流動させて隣接する電極間を絶縁性接着剤で満たす必要があり、その際に折角配列した導電粒子が絶縁性接着剤と共に流動してしまうと言う課題を有していた。
一方、接続時の粒子の流動を抑えて微細パターンを接続するために、実質的に流動しない膜中に導電粒子を配列する方法(特許文献6,7)が検討されている。
On the other hand, attempts have been made to deal with the connection of fine patterns by arranging conductive particles in an insulating adhesive (Patent Document 5). However, in order to ensure adhesion and sealing against oxygen and moisture in the connection of fine patterns, it is necessary to flow the insulating adhesive during connection to fill the space between adjacent electrodes with the insulating adhesive. In this case, there is a problem that the conductive particles arranged at an angle flow together with the insulating adhesive.
On the other hand, in order to suppress the flow of particles at the time of connection and connect a fine pattern, a method of arranging conductive particles in a film that does not substantially flow (Patent Documents 6 and 7) has been studied.

特開平03−107888号公報Japanese Patent Laid-Open No. 03-107888 特開平04−366630号公報Japanese Patent Laid-Open No. 04-366630 特開昭61−195179号公報JP-A-61-195179 特開平09−312176号公報JP 09-31176 A 特開2000−151084号公報JP 2000-151084 A 特開2001−52778号公報JP 2001-52778 A 特開2003−64324号公報JP 2003-64324 A

本発明は、異方導電性接着剤を用いた微細回路の電気的接続において、微小面積の接続電極間の導通性に優れると共に、微細な隣接電極間スペース部のショートやイオンマイグレーション等の絶縁不良が起こりにくい回路接続方法とそれによって得られる接続構造体の提供を目的とする。   The present invention has excellent electrical conductivity between connection electrodes in a small area in electrical connection of a microcircuit using an anisotropic conductive adhesive, and also has poor insulation such as a short in a space between adjacent electrodes and ion migration. An object of the present invention is to provide a circuit connection method in which the occurrence of the problem is difficult to occur and a connection structure obtained thereby.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、接続電極間の導電粒子捕捉率が隣接電極間スペース部の導電粒子滞留率の3倍以上となる様に接続する回路接続方法が、上記目的に適合しうることを見出し、本発明をなすに至った。
上記課題を解決するために本願出願以前に行われた上記開示の技術では、例えば、特許文献5では、折角配列した導電粒子が接続時に流動してしまい、配列した効果は限定的なものであった。一方、文献6、文献7の場合、接続時に接続電極間の粒子は流動せずに高い捕捉率が得られ良好な導通性が得られるものの、隣接電極間スペース部の導電粒子も同様に流動しないため、スペース部にも導電粒子が多数滞留した状態で接続が成されるため、イオンマイグレーション等の絶縁不良の原因となり、満足の行くものが得られていないのが現状であった。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have made a circuit connection for connecting the conductive particles so that the conductive particle trapping rate between the connecting electrodes is at least three times the conductive particle retention rate of the space between adjacent electrodes. It has been found that the method can meet the above objectives, and has led to the present invention.
In the technique of the above disclosure performed before the filing of the present application in order to solve the above problem, for example, in Patent Document 5, the conductive particles arranged at the corner flow at the time of connection, and the effect of the arrangement is limited. It was. On the other hand, in the case of Reference 6 and Reference 7, particles between connection electrodes do not flow at the time of connection, and a high capture rate is obtained and good conductivity is obtained, but the conductive particles in the space between adjacent electrodes do not flow in the same manner. For this reason, since the connection is made in a state where a large number of conductive particles stay in the space portion, it is a cause of insulation failure such as ion migration, and a satisfactory one has not been obtained.

本願のように、接続電極間の導電粒子捕捉率と隣接電極間スペース部の導電粒子滞留率を別々に制御して、導電粒子捕捉率を導電粒子滞留率に対して特定倍以上にする回路接続方法を用いることで上記課題を解決できたことは、上記技術開示に鑑みて、当業者にとって予想だにできない、驚くべき発見であった。   As in the present application, the conductive particle capture rate between the connection electrodes and the conductive particle retention rate in the space between adjacent electrodes are controlled separately to make the conductive particle capture rate a specific multiple or more of the conductive particle retention rate. In view of the above technical disclosure, it was a surprising discovery that could not be anticipated by those skilled in the art that the method could be used to solve the above problems.

即ち、本発明は、下記の通りである。
1)相対峙する回路電極同士を、導電粒子と絶縁性接着剤を主成分とする異方導電性接着剤を用いて接続する回路接続方法において、接続電極間の導電粒子捕捉率が隣接電極間スペース部の導電粒子滞留率の3倍以上となる様に接続する回路接続方法。
2)回路の一方がICチップであり、異方導電性接着剤が、導電粒子が面方向に略均等に分散され、厚み方向には単層に配置された異方導電性接着フィルムであって、接続時における隣接電極間スペース部に存在する導電粒子の流動性が、接続電極間に存在する導電粒子の流動性よりも高くなる様に接続する上記1)記載の回路接続方法。
3)回路基板とICチップを、異方導電性接着剤で接続した接続構造体であって、接続電極間の導電粒子密度q個/mmと、隣接電極間スペース部の導電粒子密度r個/mmとの間に、q>r×3の関係を有することを特徴とする接続構造体。
4)回路基板とICチップを、異方導電性接着剤で接続した接続構造体であって、ICチップの電極を有さない中心部の導電粒子密度p個/mmと隣接電極間スペース部の導電粒子密度r個/mmとの間に、p>r×3の関係を有することを特徴とする接続構造体。
That is, the present invention is as follows.
1) In a circuit connection method in which circuit electrodes facing each other are connected using an anisotropic conductive adhesive mainly composed of conductive particles and an insulating adhesive, the conductive particle capture rate between the connection electrodes is between adjacent electrodes. A circuit connection method in which connection is performed so that the conductive particle retention rate of the space portion is three times or more.
2) One of the circuits is an IC chip, and the anisotropic conductive adhesive is an anisotropic conductive adhesive film in which conductive particles are dispersed substantially evenly in the plane direction and arranged in a single layer in the thickness direction. The circuit connection method according to 1), wherein the connection is made so that the fluidity of the conductive particles existing in the space between adjacent electrodes at the time of connection is higher than the fluidity of the conductive particles existing between the connection electrodes.
3) A connection structure in which a circuit board and an IC chip are connected with an anisotropic conductive adhesive, and the conductive particle density between connection electrodes is q / mm 2 and the conductive particle density is r in the space between adjacent electrodes. / Mm 2 has a relationship of q> r × 3.
4) A connection structure in which a circuit board and an IC chip are connected with an anisotropic conductive adhesive, and the conductive particle density p / mm 2 in the center portion having no IC chip electrode and the space portion between adjacent electrodes A connection structure characterized by having a relationship of p> r × 3 between the conductive particle density of r particles / mm 2 .

本発明の回路接続方法および接続構造体は、異方導電性接着剤を用いた微細回路の電気的接続が可能で、微小面積の接続電極間の導通性に優れると共に、微細な電極間スペース部のショートやイオンマイグレーション等の絶縁不良が起こりにくい接続構造体を与え、電子機器の部品として有用に用いられる。   The circuit connection method and the connection structure of the present invention are capable of electrical connection of a fine circuit using an anisotropic conductive adhesive, have excellent electrical conductivity between connection electrodes having a small area, and have a fine inter-electrode space portion. This provides a connection structure that is less prone to insulation defects such as short circuiting and ion migration, and is usefully used as a component of electronic equipment.

本発明について、以下具体的に説明する。
本発明の回路接続方法では、相対峙した回路電極同士が異方導電性接着剤で接続される。
接続される回路の組み合わせとしては、ICチップと回路基板との組み合わせが好ましい。回路基板としては液晶パネル等で用いられるガラス基板やセラミックス等の無機基板、ポリイミド、ポリエステル、ポリエーテルスルフォン、ポリエチレンナフタレート等のフィルム基板の回路基板が好ましい。これら回路基板の回路は、基板上にアルミニウム、銅、銀、錫、鉛、インジウム、クロム、ニッケル、シリコン等の金属材料やITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)等の薄膜を真空蒸着法、スパッタリング法、イオンプレーティング法などによって形成した後、該薄膜を精密エッチングやレーザービームカッティング等を行うことによって形成することができる。あるいは、導電性ペーストをスクリーン印刷やインクジェット法を用いて回路形成する方法、基板に銅箔等の導電性箔を積層してエッチングにより回路形成する方法、基板にメッキにより回路形成するアディティブ法と呼ばれる方法等によって形成することができる。回路の一部が接続するための電極となっている。
The present invention will be specifically described below.
In the circuit connection method of the present invention, the circuit electrodes facing each other are connected with an anisotropic conductive adhesive.
As a combination of circuits to be connected, a combination of an IC chip and a circuit board is preferable. As the circuit substrate, a glass substrate used in a liquid crystal panel or the like, an inorganic substrate such as ceramics, or a circuit substrate such as a polyimide, polyester, polyethersulfone, or polyethylene naphthalate film substrate is preferable. These circuit board circuits are made by vacuuming metal materials such as aluminum, copper, silver, tin, lead, indium, chromium, nickel, silicon, and thin films such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide) on the substrate. After forming by vapor deposition, sputtering, ion plating, or the like, the thin film can be formed by performing precision etching, laser beam cutting, or the like. Alternatively, it is called a method of forming a circuit using a conductive paste by screen printing or an inkjet method, a method of forming a circuit by etching a conductive foil such as a copper foil on a substrate, and an additive method of forming a circuit by plating on a substrate. It can be formed by a method or the like. Part of the circuit is an electrode for connection.

ICチップは縦横比の大きいものでも構わないし、正方形のものやそれに近いものでも構わない。液晶パネルに使用する場合は、縦横比が大きいものが狭額縁化でき好ましい。
ICチップの電極は、チタン、銅、金、ニッケル等よりなるアンダーバンプメタルと呼ばれる下地電極のみの場合と、その上にバンプと呼ばれる金やニッケル等の金属よりなる突起状の電極を有する場合がある。突起状電極を有する方が、接続信頼性が高く好ましい。ICチップの電極配置は、チップの下面のほぼ前面に電極を有する全面配置、チップ下面の中心部を除く部分に電極を有する周辺面配置、下面端部の2辺あるいは4辺に電極が一列で配置した2辺配置、あるいは4辺配置等が挙げられる。更に2辺配置あるいは4辺配置では電極の一部または全部が2列に配置している千鳥配置等も挙げられる。
The IC chip may have a large aspect ratio, or may be a square or a similar one. When used for a liquid crystal panel, one having a large aspect ratio is preferable because the frame can be narrowed.
The electrodes of the IC chip may be only a base electrode called an under bump metal made of titanium, copper, gold, nickel or the like, and may have a protruding electrode made of a metal such as gold or nickel called a bump thereon. is there. It is preferable to have a protruding electrode because of high connection reliability. The IC chip has an electrode arrangement on the entire front surface of the lower surface of the chip with an electrode on the entire surface, a peripheral surface with an electrode on the portion other than the center of the lower surface of the chip, and a row of electrodes on two or four sides of the lower surface edge. Two-sided arrangement or four-sided arrangement may be used. Further, in the two-sided arrangement or the four-sided arrangement, a zigzag arrangement in which a part or all of the electrodes are arranged in two rows can be used.

ICチップの電極サイズは、500μm以上10000μm以下が接続安定性とICチップの小面積化の観点から好ましい。更に好ましくは550μm以上5000μm以下、一層好ましくは600μm以上2000μm以下、更に一層好ましくは、650μm以上1500μm以下である。ICチップの電極ピッチは15μm以上100μm以下が隣接電極間の絶縁性確保とICチップの小面積化の観点から好ましい。更に好ましくは16μm以上50μm以下、一層好ましくは17μm以上30μm以下、更に一層好ましくは18μm以上25μm以下である。
接続される回路の組み合わせには、上記回路基板とTCP、COF(Chip on Flex)、FPCの組み合わせも使用できる。
The electrode size of the IC chip is preferably 500 μm 2 or more and 10,000 μm 2 or less from the viewpoint of connection stability and a reduction in the area of the IC chip. More preferably 550 .mu.m 2 or more 5000 .mu.m 2 or less, more preferably 600 .mu.m 2 or more 2000 .mu.m 2 or less, even more preferably, at 650 .mu.m 2 or more 1500 .mu.m 2 or less. The electrode pitch of the IC chip is preferably 15 μm or more and 100 μm or less from the viewpoint of ensuring insulation between adjacent electrodes and reducing the area of the IC chip. More preferably, they are 16 micrometers or more and 50 micrometers or less, More preferably, they are 17 micrometers or more and 30 micrometers or less, More preferably, they are 18 micrometers or more and 25 micrometers or less.
A combination of the circuit board, TCP, COF (Chip on Flex), and FPC can be used as a combination of circuits to be connected.

本発明に用いられる異方導電性接着剤は、導電粒子と絶縁性接着剤が主成分である。
本発明に用いられる導電粒子としては、金属粒子、炭素からなる粒子や高分子核材に金属薄膜を被覆した粒子等を用いることができる。
金属粒子としては、例えば、金、銀、銅、ニッケル、アルミニウム、亜鉛、錫、鉛、半田、インジウム、パラジウム等の単体や、2種以上のこれらの金属が層状あるいは傾斜状に組み合わされている粒子が例示される。
The anisotropic conductive adhesive used in the present invention is mainly composed of conductive particles and an insulating adhesive.
As the conductive particles used in the present invention, metal particles, particles made of carbon, particles obtained by coating a polymer thin film with a metal thin film, and the like can be used.
As the metal particles, for example, a simple substance such as gold, silver, copper, nickel, aluminum, zinc, tin, lead, solder, indium, palladium, etc., or two or more of these metals are combined in a layered or inclined manner. Particles are exemplified.

高分子核材に金属薄膜を被覆した粒子としては、エポキシ樹脂、スチレン樹脂、シリコーン樹脂、アクリル樹脂、ポリオレフィン樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ウレタン樹脂、フェノール樹脂、ポリエステル樹脂、ジビニルベンゼン架橋体、NBR、SBR等のポリマーの中から1種あるいは2種以上組み合わせた高分子核材に、金、銀、銅、ニッケル、アルミニウム、亜鉛、錫、鉛、半田、インジウム、パラジウム等の中から1種あるいは2種以上組み合わせてメッキ等により金属被覆した粒子が例示される。金属薄膜の厚さは0.005μm以上1μm以下の範囲が、接続安定性と粒子の凝集性の観点から好ましい。金属薄膜は均一に被覆されていることが接続安定性上好ましい。これら導電粒子の表面を更に絶縁被覆した粒子や微小粒子を表面に付着したコンペイ糖型の粒子も使用することができる。   Particles in which a polymer thin film is coated on a polymer core material include epoxy resin, styrene resin, silicone resin, acrylic resin, polyolefin resin, melamine resin, benzoguanamine resin, urethane resin, phenol resin, polyester resin, divinylbenzene crosslinked product, NBR , SBR and other polymer core materials combined with one or more polymers, gold, silver, copper, nickel, aluminum, zinc, tin, lead, solder, indium, palladium, etc. The particle | grains which metal-coated by plating etc. in combination of 2 or more types are illustrated. The thickness of the metal thin film is preferably in the range of 0.005 μm to 1 μm from the viewpoint of connection stability and particle cohesion. It is preferable in terms of connection stability that the metal thin film is uniformly coated. Particles obtained by further insulatingly coating the surface of these conductive particles and complex sugar type particles having fine particles attached to the surface can also be used.

導電粒子は球状のものを用いるのがよく、その場合、真球に近いものほど好ましく、長軸に対する短軸の比は0.5以上が好ましく、0.7が更に好ましく、0.9以上が一層好ましい。長軸に対する短軸の比の最大値は1である。
導電粒子の平均径は、接続しようとする隣接電極間距離よりも小さい必要があると共に、接続する電子部品の電極高さのバラツキよりも大きいことが好ましい。そのために導電粒子の平均径は、0.3μm以上30μm未満の範囲が好ましく、更に好ましくは0.5μm以上20μm未満、更に好ましくは0.7μm以上15μm未満、更に好ましくは1μm以上10μm未満、更に好ましくは2μm以上7μm未満である。導電粒子の粒子径分布の標準偏差は平均粒子径の50%以下が好ましい。
It is preferable to use spherical particles as the conductive particles, in which case the closer to a true sphere is preferable, and the ratio of the short axis to the long axis is preferably 0.5 or more, more preferably 0.7, and 0.9 or more. Even more preferred. The maximum value of the ratio of the short axis to the long axis is 1.
The average diameter of the conductive particles needs to be smaller than the distance between adjacent electrodes to be connected, and is preferably larger than the variation in the electrode height of the electronic component to be connected. Therefore, the average diameter of the conductive particles is preferably in the range of 0.3 μm or more and less than 30 μm, more preferably 0.5 μm or more and less than 20 μm, further preferably 0.7 μm or more and less than 15 μm, more preferably 1 μm or more and less than 10 μm, and still more preferably. Is 2 μm or more and less than 7 μm. The standard deviation of the particle size distribution of the conductive particles is preferably 50% or less of the average particle size.

本発明に用いられる絶縁性接着剤は、熱硬化性樹脂、熱可塑性樹脂、光硬化性樹脂、電子線硬化性樹脂から選ばれた1種類以上の樹脂を含有する。これらの樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂、アクリル樹脂、ポリイミド樹脂、フェノキシ樹脂、ポリビニルブチラール樹脂、SBR、SBS、NBR、ポリエーテルスルフォン樹脂、ポリエーテルテレフタレート樹脂、ポリフェニレンスルフィド樹脂、ポリアミド樹脂、ポリエーテルオキシド樹脂、ポリアセタール樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリイソブチレン樹脂、アルキルフェノール樹脂、スチレンブタジエン樹脂、カルボキシル変性ニトリル樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂等又はそれらの変性樹脂が挙げられる。特に基板との接着性を必要とする場合には、エポキシ樹脂を含有することが好ましい。   The insulating adhesive used in the present invention contains one or more resins selected from thermosetting resins, thermoplastic resins, photocurable resins, and electron beam curable resins. Examples of these resins include epoxy resins, phenol resins, silicone resins, urethane resins, acrylic resins, polyimide resins, phenoxy resins, polyvinyl butyral resins, SBR, SBS, NBR, polyether sulfone resins, polyether terephthalate resins, polyphenylenes. Sulfide resin, polyamide resin, polyether oxide resin, polyacetal resin, polystyrene resin, polyethylene resin, polyisobutylene resin, alkylphenol resin, styrene butadiene resin, carboxyl-modified nitrile resin, polyphenylene ether resin, polycarbonate resin, polyether ketone resin, etc. Of the modified resin. In particular, when adhesiveness with a substrate is required, an epoxy resin is preferably contained.

ここで用いられるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラメチルビスフェノールA型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、脂肪族エーテル型エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、グリシジルエーテルエステル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環族エポキサイド等があり、これらエポキシ樹脂はハロゲン化や水素添加されていても良く、また、ウレタン変性、ゴム変性、シリコーン変性等の変性されたエポキシ樹脂でも良い。   Examples of the epoxy resin used here include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetramethylbisphenol A type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin, and fluorene type epoxy. Resin, phenol novolac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin, glycidyl ether epoxy resin such as aliphatic ether epoxy resin, glycidyl ether ester epoxy resin, glycidyl ester epoxy resin, glycidyl amine Type epoxy resin, hydantoin type epoxy resin, alicyclic epoxide, etc., these epoxy resins may be halogenated or hydrogenated Further, it may urethane-modified, rubber-modified, even modified epoxy resins such as silicone-modified.

前記エポキシ樹脂の硬化剤としては、潜在性硬化剤が好ましい。潜在性硬化剤としては、ホウ素化合物、ヒドラジド、3級アミン、イミダゾール、ジシアンジアミド、無機酸、カルボン酸無水物、チオール、イソシアネート、ホウ素錯塩及びそれらの誘導体等の硬化剤が好ましい。潜在性硬化剤の中でも、マイクロカプセル型の硬化剤が好ましい。マイクロカプセル型硬化剤は、前記硬化剤の表面を樹脂皮膜等で安定化したもので、接続作業時の温度や圧力で樹脂皮膜が破壊され、硬化剤がマイクロカプセル外に拡散し、エポキシ樹脂と反応する。マイクロカプセル型潜在性硬化剤の中でも、アミンアダクト、イミダゾールアダクト等のアダクト型硬化剤をマイクロカプセル化した潜在性硬化剤が安定性と硬化性のバランスに優れ好ましい。これらエポキシ樹脂の硬化剤は一般に、エポキシ樹脂100質量部に対して、2〜100質量部の量で用いられる。   As the curing agent for the epoxy resin, a latent curing agent is preferable. As the latent curing agent, curing agents such as boron compounds, hydrazides, tertiary amines, imidazoles, dicyandiamides, inorganic acids, carboxylic acid anhydrides, thiols, isocyanates, boron complex salts and derivatives thereof are preferable. Among latent curing agents, microcapsule type curing agents are preferred. The microcapsule-type curing agent is a material in which the surface of the curing agent is stabilized with a resin film, etc., and the resin film is destroyed by the temperature and pressure during connection work, the curing agent diffuses outside the microcapsule, and the epoxy resin react. Among the microcapsule type latent curing agents, a latent curing agent obtained by microencapsulating an adduct type curing agent such as an amine adduct or an imidazole adduct is preferable because of excellent balance between stability and curability. Generally these epoxy resin hardening | curing agents are used in the quantity of 2-100 mass parts with respect to 100 mass parts of epoxy resins.

本発明に用いられる絶縁性接着剤は、フィルム形成性、接着性、硬化時の応力緩和製等を付与する目的で、フェノキ樹脂、ポリエステル樹脂、アクリルゴム、SBR、NBR、シリコーン樹脂、ポリビニルブチラール樹脂、ポリウレタン樹脂、ポリアセタール樹脂、尿素樹脂、キシレン樹脂、ポリアミド樹脂、ポリイミド樹脂、カルボキシル基、ヒドロシキシル基、ビニル基、アミノ基などの官能基を含有するゴム、エラストマー類等の高分子成分を含有することが好ましい。これら高分子成分は分子量が10000〜10,000,000のものが好ましい。高分子成分の含有量は、絶縁性接着剤に対して2〜80質量%が好ましい。   The insulating adhesive used in the present invention is a phenoxy resin, a polyester resin, an acrylic rubber, SBR, NBR, a silicone resin, a polyvinyl butyral resin for the purpose of imparting film formability, adhesiveness, stress relaxation during curing, etc. Polyurethane resin, polyacetal resin, urea resin, xylene resin, polyamide resin, polyimide resin, rubber containing functional groups such as carboxyl group, hydroxyl group, vinyl group, amino group, and polymer components such as elastomers Is preferred. These polymer components preferably have a molecular weight of 10,000 to 10,000,000. The content of the polymer component is preferably 2 to 80% by mass with respect to the insulating adhesive.

絶縁性接着剤には、さらに、絶縁粒子、充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤等を含有することもできる。絶縁粒子や充填剤を含有する場合、これらの最大径は導電粒子の平均粒径未満である事が好ましい。カップリング剤としてはケチミン基、ビニル基、アクリル基、アミノ基、エポキシ基及びまたはイソシアネート基含有シランカップリング剤が、接着性の向上の点から好ましい。
絶縁性接着剤の各成分を混合する場合、必要に応じ、溶剤を用いることができる。溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、酢酸エチル、酢酸ブチル、エチレングリコールモノアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルアセテート等が挙げられる。
The insulating adhesive may further contain insulating particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, coupling agents and the like. When the insulating particles and the filler are contained, the maximum diameter is preferably less than the average particle diameter of the conductive particles. As the coupling agent, ketimine group, vinyl group, acrylic group, amino group, epoxy group and / or isocyanate group-containing silane coupling agent is preferable from the viewpoint of improvement in adhesiveness.
When mixing each component of an insulating adhesive, a solvent can be used as needed. Examples of the solvent include methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, ethyl acetate, butyl acetate, ethylene glycol monoalkyl ether acetate, propylene glycol monoalkyl ether acetate, and the like.

本発明に用いられる異方導電性接着剤は、ペースト状の異方導電性ペーストとフィルム状の異方導電性接着フィルムが挙げられる。異方導電性接着フィルムが導電粒子の流動性制御が容易であり好ましい。
本発明に使用される異方導電性接着剤は、導電粒子が絶縁性接着剤にランダムに分散していても構わないが、導電粒子が絶縁性接着剤中に単層として配置された異方導電性接着フィルムが好ましい。単層に配置された導電粒子は絶縁性接着剤の表面層にあることがより好ましい。ここで導電粒子が表面層にあるとは、絶縁性接着剤表面から導電粒子の平均粒径に対して1.5倍の厚み領域に導電粒子の中心が位置することを意味する。
Examples of the anisotropic conductive adhesive used in the present invention include a paste-like anisotropic conductive paste and a film-like anisotropic conductive adhesive film. An anisotropic conductive adhesive film is preferable because the fluidity of the conductive particles can be easily controlled.
In the anisotropic conductive adhesive used in the present invention, the conductive particles may be randomly dispersed in the insulating adhesive, but the anisotropic conductive particles are arranged as a single layer in the insulating adhesive. A conductive adhesive film is preferred. The conductive particles arranged in a single layer are more preferably in the surface layer of the insulating adhesive. Here, the conductive particles in the surface layer means that the center of the conductive particles is located in a thickness region 1.5 times as large as the average particle diameter of the conductive particles from the surface of the insulating adhesive.

導電粒子は好ましくは、特定の中心間距離で、更にその中心間距離が特定の変動係数を有して配列されていることが、接続電極の導通性と隣接電極間の絶縁性を両立でき、好ましい。導電粒子の中心間距離の平均は、2μm以上20μm以下が好ましく、好ましくは2.5μm以上18μm以下、更に好ましくは3μm以上16μm以下、更に好ましくは3.5μm以上15μm以下であり、更に好ましくは4μm以上13μm以下である。2μ以上にすることで、面方向の絶縁性、即ち、隣接する電極間の絶縁性を高レベルで維持できる。一方、中心間距離を20μm以下にすることで、厚さ方向の導電性、即ち接続電極間の導通性を高レベルで維持でき、高い性能を発揮する。   Preferably, the conductive particles are arranged at a specific center distance, and the center distance is arranged with a specific coefficient of variation, so that both the conductivity of the connection electrode and the insulation between the adjacent electrodes can be achieved. preferable. The average distance between the centers of the conductive particles is preferably 2 μm or more and 20 μm or less, preferably 2.5 μm or more and 18 μm or less, more preferably 3 μm or more and 16 μm or less, further preferably 3.5 μm or more and 15 μm or less, and further preferably 4 μm. It is 13 μm or less. By setting it to 2 μm or more, the insulation in the plane direction, that is, the insulation between adjacent electrodes can be maintained at a high level. On the other hand, by setting the center-to-center distance to 20 μm or less, the conductivity in the thickness direction, that is, the conductivity between the connection electrodes can be maintained at a high level, and high performance is exhibited.

導電粒子は面方向に略均等に分散配置されていることが好ましく、その指標である導電粒子の中心間距離の変動係数(導電粒子の中心間距離の標準偏差をその平均値で割った値)は0.5以下が好ましい。好ましくは0.03以上0.45以下、更に好ましくは0.05以上0.4以下、更に好ましくは0.07以上0.35以下、更に好ましくは0.08以上0.3以下である。0.5以下とすることで、接続電極間に捕捉される導電粒子数が安定し、電極ごとの接続抵抗のバラツキが小さく、安定した接続が得られる。   It is preferable that the conductive particles are distributed substantially evenly in the plane direction, and the coefficient of variation of the distance between the centers of the conductive particles, which is an index thereof (value obtained by dividing the standard deviation of the distance between the centers of the conductive particles by the average value) Is preferably 0.5 or less. Preferably they are 0.03 or more and 0.45 or less, More preferably, they are 0.05 or more and 0.4 or less, More preferably, they are 0.07 or more and 0.35 or less, More preferably, they are 0.08 or more and 0.3 or less. By setting it to 0.5 or less, the number of conductive particles trapped between the connection electrodes is stabilized, variation in connection resistance between the electrodes is small, and stable connection is obtained.

本発明の回路接続方法は、接続電極間の導電粒子捕捉率が隣接電極間スペース部の導電粒子滞留率の3倍以上となる接続方法である。ここで接続電極間の導電粒子捕捉率は、接続前の異方導電性接着フィルムの接続電極相当面積に含まれる導電粒子数に対する接続後の接続電極間に捕捉される導電粒子数の割合であり、接続される全電極の捕捉率の平均値を使用するのが好ましいが、接続電極数が多い場合は、任意にサンプリングした電極の導電粒子捕捉率の平均値で代用する事ができる。サンプリングする場合、サンプリングによる誤差を極力抑える様にサンプリング場所や数を選択する必要がある。   The circuit connection method of the present invention is a connection method in which the conductive particle capture rate between connection electrodes is three times or more the conductive particle retention rate in the space between adjacent electrodes. Here, the conductive particle capture rate between the connection electrodes is the ratio of the number of conductive particles captured between the connection electrodes after connection to the number of conductive particles included in the connection electrode equivalent area of the anisotropic conductive adhesive film before connection. It is preferable to use the average value of the capture rate of all connected electrodes. However, when the number of connected electrodes is large, the average value of the conductive particle capture rate of the electrode sampled arbitrarily can be substituted. When sampling, it is necessary to select a sampling location and number so as to suppress errors due to sampling as much as possible.

一方、導電粒子滞留率は、接続前の異方導電性接着フィルムの隣接電極間スペース相当面積に含まれる導電粒子数に対する接続後の隣接電極間スペース部に滞留している導電粒子数の割合であり、全隣接電極間スペース部の滞留率の平均値を使用するのが好ましいが、接続電極数が多い場合は、任意にサンプリングした隣接電極間スペース部の導電粒子滞留率の平均値で代用する事ができる。サンプリングする場合、サンプリングによる誤差を極力抑える様にサンプリング場所や数を選択する必要がある。接続電極間の導電粒子捕捉率は、全ての接続電極間が低抵抗で導通するために、25%以上が好ましい。更に好ましくは30%以上85%以下、一層好ましくは35%以上70%以下、更に一層好ましくは、40%以上65%以下である。導電粒子滞留率は、全ての隣接電極間の絶縁性を確保するために、30%以下が好ましい。更に好ましくは20%以下、一層好ましくは10%以下、更に一層好ましくは7%以下であり、導電粒子が隣接電極間スペース部に滞留していない事が最も好ましい。滞留している導電粒子は2個以上凝集していない事が好ましい。   On the other hand, the conductive particle retention rate is the ratio of the number of conductive particles staying in the space between adjacent electrodes after connection to the number of conductive particles included in the area corresponding to the space between adjacent electrodes of the anisotropic conductive adhesive film before connection. Yes, it is preferable to use the average value of the retention rate of the space portion between all adjacent electrodes, but when the number of connection electrodes is large, the average value of the conductive particle retention rate of the space portion between adjacent electrodes sampled arbitrarily is substituted. I can do things. When sampling, it is necessary to select a sampling location and number so as to suppress errors due to sampling as much as possible. The conductive particle capturing rate between the connection electrodes is preferably 25% or more in order to conduct all the connection electrodes with low resistance. More preferably, they are 30% or more and 85% or less, More preferably, they are 35% or more and 70% or less, More preferably, they are 40% or more and 65% or less. The conductive particle retention rate is preferably 30% or less in order to ensure insulation between all adjacent electrodes. More preferably, it is 20% or less, more preferably 10% or less, and still more preferably 7% or less. Most preferably, the conductive particles do not stay in the space portion between adjacent electrodes. It is preferable that two or more staying conductive particles are not aggregated.

本発明においては、接続電極の導通性と隣接電極間の絶縁性を両立するために、導電粒子捕捉率は導電粒子滞留率の3倍以上である。好ましくは4倍以上、一層好ましくは5倍以上、更に一層好ましくは10倍以上である。   In the present invention, in order to achieve both the conductivity of the connection electrode and the insulation between the adjacent electrodes, the conductive particle capture rate is three times or more the conductive particle retention rate. Preferably it is 4 times or more, More preferably, it is 5 times or more, More preferably, it is 10 times or more.

導電粒子の捕捉率が導電粒子の滞留率の3倍以上となる回路接続方法としては、接続時の隣接電極間スペース部に存在する導電粒子の流動性を、接続電極間に存在する導電粒子の流動性よりも高くなる様に接続する方法が挙げられる。異方導電性接着剤を用いた回路接続方法においては、接着性や電極部の封止性を確保するために、接続時に空隙部を埋める様に、絶縁性接着剤が流動する様、異方導電性接着剤は設計されている。導電粒子の流動性とは、この絶縁性接着剤の流れに追従した導電粒子の流れやすさの事である。接続時の隣接電極間スペース部に存在する導電粒子の流動性を接続電極間に存在する導電粒子の流動性よりも高くなる様にする方法としては、例えば、接続後に隣接電極間スペース部にあたる部分以外の異方導電性接着剤の導電粒子を、固定用樹脂で固定して、実質的に流動しないかあるいは流動性を低下させてから接続する方法が挙げられる。   As a circuit connection method in which the capture rate of the conductive particles is 3 times or more of the retention rate of the conductive particles, the fluidity of the conductive particles existing in the space between adjacent electrodes at the time of connection is determined by the flow of the conductive particles existing between the connection electrodes. There is a method of connecting so as to be higher than the fluidity. In the circuit connection method using anisotropic conductive adhesive, in order to ensure adhesion and sealability of the electrode part, the insulating adhesive flows so as to fill the gap during connection. Conductive adhesives are designed. The fluidity of the conductive particles refers to the ease of flow of the conductive particles following the flow of the insulating adhesive. As a method for making the fluidity of the conductive particles existing in the space between adjacent electrodes at the time of connection higher than the fluidity of the conductive particles existing between the connection electrodes, for example, a portion corresponding to the space between the adjacent electrodes after connection There is a method in which the conductive particles of the anisotropic conductive adhesive other than the above are fixed with a fixing resin and do not substantially flow or are connected after the fluidity is lowered.

別の方法としては、例えば、接続時における隣接電極間スペース部の絶縁性接着剤の流動速度が、接続電極間の流動速度や、電極を有さないICチップ中心部の流動速度よりも速くなる様にICチップの電極配置を設計し、あるいは接続条件を選択して、隣接電極間スペース部の絶縁性接着剤の流動速度に対しては、追従して導電粒子は流動するが、接続電極間および電極を有さないICチップ中心部の絶縁性接着剤の流動速度に対しては、それに抗して、導電粒子は実質的に非流動、あるいは流動性が抑制される様な固定強さで、導電粒子を固定用樹脂で固定した異方導電性接着剤を用いて接続する方法が挙げられる。この様なICチップの電極配置としては、例えば、ICチップの端部に単列あるいは千鳥状に、チップ端面に対して直角方向に長辺を有する長方形の電極を並べた配置が好ましい。   As another method, for example, the flow rate of the insulating adhesive in the space between adjacent electrodes at the time of connection is faster than the flow rate between the connection electrodes or the flow rate of the IC chip center without the electrodes. In this way, the electrode arrangement of the IC chip is designed, or the connection conditions are selected, and the conductive particles flow following the flow rate of the insulating adhesive in the space between adjacent electrodes, but between the connection electrodes In contrast to the flow rate of the insulating adhesive in the center of the IC chip that does not have an electrode, the conductive particles are substantially non-flowing or have a fixing strength that suppresses the flowability. And a method of connecting using an anisotropic conductive adhesive in which conductive particles are fixed with a fixing resin. As such an electrode arrangement of the IC chip, for example, an arrangement in which rectangular electrodes having long sides in a direction perpendicular to the chip end surface are arranged in a single row or a staggered pattern at the end of the IC chip is preferable.

導電粒子を固定用樹脂で固定した異方導電性接着剤を製造する方法としては、例えば下記の様な方法がある。即ち、隔てられて配置された複数の導電粒子を固定用樹脂で相互に連結し、連結された導電粒子を絶縁性接着剤中に埋め込む方法や導電粒子の直径よりも薄いフィルム状の固定用樹脂中に導電粒子を単層で分散し、その少なくとも片面に絶縁性接着剤をラミネート等により積層する方法等が挙げられる。前者が固定用樹脂の導電粒子固定力を制御し易く好ましい。   Examples of a method for producing an anisotropic conductive adhesive in which conductive particles are fixed with a fixing resin include the following methods. That is, a plurality of conductive particles arranged separately are connected to each other with a fixing resin, and a method of embedding the connected conductive particles in an insulating adhesive or a film-like fixing resin thinner than the diameter of the conductive particles Examples thereof include a method in which conductive particles are dispersed in a single layer and an insulating adhesive is laminated on at least one surface thereof by lamination or the like. The former is preferable because the conductive particle fixing force of the fixing resin can be easily controlled.

ここで用いられる固定用樹脂は、接続条件下で、隣接電極間スペース部は導電粒子を固定できないが、接続電極間および電極を有さないICチップ中心部では導電粒子を固定できる樹脂が好ましく、熱や光で硬化した架橋ポリマーや熱可塑ポリマーが好ましい。架橋ポリマーとしては、架橋アクリレート樹脂、架橋ビニル樹脂、架橋ポリエステル樹脂、架橋ポリウレタン樹脂、架橋メラミン樹脂、架橋シロキサン樹脂、架橋エポキシ樹脂、架橋フェノール樹脂等が例示される。耐熱性の熱可塑性ポリマーとしては、ポリイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリスルホン樹脂、フェノキシ樹脂、アクリル樹脂等が例示される。これら固定用樹脂は2種以上を混合して用いる事もできる。   The fixing resin used here is preferably a resin that can fix the conductive particles in the IC chip center portion between the connection electrodes and in the center of the IC chip that does not have the electrodes, although the space between adjacent electrodes cannot fix the conductive particles under the connection conditions. A crosslinked polymer or thermoplastic polymer cured by heat or light is preferred. Examples of the crosslinked polymer include a crosslinked acrylate resin, a crosslinked vinyl resin, a crosslinked polyester resin, a crosslinked polyurethane resin, a crosslinked melamine resin, a crosslinked siloxane resin, a crosslinked epoxy resin, and a crosslinked phenol resin. Examples of the heat-resistant thermoplastic polymer include polyimide resin, polyamide resin, polyester resin, polysulfone resin, phenoxy resin, and acrylic resin. These fixing resins can be used in combination of two or more.

導電粒子を固定用樹脂で相互に連結し、連結された導電粒子を絶縁性接着剤中に埋め込む方法としては、例えば、固定用樹脂に、導電粒子を単層に充填し、固定用樹脂の凝集を起こさせながら延伸し、凝集力と延伸力のバランスを取ることによって、導電粒子を固定用樹脂で連結することができる。固定用樹脂として架橋ポリマーを用いる場合は、未架橋の状態で延伸し、その後、熱や光を用いて架橋することが好ましい。固定用樹脂で連結された導電粒子を絶縁性接着剤中に埋め込む方法としては、剥離可能な基材上に形成された絶縁性接着剤上に固定用樹脂で連結された導電粒子を重ね、熱ロールやラミネーターを用いて、絶縁性接着剤中に埋め込む方法が例示される。ここで連結に使用される固定用樹脂は導電粒子径未満の線状樹脂であることが好ましく、導電粒子を頂点とする蜘蛛の巣状の形状を有することが好ましい。個々の導電粒子は、平均2個以上の他の導電粒子と相互に連結されている事が好ましい。更に好ましくは平均3個以上である。   As a method of interconnecting the conductive particles with a fixing resin and embedding the connected conductive particles in an insulating adhesive, for example, the conductive particles are filled into a single layer in a fixing resin, and the fixing resin is agglomerated. The conductive particles can be connected with a fixing resin by stretching while causing the occurrence of the problem and balancing the cohesive force and the stretching force. When a crosslinked polymer is used as the fixing resin, it is preferable to stretch in an uncrosslinked state and then crosslink using heat or light. As a method of embedding the conductive particles connected with the fixing resin in the insulating adhesive, the conductive particles connected with the fixing resin are stacked on the insulating adhesive formed on the peelable base material, Examples of the method include embedding in an insulating adhesive using a roll or a laminator. Here, the fixing resin used for the connection is preferably a linear resin having a diameter less than that of the conductive particles, and preferably has a spider web shape with the conductive particles as vertices. It is preferable that the individual conductive particles are interconnected with two or more other conductive particles on average. More preferably, the average number is 3 or more.

フィルム状の固定用樹脂中に導電粒子を単層分散し、絶縁性接着剤をラミネートする方法としては、例えば、剥離可能な基材上に固定用樹脂として架橋ポリマーを未架橋状態で、最終膜厚が導電粒子径よりも薄くなる様に塗布し、その表面に導電粒子を配置する。導電粒子を配置する方法としては、同一電荷に帯電して散布する方法や、微細配置された孔を通して導電粒子を供給する方法や、任意配置された導電粒子径より小さな貫通孔に導電粒子を吸引固定し、その後固定用樹脂に転写する方法等が挙げられる。   As a method for dispersing conductive particles in a single layer in a film-like fixing resin and laminating an insulating adhesive, for example, a cross-linked polymer is used as a fixing resin on a peelable substrate, and the final film The coating is applied so that the thickness is smaller than the conductive particle diameter, and the conductive particles are arranged on the surface. Conductive particles can be arranged by charging them with the same charge and dispersing them, supplying conductive particles through finely-arranged holes, or attracting conductive particles to through-holes smaller than the size of the arbitrarily arranged conductive particles. For example, a method of fixing and then transferring to a fixing resin may be used.

次に導電粒子を剥離可能な基材に到達する様に、固定用樹脂内に埋め込み、架橋ポリマーを熱や光エネルギーを使って架橋する。必要に応じ剥離可能な基材を剥離した後、絶縁性接着剤に熱ロールやラミネーターを用いてラミネートする。ここで固定用樹脂の膜厚は、導電粒子の粒径未満であり、好ましくは2/3以下であり、更に好ましくは1/2以下である。架橋ポリマーの替わりに熱可塑ポリマーを用いる事もできる。この場合、熱可塑ポリマーを加温して軟化状態で導電粒子を所定位置に保持した後、温度を下げて、導電粒子を固定する方法や、溶剤等で熱可塑性ポリマーを軟化させた状態で導電粒子を所定位置に保持した後、乾燥して導電粒子を固定する方法等がある。   Next, the conductive particles are embedded in the fixing resin so as to reach the peelable substrate, and the crosslinked polymer is crosslinked using heat or light energy. After peeling the base material which can be peeled as needed, it laminates to an insulating adhesive using a hot roll or a laminator. Here, the film thickness of the fixing resin is less than the particle size of the conductive particles, preferably 2/3 or less, and more preferably 1/2 or less. A thermoplastic polymer can be used in place of the crosslinked polymer. In this case, after heating the thermoplastic polymer in the softened state, the conductive particles are held in place, and then the temperature is lowered to fix the conductive particles, or the thermoplastic polymer is softened with a solvent or the like. There is a method of fixing the conductive particles by holding the particles in place and then drying.

本発明に使用される異方導電性接着剤は、厚みが5μm以上50μm以下のフィルム状であることが好ましく、更に好ましくは6μm以上35μm以下、更に好ましくは7μm以上25μm以下、更に好ましくは8μm以上20μm以下である。   The anisotropic conductive adhesive used in the present invention is preferably in the form of a film having a thickness of 5 μm or more and 50 μm or less, more preferably 6 μm or more and 35 μm or less, further preferably 7 μm or more and 25 μm or less, and more preferably 8 μm or more. 20 μm or less.

本発明の回路接続方法においては、回路基板の接続部分に異方導電性接着剤を貼り付けた後、ICチップまたは別の回路基板を位置合わせして重ね、必要に応じ仮圧着した後、加熱加圧される。この時の温度は、100℃以上280℃以下が好ましい。固定用樹脂の強度と絶縁性接着剤の溶融粘度とのバランスを考えて温度を決定するのが好ましい。即ち、低温で接続することで、絶縁性接着剤の溶融粘度が高くなり、導電粒子は流動し易くなる傾向があり、温度が高くなると絶縁性接着剤の溶融粘度が低くなり、導電粒子は流動しにくくなる。隣接電極間スペース部に存在する導電粒子は流動するが、接続電極間の導電粒子や電極を有さないICチップ中心部に存在する導電粒子は実質的に流動しない温度で接続するのが好ましい。必要に応じ、絶縁性接着剤の流動が収まった後、温度を上げて絶縁性接着剤の硬化反応を進行させることができる。   In the circuit connection method of the present invention, after an anisotropic conductive adhesive is applied to the connection portion of the circuit board, the IC chip or another circuit board is aligned and stacked, and after temporary pressing as necessary, heating is performed. Pressurized. The temperature at this time is preferably 100 ° C. or higher and 280 ° C. or lower. The temperature is preferably determined in consideration of the balance between the strength of the fixing resin and the melt viscosity of the insulating adhesive. That is, by connecting at a low temperature, the melt viscosity of the insulating adhesive increases, and the conductive particles tend to flow. When the temperature increases, the melt viscosity of the insulating adhesive decreases, and the conductive particles flow. It becomes difficult to do. The conductive particles existing in the space between the adjacent electrodes flow, but the conductive particles between the connection electrodes and the conductive particles existing in the center of the IC chip having no electrode are preferably connected at a temperature that does not substantially flow. If necessary, after the flow of the insulating adhesive is settled, the temperature can be raised to advance the curing reaction of the insulating adhesive.

本発明の接続構造体は、回路基板とICチップを異方導電性接着剤で接続した接続構造体であって、接続電極間の導電粒子密度q個/mmと、隣接電極間スペース部の導電粒子密度r個/mmとの間に、q>r×3の関係を有している。好ましくはq>r×4であり、更に好ましくはq>r×5、一層好ましくはq>r×10である。qがrの3倍より大きい事で接続電極の導通性と隣接電極間の絶縁性を高度に両立させる事ができる。
更に、ICチップの電極を有さない中心部の導電粒子密度p個/mmとの間にp>r×3の関係を有していることが好ましい。更に好ましくはp>r×4であり、一層好ましくはp>r×5、更に一層好ましくはp>r×10である。pがrの3倍より大きい事で隣接電極間の高い絶縁性が維持できる。
The connection structure of the present invention is a connection structure in which a circuit board and an IC chip are connected with an anisotropic conductive adhesive, and the density of conductive particles between connection electrodes q / mm 2 and the space between adjacent electrodes. There is a relationship of q> r × 3 between the conductive particle density r / mm 2 . Preferably q> r × 4, more preferably q> r × 5, and even more preferably q> r × 10. When q is larger than 3 times r, the conductivity of the connection electrode and the insulation between the adjacent electrodes can be made highly compatible.
Furthermore, it is preferable to have a relationship of p> r × 3 with the density of conductive particles p / mm 2 in the central portion that does not have an IC chip electrode. More preferably, p> r × 4, more preferably p> r × 5, and still more preferably p> r × 10. When p is larger than 3 times r, high insulation between adjacent electrodes can be maintained.

本発明の接続構造体は、例えば、先に説明した本発明の回路接続方法によって、ICチップと回路基板を接続する事で得られる。
接続構造体の導電粒子数は、必要に応じ接続部を分解した後、光学顕微鏡やマイクロスコープ、X線検査装置等を用いて数えることができる。
qおよびrを求める場合、接続された全電極間あるいは全隣接電極間スペース部の導電粒子数より算出するのが好ましいが、接続電極数が多い場合は、任意にサンプリングした接続電極間あるいは隣接電極間スペース部の導電粒子数より求めた値で代用する事ができる。サンプリングする場合、サンプリングによる誤差を極力抑える様にサンプリング場所や数を選択する必要がある。
pを求める場合は、ICチップの中心を含み、0.01mm以上の面積より求める必要がある。但し、電極が有さない中心部の面積が0.01mmに満たない場合は、電極を有さない中心部全体より求める。
The connection structure of the present invention can be obtained, for example, by connecting an IC chip and a circuit board by the circuit connection method of the present invention described above.
The number of conductive particles of the connection structure can be counted using an optical microscope, a microscope, an X-ray inspection apparatus, etc. after disassembling the connection portion as necessary.
When obtaining q and r, it is preferable to calculate from the number of conductive particles in the space part between all connected electrodes or between all adjacent electrodes. However, when the number of connection electrodes is large, between the connection electrodes or adjacent electrodes sampled arbitrarily A value obtained from the number of conductive particles in the interspace can be substituted. When sampling, it is necessary to select a sampling location and number so as to suppress errors due to sampling as much as possible.
When obtaining p, it is necessary to obtain it from an area of 0.01 mm 2 or more including the center of the IC chip. However, when the area of the central portion that does not have the electrode is less than 0.01 mm 2 , it is obtained from the entire central portion that does not have the electrode.

本発明の接続構造体の接続電極間に捕捉されている最少の導電粒子数(以下、最少粒子捕捉数と称す)は、低い接続抵抗を維持するために、2個以上であることが好ましい。更に好ましくは3個以上30個以下、一層好ましくは4個以上25個以下、更に一層好ましくは5個以上20個以下である。ここで、最少粒子捕捉数は、接続電極間に捕捉されている導電粒子数の平均値からその標準偏差の3倍を引いた値として定義する。   The minimum number of conductive particles trapped between the connection electrodes of the connection structure of the present invention (hereinafter referred to as the minimum particle capture number) is preferably 2 or more in order to maintain a low connection resistance. More preferably, they are 3 or more and 30 or less, More preferably, they are 4 or more and 25 or less, More preferably, they are 5 or more and 20 or less. Here, the minimum particle trapping number is defined as a value obtained by subtracting three times the standard deviation from the average value of the number of conductive particles trapped between the connection electrodes.

本発明を実施例によりさらに詳細に説明する。
(製造例1)(異方導電性接着剤の製造)
フェノキシ樹脂(東都化成株式会社製、商品名:フェノトートYP50)100質量部、ビスフェノールA型液状エポキシ樹脂(ジャパンエポキシレジン株式会社、商品名:エピコートYL980)50質量部、マイクロカプセル型潜在性硬化剤と液状エポキシ樹脂の混合物(旭化成ケミカルズ株式会社製、商品名:ノバキュアHX−3941HP)50質量部、酢酸エチル200質量部を混合し、接着剤ワニスを得た。この接着剤ワニスを離型処理した50μmのPETフィルム製セパレーター上にブレードコーターを用いて塗布、溶剤を乾燥除去して、平均膜厚20μmのフィルム状の絶縁性接着剤Aを得た。
ビスフェノールA型液状エポキシ樹脂(ジャパンエポキシレジン株式会社、商品名:エピコートYL980)50質量部、ビスフェノールAノボラック型エポキシ樹脂(ジャパンエポキシレジン株式会社、商品名:エピコート157)50質量部、ジシアンジアミド4質量部、2−エチル−4−メチルイミダゾール0.2質量部、メチルエチルケトン3000質量部を混合し、それを離型処理した50μmのPETフィルムにブレードコーターを用いて塗布し、80℃で5分間乾燥し、粘着性を有する架橋前の固定用樹脂を平均膜厚1.2μmで形成した。
The invention is explained in more detail by means of examples.
(Production Example 1) (Production of anisotropic conductive adhesive)
100 parts by mass of phenoxy resin (manufactured by Toto Kasei Co., Ltd., trade name: phenototo YP50), 50 parts by mass of bisphenol A type liquid epoxy resin (Japan Epoxy Resin Co., Ltd., trade name: Epicoat YL980), microcapsule type latent curing agent And a liquid epoxy resin mixture (Asahi Kasei Chemicals Corporation, trade name: Novacure HX-3941HP) 50 parts by mass and ethyl acetate 200 parts by mass were mixed to obtain an adhesive varnish. The adhesive varnish was applied onto a 50 μm PET film separator subjected to a release treatment using a blade coater, and the solvent was removed by drying to obtain a film-like insulating adhesive A having an average film thickness of 20 μm.
50 parts by mass of bisphenol A liquid epoxy resin (Japan Epoxy Resin Co., Ltd., trade name: Epicoat YL980), 50 parts by mass of bisphenol A novolac epoxy resin (Japan Epoxy Resin Co., Ltd., trade name: Epicoat 157), 4 parts by mass of dicyandiamide , 0.2 parts by mass of 2-ethyl-4-methylimidazole and 3000 parts by mass of methyl ethyl ketone were mixed, applied to a 50 μm PET film subjected to a release treatment using a blade coater, and dried at 80 ° C. for 5 minutes. An adhesive resin having a tackiness before crosslinking was formed with an average film thickness of 1.2 μm.

この架橋前の固定用樹脂に直径3μmの導電粒子を8μm間隔の格子状に埋め込んだ。ここで導電粒子はジビニルベンゼン系樹脂をコアとし、その表層に無電解メッキで0.07μmのニッケル層を形成し、更に電気メッキで0.04μmの金層を形成した、粒径の標準偏差が0.15μmのものを用いた。また、導電粒子を格子状に埋め込む方法としては、金属マスクを通してエキシマレーザーを照射することにより作成した直径2.0μmの貫通孔が8μm間隔で格子状に形成された25μm厚のポリイミドフィルムを吸引口に設置した吸引装置を用いて、導電粒子を貫通孔部に真空吸引で保持し、引き続き架橋前の固定用樹脂表面に吸引保持した導電粒子を押し付け、導電粒子がPETフィルムに到達するまで架橋前の固定用樹脂に埋め込み、真空を解除してから吸引装置を引き離し、架橋前の固定用樹脂に導電粒子を転写する方法を用いた。   Conductive particles having a diameter of 3 μm were embedded in the fixing resin before cross-linking in a lattice shape with an interval of 8 μm. Here, the conductive particle is a divinylbenzene resin core, a nickel layer of 0.07 μm is formed on the surface layer by electroless plating, and a gold layer of 0.04 μm is formed by electroplating. The thing of 0.15 micrometer was used. As a method of embedding conductive particles in a lattice shape, a 25 μm-thick polyimide film in which through-holes having a diameter of 2.0 μm formed by irradiating an excimer laser through a metal mask are formed in a lattice shape at intervals of 8 μm is used as a suction port. Using the suction device installed on the surface, the conductive particles are held in the through-holes by vacuum suction, and then the conductive particles sucked and held against the surface of the fixing resin before crosslinking are pressed until the conductive particles reach the PET film before crosslinking. A method was used in which the conductive particles were transferred to the fixing resin before crosslinking by embedding in the fixing resin and releasing the vacuum after releasing the vacuum.

次に導電粒子を埋め込んだ架橋前の固定用樹脂を160℃で2分間加熱し、固定用樹脂を架橋した後、フィルム状の絶縁性接着剤Aを導電粒子側に重ね、真空下、50℃でラミネートすることで、固定用樹脂からはみ出していた導電粒子が絶縁性接着剤Aに埋め込まれ、固定用樹脂と絶縁性接着剤Aが隙間なく積層され、フィルム状の異方導電性接着剤Aを得た。異方導電性接着剤Aをマイクロスコープ(株式会社キーエンス製、商品名:VHX−100、以下同じ)で観察した結果、導電粒子は相互に隔てられて配置しており、更にマイクロスコープで得られた画像から、画像処理ソフト(旭化成株式会社製、商品名:A像くん、以下同じ)を用いて、導電粒子の近接6粒子との中心間距離の平均値およびその変動係数を求めた結果、平均値が8.7μm、変動係数が0.25であり、導電粒子数は15000個/mmであった。尚、画像処理は、任意に選択した0.06mmの面積5箇所について行い、その平均の値を用いた。 Next, the fixing resin in which the conductive particles are embedded is heated at 160 ° C. for 2 minutes before crosslinking to crosslink the fixing resin, and then the film-like insulating adhesive A is stacked on the conductive particle side. By laminating, the conductive particles protruding from the fixing resin are embedded in the insulating adhesive A, and the fixing resin and the insulating adhesive A are laminated without any gaps, and the film-like anisotropic conductive adhesive A Got. As a result of observing the anisotropic conductive adhesive A with a microscope (manufactured by Keyence Corporation, trade name: VHX-100, the same shall apply hereinafter), the conductive particles are arranged separated from each other, and further obtained with a microscope. Using the image processing software (trade name: A image-kun, manufactured by Asahi Kasei Co., Ltd., hereinafter the same), the average value of the distance between the centers of the adjacent conductive particles and the coefficient of variation thereof was obtained from The average value was 8.7 μm, the coefficient of variation was 0.25, and the number of conductive particles was 15000 particles / mm 2 . Note that the image processing was performed on five arbitrarily selected areas of 0.06 mm 2 and the average value was used.

(製造例2)(異方導電性接着剤の製造)
導電粒子の直径が4μm、標準偏差が0.2μm、ポリイミドフィルムに開けた貫通孔の直径が2.5μmである以外は製造例1と同様にしてフィルム状の異方導電性接着接着剤Bを得た。異方導電性接着剤Bをマイクロスコープで観察した結果、導電粒子は相互に隔てられて配置しており、更にマイクロスコープで得られた画像から、画像処理ソフトを用いて、導電粒子の近接6粒子との中心間距離の平均値およびその変動係数を求めた結果、平均値が8.2μm、変動係数が0.11であり、導電粒子数は17000個/mmであった。尚、画像処理は、任意に選択した0.06mmの面積5箇所について行い、その平均の値を用いた。
(Production Example 2) (Production of anisotropic conductive adhesive)
A film-like anisotropic conductive adhesive B was prepared in the same manner as in Production Example 1 except that the diameter of the conductive particles was 4 μm, the standard deviation was 0.2 μm, and the diameter of the through hole opened in the polyimide film was 2.5 μm. Obtained. As a result of observing the anisotropic conductive adhesive B with a microscope, the conductive particles are spaced apart from each other. Further, from the image obtained with the microscope, the proximity of the conductive particles is obtained using image processing software. As a result of obtaining the average value of the center-to-center distance from the particles and the coefficient of variation thereof, the average value was 8.2 μm, the coefficient of variation was 0.11, and the number of conductive particles was 17000 / mm 2 . Note that the image processing was performed on five arbitrarily selected areas of 0.06 mm 2 and the average value was used.

(製造例3)(異方導電性接着剤の製造)
フェノキシ樹脂(東都化成株式会社製、商品名:フェノトートYP50)100質量部、ビスフェノールA型液状エポキシ樹脂(ジャパンエポキシレジン株式会社、商品名:エピコートYL980)90質量部、マイクロカプセル型潜在性硬化剤と液状エポキシ樹脂の混合物(旭化成ケミカルズ株式会社製、商品名:ノバキュアHX−3941HP)60質量部、酢酸エチル200質量部を混合し、接着剤ワニスを得た。この接着剤ワニスを離型処理した50μmのPETフィルム製セパレーター上にブレードコーターを用いて塗布、溶剤を乾燥除去して、平均膜厚18μmのフィルム状の絶縁性接着剤Bを得た。
(Production Example 3) (Production of anisotropic conductive adhesive)
100 parts by mass of phenoxy resin (manufactured by Toto Kasei Co., Ltd., trade name: phenotote YP50), 90 parts by mass of bisphenol A type liquid epoxy resin (Japan Epoxy Resin Co., Ltd., trade name: Epicoat YL980), microcapsule type latent curing agent And 60 parts by mass of a mixture of epoxy resin and liquid epoxy resin (Asahi Kasei Chemicals Corporation, trade name: Novacure HX-3941HP) and 200 parts by mass of ethyl acetate were mixed to obtain an adhesive varnish. This adhesive varnish was applied onto a 50 μm PET film separator subjected to a release treatment using a blade coater, and the solvent was removed by drying to obtain a film-like insulating adhesive B having an average film thickness of 18 μm.

100μm無延伸ポリプロピレンフィルム上にブレードコーターを用いて酢酸エチルで樹脂分4質量%に希釈した重量平均分子量110万、ガラス転移温度が−30℃のアクリルポリマーを塗布、80℃で5分間乾燥し、粘着性を有するアクリルポリマーを厚さ5μmで形成した。
このアクリルポリマー上に、直径4μmの導電粒子を充填した後、エアーブローによりアクリルポリマーに到達していない導電粒子を排除し、全面積に対する導電粒子の充填面積率で定義される充填率が73%の単層導電粒子層が形成された。ここで導電粒子はジビニルベンゼン系樹脂をコアとし、その表層に無電解メッキで0.07μmのニッケル層を形成し、更に電気メッキで0.04μmの金層を形成した、粒径の標準偏差が0.2μmのものを用いた。
A 100 μm unstretched polypropylene film was coated with an acrylic polymer having a weight average molecular weight of 1.1 million and a glass transition temperature of −30 ° C. diluted to 4% by mass with ethyl acetate using a blade coater, and dried at 80 ° C. for 5 minutes. A tacky acrylic polymer was formed with a thickness of 5 μm.
After the conductive particles having a diameter of 4 μm are filled on this acrylic polymer, the conductive particles not reaching the acrylic polymer are eliminated by air blowing, and the filling rate defined by the filling area ratio of the conductive particles with respect to the total area is 73%. A single-layer conductive particle layer was formed. Here, the conductive particle is a divinylbenzene resin core, a nickel layer of 0.07 μm is formed on the surface layer by electroless plating, and a gold layer of 0.04 μm is formed by electroplating. A 0.2 μm one was used.

次に、この導電粒子がアクリルポリマーに保持されたポリプロピレンフィルムを、試験用二軸延伸装置を用いて、130℃で、縦横共に6%/秒の比率で1.5倍に延伸した後、延伸比率を2%/秒に落として、初期値の2.5倍まで延伸した後、室温まで冷却した。得られた延伸後のフィルムをマイクロスコープで観察した結果、導電粒子は相互に隔てられて配置し、個々の導電粒子は平均4.3個の他の導電粒子とアクリルポリマーで連結された蜘蛛の巣状の構造を有し、アクリルポリマーは径が約2μmの糸状構造であった。   Next, the polypropylene film in which the conductive particles are held in the acrylic polymer is stretched 1.5 times at a rate of 6% / second in both longitudinal and lateral directions at 130 ° C. using a test biaxial stretching apparatus. The ratio was lowered to 2% / second, the film was stretched to 2.5 times the initial value, and then cooled to room temperature. As a result of observing the obtained stretched film with a microscope, the conductive particles were separated from each other, and each conductive particle was an average of 4.3 other conductive particles connected with an acrylic polymer. The acrylic polymer had a thread-like structure with a diameter of about 2 μm.

ここで得られたアクリルポリマーを固定用樹脂とする導電粒子連結構造体に絶縁性接着剤Bを導電粒子側に重ね、真空下、50℃でラミネートした後、ポリプロピレンフィルムを剥離すると、アクリルポリマーを固定用樹脂とする導電粒子連結構造体は絶縁性接着剤Bの表面層に埋め込まれ、フィルム状の異方導電性接着剤Cを得た。異方導電性接着剤Cをマイクロスコープで観察した結果、導電粒子は相互に隔てられて配置しており、更にマイクロスコープで得られた画像から、画像処理ソフトを用いて、導電粒子の近接6粒子との中心間距離の平均値およびその変動係数を求めた結果、平均値が10.6μm、変動係数が0.35であり、導電粒子数は9300個/mmであった。尚、画像処理は、任意に選択した0.06mmの面積5箇所について行い、その平均の値を用いた。
[実施例1]
Insulating adhesive B is laminated on the conductive particle side on the conductive particle linking structure using the acrylic polymer obtained here as a fixing resin, laminated at 50 ° C. under vacuum, and then peeled off the polypropylene film. The conductive particle linking structure used as the fixing resin was embedded in the surface layer of the insulating adhesive B to obtain a film-like anisotropic conductive adhesive C. As a result of observing the anisotropic conductive adhesive C with a microscope, the conductive particles are arranged to be separated from each other, and from the image obtained with the microscope, the proximity of the conductive particles is obtained using image processing software. As a result of obtaining the average value of the center-to-center distance from the particles and the coefficient of variation thereof, the average value was 10.6 μm, the coefficient of variation was 0.35, and the number of conductive particles was 9300 particles / mm 2 . Note that the image processing was performed on five arbitrarily selected areas of 0.06 mm 2 and the average value was used.
[Example 1]

15.1mm×1.6mmのサイズを有し、20μm×100μmの金バンプ電極(高さ15μm)が、長辺をICチップの端面に対して垂直となる様に、4辺の端部に一列でピッチ30μmの間隔で合計726個並んだICチップと、これに対応した接続ピッチを有するITOガラス基板の組みよりなるTEG1(Test Element Group)を準備した。
16mm×1.8mmにカットした異方導電性接着剤Aを導電粒子側のPETフィルムを剥がした後、ITOガラス基板の接続部位に貼り付け、80℃で3秒加熱し、セパレーターを剥がした。次に、東レエンジニアリング株式会社製のフリップチップボンダーFC2000を用いてICチップと異方導電性接着剤Aを貼り付けたITOガラス基板を位置合わせした後、接続速度は5mm/秒、接続温度は200℃、接続圧力は1電極当たり20gf、接続時間10秒間の条件で加熱加圧し、ICチップをITOガラス基板に接続し、接続構造体1を得た。
15.1 mm × 1.6 mm size, 20 μm × 100 μm gold bump electrodes (height 15 μm) are arranged in a row at the end of 4 sides so that the long side is perpendicular to the end face of the IC chip TEG1 (Test Element Group) comprising a set of a total of 726 IC chips arranged at intervals of 30 μm and an ITO glass substrate having a connection pitch corresponding thereto was prepared.
The anisotropic conductive adhesive A cut to 16 mm × 1.8 mm was peeled off the PET film on the conductive particle side, and then attached to the connection part of the ITO glass substrate, heated at 80 ° C. for 3 seconds, and the separator was peeled off. Next, after aligning the ITO glass substrate on which the IC chip and the anisotropic conductive adhesive A are pasted using a flip chip bonder FC2000 manufactured by Toray Engineering Co., Ltd., the connection speed is 5 mm / second and the connection temperature is 200. The connection structure 1 was obtained by connecting the IC chip to the ITO glass substrate by heating and pressurizing under conditions of 20 ° C. and a connection pressure of 20 gf per electrode and a connection time of 10 seconds.

接続構造体1をマイクロスコープで観察した結果、接続電極間の導電粒子密度が11250個/mm、隣接電極間スペース部の導電粒子密度が3200個/mm、電極を有さない中心部の導電粒子密度が13000個/mmであり、接続電極間の導電粒子捕捉率75%、隣接電極間スペース部の導電粒子滞留率は21%であり、導電粒子の流動性は、隣接電極間スペース部の方が、接続電極間よりも高いことが判った。尚、マイクロスコープでの観察は、任意に選択した50個の接続電極間および50個のスペース部とICチップの中心を含む0.06mmの面積について実施した。 As a result of observing the connection structure 1 with a microscope, the conductive particle density between the connection electrodes was 11250 particles / mm 2 , the conductive particle density in the space between adjacent electrodes was 3200 particles / mm 2 , The density of the conductive particles is 13000 / mm 2 , the conductive particle capture rate between the connecting electrodes is 75%, the conductive particle retention rate in the space portion between the adjacent electrodes is 21%, and the fluidity of the conductive particles is determined by the space between the adjacent electrodes. It was found that the portion was higher than between the connection electrodes. The observation with a microscope was carried out for an area of 0.06 mm 2 including 50 connection electrodes arbitrarily selected and 50 spaces and the center of the IC chip.

次に、接続構造体1の接続信頼の評価を実施した。接続構造体1は、480箇所の接合部を有するデイジーチェーン回路と20対の櫛を有する櫛形電極が形成され、デイジーチェーン部で接続抵抗測定を、櫛型電極部でイオンマイグレーション試験を実施した。イオンマイグレーション試験は、温度85℃、相対湿度85%、20Vの電圧を懸けて実施した。測定の結果、デイジーチェーン回路は導通がとれ、すべての接続が行われていることを示した。一方、イオンマイグレーション試験では500時間に渡り、5×107Ω以上の絶縁抵抗を示し、高い絶縁信頼性を示した。
[実施例2〜6]
Next, the connection reliability of the connection structure 1 was evaluated. In the connection structure 1, a daisy chain circuit having 480 joint portions and a comb-shaped electrode having 20 pairs of combs were formed, and connection resistance was measured at the daisy chain portion and an ion migration test was performed at the comb-shaped electrode portion. The ion migration test was conducted with a temperature of 85 ° C., a relative humidity of 85%, and a voltage of 20V. As a result of the measurement, the daisy chain circuit was turned on, indicating that all connections were made. On the other hand, the ion migration test showed an insulation resistance of 5 × 10 7 Ω or more over 500 hours and a high insulation reliability.
[Examples 2 to 6]

15.1mm×1.6mmのサイズを有し、16μm×90μmの金バンプ電極(高さ10μm)が、長辺をICチップの端面に対して垂直となる様に、4辺の端部に一列でピッチ25μmの間隔で合計870個並んだICチップと、これに対応した接続ピッチを有するITOガラス基板の組みよりなるTEG2を準備した。実施例1と同様にして、表1の条件で接続を行い、接続構造体2〜6を得た。
接続構造体2〜6のマイクロスコープでの観察結果を表1に示す。更に、実施例1と同様にして接続信頼性評価を実施した。結果を表1に示す。
[比較例1〜2]
15.1 mm × 1.6 mm size, 16 μm × 90 μm gold bump electrodes (height 10 μm) are arranged in a row at the end of 4 sides so that the long side is perpendicular to the end face of the IC chip A TEG2 made of a set of a total of 870 IC chips arranged at intervals of 25 μm pitch and an ITO glass substrate having a connection pitch corresponding thereto was prepared. In the same manner as in Example 1, connection was performed under the conditions shown in Table 1 to obtain connection structures 2 to 6.
Table 1 shows the observation results of the connection structures 2 to 6 with a microscope. Furthermore, connection reliability evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
[Comparative Examples 1-2]

実施例1と同様にして、表1の条件で接続を行い、接続構造体7〜8を得た。
接続構造体7〜8のマイクロスコープでの観察結果を表1に示す。更に、実施例1と同様にして接続信頼性評価を実施した。結果を表1に示す。
表1に示した様に、比較例1の回路接続方法では、接続電極間の導電粒子捕捉率、隣接電極間スペース部の導電粒子滞留率ともに高く、その比は1.3:1であり、その結果接続抵抗測定では、全ての接続の導通が取れ、問題なかったが、イオンマイグレーション試験で、120時間で絶縁破壊が起こり、絶縁信頼性が低かった。
一方、比較例2の回路接続方法では、接続電極間の導電粒子捕捉率、隣接電極間スペース部の導電粒子滞留率ともに低く、その比は1.9:1であり、導電粒子が載っていない接続の存在が確認された。その結果、デイジーチェーン回路の接続不良と言う不具合が発生した。更に、イオンマイグレーション試験でも、スペース部で導電粒子の凝集が起こり不具合が発生した。
In the same manner as in Example 1, connection was performed under the conditions shown in Table 1 to obtain connection structures 7 to 8.
Table 1 shows the observation results of the connection structures 7 to 8 with a microscope. Furthermore, connection reliability evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
As shown in Table 1, in the circuit connection method of Comparative Example 1, both the conductive particle capture ratio between the connection electrodes and the conductive particle retention ratio in the space portion between adjacent electrodes are high, and the ratio is 1.3: 1. As a result, in connection resistance measurement, all the connections could be conducted and there was no problem. However, in the ion migration test, dielectric breakdown occurred in 120 hours, and the insulation reliability was low.
On the other hand, in the circuit connection method of Comparative Example 2, the conductive particle trapping rate between the connection electrodes and the conductive particle retention rate in the space portion between adjacent electrodes are both low, and the ratio is 1.9: 1, and no conductive particles are placed. The existence of a connection has been confirmed. As a result, a problem called daisy chain circuit connection failure occurred. Further, in the ion migration test, the conductive particles aggregated in the space portion, resulting in problems.

Figure 2007035743
Figure 2007035743

本発明の回路接続方法および接続構造体は、異方導電性接着剤を用いた微細回路の電気的接続が可能で、微小面積の接続電極間の導通性に優れると共に、微細な隣接電極間スペース部のショートやイオンマイグレーション等の絶縁不良が起こりにくい接続構造体を与え、電子機器の部品として好適に利用できる。   The circuit connection method and the connection structure of the present invention are capable of electrical connection of a fine circuit using an anisotropic conductive adhesive, have excellent conductivity between connection electrodes having a small area, and have a fine space between adjacent electrodes. This provides a connection structure that is less prone to insulation failure such as shorting of parts and ion migration, and can be suitably used as a component of electronic equipment.

Claims (4)

相対峙する回路電極同士を、導電粒子と絶縁性接着剤を主成分とする異方導電性接着剤を用いて接続する回路接続方法において、接続電極間の導電粒子捕捉率が隣接電極間スペース部の導電粒子滞留率の3倍以上となる様に接続する回路接続方法。 In a circuit connection method for connecting circuit electrodes facing each other using an anisotropic conductive adhesive mainly composed of conductive particles and an insulating adhesive, the conductive particle capturing rate between the connection electrodes is a space portion between adjacent electrodes. Circuit connection method for connecting the conductive particles so as to be 3 times or more of the conductive particle retention rate. 回路の一方がICチップであり、異方導電性接着剤が、導電粒子が面方向に略均等に分散され、厚み方向には単層に配置された異方導電性接着フィルムであって、接続時における隣接電極間スペース部に存在する導電粒子の流動性が、接続電極間に存在する導電粒子の流動性よりも高くなる様に接続する請求項1記載の回路接続方法。 One of the circuits is an IC chip, and an anisotropic conductive adhesive is an anisotropic conductive adhesive film in which conductive particles are dispersed substantially evenly in the plane direction and arranged in a single layer in the thickness direction. The circuit connection method according to claim 1, wherein the connection is performed such that the fluidity of the conductive particles existing in the space between adjacent electrodes is higher than the fluidity of the conductive particles existing between the connection electrodes. 回路基板とICチップを、異方導電性接着剤で接続した接続構造体であって、接続電極間の導電粒子密度q個/mmと、隣接電極間スペース部の導電粒子密度r個/mmとの間に、q>r×3の関係を有することを特徴とする接続構造体。 A connection structure in which a circuit board and an IC chip are connected with an anisotropic conductive adhesive, and the conductive particle density between connection electrodes is q / mm 2 and the conductive particle density is r / mm in the space between adjacent electrodes. 2. A connection structure having a relationship of q> r × 3 between 2 and 2 . 回路基板とICチップを、異方導電性接着剤で接続した接続構造体であって、ICチップの電極を有さない中心部の導電粒子密度p個/mmと隣接電極間スペース部の導電粒子密度r個/mmとの間に、p>r×3の関係を有することを特徴とする接続構造体。 A connection structure in which a circuit board and an IC chip are connected with an anisotropic conductive adhesive, and the density of conductive particles in the central part, which does not have an electrode of the IC chip, p pieces / mm 2, and the conductivity of the space part between adjacent electrodes A connection structure characterized by having a relationship of p> r × 3 between the particle density and r particles / mm 2 .
JP2005213814A 2005-07-25 2005-07-25 Circuit connection method and connection structure Active JP5099987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213814A JP5099987B2 (en) 2005-07-25 2005-07-25 Circuit connection method and connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213814A JP5099987B2 (en) 2005-07-25 2005-07-25 Circuit connection method and connection structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011034465A Division JP5202662B2 (en) 2011-02-21 2011-02-21 Circuit connection film

Publications (3)

Publication Number Publication Date
JP2007035743A true JP2007035743A (en) 2007-02-08
JP2007035743A5 JP2007035743A5 (en) 2008-08-14
JP5099987B2 JP5099987B2 (en) 2012-12-19

Family

ID=37794663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213814A Active JP5099987B2 (en) 2005-07-25 2005-07-25 Circuit connection method and connection structure

Country Status (1)

Country Link
JP (1) JP5099987B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141712A (en) * 2005-11-21 2007-06-07 Asahi Kasei Electronics Co Ltd Coupling structure
JP2007141711A (en) * 2005-11-21 2007-06-07 Asahi Kasei Electronics Co Ltd Coupling structure of conductive particle
WO2008099925A1 (en) * 2007-02-15 2008-08-21 Diatex Co., Ltd. Conductive adhesive composition, conductive adhesive sheet and conductive adhesive tape
JP2015135878A (en) * 2014-01-16 2015-07-27 デクセリアルズ株式会社 Connection body, method for manufacturing connection body, connection method and anisotropic conductive adhesive
WO2015115161A1 (en) * 2014-01-28 2015-08-06 デクセリアルズ株式会社 Connection body and connection body production method
JP2015167186A (en) * 2014-03-04 2015-09-24 日立化成株式会社 Method of manufacturing connection structure, and connection structure
JP2020038993A (en) * 2014-01-28 2020-03-12 デクセリアルズ株式会社 Connection body and manufacturing method thereof
CN111094487A (en) * 2017-09-11 2020-05-01 日立化成株式会社 Adhesive film for circuit connection and method for producing same, method for producing circuit connection structure, and adhesive film housing module

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137571U (en) * 1986-02-24 1987-08-29
JPS63102110A (en) * 1986-10-17 1988-05-07 富士ゼロックス株式会社 Anisotropic conductor and making thereof
JPH0567480A (en) * 1991-01-23 1993-03-19 Toshiba Corp Anisotropic electrically conductive adhesive resin layer and manufacture thereof
JP2001052778A (en) * 1999-08-06 2001-02-23 Hitachi Chem Co Ltd Anisotropic conductive adhesive film and its manufacture
JP2001237278A (en) * 2000-02-25 2001-08-31 Matsushita Electric Ind Co Ltd Semiconductor device
JP2002201456A (en) * 2000-12-28 2002-07-19 Hitachi Chem Co Ltd Adhesive composition, connecting method of circuit terminal using the same, and connected structure of circuit terminal
WO2003001586A1 (en) * 2001-06-20 2003-01-03 Toray Engineering Co., Ltd. Mounting method and device
JP2003064324A (en) * 2001-06-11 2003-03-05 Hitachi Chem Co Ltd Anisotropic electroconductive adhesive film, connection method for circuit board using the same and circuit board connected body
JP2003303852A (en) * 2002-04-10 2003-10-24 Seiko Epson Corp Semiconductor chip mounting structure, wiring board, electro-optical device, and electronic apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137571U (en) * 1986-02-24 1987-08-29
JPS63102110A (en) * 1986-10-17 1988-05-07 富士ゼロックス株式会社 Anisotropic conductor and making thereof
JPH0567480A (en) * 1991-01-23 1993-03-19 Toshiba Corp Anisotropic electrically conductive adhesive resin layer and manufacture thereof
JP2001052778A (en) * 1999-08-06 2001-02-23 Hitachi Chem Co Ltd Anisotropic conductive adhesive film and its manufacture
JP2001237278A (en) * 2000-02-25 2001-08-31 Matsushita Electric Ind Co Ltd Semiconductor device
JP2002201456A (en) * 2000-12-28 2002-07-19 Hitachi Chem Co Ltd Adhesive composition, connecting method of circuit terminal using the same, and connected structure of circuit terminal
JP2003064324A (en) * 2001-06-11 2003-03-05 Hitachi Chem Co Ltd Anisotropic electroconductive adhesive film, connection method for circuit board using the same and circuit board connected body
WO2003001586A1 (en) * 2001-06-20 2003-01-03 Toray Engineering Co., Ltd. Mounting method and device
JP2003303852A (en) * 2002-04-10 2003-10-24 Seiko Epson Corp Semiconductor chip mounting structure, wiring board, electro-optical device, and electronic apparatus

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141711A (en) * 2005-11-21 2007-06-07 Asahi Kasei Electronics Co Ltd Coupling structure of conductive particle
JP4684086B2 (en) * 2005-11-21 2011-05-18 旭化成イーマテリアルズ株式会社 Conductive particle connection structure
JP4684087B2 (en) * 2005-11-21 2011-05-18 旭化成イーマテリアルズ株式会社 Connected structure
JP2007141712A (en) * 2005-11-21 2007-06-07 Asahi Kasei Electronics Co Ltd Coupling structure
WO2008099925A1 (en) * 2007-02-15 2008-08-21 Diatex Co., Ltd. Conductive adhesive composition, conductive adhesive sheet and conductive adhesive tape
JP2008195904A (en) * 2007-02-15 2008-08-28 Diatex Co Ltd Electroconductive adhesive composition, electroconductive adhesive sheet, and electroconductive adhesive tape
CN101605860B (en) * 2007-02-15 2011-11-02 迪亚特克斯株式会社 Conductive adhesive composition, conductive adhesive sheet and conductive adhesive tape
KR20160108324A (en) * 2014-01-16 2016-09-19 데쿠세리아루즈 가부시키가이샤 Connection body, connection body production method, connection method, anisotropic conductive adhesive
JP2015135878A (en) * 2014-01-16 2015-07-27 デクセリアルズ株式会社 Connection body, method for manufacturing connection body, connection method and anisotropic conductive adhesive
KR102386367B1 (en) * 2014-01-16 2022-04-13 데쿠세리아루즈 가부시키가이샤 Connection body, connection body production method, connection method, anisotropic conductive adhesive
KR20160114054A (en) * 2014-01-28 2016-10-04 데쿠세리아루즈 가부시키가이샤 Connection body and connection body production method
JP2020038993A (en) * 2014-01-28 2020-03-12 デクセリアルズ株式会社 Connection body and manufacturing method thereof
JP2015164169A (en) * 2014-01-28 2015-09-10 デクセリアルズ株式会社 Connection body and method of producing connection body
US20160381801A1 (en) * 2014-01-28 2016-12-29 Dexerials Corporation Connection body and connection body manufacturing method
CN106415937A (en) * 2014-01-28 2017-02-15 迪睿合株式会社 Connection body and connection body production method
TWI651989B (en) * 2014-01-28 2019-02-21 日商迪睿合股份有限公司 Connector and connector manufacturing method
US10299382B2 (en) 2014-01-28 2019-05-21 Dexerials Corporation Connection body and connection body manufacturing method
KR102639862B1 (en) * 2014-01-28 2024-02-22 데쿠세리아루즈 가부시키가이샤 Connection body and connection body production method
JP7369756B2 (en) 2014-01-28 2023-10-26 デクセリアルズ株式会社 Connection body and method for manufacturing the connection body
KR102368746B1 (en) * 2014-01-28 2022-02-28 데쿠세리아루즈 가부시키가이샤 Connection body and connection body production method
JP7027390B2 (en) 2014-01-28 2022-03-01 デクセリアルズ株式会社 Connection body and manufacturing method of connection body
JP2022033786A (en) * 2014-01-28 2022-03-02 デクセリアルズ株式会社 Connecting body and manufacturing method of the same
KR20220029770A (en) * 2014-01-28 2022-03-08 데쿠세리아루즈 가부시키가이샤 Connection body and connection body production method
WO2015115161A1 (en) * 2014-01-28 2015-08-06 デクセリアルズ株式会社 Connection body and connection body production method
JP2015167186A (en) * 2014-03-04 2015-09-24 日立化成株式会社 Method of manufacturing connection structure, and connection structure
CN111094487A (en) * 2017-09-11 2020-05-01 日立化成株式会社 Adhesive film for circuit connection and method for producing same, method for producing circuit connection structure, and adhesive film housing module

Also Published As

Publication number Publication date
JP5099987B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP4789738B2 (en) Anisotropic conductive film
JP5388572B2 (en) Conductive particle arrangement sheet and anisotropic conductive film
JP5099987B2 (en) Circuit connection method and connection structure
JP2007217503A (en) Anisotropically electroconductive adhesive film
JP5147048B2 (en) Anisotropic conductive film
JP2006233203A (en) Anisotropically electroconductive adhesive film
JP5581605B2 (en) Method for producing anisotropic conductive adhesive film
JP2007009176A (en) Anisotropically electroconductive adhesive film
JP5147049B2 (en) Anisotropic conductive film
JP2006233202A (en) Anisotropically electroconductive adhesive film for circuit connection
JP4936775B2 (en) Conductive particle connection structure
JP4684087B2 (en) Connected structure
JP4657047B2 (en) Connecting member
JP5202662B2 (en) Circuit connection film
JP2006339163A (en) Connection method of electrode
JP2006233200A (en) Anisotropically electroconductive adhesive film
JP2006233201A (en) Anisotropically electroconductive adhesive film
JP4703306B2 (en) Conductive particle connection structure
JP4953685B2 (en) Connecting material
JP2009161684A (en) Adhesive composition for use in circuit connection, and connection structure of circuit member and connecting method of circuit member by using the adhesive composition
JP5046581B2 (en) Adhesive for circuit connection
JP2007305567A (en) Circuit connecting member
JP2012097231A (en) Anisotropically electroconductive adhesive film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250