JPH0567480A - Anisotropic electrically conductive adhesive resin layer and manufacture thereof - Google Patents

Anisotropic electrically conductive adhesive resin layer and manufacture thereof

Info

Publication number
JPH0567480A
JPH0567480A JP4009663A JP966392A JPH0567480A JP H0567480 A JPH0567480 A JP H0567480A JP 4009663 A JP4009663 A JP 4009663A JP 966392 A JP966392 A JP 966392A JP H0567480 A JPH0567480 A JP H0567480A
Authority
JP
Japan
Prior art keywords
resin layer
adhesive resin
conductive particles
particles
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4009663A
Other languages
Japanese (ja)
Other versions
JP3280685B2 (en
Inventor
Miki Mori
三樹 森
Masayuki Saito
雅之 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP00966392A priority Critical patent/JP3280685B2/en
Publication of JPH0567480A publication Critical patent/JPH0567480A/en
Application granted granted Critical
Publication of JP3280685B2 publication Critical patent/JP3280685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PURPOSE:To disperse electrically conductive particles uniformly, and enable connection at a fine pitch. CONSTITUTION:Electrically conductive particles 12 are dispersed in an insulating adhesive resin layer 11, and electrical continuity is carried out only in the width direction of the adhesive resin layer 11. After the electrically conductive particles 12 are electrified, the electrified particles 12 are dispersed on the surface of a roller 22, and next, the dispersed particles 12 are adhered on the surface of the adhesive resin layer 11, and afterwards, the adhered particles 12 are heated/pressurized, and are embedded in the adhesive resin layer 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、接着樹脂層の厚み方向
のみに導通がとれる異方導電性接着樹脂層に係わり、特
に導電性の粒子の配置状態や分散方法の改良をはかった
異方導電性接着樹脂層及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive adhesive resin layer which can conduct electricity only in the thickness direction of the adhesive resin layer, and in particular, to improve the arrangement state and dispersion method of conductive particles. The present invention relates to a conductive adhesive resin layer and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、半導体装置により薄く、より小型
に実装する方法として、半導体パッケージを半田を用い
て実装する方法に代わり、半導体素子をベアチップのま
ま基板に実装する方法や、基板同士を接続する種々の方
法が開発されている。
2. Description of the Related Art In recent years, as a method for mounting a semiconductor device thinner and more compactly, instead of mounting a semiconductor package using solder, a semiconductor element is mounted on a substrate as a bare chip, or substrates are connected to each other. Various methods have been developed.

【0003】その一つに、図9に示すような有機高分子
の接着シート1内に導電粒子2を分散させた異方導電性
接着シートを用い、図10に示すように半導体素子と基板
を接続する方法、また図11に示すように基板同士を接続
する方法がある。図10は、半導体素子3のA1電極部分
に形成された突起電極4が、接着シート1を押し退け、
シート1内に分散している導電粒子2を介して基板5上
の配線6と接続する構造になっている。図11も同様に、
基板5上の配線6と基板7上の配線8とが、導電粒子2
を介して接続される構造となっている。
As one of them, an anisotropic conductive adhesive sheet in which conductive particles 2 are dispersed in an organic polymer adhesive sheet 1 as shown in FIG. 9 is used, and a semiconductor element and a substrate are formed as shown in FIG. There are a method of connecting and a method of connecting the substrates to each other as shown in FIG. In FIG. 10, the protruding electrode 4 formed on the A1 electrode portion of the semiconductor element 3 pushes the adhesive sheet 1 away,
The structure is such that it is connected to the wiring 6 on the substrate 5 via the conductive particles 2 dispersed in the sheet 1. Similarly for FIG.
The wiring 6 on the substrate 5 and the wiring 8 on the substrate 7 are the conductive particles 2
It is structured to be connected via.

【0004】従来の異方導電性接着樹脂層は、数μm〜
数十μmの大きさの導電粒子と樹脂とを、所定の割合で
混合して3本ロールミルなどで混練し、これを圧延ロー
ルやブレードを通して一定の厚さにし、ポリエステルな
どの剥離フィルム上にコーティングし、乾燥させて製造
する方法や、混練後ペースト状になっている樹脂をスク
リーン印刷技術を用いてシート状に印刷し、乾燥させて
製造していた。あるいはペースト状態で製品にしていた
ものもある。従って、導電粒子は接着樹脂層中にランダ
ムに混入されることになり、単位面積当りに存在する粒
子の数にばらつきを生じたり、また、導電粒子が凝集し
てしまうことも多かった。
The conventional anisotropic conductive adhesive resin layer has a thickness of several μm.
Conductive particles having a size of several tens of μm and a resin are mixed at a predetermined ratio and kneaded by a three-roll mill, etc., and then made into a certain thickness through a rolling roll or a blade, and coated on a release film such as polyester. Then, a method of producing by drying, or a method of kneading and kneading and pasting the resin into a sheet form by using a screen printing technique, followed by drying. There are also products that were made into a paste. Therefore, the conductive particles are randomly mixed in the adhesive resin layer, and the number of particles existing per unit area varies, and the conductive particles often aggregate.

【0005】導電粒子の分散にばらつきや凝集などがあ
ると、接続のピッチを細かくした場合に、半導体素子と
基板の接続や、基板と基板の接続において隣接電極間や
配線間で短絡してしまうショートの発生や、逆に接続部
分に導電粒子が存在せずに導通が取れないオープンの発
生等の問題があり、微細ピッチの接続は困難である。な
お、図10にはオープンの様子を示し、図11にはショート
に近い状態を示している。
If the conductive particles are dispersed or agglomerated, if the connection pitch is made fine, a short circuit will occur between the adjacent electrodes and between the wirings in the connection between the semiconductor element and the substrate or between the substrate and the substrate. There are problems such as the occurrence of a short circuit and, conversely, the occurrence of an open state in which conductive particles are not present in the connection portion and electrical continuity cannot be obtained, and it is difficult to connect with a fine pitch. Note that FIG. 10 shows an open state, and FIG. 11 shows a state close to a short circuit.

【0006】また、導電粒子2は一般に接着樹脂層中に
埋設されており、樹脂層の厚み方向の導通をとるには、
樹脂層1に大きな接合加重をかける必要がある。このた
めに従来、半導体素子3に突起電極4を形成し、突起電
極4と配線6との間でシート1を十分に押し付けてい
た。
Further, the conductive particles 2 are generally embedded in an adhesive resin layer, and in order to establish continuity in the thickness direction of the resin layer,
It is necessary to apply a large bonding weight to the resin layer 1. For this reason, conventionally, the protruding electrode 4 is formed on the semiconductor element 3, and the sheet 1 is sufficiently pressed between the protruding electrode 4 and the wiring 6.

【0007】しかしながら、半導体素子に突起電極を形
成することは工程が増えると共に、歩留りの低下を招く
等の問題がある。さらに、半導体素子が樹脂を押し退け
導電粒子とコンタクトを取るために、接合加重を高くす
る必要がある。接合加重が高くなると、電極部分の下層
のパッシベーションにクラックを生じさせ、半導体素子
の信頼性を低下させる要因となっていた。
However, forming the protruding electrodes on the semiconductor element has problems that the number of steps increases and the yield decreases. Further, in order for the semiconductor element to push away the resin and make contact with the conductive particles, it is necessary to increase the bonding weight. When the bonding load is increased, cracks are generated in the passivation of the lower layer of the electrode portion, which is a factor that reduces the reliability of the semiconductor element.

【0008】[0008]

【発明が解決しようとする課題】このように、従来の異
方導電性接着樹脂層では、導電粒子の分散にばらつきや
凝集があるため、接続ピッチが細かくなるとショートや
オープンが生じる問題があり、微細ピッチの接続が難し
かった。
As described above, in the conventional anisotropically conductive adhesive resin layer, there is a problem that short-circuiting or open-circuiting occurs when the connection pitch becomes fine because of dispersion and aggregation of the conductive particles. It was difficult to connect the fine pitch.

【0009】また、従来の異方導電性接着樹脂層では、
半導体素子を実装する際に、半導体素子に突起電極を設
ける必要があり、コストの上昇を招く。さらに、接合加
重を大きくする必要があり、これが半導体素子の信頼性
を低下させる要因となっていた。
Further, in the conventional anisotropic conductive adhesive resin layer,
When mounting a semiconductor element, it is necessary to provide a protruding electrode on the semiconductor element, which causes an increase in cost. Furthermore, it is necessary to increase the bonding weight, which has been a factor that reduces the reliability of the semiconductor element.

【0010】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、導電粒子を均等に分散
させることができ、微細ピッチの接続を可能にする異方
導電性接着樹脂層及びその製造方法を提供することにあ
る。
The present invention has been made in consideration of the above circumstances, and an object thereof is to provide an anisotropic conductive adhesive resin which can disperse conductive particles evenly and enables fine pitch connection. It is to provide a layer and a manufacturing method thereof.

【0011】また、本発明の他の目的は、半導体素子に
突起電極等を形成することなく、半導体素子と基板とを
接続することができ、且つ接合加重を小さくしても十分
な接続をとることのできる異方導電性接着樹脂層を提供
することにある。
Another object of the present invention is to connect the semiconductor element and the substrate without forming a protruding electrode or the like on the semiconductor element, and to make a sufficient connection even if the bonding weight is reduced. An object is to provide an anisotropic conductive adhesive resin layer that can be used.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に本発明(請求項1)は、絶縁性の接着樹脂層中に導電
性の粒子を分散させ、該接着樹脂層の厚み方向のみに導
通がとれる異方導電性接着樹脂層において、導電性の粒
子の径を接着樹脂層の厚さと同等若しくはそれ以上の大
きさに設定し、接着樹脂層の少なくとも一方の面に導電
性の粒子を該樹脂層面よりも突出させるようにしたもの
である。
In order to achieve the above-mentioned object, the present invention (claim 1) is to disperse conductive particles in an insulating adhesive resin layer and only in the thickness direction of the adhesive resin layer. In the anisotropic conductive adhesive resin layer capable of conduction, the diameter of the conductive particles is set to be equal to or larger than the thickness of the adhesive resin layer, and the conductive particles are provided on at least one surface of the adhesive resin layer. The resin layer is made to project beyond the resin layer surface.

【0013】また、本発明(請求項2)は、絶縁性の接
着樹脂層中に導電性の粒子を分散させ、該樹脂層の厚み
方向のみに導通がとれる異方導電性接着樹脂層を製造す
る方法において、導電性の粒子を接着樹脂層に分散させ
る前に、予め該粒子を帯電させ、導電性の粒子間の反発
力を利用して分散の均一化をはかることを特徴としてい
る。
Further, according to the present invention (claim 2), conductive particles are dispersed in an insulating adhesive resin layer to produce an anisotropic conductive adhesive resin layer capable of conducting only in the thickness direction of the resin layer. In this method, before the conductive particles are dispersed in the adhesive resin layer, the particles are electrically charged in advance, and the repulsive force between the conductive particles is utilized to make the dispersion uniform.

【0014】また、本発明(請求項3)は、異方導電性
接着樹脂層の製造方法において、導電性の粒子を帯電さ
せたのち、帯電させた粒子を基板,ロール又はドラムか
らなる支持体表面に分散させ、次いで分散させた粒子を
有機高分子接着樹脂層の表面に付着させ、しかるのち付
着させた粒子を接着樹脂層内に埋め込むようにした方法
である。
Further, according to the present invention (claim 3), in the method for producing an anisotropic conductive adhesive resin layer, after electrically conductive particles are charged, the electrically charged particles are supported by a substrate, a roll or a drum. This is a method in which the particles are dispersed on the surface, then the dispersed particles are attached to the surface of the organic polymer adhesive resin layer, and then the attached particles are embedded in the adhesive resin layer.

【0015】[0015]

【作用】本発明(請求項1)によれば、導電粒子(望ま
しくは帯電した導電性の粒子)の径が接着樹脂層と同等
若しくはそれ以上の大きさであり、少なくとも一方の面
で導電粒子が接着樹脂層よりも突出しているため、接着
樹脂層にわずかな接合加重を与えるだけで垂直方向の導
通をとることができる。従って、半導体素子と基板とを
接続する際に、接合加重を大きくする必要がなくなり、
半導体素子に損傷を与える等の不都合はない。さらに、
半導体素子に突起電極を設ける必要がなくなることか
ら、コスト的にも有利である。
According to the present invention (claim 1), the diameter of the conductive particles (preferably charged conductive particles) is equal to or larger than that of the adhesive resin layer, and the conductive particles are formed on at least one surface. Is more prominent than the adhesive resin layer, it is possible to establish electrical continuity in the vertical direction only by applying a slight bonding load to the adhesive resin layer. Therefore, when connecting the semiconductor element and the substrate, it is not necessary to increase the bonding weight,
There is no inconvenience such as damage to the semiconductor element. further,
Since it is not necessary to provide a protruding electrode on the semiconductor element, it is advantageous in terms of cost.

【0016】また、本発明(請求項2,3)によれば、
導電粒子を帯電させることにより、導電粒子同士に反発
力が作用し、この反発力により導電粒子は一定の間隔で
分散される。若しくはばらつきが少なくなる。従って、
導電粒子の分散のばらつきや凝集に起因する接続の際の
ショートの発生やオープンの発生を未然に防止すること
ができ、微細ピッチの接続を確実に行うことが可能とな
る。
According to the present invention (claims 2 and 3),
By charging the conductive particles, a repulsive force acts on the conductive particles, and the repulsive force causes the conductive particles to be dispersed at regular intervals. Or the variation is reduced. Therefore,
It is possible to prevent occurrence of short-circuit or open at the time of connection due to dispersion or aggregation of the conductive particles, and it is possible to surely perform fine-pitch connection.

【0017】[0017]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 <実施例1>
Embodiments of the present invention will be described below with reference to the drawings. <Example 1>

【0018】図1(a) は本発明の第1の実施例に係わる
異方導電性接着樹脂層を示す断面図である。この異方導
電性接着樹脂層は、有機高分子体の薄い接着樹脂層11と
微小導電粒子12から構成されている。導電粒子12は、接
着樹脂層11に導電粒子同士が接触することなく分散され
た構造になっている。あるいは、図1(b) に示すように
ペースト状になっている。
FIG. 1 (a) is a sectional view showing an anisotropic conductive adhesive resin layer according to the first embodiment of the present invention. The anisotropic conductive adhesive resin layer is composed of a thin adhesive resin layer 11 made of an organic polymer and fine conductive particles 12. The conductive particles 12 have a structure in which the conductive particles are dispersed in the adhesive resin layer 11 without contacting each other. Alternatively, it is in a paste form as shown in FIG. 1 (b).

【0019】ここで、接着樹脂層11は、どのような樹脂
を主成分としても構わない。例えば、熱可塑性の樹脂で
あればスチレンブタジエン系樹脂、熱硬化性であればエ
ポキシ樹脂等がある。本実施例では、接続後の信頼性を
考慮し、接着シートの主成分としてエポキシ樹脂を用い
た。この接着樹脂層11に導電粒子12を分散させる方法
は、以下のようにして行う。まず、導電粒子12を摩擦帯
電やコロナ放電によって帯電させる。これによって導電
粒子同士は反発しあい、帯電量に比例した一定の間隔で
分散する。この帯電し分散している導電粒子12を接着樹
脂11と所望の割合で混合し、混練する。混練したままで
はペースト状であるが、ペースト状態で半導体素子の接
続等に用いることもできる。あるいは混練した後、スク
リーン印刷や圧延ローラ,ブレードを通す方法で厚さを
略均一にし、ポリエステルなどの剥離フィルム上に印刷
やコーティングしシート状にすることもできる。ペース
ト状のものも最終的にはスクリーン印刷やディペンサー
によって一定量塗布することになる。また、導電粒子12
と接着樹脂11を混合せずに、最後に接着樹脂層11に導電
粒子12を転写させ異方性導電接着樹脂を製造する方法も
ある。
Here, the adhesive resin layer 11 may contain any resin as a main component. For example, if it is a thermoplastic resin, it is a styrene-butadiene resin, and if it is a thermosetting resin, it is an epoxy resin. In this example, in consideration of reliability after connection, an epoxy resin was used as a main component of the adhesive sheet. The method of dispersing the conductive particles 12 in the adhesive resin layer 11 is performed as follows. First, the conductive particles 12 are charged by frictional charging or corona discharge. As a result, the conductive particles repel each other and are dispersed at a constant interval proportional to the charge amount. The electrically conductive particles 12 which are charged and dispersed are mixed with the adhesive resin 11 in a desired ratio and kneaded. Although it is a paste when kneaded, it can be used for connecting semiconductor elements in a paste state. Alternatively, after kneading, it is possible to make the thickness substantially uniform by screen printing or a method of passing it through a rolling roller or a blade, and printing or coating on a release film such as polyester to form a sheet. Finally, a paste-like material is applied in a fixed amount by screen printing or a dispenser. In addition, the conductive particles 12
There is also a method in which the anisotropic conductive adhesive resin is manufactured by finally transferring the conductive particles 12 to the adhesive resin layer 11 without mixing the resin and the adhesive resin 11.

【0020】本実施例では接着樹脂層11としてシート状
のものを用い、この転写を利用する方法を用いた。接着
樹脂層11は従来技術を用いて製造した厚さ約20μmのシ
ートを用いた。一方、基板やロール等の支持体を、導電
粒子12とは逆の電荷を持つようにコロナ放電などにより
帯電させる。支持体は絶縁層で構成され、全面に渡り略
一定に帯電させたものや、導電層と絶縁層がパターニン
グされ選択的に帯電させたものや、セレンなどのように
コロナ放電後、光を照射することで選択的に帯電させる
ことができるものを用いる。
In this embodiment, a sheet-like material is used as the adhesive resin layer 11, and a method utilizing this transfer is used. As the adhesive resin layer 11, a sheet having a thickness of about 20 μm manufactured by using a conventional technique was used. On the other hand, a support such as a substrate or a roll is charged by corona discharge or the like so as to have a charge opposite to that of the conductive particles 12. The support is composed of an insulating layer, which is charged almost uniformly over the entire surface, selectively charged by patterning the conductive layer and insulating layer, and irradiated with light after corona discharge such as selenium. By doing so, a material that can be selectively charged is used.

【0021】次に、帯電している支持体に導電粒子12を
電気的吸引力で転写させる。また支持体を選択的に帯電
させることができることより導電粒子をランダムではな
く、例えば半導体素子の電極に対応する部分など、ほぼ
所望の分布で転写させることができる。次に接着樹脂層
11の裏面に支持体より強い電荷をかけ支持体に転写させ
た導電粒子12を接着樹脂層11側に再度転写する。このよ
うに転写された導電粒子12を加熱し、接着樹脂11に押し
つけることによりシート状分解能で高い異方導電性接着
樹脂層を製造することができる。
Next, the conductive particles 12 are transferred onto the charged support by electric attraction. Further, since the support can be selectively charged, the conductive particles can be transferred in a substantially desired distribution, for example, in a portion corresponding to the electrode of the semiconductor element, rather than randomly. Next, the adhesive resin layer
The conductive particles 12 transferred to the support by applying a stronger charge than the support on the back surface of the support 11 are transferred again to the adhesive resin layer 11 side. By heating the conductive particles 12 thus transferred and pressing them against the adhesive resin 11, it is possible to manufacture an anisotropic conductive adhesive resin layer having a high sheet-shaped resolution.

【0022】ここで、導電粒子12は裏面が導電性を示す
ものであればどのような材質であっても構わない。例え
ば金、ニッケル、半田、銅等の金属粒、及び樹脂粒、ガ
ラス粒等の絶縁物にニッケル,金,銀などの金属をコー
ティングし導電性を保たせたものであってもよい。絶縁
物に金属コーティングしたものは、金属粒よりも質量が
軽いので、導電粒子同士が接触せずに分散させ易いこと
や、帯電後転写させ易いことや、粒径を均一にできる特
徴がある。導電粒子13の大きさは任意でもよいが、図1
(a) の構成を考え、本実施例では樹脂粒にニッケルコー
ティングした7.5 ±2.5 μmの導電粒子とした。
Here, the conductive particles 12 may be made of any material as long as the back surface exhibits conductivity. For example, metal particles such as gold, nickel, solder, and copper, and insulating materials such as resin particles and glass particles may be coated with a metal such as nickel, gold, and silver to maintain conductivity. Since the insulator coated with a metal has a lighter mass than the metal particles, it has characteristics that conductive particles are easily dispersed without contacting each other, transfer is easily performed after charging, and particle diameters can be made uniform. The size of the conductive particles 13 may be arbitrary, but FIG.
Considering the configuration of (a), in this embodiment, 7.5 ± 2.5 μm conductive particles in which resin particles are nickel-coated are used.

【0023】このシート状の異方導電性接着樹脂層を用
い、図2に示すように、半導体素子と基板を接続した。
即ち、図2(a) に示すように、異方導電性接着樹脂層を
挾んで半導体素子13と基板15を対向させ、図2(b) に示
すようにこれらを押し付けることにより、半導体素子13
の突起電極14と基板15の配線16とを接続した。具体的に
は、電極ピッチ100 μmの半導体素子13を150 ℃に加熱
し、圧力30kg/chip 、時間2分でガラス基板15と接続
し、ショートやオープンのない半導体装置を得ることが
できた。ガラス基板15は液晶パネルに用いられているも
のと同様で、ITO配線16が形成されている。
Using this sheet-shaped anisotropic conductive adhesive resin layer, a semiconductor element and a substrate were connected as shown in FIG.
That is, as shown in FIG. 2 (a), the anisotropic conductive adhesive resin layer is sandwiched between the semiconductor element 13 and the substrate 15, and the semiconductor element 13 and the substrate 15 are pressed against each other as shown in FIG. 2 (b).
The protruding electrode 14 and the wiring 16 of the substrate 15 were connected. Specifically, the semiconductor element 13 having an electrode pitch of 100 μm was heated to 150 ° C. and connected to the glass substrate 15 at a pressure of 30 kg / chip and a time of 2 minutes, whereby a semiconductor device free from short circuit or open could be obtained. The glass substrate 15 is the same as that used for the liquid crystal panel, and the ITO wiring 16 is formed.

【0024】また、同様にシート状の異方導電性接着樹
脂層を用いて、図3に示したように、このシートを介し
て基板上15の配線16と別の基板17上の配線18とを接続し
た。本実施例では、基板15としてのフレシキブルのプリ
ント基板に銅の配線16が施されたものを用い、基板17と
して液晶パネルに用いられるものと同じ、ガラス基板に
ITOの配線18が形成されているものを用いた。これら
の基板の配線ピッチは100 μmである。接合圧力は20kg
f 、ボンディングツール温度を150 ℃として行った。こ
の場合も、ショートやオープンのない半導体装置を得る
ことができた。以上の実施例ではガラス基板を用いた
が、他にガラエポ基板,アルミナ基板,アラシド基板な
ど多くの絶縁基板を用いることもできる。また配線とし
てITOを用いたが、Au,Ni,Al,Cu等多くの
金属配線を用いることもできる。
Similarly, by using a sheet-like anisotropic conductive adhesive resin layer, as shown in FIG. 3, the wiring 16 on the substrate 15 and the wiring 18 on another substrate 17 are interposed via this sheet. Connected. In this embodiment, a flexible printed circuit board having a copper wiring 16 is used as the substrate 15, and an ITO wiring 18 is formed on the glass substrate, which is the same as that used for a liquid crystal panel, as the substrate 17. I used one. The wiring pitch of these substrates is 100 μm. Bonding pressure is 20kg
f, the bonding tool temperature was 150 ° C. Also in this case, it was possible to obtain a semiconductor device without a short circuit or an open. Although the glass substrate is used in the above embodiments, many insulating substrates such as a glass epoxy substrate, an alumina substrate, and an araside substrate can also be used. Although ITO is used as the wiring, many metal wirings such as Au, Ni, Al, and Cu can be used.

【0025】このように本実施例では、導電粒子12を凝
集させることなく、また導電粒子同士を接触させること
なく接着樹脂層11に分散させているので、接続電極部分
に導電粒子がないために生じるオープンや、逆に導電粒
子が密集しすぎで生じる隣接電極間でのショートをなく
すことができる。このため、微細ピッチの接続が可能と
なり、半導体装置より薄く、より小型に実装することが
でき、その有用性は絶大である。 <実施例2>
As described above, in the present embodiment, since the conductive particles 12 are dispersed in the adhesive resin layer 11 without agglomerating and contacting the conductive particles with each other, there are no conductive particles in the connection electrode portion. It is possible to eliminate an open that occurs and, conversely, a short circuit between adjacent electrodes that occurs when conductive particles are too dense. Therefore, fine pitch connection is possible, the device can be mounted thinner and smaller than the semiconductor device, and its usefulness is great. <Example 2>

【0026】図4は本発明の第2の実施例方法に使用し
た導電粒子転写装置を模式的に示す図である。図中21は
導電粒子12を充填した容器であり、この容器21内の導電
粒子12は摩擦等により帯電されている。容器21内の導電
粒子12は、導電粒子12と逆に帯電したドラム22に付着さ
れ、このローラ(支持体)22に付着された導電粒子12は
接着樹脂層11上に転写されるものとなっている。
FIG. 4 is a diagram schematically showing a conductive particle transfer device used in the second embodiment method of the present invention. In the figure, 21 is a container filled with conductive particles 12, and the conductive particles 12 in this container 21 are charged by friction or the like. The conductive particles 12 in the container 21 are attached to the drum 22 which is charged opposite to the conductive particles 12, and the conductive particles 12 attached to the roller (support) 22 are transferred onto the adhesive resin layer 11. ing.

【0027】異方導電性接着樹脂層は、薄い接着シート
状の樹脂層と微小導電粒子とから構成されている。ここ
で、接着樹脂層11の材料としては、第1の実施例と同様
に、熱可塑性の樹脂や熱硬化性の樹脂を用いることがで
きるが、本実施例では接着樹脂層の主成分としてエポキ
シ樹脂を用いた。接着樹脂層11の製造は、第1の実施例
と同様にした。また、導電粒子12は表面が導電性を示す
ものであれば、どのような材質であってもよいが、本実
施例では、平均粒径7.5 ±2.5 μmのニッケル粒を用い
た。次に、本実施例に係わる異方導電性接着樹脂層の具
体的な製造方法について説明する。
The anisotropic conductive adhesive resin layer is composed of a thin adhesive sheet-like resin layer and fine conductive particles. Here, as the material of the adhesive resin layer 11, a thermoplastic resin or a thermosetting resin can be used as in the first embodiment, but in this embodiment, epoxy resin is used as the main component of the adhesive resin layer. Resin was used. The adhesive resin layer 11 was manufactured in the same manner as in the first embodiment. Further, the conductive particles 12 may be made of any material as long as the surface has conductivity, but in the present embodiment, nickel particles having an average particle size of 7.5 ± 2.5 μm were used. Next, a specific method for manufacturing the anisotropic conductive adhesive resin layer according to this embodiment will be described.

【0028】まず、図4に示す装置を用い、容器21内の
導電粒子12を摩擦等により帯電させる。これによって、
導電粒子同士は反発し合い、帯電量に比例した一定の間
隔で分散する。一方、支持体としてのドラム22を導電粒
子12とは逆の電荷を持つようなコロナ放電などにより一
様に帯電させる。このように帯電しているドラム22に導
電粒子12を電気的吸引力で転写させる。
First, using the apparatus shown in FIG. 4, the conductive particles 12 in the container 21 are charged by friction or the like. by this,
The conductive particles repel each other and disperse at regular intervals proportional to the amount of charge. On the other hand, the drum 22 as a support is uniformly charged by corona discharge or the like having an electric charge opposite to that of the conductive particles 12. The conductive particles 12 are transferred to the thus charged drum 22 by an electric attraction force.

【0029】次いで、接着樹脂層11の裏面にドラム22よ
り強い電荷をかけドラム22に転写された導電粒子12を接
着樹脂層側に再度転写する。これにより、図5(a) に示
すように接着樹脂層11上に導電粒子12が均等に分散配置
されることになる。
Then, a stronger charge than that of the drum 22 is applied to the back surface of the adhesive resin layer 11 and the conductive particles 12 transferred to the drum 22 are transferred again to the adhesive resin layer side. As a result, as shown in FIG. 5A, the conductive particles 12 are evenly distributed on the adhesive resin layer 11.

【0030】ここで、支持体としては、複写機のドラム
のような回転体に限らず、絶縁層からなる基板やロール
を用いることもできる。また、支持体は全面に渡り略一
定に帯電させたものに限らず、導電層と絶縁層がパター
ニングされ選択的に帯電させたものや、セレンなどのよ
うにコロナ放電後、光を照射することで選択的に帯電さ
せたものを用いることもできる。支持体を選択的に帯電
させた場合、導電粒子をランダムではなく、例えば半導
体素子の電極に他応する部分など、ほぼ所望の分布で転
写させることができる。
Here, the support is not limited to a rotating body such as a drum of a copying machine, and a substrate or a roll made of an insulating layer can be used. In addition, the support is not limited to one that is substantially uniformly charged over the entire surface, and one that is selectively charged by patterning the conductive layer and insulating layer, or that is irradiated with light after corona discharge such as selenium. It is also possible to use the one that is selectively charged with. When the support is selectively charged, the conductive particles can be transferred in a substantially desired distribution, for example, in a portion corresponding to the electrode of the semiconductor element, rather than randomly.

【0031】次いで、導電粒子12を加熱されたヘッドを
備えた装置で、接着樹脂層11に押し付けることにより、
図5(b) に示すように、導電粒子12は分散配置さた状態
で接着樹脂層11内に埋め込まれることになる。
Next, the conductive particles 12 are pressed against the adhesive resin layer 11 with an apparatus having a heated head,
As shown in FIG. 5B, the conductive particles 12 are embedded in the adhesive resin layer 11 in a dispersed state.

【0032】このようにして作製した異方導電性接着樹
脂層を用い、前記図2に示すようにして、半導体素子と
基板を接続した。即ち、図2(a) に示すように、異方導
電性接着樹脂層を挾んで半導体素子13と基板15を対向さ
せ、図2(b) に示すようにこれらを押し付けることによ
り、半導体素子13の突起電極14と基板15の配線16とを接
続した。これにより、ショートやオープンのない半導体
装置を得ることができた。
Using the anisotropic conductive adhesive resin layer thus produced, the semiconductor element and the substrate were connected as shown in FIG. That is, as shown in FIG. 2 (a), the anisotropic conductive adhesive resin layer is sandwiched between the semiconductor element 13 and the substrate 15, and the semiconductor element 13 and the substrate 15 are pressed against each other as shown in FIG. 2 (b). The protruding electrode 14 and the wiring 16 of the substrate 15 were connected. As a result, it was possible to obtain a semiconductor device free from short circuits and opens.

【0033】また、上記と同様にして異方導電性接着樹
脂層を製造し、前記図3に示したように、この接着樹脂
層を介して基板上15の配線16と別の基板17上の配線18と
を接続した。この場合も、ショートやオープンのない半
導体装置を得ることができた。
Further, an anisotropic conductive adhesive resin layer is manufactured in the same manner as described above, and as shown in FIG. 3, the wiring 16 on the substrate 15 and the other substrate 17 are provided via this adhesive resin layer. The wiring 18 was connected. Also in this case, it was possible to obtain a semiconductor device without a short circuit or an open.

【0034】このように本実施例によれば、導電粒子12
を予め帯電させ導電粒子同士の反発力を利用して、導電
粒子12が均一に分散された状態で接着樹脂層11に転写し
ている。このため、接着樹脂層11内の導電粒子12が均等
に分散した異方導電性接着樹脂層を形成することができ
る。そして、この異方導電性接着樹脂層を用いて、半導
体素子と基板又は基板同士を接続した場合、導電粒子12
が均等に分散されていることから、ショートやオープン
を招くことなく良好な接続を行うことができる。
As described above, according to this embodiment, the conductive particles 12
Are pre-charged and the repulsive force between the conductive particles is utilized to transfer the conductive particles 12 to the adhesive resin layer 11 in a uniformly dispersed state. Therefore, it is possible to form an anisotropic conductive adhesive resin layer in which the conductive particles 12 in the adhesive resin layer 11 are evenly dispersed. Then, using this anisotropic conductive adhesive resin layer, when the semiconductor element and the substrate or the substrates are connected to each other, the conductive particles 12
Since they are evenly distributed, good connection can be made without causing short circuit or open.

【0035】なお、本実施例では一旦接着樹脂層とは別
の部材(支持体)に導電粒子を分散被着させたのち、接
着樹脂層に導電粒子を転写するようにしたが、帯電した
導電粒子を接着樹脂層に直接に分散被着するようにして
もよい。また、接着樹脂層を形成するための樹脂と帯電
した導電粒子を混練して、これをシート状に延ばすよう
にしてもよい。この場合も、無帯電の導電粒子を用いる
よりは導電粒子同士の反発力により分散均一化が向上す
る。また、接着樹脂は必ずしも有機高分子材料に限るも
のではなく、絶縁材料であれば用いることが可能であ
る。 <実施例3>
In this embodiment, the conductive particles are once dispersedly deposited on a member (support) different from the adhesive resin layer, and then the conductive particles are transferred to the adhesive resin layer. The particles may be directly dispersed and deposited on the adhesive resin layer. Alternatively, the resin for forming the adhesive resin layer and the electrically conductive particles that have been charged may be kneaded and then spread into a sheet. Also in this case, the uniform dispersion is improved by the repulsive force between the conductive particles rather than using the uncharged conductive particles. Further, the adhesive resin is not necessarily limited to the organic polymer material, and any insulating material can be used. <Example 3>

【0036】図6は本発明の第3の実施例に係わる異方
導電性接着樹脂層を示す断面図である。この異方導電性
接着樹脂層は、有機高分子体の薄い接着樹脂層11と微小
導電粒子12から構成されている。そして、導電粒子12
は、接着樹脂層11の一方の面から突起状に出た構造とな
っている。
FIG. 6 is a sectional view showing an anisotropic conductive adhesive resin layer according to the third embodiment of the present invention. The anisotropic conductive adhesive resin layer is composed of a thin adhesive resin layer 11 made of an organic polymer and fine conductive particles 12. And the conductive particles 12
Has a structure protruding from one surface of the adhesive resin layer 11 in a protruding shape.

【0037】ここで、接着樹脂層11の材料としては、第
1の実施例と同様に、熱可塑性の樹脂や熱硬化性の樹脂
を用いることができるが、本実施例では接着樹脂の主成
分としてエポキシ樹脂を用いた。接着樹脂層11の製造工
程は第1の実施例と同様とし、また厚さは20μmとし
た。導電粒子12は表面が導電性を示すものであれば、第
1の実施例で説明したようにどのような材質であっても
よい。導電粒子12の大きさは任意でよいが、第6図の構
成を考え、本実施例では25±3μmとした。
Here, as the material of the adhesive resin layer 11, a thermoplastic resin or a thermosetting resin can be used as in the first embodiment, but in this embodiment, the main component of the adhesive resin is used. An epoxy resin was used as. The manufacturing process of the adhesive resin layer 11 was the same as that of the first embodiment, and the thickness was 20 μm. The conductive particles 12 may be made of any material as described in the first embodiment as long as the surface has conductivity. The size of the conductive particles 12 may be arbitrary, but in consideration of the configuration of FIG. 6, it is set to 25 ± 3 μm in this embodiment.

【0038】この接着樹脂層11に導電粒子12を分散させ
る方法は、以下のようにして行った。まず、導電粒子12
を摩擦帯電により帯電させる。これによって、導電粒子
同士は反発し合い、帯電量に比例した一定の間隔で分散
する。一方、基板やロール等の支持体を、導電粒子12と
は逆の電荷を持つようにコロナ放電などにより帯電させ
る。支持体は絶縁層で構成され、全面に渡り略一定に帯
電させたものや、導電層と絶縁層がパターニングされた
選択的に帯電させたものや、セレンなどのようにコロナ
放電後、光を照射することで選択的に帯電させることが
できるものを用いる。 本実施例では、図8に示すよう
な導電粒子転写装置を用いた。この装置では、帯電させ
た導電粒子12を容器21内に充填しておき、支持体として
のドラム22に回転により導電粒子12をドラム22の周面に
転写する。ドラム22の帯電を上記のように選択的に行え
ば、導電粒子12を選択的に転写させることができる。
The method for dispersing the conductive particles 12 in the adhesive resin layer 11 was as follows. First, the conductive particles 12
Is charged by friction charging. As a result, the conductive particles repel each other and are dispersed at a constant interval proportional to the charge amount. On the other hand, a support such as a substrate or a roll is charged by corona discharge or the like so as to have a charge opposite to that of the conductive particles 12. The support is composed of an insulating layer, and it is charged substantially uniformly over the entire surface, selectively charged with a conductive layer and an insulating layer patterned, and selenium, etc. A material that can be selectively charged by irradiation is used. In this example, a conductive particle transfer device as shown in FIG. 8 was used. In this apparatus, charged conductive particles 12 are filled in a container 21, and the conductive particles 12 are transferred onto the peripheral surface of the drum 22 by rotating the drum 22 as a support. By selectively charging the drum 22 as described above, the conductive particles 12 can be selectively transferred.

【0039】このようにして選択的に帯電しているドラ
ム22に導電粒子12を電気的吸引力で転写させる。また、
選択的に帯電させることができることにより、導電粒子
12をランダムではなく、例えば半導体素子の電極の対応
する部分など、ほぼ所望の分布で転写させることができ
る。さらに、導電粒子12は必ずしも隣接する導電粒子を
全てにおいて離間させる必要はなく、一部において接触
していても何等問題はない。本実施例では半導体素子の
電極に対応する部分に導電粒子12を分散させた。
In this way, the conductive particles 12 are transferred to the drum 22 which is selectively charged by the electric attraction force. Also,
Conductive particles that can be selectively charged
The 12 can be transferred in a substantially desired distribution, for example, in a non-random manner, for example, in a corresponding portion of an electrode of a semiconductor element. Further, the conductive particles 12 do not necessarily have to separate the adjacent conductive particles in all, and there is no problem even if they are in contact with each other. In this example, the conductive particles 12 were dispersed in the portions corresponding to the electrodes of the semiconductor element.

【0040】次いで、接着樹脂層11の裏面にドラム22よ
り強い電荷をかけ、ドラム22に転写された導電粒子12を
接着樹脂層11側に再度転写する。これにより、接着樹脂
層11上に導電粒子12が選択的に分散配置されることにな
る。
Then, a stronger charge than that of the drum 22 is applied to the back surface of the adhesive resin layer 11, and the conductive particles 12 transferred to the drum 22 are transferred again to the adhesive resin layer 11 side. As a result, the conductive particles 12 are selectively dispersed and arranged on the adhesive resin layer 11.

【0041】次いで、導電粒子12を加熱し、接着樹脂層
11に押し付けることにより、図6に示すように、導電粒
子12は接着樹脂層11内に埋め込まれることになる。ここ
で、押し付け量を制御することにより、少なくとも導通
が得られる軸に垂直な一方の面の導電粒子12が接着樹脂
層11より突起状に出ている異方導電性接着樹脂層を形成
することができる。また、導電粒子12の粒径を接着樹脂
層11の厚みにより大きくすることで、接着樹脂層11の少
なくとも一方の面より突き出た異方導電性接着樹脂層を
容易に形成することができる。
Next, the conductive particles 12 are heated to form an adhesive resin layer.
By being pressed against 11, the conductive particles 12 are embedded in the adhesive resin layer 11 as shown in FIG. Here, by controlling the pressing amount, it is possible to form an anisotropic conductive adhesive resin layer in which the conductive particles 12 on one surface perpendicular to the axis where at least conduction is obtained protrude from the adhesive resin layer 11 in a protruding shape. You can Further, by increasing the particle size of the conductive particles 12 depending on the thickness of the adhesive resin layer 11, it is possible to easily form the anisotropic conductive adhesive resin layer protruding from at least one surface of the adhesive resin layer 11.

【0042】この異方導電性接着樹脂層を用いて図7に
示すように、半導体素子と基板を接続した。即ち、異方
導電性接着樹脂層を挾んで半導体素子13と基板15とを対
向させ、これらを押し付けることにより、半導体素子13
の電極14a と基板15の配線16とを接続した。具体的に
は、電極ピッチ130 μmで突起電極のない半導体素子13
を、接続温度150 ℃圧力5kg/chip 、時間2分で基板15
と接続し、ショートやオープンのない半導体装置を得る
ことができた。
Using this anisotropic conductive adhesive resin layer, a semiconductor element and a substrate were connected as shown in FIG. That is, by sandwiching the anisotropic conductive adhesive resin layer, the semiconductor element 13 and the substrate 15 are opposed to each other, and these are pressed, whereby the semiconductor element 13 is pressed.
The electrode 14a of and the wiring 16 of the substrate 15 were connected. Specifically, a semiconductor element 13 having an electrode pitch of 130 μm and no protruding electrode is provided.
The connection temperature is 150 ° C, the pressure is 5kg / chip, and the board is 15 minutes after 2 minutes.
It was possible to obtain a semiconductor device which was free from short circuit and open by connecting with.

【0043】このとき、従来のように半導体素子13の電
極14a 上にさらに突起電極14を形成しなくても接続を取
ることが可能であった。これは、電極14a が接着樹脂層
11より付き出した導電粒子12に当たることで電極14a と
導電粒子12の導通が取れ、さらに圧力を加えることで導
電粒子12と基板15上の配線16の導通が取れるようになる
からである。
At this time, it was possible to establish the connection without further forming the protruding electrode 14 on the electrode 14a of the semiconductor element 13 as in the conventional case. This is because the electrode 14a is an adhesive resin layer.
This is because the electrode 14a and the conductive particles 12 can be electrically connected by hitting the conductive particles 12 protruding from 11, and the conductive particles 12 and the wiring 16 on the substrate 15 can be electrically connected by further applying pressure.

【0044】また、加える圧力は従来の異方導電性接着
樹脂層を用いることよりも低くすることができ、このと
き導通の取れない電極はなく、また半導体素子に損傷を
与えず信頼性良く接続できるようになった。さらに、上
述のように導電粒子を選択的に分散させることにより、
接続電極部分に導電粒子がないために生じるオープン
や、逆に導電粒子が密集しすぎで生じる隣接電極間での
ショートがなくなった。その後、一定の条件で接着樹脂
層を硬化させることで、封止構造の半導体装置を得るこ
とができた。
Further, the applied pressure can be made lower than that using the conventional anisotropically conductive adhesive resin layer. At this time, there are no electrodes in which continuity cannot be obtained, and the semiconductor element is not damaged and is reliably connected. I can do it. Furthermore, by selectively dispersing the conductive particles as described above,
Opening caused by the absence of conductive particles in the connection electrode portion and conversely, short circuit between adjacent electrodes caused by the conductive particles being too dense were eliminated. Then, the adhesive resin layer was cured under constant conditions, whereby a semiconductor device having a sealed structure could be obtained.

【0045】なお、本実施例では、導電粒子を接着樹脂
層の一方の面から突出させたが、両方の面から突出させ
るようにしてもよい。また、導電粒子の配置は必ずしも
電極位置等に対応させて選択的に行う必要はなく、均等
に分散させたものであってもよい。さらに、導電粒子を
選択的に配置しない場合は、導電粒子の帯電を省略する
ことも可能である。
In this embodiment, the conductive particles are projected from one surface of the adhesive resin layer, but they may be projected from both surfaces. Further, the conductive particles need not necessarily be selectively arranged in correspondence with the electrode position or the like, and may be evenly dispersed. Further, when the conductive particles are not selectively arranged, the charging of the conductive particles can be omitted.

【0046】[0046]

【発明の効果】以上詳述したように本発明(請求項1)
によれば、導電粒子を接着樹脂層の膜厚と同等若しくは
それ以上の大きさに設定し、導電粒子を接着樹脂層の少
なくとも一方の面から突出させているので、大きな加重
を与えることなく垂直方向の接続を可能にすることがで
きる。さらに、半導体素子に突起電極を形成することも
なく、半導体素子と基板とを接続することができ、且つ
接合加重を小さくしても十分な接続をとることのできる
異方導電性接着樹脂層を実現することが可能となる。
As described above in detail, the present invention (Claim 1)
According to the method, the conductive particles are set to have a size equal to or larger than the film thickness of the adhesive resin layer, and the conductive particles are projected from at least one surface of the adhesive resin layer. Directional connections can be enabled. Furthermore, an anisotropic conductive adhesive resin layer that can connect the semiconductor element and the substrate without forming a protruding electrode on the semiconductor element and can achieve a sufficient connection even if the bonding load is reduced. It can be realized.

【0047】また、本発明(請求項2,3)によれば、
接着樹脂層内の導電粒子を均一に分散させることによ
り、導電粒子の分散のばらつきや凝集に起因する接続の
際のショートの発生やオープンの発生を未然に防止する
ことができる。さらに、導電粒子を帯電させることによ
り、導電粒子同士に反発力を作用させ、この反発力によ
り導電粒子をより均一に分散させることができる。従っ
て、より微細ピッチの接続を信頼性良く行うことが可能
となる。
According to the present invention (claims 2 and 3),
By uniformly dispersing the conductive particles in the adhesive resin layer, it is possible to prevent occurrence of short-circuit or open at the time of connection due to dispersion or aggregation of the conductive particles. Further, by charging the conductive particles, a repulsive force acts on the conductive particles, and the conductive particles can be more uniformly dispersed by the repulsive force. Therefore, it becomes possible to perform the connection with a finer pitch with high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1の実施例に係わる異方導電性接着樹脂層
を示す断面図。
FIG. 1 is a cross-sectional view showing an anisotropic conductive adhesive resin layer according to a first embodiment.

【図2】 図1の異方導電性接着樹脂層を用いた半導体
素子と基板との接続の様子を示す断面図。
FIG. 2 is a cross-sectional view showing how a semiconductor element and a substrate using the anisotropic conductive adhesive resin layer of FIG. 1 are connected.

【図3】 図1の異方導電性接着樹脂層を用いた基板同
士の接続の様子を示す断面図。
FIG. 3 is a cross-sectional view showing how the substrates are connected using the anisotropic conductive adhesive resin layer of FIG.

【図4】 第2の実施例に使用した導電粒子転写装置を
示す模式図。
FIG. 4 is a schematic diagram showing a conductive particle transfer device used in a second embodiment.

【図5】 第2の実施例に係わる異方導電性接着樹脂層
の製造工程を示す断面図。
FIG. 5 is a cross-sectional view showing a process of manufacturing an anisotropic conductive adhesive resin layer according to the second embodiment.

【図6】 第3の実施例に係わる異方導電性接着樹脂層
を示す断面図。
FIG. 6 is a cross-sectional view showing an anisotropic conductive adhesive resin layer according to a third embodiment.

【図7】 図6の異方導電性接着樹脂層を用いた半導体
素子と基板との接続の様子を示す断面図。
FIG. 7 is a cross-sectional view showing a state of connection between a semiconductor element and a substrate using the anisotropic conductive adhesive resin layer of FIG.

【図8】 図6の異方導電性接着樹脂層の製造に使用し
た導電粒子転写装置を示す模式図。
FIG. 8 is a schematic view showing a conductive particle transfer device used for manufacturing the anisotropic conductive adhesive resin layer of FIG.

【図9】 従来の異方導電性接着樹脂層の問題点を説明
するための断面図。
FIG. 9 is a cross-sectional view for explaining a problem of a conventional anisotropic conductive adhesive resin layer.

【図10】 従来の異方導電性接着樹脂層の問題点を説
明するための断面図。
FIG. 10 is a cross-sectional view for explaining problems of the conventional anisotropic conductive adhesive resin layer.

【図11】 従来の異方導電性接着樹脂層の問題点を説
明するための断面図。
FIG. 11 is a cross-sectional view for explaining problems of the conventional anisotropic conductive adhesive resin layer.

【符号の説明】[Explanation of symbols]

11…接着樹脂層、 12…導電粒子、 13…半
導体素子、14…突起電極、 14a…電極、
15,17…基板、16,18…配線、 21…容
器、 22…ローラ。
11 ... Adhesive resin layer, 12 ... Conductive particles, 13 ... Semiconductor element, 14 ... Projection electrode, 14a ... Electrode,
15, 17 ... Substrate, 16, 18 ... Wiring, 21 ... Container, 22 ... Roller.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01R 43/00 H 9174−5E H05K 1/14 J 8727−4E // H05K 3/32 B 9154−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location H01R 43/00 H 9174-5E H05K 1/14 J 8727-4E // H05K 3/32 B 9154- 4E

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】絶縁性の接着樹脂層中に導電性の粒子を分
散させ、該接着樹脂層の厚み方向のみに導通がとれる異
方導電性接着樹脂層において、前記導電性の粒子の径を
前記接着樹脂層の厚さと同等若しくはそれ以上の大きさ
に設定し、前記接着樹脂層の少なくとも一方の面に前記
導電性の粒子を該接着樹脂層面よりも突出させてなるこ
とを特徴とする異方導電性接着樹脂層。
1. In an anisotropic conductive adhesive resin layer in which conductive particles are dispersed in an insulating adhesive resin layer so that conduction can be achieved only in the thickness direction of the adhesive resin layer, the diameter of the conductive particles can be adjusted. The thickness is set equal to or larger than the thickness of the adhesive resin layer, and the conductive particles are projected on at least one surface of the adhesive resin layer more than the surface of the adhesive resin layer. One-way conductive adhesive resin layer.
【請求項2】絶縁性の接着樹脂層中に導電性の粒子を分
散させ、該接着樹脂層の厚み方向のみに導通がとれる異
方導電性接着樹脂層を製造する方法において、前記導電
性の粒子を前記接着樹脂層に分散させる前に、予め該粒
子を帯電させることを特徴とする異方導電性接着樹脂層
の製造方法。
2. A method for producing an anisotropic conductive adhesive resin layer in which conductive particles are dispersed in an insulating adhesive resin layer so that conduction can be achieved only in the thickness direction of the adhesive resin layer, A method for producing an anisotropic conductive adhesive resin layer, which comprises charging the particles in advance before dispersing the particles in the adhesive resin layer.
【請求項3】導電性の粒子を帯電させる工程と、帯電さ
せた粒子を支持体表面に分散させる工程と、分散させた
粒子を有機高分子接着樹脂層の表面に付着させる工程
と、付着させた粒子を接着樹脂層内に埋め込む工程とを
含むことを特徴とする異方導電性接着樹脂層の製造方
法。
3. A step of charging electrically conductive particles, a step of dispersing the charged particles on the surface of a support, a step of attaching the dispersed particles to the surface of an organic polymer adhesive resin layer, and a step of attaching the particles. And a step of embedding the particles in the adhesive resin layer.
JP00966392A 1991-01-23 1992-01-23 Anisotropic conductive adhesive resin layer and method for producing the same Expired - Fee Related JP3280685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00966392A JP3280685B2 (en) 1991-01-23 1992-01-23 Anisotropic conductive adhesive resin layer and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-6594 1991-01-23
JP659491 1991-01-23
JP00966392A JP3280685B2 (en) 1991-01-23 1992-01-23 Anisotropic conductive adhesive resin layer and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0567480A true JPH0567480A (en) 1993-03-19
JP3280685B2 JP3280685B2 (en) 2002-05-13

Family

ID=26340783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00966392A Expired - Fee Related JP3280685B2 (en) 1991-01-23 1992-01-23 Anisotropic conductive adhesive resin layer and method for producing the same

Country Status (1)

Country Link
JP (1) JP3280685B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009456A1 (en) * 1993-09-30 1995-04-06 Minnesota Mining And Manufacturing Company Array of conductive pathways
US5592365A (en) * 1993-12-21 1997-01-07 Sharp Kabushiki Kaisha Panel assembly structure and panel assembling method capable of achieving a highly reliable connection of electrode terminals even when the electrode terminals have a fine pitch
JPH10341068A (en) * 1997-06-06 1998-12-22 Sony Corp Printed wiring board and method for mounting electronic parts
JP2002358825A (en) * 2001-05-31 2002-12-13 Hitachi Chem Co Ltd Anisotropic conductive adhesion film
JP2007035743A (en) * 2005-07-25 2007-02-08 Asahi Kasei Electronics Co Ltd Circuit connection method and connection structure
JP2007165052A (en) * 2005-12-12 2007-06-28 Sumitomo Bakelite Co Ltd Anisotropic conductive film
JP2008153206A (en) * 2007-11-19 2008-07-03 Hitachi Chem Co Ltd Connecting member, and electrode-connecting construction using the same
CN100414649C (en) * 1997-02-27 2008-08-27 精工爱普生株式会社 Connecting structure, liquid crystal device, electronic equipment, and anisotropic conductive adhesive agent and a manufacturing method thereof
JP2010007076A (en) * 2009-08-07 2010-01-14 Hitachi Chem Co Ltd Anisotropically conductive adhesive film
JP2013101938A (en) * 2006-04-27 2013-05-23 Asahi Kasei E-Materials Corp Conductive particle arrangement sheet and anisotropic conductive film
KR20210138137A (en) * 2014-10-28 2021-11-18 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film, manufacturing method for same, and connection structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529829A (en) * 1993-09-30 1996-06-25 Minnesota Mining And Manufacturing Company Array of conductive pathways
WO1995009456A1 (en) * 1993-09-30 1995-04-06 Minnesota Mining And Manufacturing Company Array of conductive pathways
US5592365A (en) * 1993-12-21 1997-01-07 Sharp Kabushiki Kaisha Panel assembly structure and panel assembling method capable of achieving a highly reliable connection of electrode terminals even when the electrode terminals have a fine pitch
CN100414649C (en) * 1997-02-27 2008-08-27 精工爱普生株式会社 Connecting structure, liquid crystal device, electronic equipment, and anisotropic conductive adhesive agent and a manufacturing method thereof
JPH10341068A (en) * 1997-06-06 1998-12-22 Sony Corp Printed wiring board and method for mounting electronic parts
JP2002358825A (en) * 2001-05-31 2002-12-13 Hitachi Chem Co Ltd Anisotropic conductive adhesion film
JP2007035743A (en) * 2005-07-25 2007-02-08 Asahi Kasei Electronics Co Ltd Circuit connection method and connection structure
JP2007165052A (en) * 2005-12-12 2007-06-28 Sumitomo Bakelite Co Ltd Anisotropic conductive film
JP2013101938A (en) * 2006-04-27 2013-05-23 Asahi Kasei E-Materials Corp Conductive particle arrangement sheet and anisotropic conductive film
JP5388572B2 (en) * 2006-04-27 2014-01-15 デクセリアルズ株式会社 Conductive particle arrangement sheet and anisotropic conductive film
JP2014123572A (en) * 2006-04-27 2014-07-03 Dexerials Corp Conductive particle arrangement sheet and anisotropic conductive film
JP2008153206A (en) * 2007-11-19 2008-07-03 Hitachi Chem Co Ltd Connecting member, and electrode-connecting construction using the same
JP2010007076A (en) * 2009-08-07 2010-01-14 Hitachi Chem Co Ltd Anisotropically conductive adhesive film
KR20210138137A (en) * 2014-10-28 2021-11-18 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film, manufacturing method for same, and connection structure

Also Published As

Publication number Publication date
JP3280685B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
US5258577A (en) Die mounting with uniaxial conductive adhesive
JP3280685B2 (en) Anisotropic conductive adhesive resin layer and method for producing the same
JP2011236427A (en) Anisotropic electroconductive adhesive sheet and coupling structure
JP2010199087A (en) Anisotropic conductive film and manufacturing method therefor, and junction body and manufacturing method therefor
EP0385787B1 (en) Method of producing connection electrodes
JP2648712B2 (en) Anisotropic conductive adhesive, method for electrically connecting electrodes using the anisotropic conductive adhesive, and electric circuit board formed by the method
JP2000151084A (en) Anisotropic conductive adhesive film
JP3812682B2 (en) Method for producing anisotropic conductive resin film-like molded product
JP3959654B2 (en) Multi-chip mounting method
JP4993877B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP3783785B2 (en) Method for manufacturing anisotropic conductive resin film adhesive and method for connecting between fine circuits
JP5032961B2 (en) Anisotropic conductive film and bonded body using the same
JP4175347B2 (en) Method for producing anisotropic conductive adhesive film
JP2002075580A (en) Manufacturing method for anisotropic conductive film
JP2836035B2 (en) Electrical connection
JP2004335663A (en) Method for manufacturing different direction electric conduction film
JP2888466B2 (en) Manufacturing method of heat seal connector
JP2007224112A (en) Anisotropic conductive adhesive sheet and method for producing the same
JPH11339558A (en) Anisotropic conductive adhesive and conductive connection structural body
JP3596572B2 (en) Board connection method
JP4958417B2 (en) Conductive particle transfer sheet and connection structure
JP3256659B2 (en) Anisotropic conductive thin film and method for connecting polymer substrate using the anisotropic conductive thin film
JPH03289070A (en) Interconnection method of electrode terminal
JPH112830A (en) Liquid crystal device and its manufacture
JPH03101007A (en) Anisotropic conductive film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees