JPH1065332A - Anistropic conductive thin film and method for connection of polymer board using the same - Google Patents

Anistropic conductive thin film and method for connection of polymer board using the same

Info

Publication number
JPH1065332A
JPH1065332A JP23589196A JP23589196A JPH1065332A JP H1065332 A JPH1065332 A JP H1065332A JP 23589196 A JP23589196 A JP 23589196A JP 23589196 A JP23589196 A JP 23589196A JP H1065332 A JPH1065332 A JP H1065332A
Authority
JP
Japan
Prior art keywords
adhesive layer
conductive film
anisotropic conductive
conductive particles
polymer substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23589196A
Other languages
Japanese (ja)
Other versions
JP3256659B2 (en
Inventor
Takeshi Kozuka
武 小塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP23589196A priority Critical patent/JP3256659B2/en
Publication of JPH1065332A publication Critical patent/JPH1065332A/en
Application granted granted Critical
Publication of JP3256659B2 publication Critical patent/JP3256659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Landscapes

  • Non-Insulated Conductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an anistropic conductive films(ACF) for good electrical connection in a structure, wherein a flexible board is connected to a polymer board by thermo-compression bonding and a method for connecting a flexible board to thin film electrode patterns of the anistropic conductive films(ACF) by thermo-compression bonding. SOLUTION: An anistropic conductive film is provided with conductive particles dispersed in an adhesive layer, and a flexible wiring board for lead out is electrically and mechanically connected to a polymer board with wiring electrodes for lead out formed thereon. In this case, the total thickness of the adhesive layer (Ta) and the initial diameter of the conductive particles (D) satisfy the following formulas. D>Ta.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、異方性導電薄膜、該薄
膜により、ポリマー基板上に形成された配線電極、特に
液晶表示パネル基板の引き出し電極とフレキシブル基板
の端子とを接続する実装方法、および該実装方法により
作製された実装構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive thin film, and a mounting method for connecting a wiring electrode formed on a polymer substrate by the thin film, particularly a lead electrode of a liquid crystal display panel substrate and a terminal of a flexible substrate. And a mounting structure manufactured by the mounting method.

【0002】[0002]

【従来技術】液晶表示パネルの引き出し電極とフレキシ
ブル基板の端子とを異方性導電膜により接続する実装構
造において、フレキシブル基板の接続端子が基板材から
の突出量が1×10-2mm以下に設定し、かつ異方性導
電膜の膜厚を導電粒子径に等しく設定されたものは知ら
れている(特開平7−175078)。
2. Description of the Related Art In a mounting structure in which a lead electrode of a liquid crystal display panel and a terminal of a flexible substrate are connected by an anisotropic conductive film, the connection terminal of the flexible substrate has a protrusion of 1 × 10 −2 mm or less from a substrate material. It is known that the thickness of the anisotropic conductive film is set to be equal to the diameter of the conductive particles (JP-A-7-175078).

【0003】[0003]

【発明が解決しようとする課題】ポリマー基板上の薄膜
電極(ITO等の透明導電膜)パターンあるいはフレキ
シブル配線板〔TCP(Tape Carrier P
ackage)を含む。以下、同じ。〕を異方性導電膜
(ACF)により熱圧着接続を行う場合において、図2
に示すように、ポリマー基板10にへこみ9が発生する
(透明導電膜13にも若干クラックも入る)とともに、
導電粒子8が異方性導電膜(ACF)4の接着剤層2を
押しのけて突き破ることができず、薄い接着剤層12が
導電粒子8と透明導電膜13の間に残るため、透明導電
膜13との良好な電気的接続を確保することができなか
った。本発明は、前記ポリマーとTCPあるいはフレキ
シブル基板を基板熱圧着する構造において、良好な電気
的接続を確保するための異方性導電膜(ACF)および
該異方性導電膜(ACF)を利用した、ポリマー基板上
の薄膜電極パターンへTCPあるいはフレキシブル基板
を熱圧着する方法を提供することにある。
SUMMARY OF THE INVENTION A thin film electrode (transparent conductive film such as ITO) pattern on a polymer substrate or a flexible wiring board [TCP (Tape Carrier P
package). same as below. In the case of performing thermocompression bonding using an anisotropic conductive film (ACF), FIG.
As shown in (1), dents 9 are generated in the polymer substrate 10 (the transparent conductive film 13 is also slightly cracked), and
Since the conductive particles 8 cannot push through the adhesive layer 2 of the anisotropic conductive film (ACF) 4 and break through, and the thin adhesive layer 12 remains between the conductive particles 8 and the transparent conductive film 13, the transparent conductive film No good electrical connection with No. 13 could be secured. The present invention utilizes an anisotropic conductive film (ACF) and an anisotropic conductive film (ACF) for ensuring good electrical connection in a structure in which the polymer and a TCP or a flexible substrate are thermocompression bonded to a substrate. Another object of the present invention is to provide a method for thermocompression bonding a TCP or a flexible substrate to a thin film electrode pattern on a polymer substrate.

【0004】[0004]

【課題を解決するための手段】異方性導電膜(ACF)
の接着剤と導電粒子を混ぜ合わせたものをセパレータ1
上に印刷し、導電粒子を分散、好ましくは均一に分散し
た接着剤層2を形成するに際し、接着剤層厚Taを導電
粒子の初期粒子径Dより薄くすることにより、導電粒子
3上の接着剤層2の膜厚を薄くできる。このため、図3
および4に示すように、ポリマー基板10上のITO等
薄膜電極13へフレキシブル配線板5を熱圧着する際
に、導電粒子8が接着剤層2を突き破りやすくなり、か
つ、導電粒子8と薄膜電極(ITO)13間の境界14
には接着剤がほとんど存在しないため、良好な電気的接
続が得られる。
[MEANS FOR SOLVING THE PROBLEMS] Anisotropic conductive film (ACF)
A mixture of the adhesive and the conductive particles is used as a separator 1
In forming the adhesive layer 2 on which the conductive particles are dispersed, preferably uniformly dispersed, by printing on the adhesive particles, the adhesive layer thickness Ta is made smaller than the initial particle diameter D of the conductive particles, whereby the adhesion on the conductive particles 3 is reduced. The thickness of the agent layer 2 can be reduced. For this reason, FIG.
As shown in FIGS. 4 and 4, when the flexible wiring board 5 is thermocompression-bonded to the thin film electrode 13 such as ITO on the polymer substrate 10, the conductive particles 8 easily break through the adhesive layer 2, and the conductive particles 8 and the thin film electrode (ITO) Boundary 14 between 13
Has almost no adhesive, so that a good electrical connection can be obtained.

【0005】また、図5に示すように、フレキシブル配
線板5(TCPを含む)の電極7の膜厚(Tf)は、通
常7〜35μmであるのに対し、ポリマー基板10側の
薄膜電極13の膜厚(Tg)は0.1μm程度であるた
め、フレキシブル配線板5と薄膜電極付きポリマー基板
11の間に異方性導電膜(ACF)4を挾み両者を熱圧
着して接続する場合、接続部電極段差については、ほぼ
フレキシブル配線板5の電極7の膜厚(Tf)のみを考
慮すれば良い。そして、フレキシブル配線板5と薄膜電
極付きポリマー基板11の熱圧着後の剥離強度向上のた
めには、フレキシブル配線板5の電極間ギャップ部を異
方性導電膜4により埋めることが好ましいので、この電
極膜厚に対する接着剤膜厚の下限を求めると、フレキシ
ブル配線板5の電極7の膜厚(Tf)が例えば18μm
で、パターン幅:ギャップの比が例えば1:1で、初期
粒子径例えばφ21μmの導電粒子8が熱圧着により1
/C例えば1/3まで潰れたとすると、以下の関係を満
足することが好ましい。
As shown in FIG. 5, the thickness (Tf) of the electrode 7 of the flexible wiring board 5 (including TCP) is usually 7 to 35 μm, while the thickness of the thin film electrode 13 on the polymer substrate 10 side is small. Since the film thickness (Tg) is about 0.1 μm, the anisotropic conductive film (ACF) 4 is sandwiched between the flexible wiring board 5 and the polymer substrate 11 with thin film electrodes, and both are connected by thermocompression bonding. As for the connection electrode step, almost only the film thickness (Tf) of the electrode 7 of the flexible wiring board 5 should be considered. In order to improve the peel strength of the flexible wiring board 5 and the polymer substrate 11 with thin-film electrodes after thermocompression bonding, it is preferable to fill the gap between the electrodes of the flexible wiring board 5 with the anisotropic conductive film 4. When the lower limit of the adhesive film thickness with respect to the electrode film thickness is obtained, the film thickness (Tf) of the electrode 7 of the flexible wiring board 5 is, for example, 18 μm.
The conductive particles 8 having a pattern width: gap ratio of, for example, 1: 1 and an initial particle diameter of, for example, φ21 μm are 1
/ C, for example, if it is crushed to 1/3, it is preferable to satisfy the following relationship.

【数4】21μm(D)>Ta≧21/3μm(D/C)+
18/2μm(Tf×A)=16μm (式中、Aは前記に同じ)
## EQU4 ## 21 μm (D)> Ta ≧ 21/3 μm (D / C) +
18/2 μm (Tf × A) = 16 μm (where A is the same as above)

【0006】さらに接着剤層厚を大きくする場合、前記
D≧Taという関係を満足させるためには導電粒子径を
大きくする必要があるが、図6に示すように、接着剤層
を接着剤層15および接着剤層16と2層構造とし、表
面側の接着剤層16に導電粒子3を分散させることによ
り、全接着剤層厚を厚くしながら導電粒子3と薄膜電極
(ITO)13の間の境界14に接着剤層16はほとん
ど残らないため、フレキシブル配線板電極膜厚が厚くな
っても導電粒子径を大きくすることなく、電極ギャップ
間を埋め込むことができ、ポリマー基板10への良好な
微細ピッチ接続が可能となる。そして図5で述べたよう
に、フレキシブル配線板と薄膜電極付きポリマー基板を
異方性導電膜(ACF)を介して熱圧着して接続する場
合、フレキシブル配線板の電極の膜厚(Tf)のみを考
慮すれば良いので、接着剤層を1層として、この電極膜
厚に対する接着剤膜厚の下限を求めると、例えばフレキ
シブル配線板の電極膜厚が35μmでパターン幅:ギャ
ップ=1:1の場合に、D>Taを満足するためには、
導電粒子の初期粒子径Dは、D>D/3+35/2によ
り、D>26.25μmとする必要があるが、2層構造
とすれば、26.25μm以下の粒子を使用することが
できる。例えば2層目の層厚を16μmとすれば、16
μmの粒子を使用することができる。前記のように接着
剤層を複数層で構成する場合、2層以上の層構成であっ
ても良いが特に1層目と2層目の接着剤組成を変えるこ
とにより、それぞれの被着体の接着に適した組成を選択
することができ、各界面での接着力を向上させることが
できる。
In order to further increase the thickness of the adhesive layer, it is necessary to increase the diameter of the conductive particles in order to satisfy the relationship of D ≧ Ta. However, as shown in FIG. 15 and the adhesive layer 16 to form a two-layer structure, and by dispersing the conductive particles 3 in the adhesive layer 16 on the surface side, the thickness between the conductive particles 3 and the thin film electrode (ITO) 13 is increased while increasing the total adhesive layer thickness. Since the adhesive layer 16 hardly remains on the boundary 14 of the flexible wiring board, the gap between the electrodes can be buried without increasing the diameter of the conductive particles even if the film thickness of the flexible wiring board electrode becomes large, and the good adhesion to the polymer substrate 10 can be achieved. Fine pitch connection becomes possible. As described in FIG. 5, when the flexible wiring board and the polymer substrate with thin-film electrodes are connected by thermocompression bonding via an anisotropic conductive film (ACF), only the film thickness (Tf) of the electrode of the flexible wiring board is used. Therefore, when the adhesive layer is taken as one layer and the lower limit of the adhesive film thickness with respect to this electrode film thickness is obtained, for example, when the electrode film thickness of the flexible wiring board is 35 μm and the pattern width: gap = 1: 1. In this case, in order to satisfy D> Ta,
According to D> D / 3 + 35/2, the initial particle diameter D of the conductive particles needs to be D> 26.25 μm. However, in the case of a two-layer structure, particles of 26.25 μm or less can be used. For example, if the thickness of the second layer is 16 μm, 16
μm particles can be used. When the adhesive layer is composed of a plurality of layers as described above, the adhesive layer may be composed of two or more layers. Particularly, by changing the adhesive composition of the first layer and the second layer, each of the adherends can be formed. A composition suitable for bonding can be selected, and the bonding strength at each interface can be improved.

【0007】前記図3〜6に示した異方性導電膜(AC
F)による、ポリマー基板(表示素子)とフレキシブル
配線板(TCP等)の熱圧着は、例えば図7に示すよう
な工程に従って行うことができるが、導電粒子突出側面
(セパレータの逆側)をポリマー基板側に持ってくるこ
とにより、熱圧着時に、前記熱圧着時に導電粒子が接着
剤層を突き破りやすくすることができる。また、前記図
3〜6に示す異方性導電膜において、ポリマー基板とフ
レキシブル配線板(TCP等)を本圧着接続前に、本圧
着以上の加圧力にて異方性導電膜をポリマー基板にあら
かじめ圧接することにより、ポリマー基板の軟化なしの
状態で導電粒子が接着剤層を突き破ることができ、良好
な接続を得ることができる。
The anisotropic conductive film (AC) shown in FIGS.
The thermocompression bonding between the polymer substrate (display element) and the flexible wiring board (TCP or the like) according to F) can be performed, for example, according to the process shown in FIG. By bringing it to the substrate side, the conductive particles can easily break through the adhesive layer during the thermocompression bonding. In addition, in the anisotropic conductive film shown in FIGS. 3 to 6, the anisotropic conductive film is applied to the polymer substrate with a pressing force equal to or more than the final compression before the final connection of the polymer substrate and the flexible wiring board (such as TCP). By pre-pressing, the conductive particles can break through the adhesive layer without softening of the polymer substrate, and a good connection can be obtained.

【0008】図8では、異方性導電膜(ACF)をポリ
マー基板10に貼り付ける工程における圧接した状況を
示している。この圧接条件としては、例えば本圧着時の
加圧力が30kgf/cm2とすると、本圧着接続前の
加圧力は、30〜40kgf/cm2、温度は常温〜8
0℃が適している。図9では、本発明の別の構成の異方
性導電膜(ACF)を示している。この異方性導電膜
は、ポリマー基板を熱圧着する側に導電粒子表面が露出
しているため、熱圧着時にポリマー基板上のITO等薄
膜電極との接触に際し接着剤等の介在するものを最初か
ら無くすることができ、良好な接続が得られる。
FIG. 8 shows a state in which the anisotropic conductive film (ACF) is pressed against the polymer substrate 10 in the step of attaching it. As for the pressure contact conditions, for example, assuming that the pressing force at the time of the final pressure bonding is 30 kgf / cm 2 , the pressing force before the final pressure bonding connection is 30 to 40 kgf / cm 2 , and the temperature is normal temperature to 8 ° C.
0 ° C. is suitable. FIG. 9 shows an anisotropic conductive film (ACF) having another configuration of the present invention. Since the surface of the conductive particles of this anisotropic conductive film is exposed on the side where the polymer substrate is thermocompression-bonded, the first one that has an adhesive or the like interposed when contacting a thin film electrode such as ITO on the polymer substrate during thermocompression bonding. And good connection can be obtained.

【0009】なお、本発明の異方性導電膜は、前記のよ
うな配線電極が形成されたポリマー基板とフレキシブル
配線板を接続する場合に特に有効であるが、そのような
接続の場合に限られず、接続する配線間を電気的および
機械的に接続する技術分野に広く用いることができ、例
えば液晶表示パネル等のガラス基板上の透明導電膜、サ
ーマルプリンター用薄膜ヘッド電極、TAB用チップの
アウターリード等の接続に用いることができる。
The anisotropic conductive film of the present invention is particularly effective for connecting a flexible wiring board to a polymer substrate on which the above-mentioned wiring electrodes are formed, but is not limited to such connection. However, it can be widely used in the technical field of electrically and mechanically connecting wirings to be connected, for example, a transparent conductive film on a glass substrate such as a liquid crystal display panel, a thin film head electrode for a thermal printer, and a TAB chip outer. It can be used for connecting leads and the like.

【0010】このような異方性導電膜は、例えば図10
に示す工程によって得られる。 (a)セパレータに接着剤のみを所定厚みに印刷し、接
着剤層2を形成する。 (b)接着剤が完全に乾燥する前に導電粒子を接着剤層
2上に配置する。この導電粒子3の配置方法としては、
エアー等による吹き付けにより行う。導電粒子3の配置
後、圧接手段18により導電粒子3を接着剤層2中に埋
め込み製作する。導電粒子3の埋め込み方法としては、
セパレータ下面から圧接手段までの総厚で管理すればよ
く、圧接手段としてはローラー等でも良い。 (c)(a)および(b)工程を経て得られた完成品を
示す。
[0010] Such an anisotropic conductive film is, for example, shown in FIG.
Are obtained by the following steps. (A) Only the adhesive is printed on the separator to a predetermined thickness to form the adhesive layer 2. (B) Disposing conductive particles on the adhesive layer 2 before the adhesive is completely dried. As a method of arranging the conductive particles 3,
It is performed by spraying with air or the like. After the conductive particles 3 are arranged, the conductive particles 3 are buried in the adhesive layer 2 by the pressing means 18 and manufactured. As a method for embedding the conductive particles 3,
The thickness may be controlled by the total thickness from the lower surface of the separator to the pressing means, and the pressing means may be a roller or the like. (C) The finished product obtained through the steps (a) and (b) is shown.

【0011】図9では、図6に示した異方性導電膜(A
CF)の別の製造方法を示す。この異方性導電膜(AC
F)の製造方法は、接着剤への導電粒子の配置と埋め込
みを同時に行う異方性導電膜の製造方法であり、セパレ
ータ1の下面と転写手段(ローラー)19までのギャッ
プを管理し、転写手段(ローラー)19上に配置された
導電粒子3を転写、圧接により接着剤層2中へ導電粒子
3を埋め込む方法である。転写用手段19への導電粒子
3の配置方法としては、 転写用手段を多孔質部材とし導電粒子を吸着固定す
る、あるいは 導電粒子に着磁させ、転写用手段の磁気により固定す
る等の手段が挙げられる。
FIG. 9 shows an anisotropic conductive film (A) shown in FIG.
3 shows another method for producing CF). This anisotropic conductive film (AC
The method F) is a method for producing an anisotropic conductive film in which the conductive particles are arranged and embedded in the adhesive at the same time, and the gap between the lower surface of the separator 1 and the transfer means (roller) 19 is managed and transferred. This is a method in which the conductive particles 3 arranged on the means (roller) 19 are transferred, and the conductive particles 3 are embedded in the adhesive layer 2 by pressure contact. Examples of a method for disposing the conductive particles 3 on the transfer means 19 include a method in which the transfer means is made of a porous member to attract and fix the conductive particles, or a method in which the conductive particles are magnetized and fixed by the magnetism of the transfer means. No.

【0012】以下、本発明の実施態様を示す。 1.導電粒子を接着剤層中に分散されてなる異方性導電
膜において、全接着剤層厚(Ta)および導電粒子の初
期粒子径(D)が、以下の関係を満足するものであるこ
とを特徴とする異方性導電膜。
Hereinafter, embodiments of the present invention will be described. 1. In an anisotropic conductive film in which conductive particles are dispersed in an adhesive layer, the total adhesive layer thickness (Ta) and the initial particle diameter (D) of the conductive particles satisfy the following relationship. Characteristic anisotropic conductive film.

【数5】D>Ta 2.外部引き出し用配線電極が形成されたポリマー基板
と外部引き出し用フレキシブル配線板とを熱圧着により
電気的および機械的に接続するのに使用する前記1の異
方性導電膜。 3.ポリマー基板が、液晶表示パネル基板である前記2
の異方性導電膜。 4.全接着剤層厚(Ta)、導電粒子の初期粒子径
(D)およびフレキシブル配線板電極膜厚(Tf)が以
下の関係を満足するものである前記2〜3の異方性導電
膜。
D> Ta 2. The anisotropic conductive film according to 1 above, which is used to electrically and mechanically connect the polymer substrate on which the external lead-out wiring electrodes are formed and the external lead-out flexible wiring board by thermocompression bonding. 3. The polymer substrate is a liquid crystal display panel substrate;
Anisotropic conductive film. 4. The anisotropic conductive film according to any one of the above 2 to 3, wherein the total adhesive layer thickness (Ta), the initial particle diameter (D) of the conductive particles, and the electrode thickness (Tf) of the flexible wiring board satisfy the following relationships.

【数6】D>Ta≧D×1/C+Tf×A 〔前式中、Aはフレキシブル配線板電極パターンピッチ
に対するギャップの比〕 5.接着剤層が2層以上の多層構造であり、かつポリマ
ー基板が圧着される側の表面接着剤層のみに導電粒子を
含み、また、該表面接着剤層厚(Tb)および導電粒子
径(D)が、以下の関係を満足するものである前記2な
いし4の異方性導電膜。
D> Ta ≧ D × 1 / C + Tf × A [where A is the ratio of the gap to the electrode pattern pitch of the flexible wiring board] The adhesive layer has a multilayer structure of two or more layers, and the conductive adhesive is contained only in the surface adhesive layer on the side where the polymer substrate is pressed, and the surface adhesive layer thickness (Tb) and the conductive particle diameter (D ) Satisfies the following relationship:

【数7】D≧Tb 6.接着剤層が2層であり、1層目と2層目とが異なっ
た組成で構成された前記5の異方性導電膜。 7.1層目と2層目が、それぞれの被着体の接着に適し
た組成のものである前記5ないし6の異方性導電膜。
(7) D ≧ Tb 5. The anisotropic conductive film according to 5 above, wherein the adhesive layer has two layers, and the first layer and the second layer have different compositions. 7. The anisotropic conductive film according to the above 5 or 6, wherein the first layer and the second layer are of a composition suitable for bonding the respective adherends.

【0013】8.接着剤層から突出した導電粒子の表面
層が露出している前記1ないし7の異方性導電膜。 9.接着剤層をセパレータ上に形成後、導電粒子を前記
接着剤層表面に配置し、次に導電粒子を圧接手段により
圧接し、少なくとも一部を接着剤層から突出した状態で
接着剤層中に埋め込むことを特徴とする前記8の異方性
導電膜の製造方法。 10.導電粒子の配置を、吹き付けによって行う前記9
の異方性導電膜の製造方法。
8. The anisotropic conductive film according to any one of 1 to 7, wherein a surface layer of the conductive particles protruding from the adhesive layer is exposed. 9. After the adhesive layer is formed on the separator, the conductive particles are arranged on the surface of the adhesive layer, and then the conductive particles are pressed against the adhesive layer by pressing means, and at least a part of the conductive particles is projected from the adhesive layer into the adhesive layer. 8. The method for producing an anisotropic conductive film according to the above item 8, wherein the method is embedded. 10. 9. The arrangement of the conductive particles is performed by spraying.
A method for producing an anisotropic conductive film.

【0014】11.接着剤層をセパレータ上に形成後、
転写手段に配置した導電粒子を、該転写手段により少な
くとも一部を接着剤層から突出した状態で接着剤層中に
埋め込むことを特徴とする前記8の異方性導電膜の製造
方法。 12.転写手段が転写用ローラである前記11の異方性
導電膜の製造方法。
11. After forming the adhesive layer on the separator,
8. The method for producing an anisotropic conductive film according to the above item 8, wherein the conductive particles arranged in the transfer means are embedded in the adhesive layer with at least a part of the conductive particles protruding from the adhesive layer by the transfer means. 12. 12. The method for producing an anisotropic conductive film according to the above item 11, wherein the transfer means is a transfer roller.

【0015】13.外部引き出し用配線電極が形成され
たポリマー基板とフレキシブル配線電極端子とを、前記
1ないし12の異方性導電膜により熱圧着して電気的お
よび機械的に接続する方法において、異方性導電膜の導
電粒子突出面側をポリマー基板に熱圧着することを特徴
とする熱圧着方法。 14.前記13の熱圧着方法で製造されたものであるこ
とを特徴とする外部引き出し用配線電極が形成されたポ
リマー基板とフレキシブル配線板との接続体。
13. A method for electrically and mechanically connecting the polymer substrate on which the external lead-out wiring electrodes are formed and the flexible wiring electrode terminals by thermocompression bonding using the above-mentioned 1 to 12 anisotropic conductive films; A thermocompression bonding method, wherein the conductive particle protruding surface side is thermocompression bonded to a polymer substrate. 14. 13. A connection body between a polymer substrate on which a wiring electrode for external lead-out is formed and a flexible wiring board, which is manufactured by the thermocompression bonding method of the above 13.

【0016】15.前記2ないし8の異方性導電膜の外
部引き出し用配線電極が形成されたポリマー基板への熱
圧着を、フレキシブル配線板が接続される本圧着接続前
に、異方性導電膜を本圧着時よりも低温、高加圧力にて
圧接することを特徴とする異方性導電膜とポリマー基板
の熱圧着方法。 16.熱圧着を軟化なしの状態で行う前記15の異方性
導電膜とポリマー基板の熱圧着方法。
15. The thermocompression bonding of the anisotropic conductive film of 2 to 8 to the polymer substrate on which the wiring electrode for external drawing is formed is performed before the actual compression bonding of the flexible wiring board. A thermocompression bonding method for an anisotropic conductive film and a polymer substrate, wherein the pressure bonding is performed at a lower temperature and a higher pressure. 16. 15. The thermocompression bonding method between the anisotropic conductive film and the polymer substrate, wherein the thermocompression bonding is performed without softening.

【0017】[0017]

【効果】【effect】

1.請求項1および2 ポリマー基板上のITO等薄膜電極への熱圧着接続時に
導電粒子が接着剤を突き破りやすくなり、良好な電気的
接続が得られる。 2.請求項2 フレキシブル配線板の電極間ギャップ部を異方性導電膜
接着剤で埋められることにより熱圧着後の剥離力向上が
図れるとともに、ポリマー基板上薄膜電極への良好な接
続が得られる。 3.請求項3 接着剤層を多層構造とすることで、接着剤膜厚を厚くし
ながらポリマー基板接続側の導電粒子上の接着剤膜厚を
薄くすることができるため、フレキシブル配線板電極膜
厚が厚くなっても導電粒子径を大きくすることなく電極
ギャップ間を埋め込むことができ、ポリマー基板への良
好な微細ピッチ接続が可能となる。 4.請求項4 接着剤組成を変えることにより、それぞれの被着体に適
した接着剤組成を選択することができ、それぞれの界面
での接着力を向上できる。 5.請求項5 導電粒子表面が露出しているため熱圧着時にポリマー基
板上のITO等薄膜電極との接触に際し介在するものを
最初から無くすことができ良好な接続が得られる。 6.請求項6および7 導電粒子突出側(セパレータの逆側)をポリマー基板側
に持ってくることにより、熱圧着時に導電粒子が接着剤
を突き破りやすくすることができる。 7.請求項8および9 ポリマー基板側接続面に導電粒子表面が露出している異
方性導電膜、および該異方性導電膜を簡単に製造でき
る。 8.請求項10 ポリマー基板の軟化なしの状態で導電粒子が接着剤層を
突き破ることができ、良好な接続を得ることができる。
1. Claims 1 and 2 During thermocompression connection to a thin film electrode such as ITO on a polymer substrate, the conductive particles easily break through the adhesive, and good electrical connection is obtained. 2. Claim 2 By filling the gap between the electrodes of the flexible wiring board with the anisotropic conductive film adhesive, the peeling force after thermocompression bonding can be improved, and good connection to the thin film electrode on the polymer substrate can be obtained. 3. Claim 3 Since the adhesive layer has a multilayer structure, the thickness of the adhesive on the conductive particles on the polymer substrate connection side can be reduced while the thickness of the adhesive is increased. Even when the thickness is increased, the gap between the electrodes can be buried without increasing the diameter of the conductive particles, and good fine pitch connection to the polymer substrate can be achieved. 4. Claim 4 By changing the adhesive composition, an adhesive composition suitable for each adherend can be selected, and the adhesive force at each interface can be improved. 5. [5] Since the surface of the conductive particles is exposed, an intervening one can be eliminated from the beginning upon contact with a thin film electrode such as ITO on the polymer substrate at the time of thermocompression bonding, and a good connection can be obtained. 6. Claims 6 and 7 By bringing the projecting side of the conductive particles (the opposite side of the separator) to the polymer substrate side, the conductive particles can easily break through the adhesive during thermocompression bonding. 7. Claims 8 and 9 An anisotropic conductive film in which the surface of conductive particles is exposed at the connection surface on the polymer substrate side, and the anisotropic conductive film can be easily manufactured. 8. (10) The conductive particles can break through the adhesive layer without softening of the polymer substrate, and a good connection can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の異方性導電膜の模式断面図である。FIG. 1 is a schematic sectional view of a conventional anisotropic conductive film.

【図2】図1の異方性導電膜を使用して、フレキシブル
配線板とポリマー基板とを熱圧着した接続体の模式断面
図である。
FIG. 2 is a schematic sectional view of a connector obtained by thermocompression bonding a flexible wiring board and a polymer substrate using the anisotropic conductive film of FIG. 1;

【図3】熱圧着時の異方性導電膜の断面模式図である。FIG. 3 is a schematic cross-sectional view of an anisotropic conductive film during thermocompression bonding.

【図4】本発明の異方性導電膜によるフレキシブル配線
板とポリマー基板の接続体の断面模式図である。
FIG. 4 is a schematic cross-sectional view of a connection body of a flexible wiring board and a polymer substrate using an anisotropic conductive film of the present invention.

【図5】フレキシブル配線板の一般的な電極厚さとポリ
マー基板の一般的な薄膜電極厚さを示す断面模式図であ
る。
FIG. 5 is a schematic sectional view showing a general electrode thickness of a flexible wiring board and a general thin film electrode thickness of a polymer substrate.

【図6】本発明の接着剤層が2層の異方性導電膜を示す
断面模式図である。
FIG. 6 is a schematic sectional view showing an anisotropic conductive film having two adhesive layers according to the present invention.

【図7】異方性導電膜によるポリマー基板とフレキシブ
ル配線板の熱圧着工程の説明図である。
FIG. 7 is an explanatory diagram of a thermocompression bonding step between a polymer substrate and a flexible wiring board using an anisotropic conductive film.

【図8】異方性導電膜をポリマー基板に貼り付ける工程
における両者の圧接状態を示す断面模式図である。
FIG. 8 is a schematic cross-sectional view showing a pressure-contact state between the two in a step of attaching an anisotropic conductive film to a polymer substrate.

【図9】ポリマー基板を熱圧着する側に導電粒子表面が
露出している異方性導電膜の断面模式図である。
FIG. 9 is a schematic cross-sectional view of an anisotropic conductive film in which conductive particle surfaces are exposed on the side where a polymer substrate is thermocompression-bonded.

【図10】図9の異方性導電膜を製造する工程の説明図
である。 (a)セパレーター上に形成した接着剤層を示す図であ
る。 (b)図1の接着剤層上に導電粒子を配置し、該粒子を
接着剤層中に埋め込みを行う工程を示す図である。 (c)(b)工程によって得られた完成品の断面模式図
である。
FIG. 10 is an explanatory diagram of a step of manufacturing the anisotropic conductive film of FIG. 9; (A) is a diagram showing an adhesive layer formed on a separator. FIG. 2 (b) is a view illustrating a step of arranging conductive particles on the adhesive layer of FIG. 1 and embedding the particles in the adhesive layer. (C) It is a cross-sectional schematic diagram of the finished product obtained by process (b).

【図11】図9の異方性導電膜を製造する別の工程の説
明図である。
FIG. 11 is an explanatory diagram of another process for manufacturing the anisotropic conductive film of FIG. 9;

【符号の説明】[Explanation of symbols]

1 セパレータ 2 接着剤層 3 導電粒子 4 異方性導電膜 5 フレキシブル配線板 6 フレキシブル配線板基板 7 電極 8 導電粒子(圧着による潰れ有り) 9 導電粒子による基板のへこみ 10 ポリマー基板 11 薄膜電極付きポリマー基板 12 導電粒子/ITO間の薄い接着剤層 13 薄膜電極(ITO) 15 1層目接着剤 16 2層目接着剤 17 導電粒子露出表面(接着剤層は全く存在しない) 18 圧接手段 19 転写用手段 D 異方性導電膜の導電粒子の初期粒子径 Ta 異方性導電膜(ACF)の全接着剤層の厚さ Tf フレキシブル配線板電極膜厚 Tg ポリマー基板10側の薄膜電極13の膜厚 DESCRIPTION OF SYMBOLS 1 Separator 2 Adhesive layer 3 Conductive particle 4 Anisotropic conductive film 5 Flexible wiring board 6 Flexible wiring board substrate 7 Electrode 8 Conductive particle (there is crushing by pressurization) 9 Indentation of substrate by conductive particle 10 Polymer substrate 11 Polymer with thin film electrode Substrate 12 Thin adhesive layer between conductive particles / ITO 13 Thin film electrode (ITO) 15 First layer adhesive 16 Second layer adhesive 17 Exposed surface of conductive particles (there is no adhesive layer) 18 Pressing means 19 Transfer Means D Initial particle diameter of conductive particles of anisotropic conductive film Ta Thickness of total adhesive layer of anisotropic conductive film (ACF) Tf Film thickness of flexible wiring board electrode Tg Film thickness of thin film electrode 13 on polymer substrate 10 side

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 導電粒子を接着剤層中に分散されてな
り、かつ外部引き出し用配線電極が形成されたポリマー
基板と外部引き出し用フレキシブル配線板とを熱圧着に
より電気的および機械的に接続する異方性導電膜におい
て、全接着剤層厚(Ta)および導電粒子の初期粒子径
(D)が、以下の関係を満足するものであることを特徴
とする異方性導電膜。 【数1】D>Ta
1. A polymer substrate in which conductive particles are dispersed in an adhesive layer and on which an external lead-out wiring electrode is formed and an external lead-out flexible wiring board are electrically and mechanically connected by thermocompression bonding. An anisotropic conductive film characterized in that the total adhesive layer thickness (Ta) and the initial particle diameter (D) of the conductive particles satisfy the following relationship. ## EQU1 ## D> Ta
【請求項2】 全接着剤層厚(Ta)、導電粒子の初期
粒子径(D)およびフレキシブル配線板電極膜厚(T
f)が以下の関係を満足するものである請求項1記載の
異方性導電膜。 【数2】D>Ta≧D×1/C+Tf×A 〔前式中、Aはフレキシブル配線板電極パターンピッチ
に対するギャップの比〕
2. The thickness of the entire adhesive layer (Ta), the initial particle diameter of the conductive particles (D), and the electrode thickness of the flexible wiring board (T).
The anisotropic conductive film according to claim 1, wherein f) satisfies the following relationship. D> Ta ≧ D × 1 / C + Tf × A [where A is the ratio of the gap to the electrode pattern pitch of the flexible wiring board]
【請求項3】 接着剤層が2層以上の多層構造であり、
かつポリマー基板が圧着される側の表面接着剤層のみに
導電粒子を含み、また、該表面接着剤層厚(Tb)およ
び導電粒子の初期粒子径(D)が、以下の関係を満足す
るものである請求項1または2記載の異方性導電膜。 【数3】D≧Tb
3. The adhesive layer has a multilayer structure of two or more layers,
In addition, conductive particles are contained only in the surface adhesive layer on the side where the polymer substrate is pressed, and the thickness (Tb) of the surface adhesive layer and the initial particle diameter (D) of the conductive particles satisfy the following relationship. The anisotropic conductive film according to claim 1, wherein [Formula 3] D ≧ Tb
【請求項4】 少なくとも1層目接着剤層とポリマー基
板が圧着される側の表面接着剤層が、異なった組成で構
成されたものである請求項3記載の異方性導電膜。
4. The anisotropic conductive film according to claim 3, wherein at least the first adhesive layer and the surface adhesive layer on the side to which the polymer substrate is pressed are formed of different compositions.
【請求項5】 接着剤層から突出した導電粒子の表面層
が露出している請求項1、2、3または4記載の異方性
導電膜。
5. The anisotropic conductive film according to claim 1, wherein the surface layer of the conductive particles protruding from the adhesive layer is exposed.
【請求項6】 接着剤層をセパレータ上に形成後、導電
粒子を前記接着剤層表面に配置し、次に導電粒子を圧接
手段により圧接し、少なくとも一部を接着剤層から突出
した状態で接着剤層中に埋め込むことを特徴とする請求
項5記載の異方性導電膜の製造方法。
6. After the adhesive layer is formed on the separator, the conductive particles are arranged on the surface of the adhesive layer, and then the conductive particles are pressed by a pressing means, and at least a part of the conductive particles is projected from the adhesive layer. The method for producing an anisotropic conductive film according to claim 5, wherein the method is embedded in an adhesive layer.
【請求項7】 接着剤層をセパレータ上に形成後、転写
手段に配置した導電粒子を、該転写手段により少なくと
も一部を接着剤層から突出した状態で接着剤層中に埋め
込むことを特徴とする請求項5記載の異方性導電膜の製
造方法。
7. After the adhesive layer is formed on the separator, the conductive particles arranged on the transfer means are embedded in the adhesive layer by the transfer means so that at least a portion thereof protrudes from the adhesive layer. The method for producing an anisotropic conductive film according to claim 5.
【請求項8】 外部引き出し用配線電極が形成されたポ
リマー基板とフレキシブル配線電極端子とを、請求項
1、2、3、4または5記載の異方性導電膜により熱圧
着して電気的および機械的に接続する方法において、異
方性導電膜の導電粒子突出面側をポリマー基板に熱圧着
することを特徴とする熱圧着方法。
8. A polymer substrate on which an external lead-out wiring electrode is formed and a flexible wiring electrode terminal are electrically and thermally compressed by an anisotropic conductive film according to claim 1, 2, 3, 4 or 5. A thermocompression bonding method, wherein a method of mechanically connecting is performed by thermocompression bonding a conductive particle protruding surface side of an anisotropic conductive film to a polymer substrate.
【請求項9】 請求項8記載の熱圧着方法で製造された
ものであることを特徴とする外部引き出し用配線電極が
形成されたポリマー基板とフレキシブル配線板との接続
体。
9. A connection body between a polymer substrate on which a wiring electrode for external lead-out is formed and a flexible wiring board, which is manufactured by the thermocompression bonding method according to claim 8.
【請求項10】 請求項1、2、3、4または5記載の
異方性導電膜の外部引き出し用配線電極が形成されたポ
リマー基板への熱圧着を、フレキシブル配線板が接続さ
れる本圧着接続前に、異方性導電膜を本圧着時よりも低
温、高加圧力にて圧接することを特徴とする異方性導電
膜とポリマー基板の熱圧着方法。
10. The thermocompression bonding of the anisotropic conductive film according to claim 1, 2, 3, 4, or 5 to a polymer substrate on which a wiring electrode for external drawing is formed, wherein the thermocompression bonding to a flexible wiring board is performed. A thermocompression bonding method between an anisotropic conductive film and a polymer substrate, wherein the anisotropic conductive film is pressed at a lower temperature and a higher pressure than at the time of main compression before connection.
JP23589196A 1996-08-19 1996-08-19 Anisotropic conductive thin film and method for connecting polymer substrate using the anisotropic conductive thin film Expired - Fee Related JP3256659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23589196A JP3256659B2 (en) 1996-08-19 1996-08-19 Anisotropic conductive thin film and method for connecting polymer substrate using the anisotropic conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23589196A JP3256659B2 (en) 1996-08-19 1996-08-19 Anisotropic conductive thin film and method for connecting polymer substrate using the anisotropic conductive thin film

Publications (2)

Publication Number Publication Date
JPH1065332A true JPH1065332A (en) 1998-03-06
JP3256659B2 JP3256659B2 (en) 2002-02-12

Family

ID=16992781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23589196A Expired - Fee Related JP3256659B2 (en) 1996-08-19 1996-08-19 Anisotropic conductive thin film and method for connecting polymer substrate using the anisotropic conductive thin film

Country Status (1)

Country Link
JP (1) JP3256659B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031030A (en) * 2001-07-12 2003-01-31 Sekisui Chem Co Ltd Microparticle alignment conductive connection film, manufacturing method of the microparticle alignment conductive connection film and conductive connection structural body
JP2013101938A (en) * 2006-04-27 2013-05-23 Asahi Kasei E-Materials Corp Conductive particle arrangement sheet and anisotropic conductive film
CN112447688A (en) * 2019-09-03 2021-03-05 东芝北斗电子株式会社 Light emitting device and method for manufacturing light emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031030A (en) * 2001-07-12 2003-01-31 Sekisui Chem Co Ltd Microparticle alignment conductive connection film, manufacturing method of the microparticle alignment conductive connection film and conductive connection structural body
JP4669635B2 (en) * 2001-07-12 2011-04-13 積水化学工業株式会社 Method for producing fine particle arrangement conductive connection film
JP2013101938A (en) * 2006-04-27 2013-05-23 Asahi Kasei E-Materials Corp Conductive particle arrangement sheet and anisotropic conductive film
JP2014123572A (en) * 2006-04-27 2014-07-03 Dexerials Corp Conductive particle arrangement sheet and anisotropic conductive film
CN112447688A (en) * 2019-09-03 2021-03-05 东芝北斗电子株式会社 Light emitting device and method for manufacturing light emitting device

Also Published As

Publication number Publication date
JP3256659B2 (en) 2002-02-12

Similar Documents

Publication Publication Date Title
JP3415845B2 (en) Electrical connection structure and electrical connection method thereof
JP3491415B2 (en) Manufacturing method of liquid crystal display device
JPH0645024A (en) Anisotropic conductive adhesive film
JP2000068633A (en) Pressure-bonding method and pressure-bonding device
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
JP3256659B2 (en) Anisotropic conductive thin film and method for connecting polymer substrate using the anisotropic conductive thin film
JPH0425523B2 (en)
JPH0529386A (en) Connection structure of connecting terminal part of element to be adhered
JPH058831B2 (en)
JPH09121078A (en) Electrical connection structure and liquid crystal device
JPH1013002A (en) Method for mounting semiconductor element
JPH10112584A (en) Connecting method for circuit board, connecting structure for circuit board, and liquid crystal device using the structure
JP3349365B2 (en) Liquid crystal display device and method of manufacturing the same
JP2000047244A (en) Liquid crystal device and its production
JPH0660979B2 (en) Electrical connection method
JP2003273163A (en) Substrate for mounting semiconductor element, semiconductor element and liquid crystal display panel using the substrate for mounting semiconductor element or semiconductor element
JP3213096B2 (en) Heat seal connector
JPH0440277Y2 (en)
JPH0618909A (en) Flexible circuit board with electric conductive anisotropic film
JP2986466B2 (en) Circuit board flattening method and semiconductor device manufacturing method
JP2002076208A (en) Packaging structure of semiconductor device and display of structure and its manufacturing method
JPH05182516A (en) Anisotropic conductive adhesive and conductive connection structure
JPH09330947A (en) Method for mounting semiconductor element
JPS63299242A (en) Connection of semiconductor device
JP3229902B2 (en) Liquid crystal display device connection method and liquid crystal display device manufacturing apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20071130

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081130

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101130

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees