JP3743716B2 - Flexible wiring board and semiconductor element mounting method - Google Patents

Flexible wiring board and semiconductor element mounting method Download PDF

Info

Publication number
JP3743716B2
JP3743716B2 JP2002004592A JP2002004592A JP3743716B2 JP 3743716 B2 JP3743716 B2 JP 3743716B2 JP 2002004592 A JP2002004592 A JP 2002004592A JP 2002004592 A JP2002004592 A JP 2002004592A JP 3743716 B2 JP3743716 B2 JP 3743716B2
Authority
JP
Japan
Prior art keywords
semiconductor element
wiring board
flexible wiring
mounting
film substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002004592A
Other languages
Japanese (ja)
Other versions
JP2003209141A (en
Inventor
一成 田中
守 井澤
大樹郎 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002004592A priority Critical patent/JP3743716B2/en
Publication of JP2003209141A publication Critical patent/JP2003209141A/en
Application granted granted Critical
Publication of JP3743716B2 publication Critical patent/JP3743716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多層構造のフレキシブル配線基板及び半導体素子の実装方法に関する。
【0002】
【従来の技術】
フレキシブル配線基板は、可撓性を有するフィルム基板の表面又は表裏面に金属製の配線パターンが形成され、樹脂等により適宜保護された多層構造を持ち、主に電子部品や装置間に配されて接続回路基板として使用されることが多い。また、ICやLSI等の半導体素子や電子部品等が搭載されるものもある。フレキシブル配線基板の有する可撓性によって、電子部品や装置間の微小な位置ズレや振動等を吸収することができ、また、折り曲げて使用することもできるため製品の小型化に有効であり、近年、多用されている。
【0003】
従来のフレキシブル配線基板の構造を図3に示す。フレキシブル配線基板FCは、ポリイミド等の樹脂フィルムで形成されたフィルム基板1の表裏面に、それぞれ銅等による金属製の配線2A,2Bが所定の形状にて形成され、スルーホール5及びスルーホールメッキ5aにより、表裏面の配線2A,2Bが適宜導通されている。フィルム基板1上の実装領域3には、配線2Aにより電極端子Pが形成され、LSI等の半導体素子4が実装されている。さらに、配線2A,2Bを保護するため、保護剤(ウレタン製のソルダーレジストやポリイミド等によるカバーフィルム)6が配設されている。図3に示すように、フレキシブル配線基板FCの断面形状はフィルム基板1、配線2A,2B、保護剤6が層状に重なっており、このような形状のフレキシブル配線基板FCは、多層構造のフレキシブル配線基板とも言われる。
【0004】
半導体素子4は、ペースト状若しくはフィルム状の接着剤である異方導電性樹脂膜(Anisotropic Conductive Film;以下ACF)7を用いて、加熱圧着により実装される。ACF7は、熱可塑性あるいは熱硬化性の樹脂フィルム内に導電粒子を分散させたものである。実装方法は、図4に示すように、フレキシブル配線基板FCを搬送ステージSに固定し、実装領域3にACF7を塗布し、半導体素子4を位置合わせしてその上方から昇降動する加熱ツール8により加熱及び加圧して行われる。これにより、半導体素子4の接続端子4aと電極端子Pとの間においてACF7の導電粒子が密着し、接続端子4aと電極端子Pが導通する。
【0005】
【発明が解決しようとする課題】
フレキシブル配線基板FCの両面に配線2A,2B及び保護剤6が形成されている場合、半導体素子4が実装される実装領域3の裏面側にも、配線2B及び保護剤6が形成されることとなり、加熱圧着の際の圧力が各層において吸収されてしまっていた。すなわち、半導体素子4の実装時は、加熱加圧される半導体素子4と搬送ステージSとの間に、ACF7の他、配線2Aによる電極端子P、フィルム基板1、配線2B及び保護剤6の順に4層を介することとなり、多層構造のフレキシブル配線基板FCにACF7を介して半導体素子4を実装すると、加熱ツール8による圧力が各層で奪われ、ACF7の導電粒子の密着性が低下し、導通の安定が得られないという問題があった。また、裏面側の配線2Bのパターン形状が実装領域3において一様でない場合、加熱ツール8による圧力が一定とならないため、ACF7の導電粒子の密着性に偏りが生じてしまう問題を有していた。また、実装後は通電による導通試験を行うが、密着性の偏りの度合いによっては、導通試験時には導通が認められても、その後、振動や経年劣化によって導通しなくなってしまうことがあった。また、導通試験には電源や計測器等が必要であり、特に量産品の場合に全数試験を行う際、その手間やコストが問題となっていた。
【0006】
そこで本発明の目的は、多層構造のフレキシブル配線基板にペースト状若しくはフィルム状の接着剤を用いて半導体素子を熱圧着する際、十分な加圧力によりペースト状若しくはフィルム状の接着剤を均一に密着させることにより、信頼性の高いフレキシブル配線基板とこの基板に対する半導体素子の実装方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明の請求項1記載のフレキシブル配線基板は、フィルム基板の表裏両面に、電極端子を有する配線層を少なくとも有し、フィルム基板上の実装領域に半導体素子が、ペースト状若しくはフィルム状の接着剤を用いて加熱圧着されることにより、半導体素子の接続端子が配線層と電気的に導通している多層構造のフレキシブル配線基板において、上記フィルム基板の実装領域において実装された半導体素子の裏面側となる部分には、半導体素子の底面積と同じか又は大きい面積にて配線層が配されない領域が形成されていることを特徴とする。
【0008】
この発明によれば、半導体素子が実装される実装領域の裏面側には、半導体素子の底面積と同じか又は大きい面積にて、配線層が配されない領域が形成されているため、半導体素子を加熱圧着にて実装する際、裏面側の配線層に圧力を吸収されることがなく、半導体素子の実装の接続信頼性を高めることができる。
【0009】
また、本発明の請求項2記載のフレキシブル配線基板は、請求項1記載の発明を前提に、前記フィルム基板は、実装される半導体素子の位置、又は、実装される半導体素子の接続端子の位置が、前記配線層が配されない領域からから確認できるほどに透明であることを特徴とする。ここで、ペースト状若しくはフィルム状の接着剤が異方性導電膜(ACF)の場合は、フィルム基板は、接着剤中の導電粒子が前記配線層が配されない領域から確認できるほどに透明であるとしても良い。
【0010】
この発明によれば、半導体素子の実装後にフィルム基板の裏面側から半導体素子の位置、半導体素子の接続端子の位置を、又は、異方性導電膜(ACF)の場合は接着剤の導電粒子を確認することができる。したがって、通電による導通試験を行う前に、簡便な外観検査による接続部の確認を行うことができる。
【0011】
また、本発明の請求項3記載の半導体素子のフレキシブル配線基板への実装方法は、請求項1又は請求項2記載のフレキシブル配線基板に前記半導体素子を加熱圧着により実装するに際し、前記配線層が配されない領域に、前記領域と同じ面積かつ同じか又は大きい厚さの固定板をはめ込み、加熱加圧を施した後に、固定板を外すことを特徴とする。
【0012】
この発明によれば、配線層が配されない領域に固定板をはめ込んで加熱加圧を施すため、半導体素子に加えられる圧力は、すき間を介することなく固定板で確実に受け止めることができる。したがって、請求項1又は請求項2記載のフレキシブル配線基板を実装する際に、従来と同じ形状の搬送ステージに固定して加熱加圧を施す場合は、裏面側の配線層等の厚さの分だけ搬送ステージとの間にすき間が生じるのに比べて、本発明の方法によれば、より有効に半導体素子に圧力を加えることができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面を引用しながら説明する。図1は、本実施の形態のフレキシブル配線基板の断面構造図、図2は、本実施の形態のフレキシブル配線基板に半導体素子を実装する構造を示す図である。本実施の形態のフレキシブル配線基板FCは、ポリイミド等の樹脂フィルムで形成されたフィルム基板1の表裏面に、それぞれ銅等による金属製の配線2A,2Bが所定の形状にて形成され、スルーホール5及びスルーホールメッキ5aにより、表裏面の配線2A,2Bが適宜導通されている。フィルム基板1は半透明であり、裏面側から表面側の配線2Aを確認することができる。フィルム基板1は完全に無色透明である必要はなく、裏面側から肉眼あるいは顕微鏡にて所望の事項が確認できる程度に透明であればよい。所望の事項とは、実装される半導体素子の位置、又は、実装される半導体素子の接続端子の位置、又は、ペースト状若しくはフィルム状の接着剤が異方性導電膜(ACF)の場合は、その接着剤中の導電粒子等であり、更には、後述する、突起電極(バンプ)付きの半導体素子4の場合は、その突起電極である。なお、これらの所望の事項を確認し易くするために、対象物を着色等させることも可能である。フィルム基板1を透明に近づけるには、フィルム基板1の厚さを薄くすることで実現できる(例えば25μm程度)。フィルム基板1上の実装領域3には、配線2Aにより電極端子Pが形成され、ICやLSI等の半導体素子4が実装されている。さらに、配線2A,2Bを保護するため、保護剤(ウレタン製のソルダーレジストやポリイミド等によるカバーフィルム)6が配設されている。
【0014】
そして、半導体素子4が実装される実装領域3の裏面側には、半導体素子4より少し大きい面積の長方形となるように、裏面側の配線2B及び保護剤6が除去された窓9が形成されている。窓9は、フィルム基板1の裏面の配線層や保護層等が配されない領域であり、長方形に形成されている。本実施の形態では、長方形の窓9の一辺の長さは、当該窓9の裏面側に実装される半導体素子4の一辺の長さのおよそ1.5倍から2倍程度であり、半導体素子4を実装したとき、窓9の辺と半導体素子4の辺との間にすき間ができるように形成されているが、窓9の裏面において、窓9の内側(窓9の辺で囲まれた部分)に半導体素子4をはめ込むことができれば同じ大きさでも良く、また、その形状は問題とならない。なお、突起電極(バンプ)付きの半導体素子4の場合は、接続されるバンプの部分のみ上記窓9を形成することも可能である。
【0015】
半導体素子4は、ペースト状若しくはフィルム状の接着剤である異方性導電膜(ACF)7を用いて、加熱圧着により実装される。ACF7は、熱可塑性あるいは熱硬化性の樹脂フィルム内に導電粒子を分散させたものである。詳しくは、絶縁性を有する接着剤中に導電粒子が分散され厚み方向(接続方向)に導電性を有し、面方向(横方向)に絶縁性を有するもので、導電粒子と接着剤から構成される。その接続は基本的には加熱圧着であり、導電粒子が電気接続の機能を担当し、接着剤が圧接状態を保持する機能を担当する。導電粒子の表面には絶縁皮膜が施されており、特定の方向に圧力がかけられることにより、絶縁皮膜が一部破壊される。絶縁皮膜の材質としては、樹脂が多く使用されている。なお、導電粒子を潰すように加熱圧着させるものもある。本発明に使用されるペースト状若しくはフィルム状の接着剤は、ACF7の場合においては、導電粒子や接着剤の構成等を限定することはなく、加熱圧着により使用されるものであれば、汎用のACFで足り、ACF以外の場合においては、導電性接着剤(導電性ペースト)やクリーム半田等であってもよい。
【0016】
半導体素子4の実装に際しては、図2に示すように、フレキシブル配線基板FCを搬送ステージSに固定する。搬送ステージSには、予め窓9と同形状で窓9にはめ込むことができる大きさの固定板10が取り付けられ、窓9に固定板10がはめ込まれるようにフレキシブル配線基板FCが固定される。次いで、実装領域3にACF7を塗布し、半導体素子4を位置合わせして上方(半導体素子4の実装面の裏面側)から加熱ツール8により加熱及び加圧される。これにより、半導体素子4の接続端子4aと電極端子Pとの間にACF7の導電粒子が密着し、接続端子4aと電極端子Pが導通する。具体的には、半導体素子4の実装時、固定板10と半導体素子4との間には、ACF7の他は、配線2Aによる電極端子Pとフィルム基板1のみが介されることとなる。このため、加熱ツール8による圧力は、裏面側の配線2Bや保護剤6に吸収されることなく、かつ、偏りなく半導体素子4に圧力が加わる。これにより、偏ることなく導電粒子に圧力がかかることとなり、導電粒子の絶縁皮膜が均等に破壊され、あるいは、導電粒子の弾力性(復元性)が有効に発揮されることとなる。したがって、ACF7の導電粒子は、偏ることなく半導体素子4の接続端子4aと電極端子Pに密着し、安定した導通が得られる。
【0017】
加熱ツール8による圧力を有効に得るために、固定板10の厚さは、少なくとも窓9の深さより大きい(厚い)ことが必要である。本実施の形態の固定板10は、ステンレス製であるが、加熱ツール8による熱及び圧力に十分耐えられ、また加熱ツール8による圧力を吸収することのないよう十分な硬さが得られるものであれば、他の金属、セラミック、あるいは樹脂等によるものでもよい。また、固定板10は、窓9の形状にあわせて作製するため、従来の搬送ステージSに取り付け及び取り外すことを可能にすると良い(着脱可能にすると良い)。なお、固定板10を搬送ステージと一体化させた搬送ステージSとして形成することは実施に応じて可能である。
【0018】
以上、本実施の形態ではフレキシブル配線基板FCに半導体素子4を実装する場合を例に説明したが、本発明はコンデンサ等の他の電子素子や電子部品を実装する場合にも適用可能である。
【0019】
【発明の効果】
本発明の多層構造のフレキシブル配線基板は、半導体素子が実装される実装領域の裏面側に、半導体素子の底面積と同じか又は大きい面積にて、配線層等が配されない領域が形成されているため、半導体素子をペースト状若しくはフィルム状の接着剤を介して加熱圧着にて実装する際、裏面側の配線層等に圧力が吸収されることなく十分な圧力を加えることができ、接続信頼性を高めることが可能になる。また、フィルム基板を透明に近づけることにより、半導体素子の実装後にフィルム基板の裏面側から半導体素子の位置、半導体素子の接続端子の位置等を確認することができる。したがって、通電による導通試験を行う前に、簡便な外観検査による接続部の確認を行うことにより、実装状態の良いものをある程度選別することが可能となり、実装状態が良好である確率が高いものだけを導通試験にかけることができる。
【0020】
また、本発明の半導体素子の実装方法によれば、配線層及び保護層が配されない領域に固定板をはめ込んで加熱加圧を施すことにより、半導体素子に加えられる圧力は、すき間を介することなく固定板で確実に受け止めることができる。したがって、請求項1又は請求項2記載のフレキシブル配線基板を実装する際に、従来と同じ形状の搬送ステージに固定して加熱加圧を施す場合は、裏面側の配線層等の厚さの分だけ搬送ステージとの間にすき間が生じるのに比べて、本発明の半導体素子の実装方法によれば、より有効に半導体素子に圧力を加えることができ、信頼性の高いフレキシブル配線基板が得られる。
【0021】
【図面の簡単な説明】
【図1】本発明の実施の形態におけるフレキシブル配線基板の断面構造図
【図2】本発明の実施の形態における半導体素子の実装構造を示す図
【図3】従来のフレキシブル配線基板の構造を示す図
【図4】従来の形態における半導体素子の実装構造を示す図
【符号の説明】
1 フィルム基板
2A,2B 配線
3 実装領域
4 半導体素子
4a 接続端子
5 スルーホール
5a スルーホールメッキ
6 保護剤
7 ACF
8 加熱ツール
9 窓(配線層及び保護層が配されない領域)
10 固定板
FC フレキシブル配線基板
P 電極端子
S 搬送ステージ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flexible wiring board having a multilayer structure and a method for mounting a semiconductor element.
[0002]
[Prior art]
A flexible wiring board has a multilayer structure in which a metal wiring pattern is formed on the surface or front and back surfaces of a flexible film substrate and is appropriately protected by a resin or the like, and is mainly disposed between electronic components and devices. Often used as a connection circuit board. There are also devices on which semiconductor elements such as IC and LSI, electronic components, and the like are mounted. Due to the flexibility of the flexible wiring board, it can absorb minute positional shifts and vibrations between electronic components and devices, and can be used by being bent. , Are used a lot.
[0003]
The structure of a conventional flexible wiring board is shown in FIG. The flexible wiring board FC has metal wirings 2A and 2B made of copper or the like formed in a predetermined shape on the front and back surfaces of the film substrate 1 made of a resin film such as polyimide, and the through hole 5 and the through hole plating. The wirings 2A and 2B on the front and back surfaces are appropriately conducted by 5a. In the mounting area 3 on the film substrate 1, an electrode terminal P is formed by wiring 2A, and a semiconductor element 4 such as an LSI is mounted. Further, a protective agent (a cover film made of urethane solder resist, polyimide, or the like) 6 is disposed to protect the wirings 2A and 2B. As shown in FIG. 3, the cross-sectional shape of the flexible wiring board FC is such that the film substrate 1, the wirings 2A and 2B, and the protective agent 6 overlap each other, and the flexible wiring board FC having such a shape is a flexible wiring having a multilayer structure. Also called a substrate.
[0004]
The semiconductor element 4 is mounted by thermocompression bonding using an anisotropic conductive resin film (ACF) 7 that is a paste or film adhesive. ACF7 is obtained by dispersing conductive particles in a thermoplastic or thermosetting resin film. As shown in FIG. 4, the mounting method is such that the flexible wiring board FC is fixed to the transfer stage S, ACF 7 is applied to the mounting area 3, the semiconductor element 4 is aligned, and the heating tool 8 moves up and down from above. It is performed by heating and pressing. As a result, the conductive particles of the ACF 7 are in close contact between the connection terminal 4a of the semiconductor element 4 and the electrode terminal P, and the connection terminal 4a and the electrode terminal P are conducted.
[0005]
[Problems to be solved by the invention]
When the wirings 2A and 2B and the protective agent 6 are formed on both surfaces of the flexible wiring board FC, the wiring 2B and the protective agent 6 are also formed on the back surface side of the mounting region 3 on which the semiconductor element 4 is mounted. The pressure during thermocompression bonding was absorbed in each layer. That is, when the semiconductor element 4 is mounted, between the semiconductor element 4 to be heated and pressurized and the transfer stage S, in addition to the ACF 7, the electrode terminal P by the wiring 2A, the film substrate 1, the wiring 2B, and the protective agent 6 are arranged in this order. When the semiconductor element 4 is mounted on the flexible wiring board FC having a multilayer structure via the ACF 7 through the four layers, the pressure by the heating tool 8 is deprived by each layer, the adhesion of the conductive particles of the ACF 7 is reduced, and the conduction is reduced. There was a problem that stability could not be obtained. Further, when the pattern shape of the wiring 2B on the back surface side is not uniform in the mounting region 3, the pressure by the heating tool 8 is not constant, and thus there is a problem that the adhesion of the conductive particles of the ACF 7 is biased. . In addition, a continuity test by energization is performed after mounting. However, depending on the degree of unevenness of adhesion, even if continuity is recognized during the continuity test, the continuity test may not be performed thereafter due to vibration or aging degradation. In addition, a power source, a measuring instrument, and the like are necessary for the continuity test, and the labor and cost are problematic when conducting a complete test especially in the case of mass-produced products.
[0006]
Accordingly, an object of the present invention is to uniformly adhere a paste-like or film-like adhesive with sufficient pressure when a semiconductor element is thermocompression bonded to a flexible wiring board having a multilayer structure using a paste-like or film-like adhesive. Accordingly, it is an object to provide a flexible wiring board with high reliability and a method for mounting a semiconductor element on the board.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the flexible wiring board according to claim 1 of the present invention has at least a wiring layer having electrode terminals on both the front and back surfaces of the film substrate, and a semiconductor element is mounted on the mounting region on the film substrate. In a flexible wiring board having a multilayer structure in which the connection terminal of the semiconductor element is electrically connected to the wiring layer by being heat-pressed using a paste-like or film-like adhesive, mounting in the mounting area of the film substrate. A region on the back surface side of the semiconductor element formed is formed with a region where the wiring layer is not disposed with an area equal to or larger than the bottom area of the semiconductor element.
[0008]
According to the present invention, on the back surface side of the mounting area where the semiconductor element is mounted, the area where the wiring layer is not disposed is formed in an area equal to or larger than the bottom area of the semiconductor element. When mounting by thermocompression bonding, pressure is not absorbed by the wiring layer on the back surface side, and the connection reliability of mounting of the semiconductor element can be improved.
[0009]
Moreover, the flexible wiring board according to claim 2 of the present invention is based on the invention according to claim 1, and the film substrate is positioned at a position of a semiconductor element to be mounted or a position of a connection terminal of the semiconductor element to be mounted. However, it is transparent so that it can confirm from the area | region where the said wiring layer is not distribute | arranged. Here, when the paste-like or film-like adhesive is an anisotropic conductive film (ACF), the film substrate is transparent so that the conductive particles in the adhesive can be confirmed from the region where the wiring layer is not disposed. It is also good.
[0010]
According to this invention, after mounting the semiconductor element, the position of the semiconductor element, the position of the connection terminal of the semiconductor element from the back side of the film substrate, or the conductive particles of the adhesive in the case of the anisotropic conductive film (ACF) Can be confirmed. Therefore, the connection part can be confirmed by a simple appearance inspection before conducting a conduction test by energization.
[0011]
According to a third aspect of the present invention, there is provided a method for mounting a semiconductor element on a flexible wiring board. When the semiconductor element is mounted on the flexible wiring board according to the first or second aspect by thermocompression bonding, A fixing plate having the same area and the same or larger thickness as that of the region is fitted into a region that is not disposed, and after applying heat and pressure, the fixing plate is removed.
[0012]
According to the present invention, since the fixing plate is fitted into the area where the wiring layer is not disposed and heat and pressure are applied, the pressure applied to the semiconductor element can be reliably received by the fixing plate without any gaps. Therefore, when the flexible wiring board according to claim 1 or 2 is mounted and heated and pressurized while being fixed to a transfer stage having the same shape as the conventional one, the thickness of the wiring layer etc. on the back side is reduced. Compared with the case where a gap is formed between the semiconductor element and the transfer stage, the method of the present invention can more effectively apply pressure to the semiconductor element.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional structure diagram of the flexible wiring board of the present embodiment, and FIG. 2 is a diagram showing a structure in which a semiconductor element is mounted on the flexible wiring board of the present embodiment. In the flexible wiring board FC of the present embodiment, metal wirings 2A and 2B made of copper or the like are formed in a predetermined shape on the front and back surfaces of the film substrate 1 formed of a resin film such as polyimide, and through holes. 5 and through-hole plating 5a, the wirings 2A and 2B on the front and back surfaces are appropriately conducted. The film substrate 1 is translucent, and the wiring 2A on the front side can be confirmed from the back side. The film substrate 1 does not need to be completely colorless and transparent, and may be transparent to the extent that desired matters can be confirmed with the naked eye or a microscope from the back side. The desired matter is the position of the semiconductor element to be mounted, the position of the connection terminal of the semiconductor element to be mounted, or the paste-like or film-like adhesive is an anisotropic conductive film (ACF). In the case of the semiconductor element 4 with protruding electrodes (bumps), which will be described later, the protruding particles are conductive particles in the adhesive. In addition, in order to make it easy to confirm these desired matters, it is possible to color the object. The film substrate 1 can be made nearly transparent by reducing the thickness of the film substrate 1 (for example, about 25 μm). In the mounting area 3 on the film substrate 1, an electrode terminal P is formed by wiring 2A, and a semiconductor element 4 such as an IC or LSI is mounted. Further, a protective agent (a cover film made of urethane solder resist, polyimide, or the like) 6 is disposed to protect the wirings 2A and 2B.
[0014]
Then, on the back side of the mounting region 3 where the semiconductor element 4 is mounted, a window 9 from which the wiring 2B on the back side and the protective agent 6 are removed is formed so as to be a rectangle having a slightly larger area than the semiconductor element 4. ing. The window 9 is a region where a wiring layer, a protective layer, or the like on the back surface of the film substrate 1 is not disposed, and is formed in a rectangular shape. In the present embodiment, the length of one side of the rectangular window 9 is about 1.5 to 2 times the length of one side of the semiconductor element 4 mounted on the back side of the window 9. 4 is formed so that a gap is formed between the side of the window 9 and the side of the semiconductor element 4, but on the back surface of the window 9, the inside of the window 9 (enclosed by the side of the window 9). As long as the semiconductor element 4 can be fitted in the portion, the size may be the same, and the shape does not matter. In the case of the semiconductor element 4 with bump electrodes (bumps), it is possible to form the window 9 only on the bumps to be connected.
[0015]
The semiconductor element 4 is mounted by thermocompression bonding using an anisotropic conductive film (ACF) 7 which is a paste-like or film-like adhesive. ACF7 is obtained by dispersing conductive particles in a thermoplastic or thermosetting resin film. Specifically, the conductive particles are dispersed in an insulating adhesive, and are conductive in the thickness direction (connection direction) and insulative in the surface direction (lateral direction), and are composed of conductive particles and an adhesive. Is done. The connection is basically thermocompression bonding, in which the conductive particles are in charge of the electrical connection function and the adhesive is in charge of the function of maintaining the pressure contact state. An insulating film is applied to the surface of the conductive particles, and when the pressure is applied in a specific direction, the insulating film is partially destroyed. As the material of the insulating film, a lot of resin is used. In addition, there is also one that heat-presses so as to crush the conductive particles. In the case of ACF7, the paste-like or film-like adhesive used in the present invention does not limit the configuration of the conductive particles and the adhesive, and any general-purpose adhesive can be used as long as it is used by thermocompression bonding. ACF may be sufficient, and in cases other than ACF, a conductive adhesive (conductive paste) or cream solder may be used.
[0016]
When the semiconductor element 4 is mounted, the flexible wiring board FC is fixed to the transfer stage S as shown in FIG. A fixed plate 10 having the same shape as the window 9 and a size that can be fitted into the window 9 is attached to the transfer stage S in advance, and the flexible wiring board FC is fixed so that the fixed plate 10 is fitted into the window 9. Next, ACF 7 is applied to the mounting region 3, the semiconductor element 4 is aligned, and heated and pressed by the heating tool 8 from above (the back side of the mounting surface of the semiconductor element 4). Thereby, the conductive particles of the ACF 7 are in close contact between the connection terminal 4a of the semiconductor element 4 and the electrode terminal P, and the connection terminal 4a and the electrode terminal P are electrically connected. Specifically, when the semiconductor element 4 is mounted, only the electrode terminal P and the film substrate 1 by the wiring 2 </ b> A are interposed between the fixing plate 10 and the semiconductor element 4 in addition to the ACF 7. For this reason, the pressure by the heating tool 8 is not absorbed by the wiring 2B and the protective agent 6 on the back surface side, and the pressure is applied to the semiconductor element 4 without deviation. As a result, pressure is applied to the conductive particles without being biased, and the insulating film of the conductive particles is evenly broken, or the elasticity (restorability) of the conductive particles is effectively exhibited. Therefore, the conductive particles of the ACF 7 are in close contact with the connection terminal 4a and the electrode terminal P of the semiconductor element 4 without being biased, and stable conduction is obtained.
[0017]
In order to effectively obtain pressure by the heating tool 8, the thickness of the fixing plate 10 needs to be at least larger (thick) than the depth of the window 9. Although the fixing plate 10 of the present embodiment is made of stainless steel, it can sufficiently withstand the heat and pressure generated by the heating tool 8 and has sufficient hardness so as not to absorb the pressure generated by the heating tool 8. Any other metal, ceramic, or resin may be used. In addition, since the fixing plate 10 is manufactured in accordance with the shape of the window 9, it is preferable that the fixing plate 10 be attached to and detached from the conventional transfer stage S (preferably to be detachable). Note that it is possible to form the fixed plate 10 as a transfer stage S integrated with the transfer stage, depending on the implementation.
[0018]
As described above, in the present embodiment, the case where the semiconductor element 4 is mounted on the flexible wiring board FC has been described as an example. However, the present invention can also be applied to the case where other electronic elements such as capacitors and electronic components are mounted.
[0019]
【The invention's effect】
In the flexible wiring board having a multilayer structure of the present invention, a region where a wiring layer or the like is not disposed is formed on the back surface side of the mounting region where the semiconductor element is mounted, in the same area as or larger than the bottom area of the semiconductor element. Therefore, when mounting a semiconductor element by thermocompression bonding via a paste or film adhesive, sufficient pressure can be applied without absorbing the pressure on the wiring layer on the back side, and connection reliability Can be increased. Further, by bringing the film substrate closer to transparency, the position of the semiconductor element, the position of the connection terminal of the semiconductor element, and the like can be confirmed from the back side of the film substrate after the semiconductor element is mounted. Therefore, before conducting a continuity test by energization, it is possible to select a part with a good mounting state by checking the connection part by a simple visual inspection, and only those with a high probability of a good mounting state. Can be subjected to a continuity test.
[0020]
Further, according to the method for mounting a semiconductor element of the present invention, the pressure applied to the semiconductor element does not go through a gap by inserting a fixing plate in a region where the wiring layer and the protective layer are not arranged and applying heat and pressure. It can be reliably received by a fixed plate. Therefore, when mounting the flexible wiring board according to claim 1 or 2 and fixing it to the transfer stage having the same shape as that of the prior art and applying heat and pressure, the thickness of the wiring layer etc. on the back side can be reduced. As compared with the case where there is a gap between the transfer stage and the transfer stage, the semiconductor element mounting method of the present invention can more effectively apply pressure to the semiconductor element, and a highly reliable flexible wiring board can be obtained. .
[0021]
[Brief description of the drawings]
FIG. 1 is a cross-sectional structure diagram of a flexible wiring board in an embodiment of the present invention. FIG. 2 is a diagram showing a mounting structure of a semiconductor element in an embodiment of the present invention. FIG. 4 is a diagram showing a mounting structure of a semiconductor element in a conventional form.
DESCRIPTION OF SYMBOLS 1 Film substrate 2A, 2B Wiring 3 Mounting area | region 4 Semiconductor element 4a Connection terminal 5 Through-hole 5a Through-hole plating 6 Protective agent 7 ACF
8 Heating tool 9 Window (area where wiring layer and protective layer are not arranged)
10 Fixed plate FC Flexible wiring board P Electrode terminal S Transfer stage

Claims (3)

フィルム基板の表裏両面に、電極端子を有する配線層を少なくとも有し、フィルム基板上の実装領域に半導体素子が、ペースト状若しくはフィルム状の接着剤を用いて加熱圧着されることにより、半導体素子の接続端子が配線層と電気的に導通している多層構造のフレキシブル配線基板において、
上記フィルム基板上の実装領域において実装された半導体素子の裏面側となる部分には、半導体素子の底面積と同じか又は大きい面積にて配線層が配されない領域が形成されていることを特徴とするフレキシブル配線基板。
At least wiring layers having electrode terminals are provided on both the front and back surfaces of the film substrate, and the semiconductor element is thermally bonded to the mounting region on the film substrate using a paste-like or film-like adhesive. In a flexible wiring board having a multilayer structure in which the connection terminal is electrically connected to the wiring layer,
In the mounting region on the film substrate, a portion on the back surface side of the semiconductor element mounted is formed with a region where the wiring layer is not disposed in the same area as or larger than the bottom area of the semiconductor element. Flexible wiring board.
前記フィルム基板は、実装される半導体素子の位置、又は、実装される半導体素子の接続端子の位置が、前記配線層が配されない領域から確認できるほどに透明であることを特徴とする請求項1記載のフレキシブル配線基板。2. The film substrate is transparent so that a position of a semiconductor element to be mounted or a position of a connection terminal of the semiconductor element to be mounted can be confirmed from a region where the wiring layer is not disposed. The flexible wiring board as described. 請求項1又は請求項2記載のフレキシブル配線基板に前記半導体素子を加熱圧着により実装するに際し、前記配線層が配されない領域に、前記領域と同じ面積かつ同じか又は大きい厚さの固定板をはめ込み、加熱加圧を施した後に、固定板を外すことを特徴とする半導体素子の実装方法。When the semiconductor element is mounted on the flexible wiring board according to claim 1 by thermocompression bonding, a fixing plate having the same area and the same or larger thickness as that of the area is fitted in the area where the wiring layer is not disposed. A method for mounting a semiconductor element, wherein the fixing plate is removed after applying heat and pressure.
JP2002004592A 2002-01-11 2002-01-11 Flexible wiring board and semiconductor element mounting method Expired - Fee Related JP3743716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002004592A JP3743716B2 (en) 2002-01-11 2002-01-11 Flexible wiring board and semiconductor element mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002004592A JP3743716B2 (en) 2002-01-11 2002-01-11 Flexible wiring board and semiconductor element mounting method

Publications (2)

Publication Number Publication Date
JP2003209141A JP2003209141A (en) 2003-07-25
JP3743716B2 true JP3743716B2 (en) 2006-02-08

Family

ID=27643888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002004592A Expired - Fee Related JP3743716B2 (en) 2002-01-11 2002-01-11 Flexible wiring board and semiconductor element mounting method

Country Status (1)

Country Link
JP (1) JP3743716B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862333B2 (en) * 2004-09-30 2012-01-25 リコープリンティングシステムズ株式会社 Thin film forming apparatus and thin film forming method
CN203932096U (en) 2011-02-18 2014-11-05 3M创新有限公司 Flexible light-emitting semiconductor device and for supporting and be electrically connected the flexible article of light-emitting semiconductor device
WO2013025402A2 (en) * 2011-08-17 2013-02-21 3M Innovative Properties Company Two part flexible light emitting semiconductor device
US10014456B2 (en) 2014-03-25 2018-07-03 3M Innovative Properties Company Flexible circuits with coplanar conductive features and methods of making same
WO2017040478A1 (en) * 2015-09-02 2017-03-09 3M Innovative Properties Company Flexible circuits for mounting light emitting semiconductor device
JP7016147B2 (en) * 2017-11-29 2022-02-04 深▲セン▼通鋭微電子技術有限公司 Chip-on-film semiconductor device
CN114173494A (en) * 2021-12-06 2022-03-11 博罗县精汇电子科技有限公司 Method for manufacturing multilayer flexible circuit board with inner layer needing to be pasted

Also Published As

Publication number Publication date
JP2003209141A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
KR20040031642A (en) A cof semiconductor device and a manufacturing method for the same
JP4675178B2 (en) Crimping method
JP3743716B2 (en) Flexible wiring board and semiconductor element mounting method
JP3725300B2 (en) ACF junction structure
JP2000277649A (en) Semiconductor and manufacture of the same
TW447053B (en) Semiconductor apparatus and its manufacturing method, circuit board and electronic machine
JP4133756B2 (en) Connection method of printed wiring board
JP4123321B2 (en) Wiring board bonding method
JP2001119116A (en) Connecting structure for liquid crystal display device
JP2001223465A (en) Connection method of printed-wiring board and connection structure
JP3225800B2 (en) Semiconductor device
JPH11135909A (en) Electronic equipment and flexible wiring board
JPH11112150A (en) Multilayered substrate and its manufacture
JP5679266B2 (en) Printed wiring board connection structure, wiring board connector and electronic device
JP3813766B2 (en) Printed circuit board connection structure
JPH10261852A (en) Heat-sealed connector and flexible wiring board
JPH0618909A (en) Flexible circuit board with electric conductive anisotropic film
KR100275440B1 (en) Method and jig for mounting components on printed circuit board using conductive film
JPH0636613A (en) Joint material for electronic parts and electronic equipment using the material
JP3604250B2 (en) Semiconductor device package
JP2000332157A (en) Electronic part mounting member
JP2859036B2 (en) Hybrid integrated circuit device
JP3099767B2 (en) Electronic component assembly and method of manufacturing the same
JP3598058B2 (en) Circuit board
JPH10261853A (en) Structure of substrate terminal, tape carrier package provided with it, and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051111

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees