JPH03289070A - Interconnection method of electrode terminal - Google Patents

Interconnection method of electrode terminal

Info

Publication number
JPH03289070A
JPH03289070A JP2088801A JP8880190A JPH03289070A JP H03289070 A JPH03289070 A JP H03289070A JP 2088801 A JP2088801 A JP 2088801A JP 8880190 A JP8880190 A JP 8880190A JP H03289070 A JPH03289070 A JP H03289070A
Authority
JP
Japan
Prior art keywords
adhesive
electrode terminals
fine particles
conductive fine
electric circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2088801A
Other languages
Japanese (ja)
Inventor
Masanori Takahashi
雅則 高橋
Hiroshi Takabayashi
広 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2088801A priority Critical patent/JPH03289070A/en
Publication of JPH03289070A publication Critical patent/JPH03289070A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1182Applying permanent coating, e.g. in-situ coating
    • H01L2224/11822Applying permanent coating, e.g. in-situ coating by dipping, e.g. in a solder bath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PURPOSE:To improve the reliability of connection while installation between electrodes is kept by forming an adhesive at a projecting electrode terminal and attaching a conductive fine grain thereto, and thereafter, performing pressure-adhesion to connect a first electric circuit substrate and a second electric substrate with an insulating adhesive. CONSTITUTION:The interconnecting portion of an electrode terminal 1 arranged in a high density of at least one electric circuit substrate 2 is made to project from the surface of the electric circuit substrate 2 and an adhesive 4b is formed at this electrode terminal 1, and a conductive fine grain 7a is attached thereto, and thereafter, a first electric circuit substrate 2 and a second electric substrate 8 are connected by pressure-adhesion with an insulating adhesive. It is thereby possible to connect highly densely arranged electrode terminals as neighboring electrode terminals are kept electrically insulated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、相対峙する電気回路基体の電極端子を電気的
に接続するための、電極端子の相互接続方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for interconnecting electrode terminals for electrically connecting electrode terminals of opposing electric circuit substrates.

[従来の技術] 従来、10Pel(10本/■■)程度の、配線基板の
取りたし電極を相互に接続する方法として、異方性導電
接着膜を用いて、接続する方法が行なわれている。
[Prior Art] Conventionally, as a method of interconnecting electrodes of about 10 Pel (10 electrodes/■■) on a wiring board, a method of connecting them using an anisotropic conductive adhesive film has been used. There is.

例えば、液晶表示素子に駆動用半導体素子を接続する方
法として、フィルムキャリアに半導体素子を実装するT
AB法により、半導体装置を製造し、半導体装置の取り
出し電極と液晶表示素子の取り出し電極とを異方性導電
装着膜を用いて接続する方法が行なわれている。
For example, as a method of connecting a driving semiconductor element to a liquid crystal display element, there is a method of mounting a semiconductor element on a film carrier.
A method is used in which a semiconductor device is manufactured by the AB method, and a lead-out electrode of the semiconductor device and a lead-out electrode of a liquid crystal display element are connected using an anisotropic conductive attachment film.

また、液晶表示素子のガラス基板の取りたし電極に、半
導体素子を接続する方法として、半導体素子の電極バッ
ト上に半田ハングを形成し、接続を行う方法等が知られ
ている。
Furthermore, as a method for connecting a semiconductor element to a cut-out electrode of a glass substrate of a liquid crystal display element, a method is known in which a solder hang is formed on the electrode butt of the semiconductor element and the connection is made.

[発明か解決しようとする課題〕 上記従来例では、例えば、異方性導電接着膜を用いた接
続においては、10pel(10本/am)以上の接続
端子密度の場合、隣接する電極間に導電性微粒子か存在
するために、電極間の絶縁か保たれなくなるおそれかあ
るという課題を有していた。
[Problem to be solved by the invention] In the above conventional example, for example, in a connection using an anisotropic conductive adhesive film, when the connection terminal density is 10 pels (10 pieces/am) or more, there is no conduction between adjacent electrodes. However, due to the presence of small particles, the insulation between the electrodes may not be maintained.

また、半導体素子に半田ハングを形成し、フェースタウ
ンて配線基板上に、接続する場合、ハングか半導体素子
と基板とに生しる応力を吸収し切れず、信頼性を低下さ
せてしまうという課題を有していた。
In addition, when forming a solder hang on a semiconductor element and connecting it face-down to a wiring board, there is a problem that the stress generated between the hang or the semiconductor element and the board cannot be absorbed completely, reducing reliability. It had

[問題点を解決するための手段(及び作用)]上記問題
点を解決するため、本発明は、第1の電気回路基体の高
密度に配列された電極端子と第2の電気回路基体の電極
端子とを相互に電気的に接続する手段として、少なくと
も一方の電気回路基体の高密度に配列された電極端子の
相互接続部を、電気回路基体の基材表面より突出させ、
少なくとも一方の電気回路基体の突出した電極端子に、
接着剤を形成し、接着剤の形成された電極端子部に、導
電性微粒子を付着させた後、第1の電気回路基体とw4
2の電気回路基体を絶縁性接着剤を用いて、圧接、接続
する方法を用いている。
[Means for Solving the Problems (and Effects)] In order to solve the above problems, the present invention provides highly densely arranged electrode terminals on the first electric circuit substrate and electrodes on the second electric circuit substrate. As a means for electrically connecting the terminals to each other, the interconnection portions of the electrode terminals arranged in high density on at least one electric circuit substrate are made to protrude from the base material surface of the electric circuit substrate,
on the protruding electrode terminals of at least one electrical circuit board;
After forming an adhesive and adhering conductive fine particles to the electrode terminal portion on which the adhesive has been formed, the first electric circuit substrate and w4
A method is used in which the two electrical circuit substrates are pressure-welded and connected using an insulating adhesive.

本発明において、電気回路基体の突出した電極端子に接
着剤を形成する方法としては、例えば、転写版に接着剤
を塗布し、接着剤の塗布面と電気回路基体の電極端子面
を相対峙させて密着させた後、引き離し、突出した電極
端子に接着剤を転写する方法を用いる。
In the present invention, the method for forming adhesive on the protruding electrode terminals of the electric circuit substrate includes, for example, applying adhesive to a transfer plate, and placing the adhesive-applied surface and the electrode terminal surface of the electric circuit substrate facing each other. A method is used in which the adhesive is transferred to the protruding electrode terminal after the electrode terminal is brought into close contact with the electrode terminal.

次に、第2の平板基板上に、導電性微粒子を散布し、導
電性微粒子の散布面と接着剤の付着した電気回路基体の
電極端子面を相対峙させて密着させた後引き離し、接着
剤の付着した電極端子に導電性微粒子を付着させる。
Next, conductive fine particles are sprinkled on the second flat substrate, and the surface on which the conductive fine particles are sprinkled and the electrode terminal surface of the electric circuit board to which the adhesive is attached are brought into close contact with each other, and then separated. Conductive fine particles are attached to the electrode terminals to which they are attached.

この時、電気回路基体の基材表面より突出した電極端子
の突出高さを、導電性微粒子が、電極端子の間隙部に付
着しない高さにすることは、より有効である。
At this time, it is more effective to set the protrusion height of the electrode terminals protruding from the base material surface of the electric circuit substrate to a height at which conductive fine particles do not adhere to the gaps between the electrode terminals.

またこの吟、突出した電極端子に付着した接着剤の厚み
が、導電性微粒子の粒径より薄いことは、より有効であ
る。
Furthermore, it is more effective that the thickness of the adhesive adhered to the protruding electrode terminal is thinner than the particle size of the conductive fine particles.

また、この時接着剤の付着した電極端子に、導電性微粒
子か加圧される状態とし、導電性徴粒子を、電極端子に
接触させながら、接着剤を硬化することは、より有効で
ある。
Further, it is more effective to apply pressure to the conductive fine particles on the electrode terminal to which the adhesive is attached, and to cure the adhesive while bringing the conductive particles into contact with the electrode terminal.

また、この時導電性微粒子が、樹脂粒子な芯抜として、
導電性部材により覆われたものであるものを用いること
は、より有効である。
In addition, at this time, the conductive fine particles can be used as a resin particle core.
It is more effective to use one covered with a conductive member.

次に、第1の回路基体と第2の回路基体の電極端子面を
相対峙させ絶縁性接着剤により電気的に接続する。
Next, the electrode terminal surfaces of the first circuit board and the second circuit board are made to face each other and electrically connected using an insulating adhesive.

ここで、第2の平板基板上に、導電性微粒子を散布する
方法として、導電性微粒子を帯電させて散布することは
、有効である。
Here, as a method for scattering the conductive fine particles onto the second flat substrate, it is effective to charge the conductive fine particles and then scatter them.

また、電極端子に形成した接着剤と、第1の回路基板と
第2の回路基板とを接着する接着剤を第1の回路基板と
第2の回路基板とを圧接しながら同時に硬化することも
有効である。
Alternatively, the adhesive formed on the electrode terminal and the adhesive for bonding the first circuit board and the second circuit board may be simultaneously cured while pressing the first circuit board and the second circuit board. It is valid.

〔実施例] 以下、本発明の実施例について説明する。〔Example] Examples of the present invention will be described below.

(実施例1) 本発明の第1の実施例として、ガラス基板により構成さ
れる液晶表示素子の取りたし電極とTAB方式によりフ
ィルムキャリア上に半導体素子か実装された半導体装置
のフィルム上にパターン形成された取り出し電極とを電
気的に接続する場合について説明する。
(Example 1) As a first example of the present invention, a pattern is formed on a film of a semiconductor device in which a semiconductor element is mounted on a film carrier by the TAB method and the electrodes of a liquid crystal display element constituted by a glass substrate. A case will be described in which the formed extraction electrode is electrically connected.

まず、81図(a)に示すように、平板基板3に接着剤
4aを塗布し、接着剤4aと半導体装置の取り出し電極
lとを向かい合わせ、密着させたのち、引き離し、第1
図(b)に示すように、半導体素子の相互接続用の取り
出し電極に接着剤4bを付着させる。この時、接着剤は
、半導体素子の取り出し電極の間隙部5に付着しないこ
とか望ましい 接着剤4a。
First, as shown in FIG. 81(a), the adhesive 4a is applied to the flat substrate 3, and the adhesive 4a and the lead-out electrode l of the semiconductor device are faced and brought into close contact, and then separated.
As shown in Figure (b), an adhesive 4b is applied to the lead-out electrodes for interconnection of semiconductor elements. At this time, it is preferable that the adhesive does not adhere to the gap 5 of the extraction electrode of the semiconductor element.Adhesive 4a.

4bは、熱可塑性接着剤、あるいは熱硬化性接着剤が用
いられる。これらの接着剤は、絶縁性の接着剤ても良い
し、導電性が付与されていても良い。
4b is a thermoplastic adhesive or a thermosetting adhesive. These adhesives may be insulating adhesives or may be imparted with electrical conductivity.

次に、第2図(a)に示すように、平板基板6に導電性
微粒子7aを置載し、接着剤4bの付着した半導体装置
の取り出し電極1と導電性微粒子7aとを向かい合わせ
、第2図(b)に示すように密着させる。この時、半導
体装置に加重を与え、取り出し電極4bと平板基板6と
て導電性微粒子7bを挟み込み加圧し、導電性微粒子7
bを取り出し電極1に接触させることか望ましく、さら
に導電性微粒子7bを取り出し電極1に接触させるため
に加熱か必要とされる場合は、加熱と加圧を同時に加え
ることかてきる。また、この時加圧状態て、取り出し電
極の間隙部5に導電性微粒子7cか付着しないように、
半導体装置の取り出し電極lの高さが、十分高いことか
必要である。また、この時、接着剤4bか平板基板6に
付着せず、粒子7のみを捕捉するためには、接着剤4b
の厚みか導電性微粒子7bの粒径より薄いことが望まし
い。
Next, as shown in FIG. 2(a), the conductive fine particles 7a are placed on the flat substrate 6, and the conductive fine particles 7a are placed facing the lead-out electrode 1 of the semiconductor device to which the adhesive 4b is attached. 2. Bring them into close contact as shown in Figure 2 (b). At this time, a load is applied to the semiconductor device, the conductive fine particles 7b are sandwiched and pressed between the extraction electrode 4b and the flat substrate 6, and the conductive fine particles 7b are pressed.
It is desirable to bring the conductive particles 7b into contact with the extraction electrode 1, and if heating is required to bring the conductive fine particles 7b into contact with the extraction electrode 1, heating and pressure can be applied simultaneously. At this time, in a pressurized state, in order to prevent the conductive particles 7c from adhering to the gap 5 of the extraction electrode,
It is necessary that the height of the lead-out electrode l of the semiconductor device be sufficiently high. At this time, in order to capture only the particles 7 without the adhesive 4b adhering to the flat substrate 6, the adhesive 4b
It is desirable that the thickness is thinner than the particle size of the conductive fine particles 7b.

また、この時接着剤4bか熱硬化性接着剤の場合、加圧
とともに熱、紫外線などの架橋度広を生じさせ、る条件
を付与し、接着剤4bを硬化することにより、導電性微
粒子7bか取り出し電極lに接触した状態をより有効に
保持することかできる。また、この時接着剤4bが平板
基板6に付着してしまう場合は、平板基板6をふっ素樹
脂などのような非粘着性のものとすることは、有効であ
る。
At this time, if the adhesive 4b is a thermosetting adhesive, the conductive fine particles 7b can be cured by applying conditions such as pressure, heat, ultraviolet rays, etc. to cause crosslinking. It is also possible to maintain the state in contact with the extraction electrode 1 more effectively. Furthermore, if the adhesive 4b adheres to the flat substrate 6 at this time, it is effective to use a non-adhesive material such as fluorocarbon resin for the flat substrate 6.

次ぎに、第2図(c)に示すように、半導体装置と平板
基板を引き離し、導電性微粒子7bを取り出し電極lに
付着させる。
Next, as shown in FIG. 2(c), the semiconductor device and the flat substrate are separated, and the conductive fine particles 7b are taken out and attached to the electrodes l.

次きに、第3図(a)に示すように、液晶基板8の取り
出し電極9上に絶縁性接着剤lOを塗布し、液晶表示素
子の取り出し電極と半導体装置の導電性微粒子を付着さ
せた取り出し電極を向かい合わせ、位置合わせを行う。
Next, as shown in FIG. 3(a), an insulating adhesive lO was applied on the lead-out electrode 9 of the liquid crystal substrate 8, and the lead-out electrode of the liquid crystal display element and the conductive fine particles of the semiconductor device were attached. Place the extraction electrodes facing each other and align them.

接着剤lOは、熱可塑性接着剤、或は、熱硬化性接着剤
か用いられる。
As the adhesive lO, a thermoplastic adhesive or a thermosetting adhesive is used.

次ぎに、第3図(b)に示すように、半導体装置の取り
出し電極1と液晶表示素子の取り出し電極9とを密着さ
せ、加圧を加え、導電性微粒子7bを液晶表示素子の取
り出し電極9に接触させる。この時導電性微粒子7bを
液晶表示素子の取り出し電極9に接触させるために加熱
か必要とされる場合は、加熱と加圧を同時に加えること
かできる。またこの時、接着剤10が熱硬化性接着剤の
場合、加圧とともに、熱紫外線なとの架橋反応を生しさ
せる条件を付与し、接着剤IOを硬化することにより、
導電性微粒子7bか取り出し電極9に接触した状態をよ
り有効に保持することかてきる。特に液晶表示素子が、
強誘電性液晶表示素子の場合、液晶分子の配向処理のた
め、80°C以上の高温にさらされる場合があり、接着
剤10として熱硬化性接着剤を用いることは、信頼性上
有効である。ここて導電性微粒子としては、金属粒子を
用いても接続は可能であるが、樹脂粒子を芯抜として導
電性部材により覆った粒子を用いることにより、半導体
装置と液晶表示素子のガラス基板とに生しる応力を緩和
することかできる。
Next, as shown in FIG. 3(b), the lead-out electrode 1 of the semiconductor device and the lead-out electrode 9 of the liquid crystal display element are brought into close contact, pressure is applied, and the conductive fine particles 7b are transferred to the lead-out electrode 9 of the liquid crystal display element. contact with. At this time, if heating is required to bring the conductive fine particles 7b into contact with the extraction electrode 9 of the liquid crystal display element, heating and pressure can be applied at the same time. At this time, if the adhesive 10 is a thermosetting adhesive, the adhesive IO is cured by applying pressure and conditions that cause a crosslinking reaction with hot ultraviolet rays.
The state in which the conductive fine particles 7b are in contact with the extraction electrode 9 can be maintained more effectively. In particular, liquid crystal display elements
In the case of a ferroelectric liquid crystal display element, it may be exposed to high temperatures of 80° C. or higher due to the alignment treatment of liquid crystal molecules, and using a thermosetting adhesive as the adhesive 10 is effective in terms of reliability. . Although it is possible to connect using metal particles as the conductive fine particles, it is possible to connect the semiconductor device and the glass substrate of the liquid crystal display element by using particles made of resin particles as cores and covered with a conductive material. It is possible to alleviate the stress that occurs.

またここて、平板基板6に導電性微粒子を置載する方法
としては、第7図(a)に示すように、導電性微粒子を
風力で平板基板6に散布する方法が用いられるが、さら
に第7図(b)に示すように、導電性微粒子7dを粒子
帯電装置18を通過させて帯電させて静電気力か平板基
板6に向かうような電界中て散布することにより、より
短い時間て導電性微粒子を平板基板に置載することかで
きる。この時、平板基板を導電性部材て構成し、接地す
ることにより、帯電した導電性微粒子の鏡像電荷との静
電引力か生し、導電性微粒子が平板基板に付着する効率
を上げることかてきる。導電性微粒子を帯電する方法と
しては、コロナ電界中を通過させて帯電させる方法、お
よび異種の物体と接触させて帯電させる摩擦帯電法か用
いられる。
Here, as a method for placing the conductive fine particles on the flat substrate 6, as shown in FIG. As shown in FIG. 7(b), conductive fine particles 7d are charged by passing through a particle charging device 18, and are dispersed in an electric field directed toward the flat substrate 6 by electrostatic force, thereby achieving conductivity in a shorter time. Fine particles can be placed on a flat substrate. At this time, by configuring the flat substrate as a conductive member and grounding it, the electrostatic attraction between the mirror image charge of the charged conductive fine particles can be generated, and the efficiency with which the conductive fine particles adhere to the flat substrate can be increased. Ru. As a method for charging the conductive fine particles, a method of charging the conductive particles by passing them through a corona electric field, and a frictional charging method of charging the conductive particles by bringing them into contact with a different type of object are used.

(実施例2) また、第4図(a)に示されるように、導電性微粒子7
bを付着させた半導体装置の取り出し電極lと液晶表示
装置の取り出し電極9とを向かい合せ、位置合せを行い
、圧接し、電気的接触を行う。この状態て、半導体装置
の動作を行い、半導体装置の動作試験を行うことかてき
る。半導体素子の動作不良か生した場合は、半導体装置
を取換え、同様にして動作試験をおこない動作か正常で
あることを確認する。
(Example 2) Furthermore, as shown in FIG. 4(a), conductive fine particles 7
The lead-out electrode l of the semiconductor device to which b has been attached and the lead-out electrode 9 of the liquid crystal display device are faced, aligned, and pressed together to establish electrical contact. In this state, the semiconductor device can be operated and an operation test of the semiconductor device can be performed. If a semiconductor element malfunctions, the semiconductor device is replaced and an operation test is performed in the same manner to confirm that it is operating normally.

次ぎに、第4図(b)に示されるように、圧接状態で、
熱硬化性の絶縁性接着剤10を半導体装置と液晶素子の
ガラス基板の間に送り込み、熱、紫外線なとの架橋反応
を生しさせる条件を付与し、接着剤10を硬化させ、半
導体装置の取り出し電極部と液晶表示素子の取りたし電
極部を接着し、電気的接続を保持する。
Next, as shown in FIG. 4(b), in a press-contact state,
A thermosetting insulating adhesive 10 is fed between the semiconductor device and the glass substrate of the liquid crystal element, and conditions are applied to cause a crosslinking reaction with heat and ultraviolet rays, the adhesive 10 is cured, and the semiconductor device is bonded. The lead-out electrode part and the lead-out electrode part of the liquid crystal display element are adhered to maintain electrical connection.

また、半導体装置の取り出し電極に接着剤4bを未硬化
状態て導電性微粒子を付着させ、同様にして圧接状態て
、熱硬化性の絶縁性接着剤10を半導体装置と液晶素子
のガラス基板の間に送り込み、接着剤4b、10に同時
に架橋反応を生しさせる条件を付与することにより、接
着剤4b、10を同時に硬化することがてきると共に、
半導体装置に加えられる熱、紫外線などのスチレスを1
度にすることかてきる。
Further, conductive fine particles are attached to the uncured adhesive 4b on the lead-out electrode of the semiconductor device, and in the same manner, a thermosetting insulating adhesive 10 is applied between the semiconductor device and the glass substrate of the liquid crystal element. By supplying the adhesives 4b and 10 with conditions that cause a crosslinking reaction at the same time, the adhesives 4b and 10 can be cured at the same time, and
Heat, ultraviolet rays, etc. applied to semiconductor devices
I can do it once in a while.

(実施例3) また、第5図に示されるように、半導体装置の取り出し
電極の相互接続部にベースフィルムかない場合も同様に
して電気的接続を行うことかできる。
(Embodiment 3) Furthermore, as shown in FIG. 5, even when there is no base film at the interconnection portion of the lead-out electrodes of the semiconductor device, electrical connection can be made in the same manner.

第5図(a)は、半導体装置の取り出し電極および液晶
表示素子の取りたし電極に平行な断面図であり、第5図
(b)は、第5図(a)に示すx−x’部の断面図であ
る。
FIG. 5(a) is a sectional view parallel to the lead-out electrode of the semiconductor device and the lead-out electrode of the liquid crystal display element, and FIG. 5(b) is a cross-sectional view taken along the line xx' shown in FIG. FIG.

(実施例4) また、液晶表示素子の取りたし電極9および、液晶表示
素子を駆動する半導体素子の入力電極15に、半導体素
子をフェースダウンて接続する場合、第6図に示すよう
に、同様に接続を行うことができる。
(Embodiment 4) Furthermore, when connecting the semiconductor element face-down to the lead-out electrode 9 of the liquid crystal display element and the input electrode 15 of the semiconductor element that drives the liquid crystal display element, as shown in FIG. Connections can be made similarly.

この場合、実施例2と同様に、半導体素子と液晶基板の
取り出し電極とを圧接し電気的接続を行った状態て、動
作試験を行い、動作が確認された後に、絶縁性接着剤1
0を半導体素子と液晶素子の取りたし電極部の間に送り
込み接続を行うことかできる。
In this case, as in Example 2, an operation test is performed with the semiconductor element and the lead-out electrode of the liquid crystal substrate in pressure contact and electrical connection is made, and after the operation is confirmed, the insulating adhesive
0 can be sent between the electrode portions of the semiconductor element and the liquid crystal element to establish a connection.

[発明の効果] 以上説明したように、本発明の電極端子の相互接続方法
によれば、以下のような効果を得ることかできる。
[Effects of the Invention] As explained above, according to the electrode terminal interconnection method of the present invention, the following effects can be obtained.

電気回路基体の突出した電極端子に、接着剤を付着させ
た後、導電性微粒子を付着しもう一つの電気回路基体に
絶縁性接着剤を用いて電気的に接続することにより、高
密度に配列された電極端子を隣接する電極端子の電気的
絶縁を保ちながら、接続することかてきる。
After adhering adhesive to the protruding electrode terminals of an electric circuit substrate, conductive fine particles are attached and electrically connected to another electric circuit substrate using an insulating adhesive to form a dense array. It is possible to connect adjacent electrode terminals while maintaining electrical insulation between adjacent electrode terminals.

ここで、電極端子に接着剤の付着した電気回路基体の電
極端子と導電性微粒子を置載した平板基板を密着させて
、引き離し、導電性微粒子を電気回路基体の電極端子に
付着させることにより、導電性微粒子を電気回路基体の
電極端子の相互接続部のみに選択的に付着させることか
できる。
Here, the electrode terminal of the electric circuit substrate with the adhesive attached to the electrode terminal and the flat substrate on which the conductive fine particles are placed are brought into close contact with each other, and then separated, and the conductive fine particles are attached to the electrode terminal of the electric circuit substrate. The conductive particles can be selectively deposited only on the interconnections of the electrode terminals of the electrical circuit substrate.

この時、電気回路基体の基材表面より突出した電極端子
の突出高さを、導電性微粒子が、電極端子の間隙部に付
着しない高さにすることにより、導電性微粒子が、電気
回路基体の電極端子の間隙部に付着することを防ぐこと
がてきる。
At this time, by setting the protrusion height of the electrode terminals that protrude from the base material surface of the electric circuit substrate to a height that prevents the conductive fine particles from adhering to the gaps between the electrode terminals, the conductive fine particles can be attached to the electric circuit substrate. This can prevent the adhesive from adhering to the gaps between the electrode terminals.

また、突出した電極端子に付着した接着剤の厚みを、導
電性微粒子の粒径より薄くすることにより、電気回路基
体と導電性微粒子か置載された平板基板とを密着させた
時、接着剤か平板基板に付着することを防ぐことがてき
る。
In addition, by making the thickness of the adhesive attached to the protruding electrode terminals thinner than the particle size of the conductive fine particles, when the electric circuit substrate and the flat substrate on which the conductive fine particles are placed are brought into close contact, the adhesive This can prevent the film from adhering to the flat substrate.

また、接着剤の付着した電極端子に、導電性微粒子を加
圧し、導電性微粒子を、電極端子に接触させなから、接
着剤を硬化することにより、加圧を解除しても、導電性
微粒子か電極端子に接触した状態を保持することかてき
る。
In addition, by applying pressure to the conductive fine particles on the electrode terminal to which the adhesive has adhered, and curing the adhesive without allowing the conductive fine particles to come into contact with the electrode terminal, even if the pressure is released, the conductive fine particles Alternatively, you can keep it in contact with the electrode terminal.

また、導電性微粒子として、樹脂粒子を心核として、導
電性部材により覆われたものを使用することにより、第
1の電気回路基体と第2の電気回路基体から生じる応力
を緩和することがてき信頼性を向上させることかてきる
In addition, by using conductive fine particles that have resin particles as their core and are covered with a conductive member, stress generated from the first electric circuit substrate and the second electric circuit substrate can be alleviated. It can improve reliability.

また、導電性微粒子を平板基板上に置載する場合、導電
性微粒子を帯電させ散布することにより、散布時間を短
くすることかできる。
Further, when placing the conductive fine particles on a flat substrate, the time for scattering can be shortened by charging and scattering the conductive fine particles.

また、電極端子に形成した接着剤と、第1の回路基板と
第2の回路基板とを接着する接着剤を第1の回路基板と
第2の回路基板とを圧接しながら同時に硬化することに
より、熱、紫外線なとの接着剤の硬化条件の付与を、1
度て済ませることがてき、熱、紫外線等による、ストレ
スを最小にすることかてきる。
In addition, by simultaneously curing the adhesive formed on the electrode terminal and the adhesive for bonding the first circuit board and the second circuit board while pressing the first circuit board and the second circuit board. , applying curing conditions for the adhesive such as heat and ultraviolet rays, 1.
You can minimize stress caused by heat, ultraviolet rays, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)および(b)、第2図(a)〜(C)、第
3図(a)および(b)、は本発明の第1の実施例の電
極端子の相互接続方法を示す行程断面図てあり 第1図(a)は、半導体装置の突出した電極端子と平板
基板に塗布した接着剤を向かい合せた状態を示す断面図
、 第1図(b)は、平板基板に塗布した接着剤を半導体装
置の突出した電極端子に付着させた状態を示す断面図、 第2図(a)は、半導体装置の接着剤か付着した電極端
子と平板基板に置載された導電性微粒子とを向かい合わ
せた状態を示す断面図、第2図(b)は、半導体装置の
接着剤か付着した電極端子と平板基板に置載された導電
性微粒子を密着させた状態を示す断面図 第2図(c)は、半導体装置の接着剤か付着した電極端
子に導電性微粒子を付着させた状態を示す断面図、 第3図(a)は、液晶表示素子のガラス基板の取り出し
電極部に絶縁性接着剤を塗布し、半導体装置の導電性微
粒子か付着した電極端子と液晶表示素子の接着剤か塗布
された電極端子部を向かい合わせ、位置合わせをした状
態を示す断面図 第3図(b)は、半導体装置の導電性微粒子か付着した
電極端子と液晶表示素子の接着剤か塗布された電極端子
部を密着させ、半導体装置の電極端子と液晶表示素子の
電極端子とを電気的に相互接続し、接着剤により、保持
、固定した状態を示す断面図である。 第4図(a)および(b)は、本発明の第2の実施例の
電極端子の相互接続方法を示す行程断面図てあり、 第4図(a)は、半導体装置の導電性微粒子か付着した
電極端子と液晶表示素子の電極端子部を位置合わせなξ
こない、圧接し、電気的な接触をさせた状態を示す断面
図 第4図(b)は、半導体装置の導電性微粒子か付着した
電極端子と液晶表示素子の電極端子部を圧接した状態で
、半導体装置と液晶表示素子のガラス基板との間隙部に
絶縁性接着剤を送り込み、半導体装置の電極端子と液晶
表示素子の電極端子とを電気的に相互接続し、接着剤に
より、保持、固定した状態を示す断面図である。 第5図(a)、(b)および(c)は、本発明の第3の
実施例の電極端子の相互接続方法を示す行程断面図であ
り、半導体装置の相互接続部にベースフィルムのない場
合の方法を示す断面図であって、 第5図(a)は、半導体装置の導電性微粒子か付着した
電極端子と液晶表示素子の接着剤か塗布された電極端子
部を向かい合わせ、位置合わせをした状態を示す図てあ
り、液晶表示装置の取り出し電極の取り出し方向に平行
な断面を示す断面図、 第5図(b)は、第5図(a)のx−x′断面図 第5図(c)は、半導体装置の導電性微粒子か付着した
電極端子と液晶表示素子の接着剤か塗布された電極端子
部を密着させ、半導体装置の電極端子と液晶表示素子の
電極端子とを電気的に相互接続し、接着剤により、保持
、固定した状態を示す断面図である。 第6図(a)および(b)は、本発明の第4の実施例の
電極端子の相互接続方法を示す行程断面図てあり、 第6図(a)は、半導体素子のバンブ電極に第1図およ
び第2図で示す方法と同様にして、導電性微粒子を付着
させ、液晶表示素子の絶縁性接着剤か塗布された電極端
子部に対して、半導体素子をフェースタウンて位置合わ
せしだ状態を示す断面図、 第6図(b)は、半導体素子の導電性微粒子か付着した
ハング電極と液晶表示素子の接着剤か塗布された電極端
子部を密着させ、半導体素子のバンブ電極と液晶表示素
子の電極端子とを電気的に相互接続し、接着剤により、
保持、固定した状態を示す断面図である。 第7図(a)は、導電性微粒子を風力て平板基板に#!
i布し、平板基板に導電性微粒子を置載する方法をしめ
ず概念図、 第7図(b)は、導電性微粒子を粒子帯電装置を通過さ
せて帯電させて静電気力か平板基板に向かうような電界
中て散布する方法を示す概念図である。 第8図(a)および(b)は、従来の技術による電極端
子の相互接続方法を示す行程断面図であり、 第8図(a)は、液晶表示素子の電極端子に異方性導電
接着膜を置載し、半導体装置の電極端子と液晶表示素子
の電極端子を向かい合わせ、位置合わせした状態を示す
断面図、第8図(b)は、半導体装置を加熱圧着し半導
体装置の電極端子と液晶表示素子の電極端子とを相互接
続した状態を示す断面図である。 l・・・半導体装置の電極端子、2・・・半導体装置へ
一スフイルム、3・・・接着剤を塗布する平板基板、4
a・・・平板基板に塗布された接着剤、4b・・・半導
体装置の電極端子に付着した接着剤、5・・・半導体装
置の電極端子の間隙部、6・・・導電性微粒子を置載す
る平板基板、7a・・・平板基板に置載された導電性微
粒子、7b・・・半導体装置の電極端子に付着した導電
性微粒子、7C・−・半導体装置の電極端子の間隙部に
位置する導電性微粒子、h・・・半導体装置のハースフ
ィルム2と接着剤を塗布した平板基板6との距離、8・
・・液晶表示素子のガラス基板、9・・・液晶表示素子
の取りたし電極端子、10・・・液晶表示素子の取りた
し電極端子部と半導体素子を接着する絶縁性接着剤、1
1・・・半導体チップ、12・−・A1パット、13・
・・パシベーション膜、l4・・・ハンプ電極、15・
・・半導体素子の入力信号および電源用の電極端子、1
6・・・導電性微粒子を散布する突出ノズル、17・・
・突出ノズルからの空気流れパターン、7d・・・風力
により搬送される導電性微粒子、18・・・帯電装置、
7e・・・帯電した導電性微粒子、19・・・帯電した
導電性微粒子に働く静電気力、20a・・・異方性導電
接着膜の導電性微粒子、21・・・異方性導電接着膜の
絶縁性接着剤、20b・・・半導体装置の電極端子の間
隙部て隣接する電極端子のショートを引き起している導
電性微粒子。 !2図(縛 間2口(b) %/図(α) 男1図(関 %6図(0,) ¥b図と1 〜し 第らし〕(αン %ら口C閃 男す図(C)
FIGS. 1(a) and (b), FIGS. 2(a) to (C), and FIGS. 3(a) and (b) illustrate the method for interconnecting electrode terminals according to the first embodiment of the present invention. Figure 1(a) is a cross-sectional view showing the protruding electrode terminal of the semiconductor device and the adhesive applied to the flat substrate facing each other, and Figure 1(b) is the cross-sectional view showing the protruding electrode terminal of the semiconductor device and the adhesive applied to the flat substrate. A cross-sectional view showing a state in which the applied adhesive is attached to the protruding electrode terminal of a semiconductor device. FIG. 2(b) is a sectional view showing a state in which the fine particles face each other, and FIG. 2(b) is a cross-sectional view showing a state in which an electrode terminal of a semiconductor device with an adhesive attached thereto and a conductive fine particle placed on a flat substrate are in close contact with each other. FIG. 2(c) is a cross-sectional view showing conductive particles attached to an electrode terminal of a semiconductor device with adhesive attached thereto. FIG. 3(a) is a lead-out electrode portion of a glass substrate of a liquid crystal display element. Fig. 3 is a cross-sectional view showing a state in which an insulating adhesive is applied to the electrode terminal of the semiconductor device and the electrode terminal portion of the liquid crystal display element coated with the adhesive is aligned with the electrode terminal to which conductive particles have adhered. In (b), the electrode terminals of the semiconductor device to which conductive particles have adhered are brought into close contact with the electrode terminals of the liquid crystal display element coated with adhesive, and the electrode terminals of the semiconductor device and the electrode terminals of the liquid crystal display element are electrically connected. FIG. 3 is a cross-sectional view showing a state in which the components are interconnected and held and fixed with an adhesive. FIGS. 4(a) and 4(b) are cross-sectional views showing a method for interconnecting electrode terminals according to a second embodiment of the present invention. FIG. Align the attached electrode terminal with the electrode terminal part of the liquid crystal display elementξ
FIG. 4(b) is a cross-sectional view showing the state in which the electrode terminals of the semiconductor device, on which conductive particles have adhered, and the electrode terminal portions of the liquid crystal display element are in pressure contact with each other. Insulating adhesive was introduced into the gap between the semiconductor device and the glass substrate of the liquid crystal display element, and the electrode terminals of the semiconductor device and the electrode terminals of the liquid crystal display element were electrically interconnected and held and fixed by the adhesive. It is a sectional view showing a state. 5(a), (b), and (c) are process cross-sectional views showing a method for interconnecting electrode terminals according to a third embodiment of the present invention, in which there is no base film in the interconnection portion of a semiconductor device. FIG. 5(a) is a sectional view showing the method in which the electrode terminal of the semiconductor device with conductive particles attached and the electrode terminal part of the liquid crystal display element coated with adhesive are faced and aligned. 5(b) is a cross-sectional view parallel to the direction in which the lead-out electrodes of the liquid crystal display device are taken out; FIG. In Figure (c), the electrode terminals of the semiconductor device to which conductive particles have adhered and the electrode terminals of the liquid crystal display element coated with adhesive are brought into close contact, and the electrode terminals of the semiconductor device and the electrode terminals of the liquid crystal display element are electrically connected. FIG. 3 is a cross-sectional view showing a state in which the components are interconnected and held and fixed with an adhesive. FIGS. 6(a) and 6(b) are cross-sectional views showing a method for interconnecting electrode terminals according to a fourth embodiment of the present invention. FIG. In the same manner as shown in Figures 1 and 2, conductive fine particles are attached and the semiconductor element is face-down and aligned with the electrode terminal part of the liquid crystal display element coated with insulating adhesive. A cross-sectional view showing the state, FIG. 6(b), shows the bump electrode of the semiconductor element and the liquid crystal display element by bringing the hang electrode of the semiconductor element, which has conductive fine particles attached, into close contact with the electrode terminal part of the liquid crystal display element, which has been coated with adhesive. Electrically interconnect the electrode terminals of the display element and use adhesive.
It is a sectional view showing a state where it is held and fixed. Figure 7(a) shows conductive particles being placed on a flat substrate by wind force.
Figure 7 (b) is a conceptual diagram showing the method of placing conductive particles on a flat substrate using an electrostatic force. FIG. 2 is a conceptual diagram showing a method of dispersing in such an electric field. FIGS. 8(a) and (b) are process cross-sectional views showing a method for interconnecting electrode terminals according to the prior art. FIG. 8(a) shows anisotropic conductive adhesive bonding to electrode terminals of a liquid crystal display element. FIG. 8(b) is a cross-sectional view showing a state in which the film is placed, and the electrode terminals of the semiconductor device and the electrode terminals of the liquid crystal display element are faced and aligned, and the electrode terminals of the semiconductor device are bonded by heat and pressure. FIG. 3 is a cross-sectional view showing a state in which the electrode terminals of the liquid crystal display element and the liquid crystal display element are interconnected. l... Electrode terminal of a semiconductor device, 2... A film for a semiconductor device, 3... A flat substrate to which adhesive is applied, 4
a...Adhesive applied to the flat substrate, 4b...Adhesive attached to the electrode terminal of the semiconductor device, 5...Gap between the electrode terminals of the semiconductor device, 6... Conductive fine particles placed 7a... Conductive fine particles placed on the flat plate substrate, 7b... Conductive fine particles attached to the electrode terminals of the semiconductor device, 7C... Located in the gap between the electrode terminals of the semiconductor device. Conductive fine particles, h... Distance between the hearth film 2 of the semiconductor device and the flat substrate 6 coated with adhesive, 8.
...Glass substrate of liquid crystal display element, 9...Removed electrode terminal of liquid crystal display element, 10...Insulating adhesive for bonding the removed electrode terminal part of liquid crystal display element and semiconductor element, 1
1... Semiconductor chip, 12... A1 pad, 13...
・Passivation film, l4 ・Hump electrode, 15・
...Electrode terminal for input signal and power supply of semiconductor element, 1
6...Protruding nozzle for dispersing conductive fine particles, 17...
- Air flow pattern from the protruding nozzle, 7d... Conductive fine particles transported by wind force, 18... Charging device,
7e...Charged conductive fine particles, 19...Electrostatic force acting on charged conductive fine particles, 20a...Conductive fine particles of anisotropic conductive adhesive film, 21...Conductive fine particles of anisotropic conductive adhesive film Insulating adhesive, 20b: Conductive fine particles that cause short-circuits between adjacent electrode terminals in gaps between electrode terminals of semiconductor devices. ! Figure 2 (Sakuma 2 mouths (b) %/Figure (α) Man 1 figure (Seki% 6 Figures (0,) C)

Claims (9)

【特許請求の範囲】[Claims] (1)第1の電気回路基体の電極端子と第2の電気回路
基体の電極端子とを導電性微粒子 を介して相互に電気的に接続させ、接着剤 により保持固定する電極端子の相互接続方 法において、少なくとも一方の電気回路基 体の基材表面より突出した電極端子に、接 着剤を形成し、該接着剤に導電性微粒子を 付着した後、第1の電気回路基体と第2の 電気回路基体を絶縁性接着剤を用いて、圧 接、接続することを特徴とする電極端子の 相互接続方法。
(1) A method for interconnecting electrode terminals in which the electrode terminals of the first electric circuit substrate and the electrode terminals of the second electric circuit substrate are electrically connected to each other via conductive fine particles and held and fixed with an adhesive. After forming an adhesive on the electrode terminal protruding from the base material surface of at least one electric circuit substrate and adhering conductive fine particles to the adhesive, the first electric circuit substrate and the second electric circuit substrate are attached. A method for interconnecting electrode terminals, which is characterized in that the electrode terminals are connected by pressure welding using an insulating adhesive.
(2)転写版に塗布した接着剤を電気回路基体の突出し
た電極端子に転写して、電極端子 に接着剤を形成することを特徴とする請求 項(1)に記載の電極端子の相互接続方 法。
(2) The interconnection of electrode terminals according to claim (1), characterized in that the adhesive applied to the transfer plate is transferred to the protruding electrode terminals of the electric circuit substrate to form the adhesive on the electrode terminals. Method.
(3)接着剤か形成された電気回路基体の電極端子と導
電性微粒子を置載した平板基板を 密着させて、引き離し、導電性微粒子を電 気回路基体の電極端子に転写し、付着させ ることを特徴とする請求項(1)に記載の 電極端子の相互接続方法。
(3) The electrode terminals of the electric circuit substrate on which adhesive has been formed are brought into close contact with the flat substrate on which the conductive fine particles are placed, and then separated, and the conductive fine particles are transferred and attached to the electrode terminals of the electric circuit substrate. A method for interconnecting electrode terminals according to claim 1.
(4)接着剤が形成された電気回路基体の電極端子と導
電性微粒子を置載した平板基板が 密着した状態で電気回路基体の基材と平板 基板との距離が、導電性微粒子の粒径より 大きいことを特徴とする、請求項(3)に 記載の電極端子の相互接続方法。
(4) When the electrode terminal of the electric circuit substrate on which the adhesive is formed and the flat substrate on which the conductive fine particles are placed are in close contact, the distance between the base material of the electric circuit substrate and the flat substrate is determined by the particle size of the conductive fine particles. A method for interconnecting electrode terminals according to claim 3, characterized in that the electrode terminals are larger.
(5)突出した電極端子に形成した接着剤の厚みが、導
電性微粒子の粒径より薄いことを 特徴とする、請求項(1)に記載の電極端 子の相互接続方法。
(5) The method for interconnecting electrode terminals according to claim (1), wherein the thickness of the adhesive formed on the protruding electrode terminals is thinner than the particle size of the conductive fine particles.
(6)接着剤が形成された電極端子に、導電性微粒子を
加圧し、導電性微粒子を、電極端 子に接触させながら、接着剤を硬化するこ とを特徴とする、請求項(1)に記載の電 極端子の相互接続方法。
(6) According to claim (1), the conductive fine particles are pressurized to the electrode terminal on which the adhesive is formed, and the adhesive is cured while the conductive fine particles are brought into contact with the electrode terminal. How to interconnect electrode terminals.
(7)導電性微粒子が、樹脂粒子を心核として、導電性
部材により覆われたものであ る、請求項(1)に記載の電極端子の相互 接続方法。
(7) The method for interconnecting electrode terminals according to claim (1), wherein the conductive fine particles have a core of resin particles covered with a conductive member.
(8)導電性微粒子を平板基板上に置載する場合、導電
性微粒子を帯電させ散布すること を特徴とする、請求項(3)に記載の電極 端子の相互接続方法。
(8) The method for interconnecting electrode terminals according to claim (3), characterized in that when placing the conductive fine particles on the flat substrate, the conductive fine particles are charged and scattered.
(9)電極端子に形成した接着剤と、第1の回路基板と
第2の回路基板とを接着する接着 剤を第1の回路基板と第2の回路基板とを 圧接しながら同時に硬化することを特徴と する、請求項(1)に記載の電極端子の相 互接続方法。
(9) Curing the adhesive formed on the electrode terminal and the adhesive for bonding the first circuit board and the second circuit board together while pressing the first circuit board and the second circuit board together. The method for interconnecting electrode terminals according to claim 1, characterized in that:
JP2088801A 1990-04-02 1990-04-02 Interconnection method of electrode terminal Pending JPH03289070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2088801A JPH03289070A (en) 1990-04-02 1990-04-02 Interconnection method of electrode terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2088801A JPH03289070A (en) 1990-04-02 1990-04-02 Interconnection method of electrode terminal

Publications (1)

Publication Number Publication Date
JPH03289070A true JPH03289070A (en) 1991-12-19

Family

ID=13952973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2088801A Pending JPH03289070A (en) 1990-04-02 1990-04-02 Interconnection method of electrode terminal

Country Status (1)

Country Link
JP (1) JPH03289070A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616206A (en) * 1993-06-15 1997-04-01 Ricoh Company, Ltd. Method for arranging conductive particles on electrodes of substrate
JPH10302926A (en) * 1997-04-25 1998-11-13 Hitachi Chem Co Ltd Manufacture of anisotropic conductive adhesive film
KR100342039B1 (en) * 1994-12-29 2002-10-25 삼성에스디아이 주식회사 Method for forming electrical contact structure
JP2006208972A (en) * 2005-01-31 2006-08-10 Sekisui Chem Co Ltd Liquid crystal display device and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616206A (en) * 1993-06-15 1997-04-01 Ricoh Company, Ltd. Method for arranging conductive particles on electrodes of substrate
KR100342039B1 (en) * 1994-12-29 2002-10-25 삼성에스디아이 주식회사 Method for forming electrical contact structure
JPH10302926A (en) * 1997-04-25 1998-11-13 Hitachi Chem Co Ltd Manufacture of anisotropic conductive adhesive film
JP2006208972A (en) * 2005-01-31 2006-08-10 Sekisui Chem Co Ltd Liquid crystal display device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2730357B2 (en) Electronic component mounted connector and method of manufacturing the same
CN100473255C (en) Circuit board for flip-chip connection and manufacturing method thereof
KR940008554B1 (en) Electrode terminal mutual connection method
US4999460A (en) Conductive connecting structure
JPH08505001A (en) Electrical connection structure and electrical connection method thereof
KR100701133B1 (en) Electric connecting method and apparatus
US6414397B1 (en) Anisotropic conductive film, method of mounting semiconductor chip, and semiconductor device
JP4675178B2 (en) Crimping method
US5123986A (en) Conductive connecting method
JPH03289070A (en) Interconnection method of electrode terminal
JP3743716B2 (en) Flexible wiring board and semiconductor element mounting method
KR940001260B1 (en) Conductive connecting structure
JP4118974B2 (en) IC chip mounting substrate and method of manufacturing IC chip mounting substrate
KR101211753B1 (en) Method and device for connecting electronic parts using high frequency electromagnetic field
JP3596572B2 (en) Board connection method
JPH0574846A (en) Electrically connecting method
JPH03185894A (en) Mutual connection of electrode terminal
JPH11195860A (en) Bonding member, multichip module with the bonding member and bonding method using the bonding member
JP2959215B2 (en) Electronic component and its mounting method
JP2000174066A (en) Method of mounting semiconductor device
JP2002076208A (en) Packaging structure of semiconductor device and display of structure and its manufacturing method
JPH1065332A (en) Anistropic conductive thin film and method for connection of polymer board using the same
JPH06103702B2 (en) Method of interconnecting electrode terminals and method of manufacturing electrical connection structure
JPH0653279A (en) Connecting method for board using conductive adhesive to chip
JP2003124258A (en) Mounting method of semiconductor chip and mounting structure of semiconductor chip