JP4958417B2 - Conductive particle transfer sheet and connection structure - Google Patents

Conductive particle transfer sheet and connection structure Download PDF

Info

Publication number
JP4958417B2
JP4958417B2 JP2005234082A JP2005234082A JP4958417B2 JP 4958417 B2 JP4958417 B2 JP 4958417B2 JP 2005234082 A JP2005234082 A JP 2005234082A JP 2005234082 A JP2005234082 A JP 2005234082A JP 4958417 B2 JP4958417 B2 JP 4958417B2
Authority
JP
Japan
Prior art keywords
connection
conductive particles
conductive
particles
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005234082A
Other languages
Japanese (ja)
Other versions
JP2007048687A (en
Inventor
章 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2005234082A priority Critical patent/JP4958417B2/en
Publication of JP2007048687A publication Critical patent/JP2007048687A/en
Application granted granted Critical
Publication of JP4958417B2 publication Critical patent/JP4958417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13609Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29401Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29409Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Wire Bonding (AREA)

Description

本発明は、回路接続性に優れた導電性粒子転写シート及び接続構造体に関する。 The present invention relates to a conductive particle transfer sheet and a connection structure excellent in circuit connectivity.

これまで、電子部品の接続端子同士を接続するための方法に関して、接続性改良、短絡防止のために、種々の接続方式の検討がなされている。例えば、異方導電性フィルムを用いる方法、接続端子表面金属同士の共晶形成による接合方法等が公知である。それらの中でも微細回路接続に関しては、端子間の高さバラツキの影響を低減できる異方導電性フィルムを用いる方法が一般的であるが、近接端子間にある導電性粒子による短絡が発生し易いという問題があった。   Until now, regarding the method for connecting the connection terminals of the electronic components, various connection methods have been studied in order to improve connectivity and prevent short circuit. For example, a method using an anisotropic conductive film, a joining method by forming a eutectic between metal surfaces of connection terminals, and the like are known. Among them, for fine circuit connection, a method using an anisotropic conductive film that can reduce the effect of height variation between terminals is common, but short-circuiting due to conductive particles between adjacent terminals is likely to occur. There was a problem.

そこで、接続端子部分のみに導電性粒子を配置する検討が成されている。例えば、端子上に、対応する開口部を形成したマスクを介して導電性粒子を配列する方法(特許文献1参照)、透明フィルム上に粘着剤層を形成して導電性粒子を付着させ、裏面よりレーザー光を照射することにより選択的に導電性粒子を剥離させ、剥離した導電性粒子を電極上に転写し配列させる方法(特許文献2参照)、あるいは、接続端子と同様のパターンがあるフォトマスクに紫外線硬化粘着剤がコートされた紫外線粘着剤テープの粘着部分を密着させマスクを介して紫外線照射して紫外線粘着剤テープ上に接続端子と同じパターンの粘着部を形成して、そこへ導電性粒子を配置して、導電性粒子転写テープを形成し、導電性粒子を接続端子へ転写する方法(特許文献3参照)、所定のパターンで開口部が形成されたマスクを介して導電性粒子を粘着層が形成された転写板上に転写し配列させる方法(特許文献4、5、6参照)等が公知である。   Therefore, studies have been made to dispose conductive particles only in the connection terminal portion. For example, a method of arranging conductive particles on a terminal through a mask in which corresponding openings are formed (see Patent Document 1), a pressure-sensitive adhesive layer is formed on a transparent film, and the conductive particles are attached to the back surface. A method in which the conductive particles are selectively peeled off by irradiating laser light, and the peeled conductive particles are transferred and arranged on the electrode (see Patent Document 2), or a photo having a pattern similar to that of the connection terminal The UV adhesive tape with UV-curing adhesive coated on the mask is in close contact with the UV adhesive tape to irradiate UV through the mask to form an adhesive part with the same pattern as the connection terminal on the UV adhesive tape, and conductive A method of disposing conductive particles, forming a conductive particle transfer tape, and transferring the conductive particles to the connection terminals (see Patent Document 3), through a mask in which openings are formed in a predetermined pattern And a method (see Patent Documents 4, 5 and 6) to the conductive particles transferred arranged in the adhesive layer is formed transfer plate on are known.

しかしながら、端子上に導電性粒子を配列させる等の従来技術においては、微細かつ多数の接続端子上に導電性粒子を配列させることは製造プロセス上限界があり、近接端子との短絡と接続の両立を満足できるものではなかった。また、予め転写シート上に導電性粒子をパターン配列させる方法においては、パターンが微細な場合は、微細かつ多数のパターンを形成して導電性粒子を配置することには限界がある。パターンを大きくして、導電性粒子の密集領域を形成させた場合は、接続端子上への導電性粒子の転写数が多すぎる場合があり、近接端子との短絡防止と接続の両立を満足できるものではなかった。   However, in the prior art such as arranging conductive particles on the terminals, there is a limit in the manufacturing process to arrange the conductive particles on a large number of connection terminals, and it is possible to achieve both short-circuiting and connection with adjacent terminals. Was not satisfactory. Further, in the method in which the conductive particles are arranged in advance on the transfer sheet, when the pattern is fine, there is a limit to disposing the conductive particles by forming fine and many patterns. When the pattern is enlarged to form a dense region of conductive particles, the number of conductive particles transferred onto the connection terminal may be too large, and both short-circuit prevention and connection with the adjacent terminal can be satisfied. It was not a thing.

特開平7−6799号公報JP 7-6799 A 特開平10−70151号公報JP-A-10-70151 特開平10−321678号公報Japanese Patent Laid-Open No. 10-321678 特許第3256331号公報Japanese Patent No. 3256331 特開平11−135553号公報JP-A-11-135553 特開平10−215065号公報Japanese Patent Laid-Open No. 10-215065

本発明は、微細回路の隣接する回路間の絶縁性を損なうことなく、良好な電気的接続性を実現する導電性粒子転写シート、その製造方法、それを用いた接続構造体の製造方法およびそれを用いた接続構造体を提供することを目的とする。   The present invention relates to a conductive particle transfer sheet that realizes good electrical connectivity without impairing insulation between adjacent circuits of a fine circuit, a method for producing the same, a method for producing a connection structure using the same, and the same An object of the present invention is to provide a connection structure using the.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、粘着層が形成された支持体上に、導電性粒子が、ある特定の導電性粒子間隔で配列していることを特徴とする導電性粒子転写シートを用いることによって、上記課題を解決できることを見出した。
すなわち、本発明は以下のとおりである。
As a result of intensive studies to solve the above problems, the present inventor is characterized in that conductive particles are arranged at a specific conductive particle interval on a support on which an adhesive layer is formed. It has been found that the above problems can be solved by using the conductive particle transfer sheet.
That is, the present invention is as follows.

(1)接続端子の接続面に導電性粒子を転写するための導電性粒子転写シートであって、支持体と該支持体の表面に形成した粘着層と該粘着層の表面に付着した導電性粒子とからなり、近接する導電性粒子同士の平均粒子間隔が導電性粒子の平均粒径の0.3〜5倍となるように導電性粒子が配列している導電性粒子転写シートを、第1の接続端子の接続面のみに密着させて導電性粒子を転写し、その後、導電性粒子が転写した第1の接続端子の接続面を第2の接続端子の接続面に接続することを特徴とする接続構造体の製造方法。
(2)導電性粒子転写シートを、第1の接続端子の接続面のみに密着させて導電性粒子を転写するに際して、該接続面に予め粘着層を形成して、導電性粒子を転写することを特徴とする(1)に記載の接続構造体の製造方法。
(3)導電性粒子が転写した第1の接続端子の接続面を第2の接続端子の接続面に接続するに際して、絶縁性接着シートを介して、接続することを特徴とする(1)は(2)に記載の接続構造体の製造方法。
(4)(1)〜(3)のいずれかに記載の接続構造体の製造方法により製造された接続構造体。
(1) A conductive particle transfer sheet for transferring conductive particles to a connection surface of a connection terminal, the support, the adhesive layer formed on the surface of the support, and the conductivity adhered to the surface of the adhesive layer A conductive particle transfer sheet in which conductive particles are arranged so that the average particle interval between adjacent conductive particles is 0.3 to 5 times the average particle size of the conductive particles. The conductive particles are transferred only in contact with the connection surface of the first connection terminal, and then the connection surface of the first connection terminal transferred by the conductive particles is connected to the connection surface of the second connection terminal. A method for manufacturing a connection structure.
(2) When transferring the conductive particles by bringing the conductive particle transfer sheet into close contact with only the connection surface of the first connection terminal, an adhesive layer is formed on the connection surface in advance to transfer the conductive particles. (1) The manufacturing method of the connection structure according to (1).
(3) When connecting the connection surface of the first connection terminal to which the conductive particles have been transferred to the connection surface of the second connection terminal, the connection is made via an insulating adhesive sheet (1) The manufacturing method of the connection structure as described in (2).
(4) A connection structure manufactured by the method for manufacturing a connection structure according to any one of (1) to (3).

本発明の導電性粒子転写シート及び微細接続構造体は、隣接する電極端子間の良好な絶縁特性を有し、かつ接続した接続端子間の良好な電気的接続性を可能にする。すなわち、本発明の導電性粒子転写シートを用いることより、第1の接続端子の接続面のみに導電性粒子を特定の間隔で配置させることができる。次いで、第1の接続端子と対応する第2の接続端子とを、導電性粒子を介して電気的に接続させることにより、近接端子間の絶縁性を確保しつつ、接続面の方向には、導電性粒子数のバラツキが少なく、かつ、均等に配置することにより安定した接続が得られる。   The conductive particle transfer sheet and the fine connection structure of the present invention have good insulation characteristics between adjacent electrode terminals and allow good electrical connectivity between connected connection terminals. That is, by using the conductive particle transfer sheet of the present invention, the conductive particles can be arranged at a specific interval only on the connection surface of the first connection terminal. Next, by electrically connecting the first connection terminal and the corresponding second connection terminal via the conductive particles, while ensuring the insulation between the adjacent terminals, in the direction of the connection surface, There is little variation in the number of conductive particles, and stable connection can be obtained by arranging them uniformly.

以下、本発明について具体的に説明する。
まず、本発明の導電性粒子転写シートにおける導電性粒子について説明する。
導電性粒子としては、金属被覆された樹脂粒子、金属被覆された金属粒子、金属粒子、金属被覆された合金粒子、及び合金粒子の中から選ばれた1種以上を用いることが好ましい。
Hereinafter, the present invention will be specifically described.
First, the conductive particles in the conductive particle transfer sheet of the present invention will be described.
The conductive particles are preferably one or more selected from metal-coated resin particles, metal-coated metal particles, metal particles, metal-coated alloy particles, and alloy particles.

金属被覆された樹脂粒子としては、ポリスチレン、ベンゾグアナミン、ポリメチルメタアクリレート等の球状粒子に金属被覆することが好ましい。
電極端子との間で金属の相互拡散による結合形成する場合には、例えば、錫、亜鉛、銀、銅、インジウム、ビスマス等の中から選ばれる1種以上の金属、合金を被覆したものを用いることができる。接触による接続の場合には、貴金属被覆することが好ましく、ニッケル、および金をこの順に被覆したものを用いることが好ましい。
接続する微細接続端子(バンプ)硬度に応じて、より柔軟な樹脂粒子を用いて金属被覆された樹脂粒子を形成することができる。
接続するバンプ硬度がビッカース硬度で50Hv未満である場合は、ポリメタアクリレート樹脂等の柔軟な樹脂粒子を用いることが好ましい。また、バンプ硬度が50Hv以上である場合は、ベンゾグアナミン樹脂等の硬質樹脂粒子を用いることが好ましい。
The metal-coated resin particles are preferably metal-coated on spherical particles such as polystyrene, benzoguanamine, and polymethyl methacrylate.
In the case of forming a bond by interdiffusion of metal with the electrode terminal, for example, one coated with one or more metals or alloys selected from tin, zinc, silver, copper, indium, bismuth, etc. is used. be able to. In the case of connection by contact, precious metal coating is preferable, and nickel and gold coated in this order are preferably used.
Resin particles coated with metal using more flexible resin particles can be formed according to the hardness of the fine connection terminal (bump) to be connected.
When the bump hardness to be connected is less than 50 Hv in terms of Vickers hardness, it is preferable to use flexible resin particles such as polymethacrylate resin. Moreover, when bump hardness is 50 Hv or more, it is preferable to use hard resin particles, such as a benzoguanamine resin.

金属被覆された金属粒子としては、ニッケル、銅等の金属粒子をコアとして用いることが好ましい。接続端子との間で金属の相互拡散による結合形成する場合には、例えば、錫、亜鉛、銀、銅、インジウム、ビスマス等の中から選ばれる1種以上の金属、合金を被覆したものを用いることができる。接触による接続の場合には、貴金属被覆することが好ましく、金、パラジウム、ロジウム等の貴金属を最外層に被覆したものを用いることが好ましい。被覆する方法としては、蒸着法、スパッタリング法等の薄膜形成法、乾式ブレンド法によるコーティング法、無電解めっき法、電解めっき法等の湿式法を用いることができる。量産性の点から、無電解めっき法が好ましい。   As the metal particles coated with metal, it is preferable to use metal particles such as nickel and copper as the core. In the case of forming a bond with the connection terminal by mutual diffusion of metal, for example, one coated with one or more metals or alloys selected from tin, zinc, silver, copper, indium, bismuth, etc. is used. be able to. In the case of connection by contact, precious metal coating is preferable, and it is preferable to use a precious metal such as gold, palladium or rhodium coated on the outermost layer. As a coating method, a thin film forming method such as a vapor deposition method or a sputtering method, a coating method using a dry blend method, a wet method such as an electroless plating method or an electrolytic plating method can be used. From the viewpoint of mass productivity, the electroless plating method is preferable.

金属粒子としては、銀、銅、ニッケル等の金属から選ばれるものを用いることが好ましい。合金粒子としては、融点が150℃以上500℃以下のものが好ましく、さらには150℃以上350℃以下の低融点合金粒子を用いることがより好ましい。融点が500℃以下であると、接続端子間に金属結合を形成することも可能であり、接続信頼性の点から好ましい。また、耐熱接続信頼性の観点から、融点が150℃以上であることが好ましい。   As the metal particles, those selected from metals such as silver, copper and nickel are preferably used. The alloy particles preferably have a melting point of 150 ° C. or more and 500 ° C. or less, and more preferably low melting point alloy particles having a melting point of 150 ° C. or more and 350 ° C. or less. When the melting point is 500 ° C. or less, a metal bond can be formed between the connection terminals, which is preferable from the viewpoint of connection reliability. Moreover, it is preferable that melting | fusing point is 150 degreeC or more from a viewpoint of heat-resistant connection reliability.

金属被覆された合金粒子としては、例えば、金、銀、銅、ニッケル、錫、亜鉛、ビスマス、インジウム等から選ばれた2種以上からなる合金粒子に上記方法等を用いて金属被覆したものを用いることができる。   As the metal-coated alloy particles, for example, alloy particles composed of two or more kinds selected from gold, silver, copper, nickel, tin, zinc, bismuth, indium, etc., which are metal-coated using the above method or the like. Can be used.

合金粒子としては、例えば、金、銀、銅、ニッケル、錫、亜鉛、ビスマス、インジウム等から選ばれた2種以上からなる合金粒子が好ましい。融点が150℃以上500℃以下の合金粒子を用いる場合は、予め粒子表面にフラックス等を被覆しておくことが好ましい。いわゆるフラックスを用いることにより、表面の酸化物等を取り除くことができ好ましい。フラックスとしては、アビエチン酸等の脂肪酸等を用いることができる。   As the alloy particles, for example, alloy particles composed of two or more selected from gold, silver, copper, nickel, tin, zinc, bismuth, indium and the like are preferable. When alloy particles having a melting point of 150 ° C. or higher and 500 ° C. or lower are used, it is preferable to coat the particle surface with a flux or the like in advance. It is preferable to use a so-called flux because the surface oxides can be removed. As the flux, fatty acids such as abietic acid can be used.

導電性粒子の平均粒径は1〜50μmであることが好ましく、2〜30μmであることがさらに好ましい。絶縁性の観点から50μm以下が好ましく、接続端子等の高さバラツキ等の影響を受けにくく、また、電気的接続性の観点から1μm以上が好ましい。
導電性粒子の平均粒径及び粒度分布は、公知の方法、装置を用いて測定することができ、湿式粒度分布計、レーザー式粒度分布計等を用いることができる。あるいは、電子顕微鏡等で粒子を観察し、平均粒径、粒度分布を算出しても構わない。本発明の平均粒径及び粒度分布はレーザー式粒度分布計により求めることが出来る。
The average particle size of the conductive particles is preferably 1 to 50 μm, and more preferably 2 to 30 μm. The thickness is preferably 50 μm or less from the viewpoint of insulation, and is preferably less than 1 μm from the viewpoint of electrical connectivity, and is not easily affected by variations in height of connection terminals and the like.
The average particle size and particle size distribution of the conductive particles can be measured using a known method and apparatus, and a wet particle size distribution meter, a laser type particle size distribution meter and the like can be used. Alternatively, the average particle size and particle size distribution may be calculated by observing the particles with an electron microscope or the like. The average particle size and particle size distribution of the present invention can be determined by a laser particle size distribution meter.

導電性粒子の平均粒径と最大粒径の比は2以下であることが好ましく、1.5以下であることがより好ましい。該導電性粒子の粒度分布はより狭いほうが好ましく、該導電性粒子の粒径分布の幾何標準偏差は、1.2〜2.5であることが好ましく、1.2〜1.4であることが特に好ましい。幾何標準偏差が上記値であると粒径のバラツキが小さくなる。通常、接続する2端子間に一定のギャップが存在する場合には、粒径が揃っているほど、導電性粒子が有効に機能すると考えられる。   The ratio of the average particle size to the maximum particle size of the conductive particles is preferably 2 or less, and more preferably 1.5 or less. The particle size distribution of the conductive particles is preferably narrower, and the geometric standard deviation of the particle size distribution of the conductive particles is preferably 1.2 to 2.5, and preferably 1.2 to 1.4. Is particularly preferred. When the geometric standard deviation is the above value, the variation in particle size is reduced. Usually, when a certain gap exists between two terminals to be connected, it is considered that the conductive particles function more effectively as the particle diameters become uniform.

粒度分布の幾何標準偏差とは、粒度分布のσ値(累積84.13%の粒径値)を累積50%の粒径値で除した値である。粒度分布のグラフの横軸に粒径(対数)を設定し、縦軸に累積値(%、累積個数比、対数)を設定すると粒径分布はほぼ直線になり、粒径分布は対数正規分布に従う。累積値とは全粒子数に対して、ある粒径以下の粒子の個数比を示したもので、%で表す。粒径分布のシャープさはσ(累積84.13%の粒径値)と平均粒径(累積50%の粒径値)の比で表現される。σ値は実測値あるいは、前述グラフのプロット値からの読み取り値である。   The geometric standard deviation of the particle size distribution is a value obtained by dividing the σ value of the particle size distribution (particle size value of 84.13% cumulative) by the particle size value of 50% cumulative. When the particle size distribution (logarithm) is set on the horizontal axis of the particle size distribution graph and the cumulative value (%, cumulative number ratio, logarithm) is set on the vertical axis, the particle size distribution is almost linear, and the particle size distribution is lognormal distribution. Follow. The cumulative value indicates the number ratio of particles having a certain particle size or less with respect to the total number of particles, and is expressed in%. The sharpness of the particle size distribution is expressed by the ratio of σ (the cumulative particle size value of 84.13%) and the average particle size (the cumulative particle size value of 50%). The σ value is an actual measurement value or a read value from the plot value of the graph.

次いで本発明の導電性粒子転写シートについて説明する。
本発明の導電性粒子転写シートは、支持体、粘着層及び導電性粒子からなる。導電性粒子転写シートは接続端子接続用である。すなわち、導電性粒子転写シートは、第1の電子部品の接続端子と第2の電子部品の接続端子を接続するために、対応する接続端子同士を導電性粒子を介して電気的に接続する際に使用するシートである。導電性粒子転写シートは、接続端子の接続面に導電性粒子を転写して用いる。
Next, the conductive particle transfer sheet of the present invention will be described.
The conductive particle transfer sheet of the present invention comprises a support, an adhesive layer and conductive particles. The conductive particle transfer sheet is for connection terminal connection. That is, when the conductive particle transfer sheet electrically connects the corresponding connection terminals to each other via the conductive particles in order to connect the connection terminals of the first electronic component and the connection terminal of the second electronic component. It is a sheet used for. The conductive particle transfer sheet is used by transferring conductive particles to the connection surface of the connection terminal.

本発明の導電性粒子転写シートに用いられる支持体としては、公知の樹脂フィルムを用いることができる。例えば、ポリプロピレンフィルムなどが挙げられるが、中でも2軸延伸可能なフィルムを用いることが好ましい。2軸延伸可能なフィルムについては、後述する。
支持体の厚みは、10μm以上200μm以下であることが好ましく、50μm以上100μm以下であることがより好ましい。機械的接続強度の観点から10μm以上が好ましく、導電性粒子転写時の平滑性確保の観点から200μm以下であることが好ましい。
A known resin film can be used as the support used in the conductive particle transfer sheet of the present invention. For example, a polypropylene film and the like can be mentioned. Among them, it is preferable to use a biaxially stretchable film. The biaxially stretchable film will be described later.
The thickness of the support is preferably from 10 μm to 200 μm, and more preferably from 50 μm to 100 μm. 10 μm or more is preferable from the viewpoint of mechanical connection strength, and 200 μm or less is preferable from the viewpoint of ensuring smoothness during transfer of conductive particles.

本発明の導電性粒子転写シートにおける粘着層には、非架橋性のアクリル変性天然ゴムなどの粘着剤を用いることができる。支持体を2軸延伸して導電性粒子転写シートを製造する場合の、好ましい粘着剤については、後述する。
本発明の導電性粒子転写シートにおける粘着層の厚みは導電性粒子の平均粒径の0.05倍から0.7倍の範囲であることが好ましい。導電性粒子保持の観点から0.05倍以上であることが好ましく、転写の容易性の観点から0.7倍以下であることが好ましい。
An adhesive such as non-crosslinkable acrylic-modified natural rubber can be used for the adhesive layer in the conductive particle transfer sheet of the present invention. A preferable pressure-sensitive adhesive in the case of producing a conductive particle transfer sheet by biaxially stretching the support will be described later.
The thickness of the pressure-sensitive adhesive layer in the conductive particle transfer sheet of the present invention is preferably in the range of 0.05 to 0.7 times the average particle size of the conductive particles. It is preferably 0.05 times or more from the viewpoint of holding conductive particles, and preferably 0.7 times or less from the viewpoint of ease of transfer.

本発明の導電性粒子転写シートにおいては、近接する導電性粒子同士の平均粒子間隔が導電性粒子の平均粒径の0.3倍〜5倍となるように配列している。
本発明において、近接する導電性粒子とは、任意の導電性粒子を選定し、該導電性粒子に最も近い6個の導電性粒子を言う。
In the conductive particle transfer sheet of the present invention, the conductive particles are arranged so that the average particle interval between adjacent conductive particles is 0.3 to 5 times the average particle size of the conductive particles.
In the present invention, the adjacent conductive particles are selected from arbitrary conductive particles and refer to six conductive particles closest to the conductive particles.

近接する導電性粒子同士の平均粒子間隔は以下のようにして求められる。
まず、本発明の導電性粒子転写シートを、導電性粒子が存在する面側から光学顕微鏡で拡大した写真を撮影する。次に、任意の20個の導電性粒子を選定し、そのそれぞれの導電性粒子に最も近い6個の導電性粒子との距離を測定し、全体の平均値を求めて、平均粒子間隔とする。またこのとき同時に粒子間隔の標準偏差を求めることができる。
平均粒子間隔は、導電性粒子の平均粒径の0.3〜5倍とする。好ましくは、0.5倍以上3倍以下であり、更に好ましくは、1倍以上3倍以下である。導電性粒子転写時の粒子はみ出し防止の観点から、平均粒径の0.3倍以上であることが好ましく、導電性粒子転写数確保の観点から平均粒径の5倍以下が好ましい。
また、粒子間隔の標準偏差については、導電性粒子が、導電性粒子の平均粒子間隔の0.3倍以下、更に好ましくは、0.1倍以下の平均粒子間隔の標準偏差で存在することが好ましい。
The average particle spacing between adjacent conductive particles is determined as follows.
First, a photograph of the conductive particle transfer sheet of the present invention is taken with an optical microscope from the surface side where the conductive particles are present. Next, arbitrary 20 conductive particles are selected, the distance from the 6 conductive particles closest to the respective conductive particles is measured, the average value of the whole is obtained, and the average particle interval is obtained. . At the same time, the standard deviation of the particle interval can be obtained.
The average particle interval is 0.3 to 5 times the average particle size of the conductive particles. Preferably, they are 0.5 times or more and 3 times or less, More preferably, they are 1 time or more and 3 times or less. From the viewpoint of preventing protrusion of particles during transfer of conductive particles, the average particle diameter is preferably 0.3 times or more, and from the viewpoint of securing the number of conductive particles transferred, it is preferably 5 times or less of the average particle diameter.
As for the standard deviation of the particle spacing, the conductive particles may be present with a standard deviation of the average particle spacing of 0.3 times or less, more preferably 0.1 times or less of the average particle spacing of the conductive particles. preferable.

次に、本発明における導電性粒子転写シートの製造方法について説明する。
本発明の導電性粒子転写シートの製造方法としては、近接する導電性粒子同士の平均粒子間隔が導電性粒子の平均粒径の0.3〜5倍となるように導電性粒子が粘着層上に配列可能であれば、公知の方法を用いることができる。
Next, the manufacturing method of the electroconductive particle transfer sheet in this invention is demonstrated.
As a method for producing the conductive particle transfer sheet of the present invention, the conductive particles are on the adhesive layer so that the average particle spacing between adjacent conductive particles is 0.3 to 5 times the average particle size of the conductive particles. As long as it can be arranged in a well-known manner, a known method can be used.

本発明の導電性粒子転写シートの製造方法としては、支持体として2軸延伸可能なフィルムを用い、該2軸延伸可能なフィルム上に粘着層を設けて積層体を形成し、該積層体の上に導電性粒子を付着させて導電性粒子付着フィルムを作製し、該導電性粒子付着フィルムを、近接する導電性粒子同士の平均粒子間隔が、導電性粒子の平均粒径の0.3倍〜5倍になるように2軸延伸して保持する工程を含むことが好ましい。   As a method for producing the conductive particle transfer sheet of the present invention, a biaxially stretchable film is used as a support, and a laminate is formed by providing an adhesive layer on the biaxially stretchable film. A conductive particle adhesion film is prepared by adhering conductive particles on the conductive particle adhesion film, and the average particle interval between adjacent conductive particles is 0.3 times the average particle diameter of the conductive particles. It is preferable to include a step of biaxial stretching and holding so as to be ˜5 times.

上記2軸延伸可能なフィルムとしては、公知の樹脂フィルム等を用いることができるが、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、ポリ塩化ビニリデン樹脂等の単独あるいは共重合体等、又は、ニトリルゴム、ブタジエンゴム、シリコーンゴム等のゴムシート等の柔軟で延伸可能な樹脂フィルムを用いることが好ましい。ポリプロピレン樹脂、ポリエステル樹脂が特に好ましい。延伸後の収縮率が10%以下のフィルムが好ましい。   As the biaxially stretchable film, a known resin film or the like can be used. A polyethylene resin, a polypropylene resin, a polyester resin, a polyvinyl butyral resin, a polyvinyl alcohol resin, a polyvinylidene chloride resin or the like can be used alone or as a copolymer. Or a flexible and stretchable resin film such as a rubber sheet such as nitrile rubber, butadiene rubber, or silicone rubber. Polypropylene resin and polyester resin are particularly preferable. A film having a shrinkage ratio of 10% or less after stretching is preferred.

前記粘着層に使用する粘着剤は、公知のものを使用することができるが、加熱しながら2軸延伸する場合は、非熱架橋性の粘着剤を用いることが好ましい。具体的には、天然ゴムラテックス系粘着剤、合成ゴムラテックス系粘着剤、合成樹脂エマルジョン系粘着剤、シリコーン系粘着剤、エチレン−酢酸ビニル共重合体粘着剤、アクリル系粘着剤等を単独で、又は組み合わせて用いることができる。また、紫外線照射により低粘着化可能なアクリル系粘着剤を用いることが好ましい。   As the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer, a known one can be used, but when biaxial stretching is performed while heating, it is preferable to use a non-thermal crosslinkable pressure-sensitive adhesive. Specifically, natural rubber latex adhesive, synthetic rubber latex adhesive, synthetic resin emulsion adhesive, silicone adhesive, ethylene-vinyl acetate copolymer adhesive, acrylic adhesive, etc. Or they can be used in combination. Further, it is preferable to use an acrylic pressure-sensitive adhesive that can be reduced in viscosity by ultraviolet irradiation.

前記粘着層の厚みは、使用する導電性粒子の平均粒径の1/50から10倍の範囲が好ましく、1/10から2倍の範囲がより好ましい。導電性粒子付着時及び延伸時に導電性粒子を保持する観点から、粘着層の厚みは該導電性粒子の平均粒径の1/50以上が好ましく、延伸後の導電性粒子転写シートへの粒子転写の観点から10倍以下が好ましい。粘着層形成方法としては、溶剤又は水に分散又は溶解したものを、グラビアコーター、ダイコーター、ナイフコーター、バーコーター、スプレーコート等の公知の方法で塗布し、乾燥する方法を用いることができる。ホットメルトタイプの粘着剤を使用する場合は、無溶剤でロールコートすることができる。   The thickness of the adhesive layer is preferably in the range of 1/50 to 10 times the average particle diameter of the conductive particles used, and more preferably in the range of 1/10 to 2 times. From the viewpoint of holding the conductive particles when the conductive particles are attached and stretched, the thickness of the adhesive layer is preferably 1/50 or more of the average particle diameter of the conductive particles, and the particle transfer to the conductive particle transfer sheet after stretching In view of the above, 10 times or less is preferable. As the method for forming the adhesive layer, a method in which a dispersion or solution in a solvent or water is applied and dried by a known method such as a gravure coater, a die coater, a knife coater, a bar coater, or a spray coat can be used. When a hot-melt type pressure-sensitive adhesive is used, it can be roll-coated without a solvent.

該積層体の上に導電性粒子を付着させて導電性粒子付着フィルムを作製するにあたっては、導電性粒子をほぼ隙間無く単層に配置(密集充填)したフィルムを作製するのが好ましい。なお、密集充填とは、充填された粒子間の平均粒子間隔が、平均粒径の1/2以下であるように充填することをいうものとする。より好ましくは、充填された粒子間の平均粒子間隔が、平均粒径の1/5以下である。   In preparing a conductive particle-attached film by attaching conductive particles on the laminate, it is preferable to prepare a film in which conductive particles are arranged (closely packed) in a single layer with almost no gap. In addition, close packing means filling so that the average particle | grain space | interval between the filled particles may be 1/2 or less of an average particle diameter. More preferably, the average particle interval between the filled particles is 1/5 or less of the average particle size.

導電性粒子を密集充填させる方法としては、公知の方法を用いることができる。例えば、少なくとも熱可塑性樹脂を含む粘着層を該2軸延伸可能なフィルム上に形成し、その上に導電性粒子を接触させて付着させ、ゴムロール等で荷重をかけて単層に配置する方法を採ることができる。この場合、隙間無く充填するためには、付着−ロール操作を数回繰り返す方法が好ましい。球状の導電性粒子の場合、最密充填が最も安定した構造なので比較的容易に充填することができる。あるいは、該2軸延伸可能なフィルム上に粘着剤を塗布して接着層を形成し、その上に導電性粒子を付着させ、必要なら数回付着を繰り返し、単層で分散配置する方法等を用いることができる。   A publicly known method can be used as a method for densely packing conductive particles. For example, a method in which a pressure-sensitive adhesive layer containing at least a thermoplastic resin is formed on the biaxially stretchable film, and conductive particles are brought into contact with and adhered to the film, and placed in a single layer by applying a load with a rubber roll or the like. Can be taken. In this case, a method of repeating the adhesion-roll operation several times is preferable for filling without gaps. In the case of spherical conductive particles, since the closest packing is the most stable structure, it can be filled relatively easily. Alternatively, a method of applying a pressure-sensitive adhesive on the biaxially stretchable film to form an adhesive layer, attaching conductive particles thereon, repeating the attachment several times if necessary, and dispersing and arranging in a single layer, etc. Can be used.

得られた導電性粒子付着フィルムを2軸延伸させる方法としては、公知の方法を用いることができるが、均一分散配列という点から、2軸延伸装置を用いることが好ましい。粒子間隔の点から延伸度合いは、30%以上、500%以下であることが好ましく、100%以上、300%以下であることがより好ましい。
なお、100%延伸するとは、延伸方向に沿って延伸した部分の長さが延伸前の長さの100%であることを言う。延伸方向は、任意であるが、延伸角度が90°の2軸延伸が好ましく、同時延伸が好ましい。2軸延伸の場合、各方向の延伸度合いは同じであっても異なっていても構わない。
As a method for biaxially stretching the obtained conductive particle-adhered film, a known method can be used, but it is preferable to use a biaxial stretching apparatus from the viewpoint of uniform dispersion arrangement. From the viewpoint of particle spacing, the degree of stretching is preferably 30% or more and 500% or less, and more preferably 100% or more and 300% or less.
In addition, 100% stretching means that the length of the portion stretched along the stretching direction is 100% of the length before stretching. The stretching direction is arbitrary, but biaxial stretching with a stretching angle of 90 ° is preferable, and simultaneous stretching is preferable. In the case of biaxial stretching, the degree of stretching in each direction may be the same or different.

2軸延伸装置としては、同時2軸連続延伸装置が好ましい。
同時2軸連続延伸装置としては、公知のものを使用することができるが、長辺側をチャック金具で固定し、それらの間隔を縦横同時に延伸することにより連続延伸するテンター型延伸機が好ましい。延伸度を調整する方式としては、スクリュー方式、パンタグラフ方式を用いることが可能だが、調整の精度の観点から、パンタグラフ方式がより好ましい。加熱しながら延伸する場合は、延伸部分の手前に予熱ゾーンを設けて、延伸部分の後方に熱固定ゾーンを設けることが好ましい。
As the biaxial stretching apparatus, a simultaneous biaxial continuous stretching apparatus is preferable.
As the simultaneous biaxial continuous stretching apparatus, a known one can be used, but a tenter type stretching machine that continuously stretches by fixing the long side with a chuck fitting and simultaneously stretching the distance in the vertical and horizontal directions is preferable. As a method for adjusting the degree of stretching, a screw method or a pantograph method can be used, but a pantograph method is more preferable from the viewpoint of accuracy of adjustment. When stretching while heating, it is preferable to provide a preheating zone before the stretched portion and a heat setting zone behind the stretched portion.

導電性粒子間隔が変化しないように、延伸後の導電性粒子転写フィルムを保持することが好ましい。保持する方法としては、導電性粒子転写フィルムを、金属又は樹脂製の枠に接着させ固定する方法、平滑性の良いガラス、金属等の支持板に接着させ、固定する方法等を用いることができる。   It is preferable to hold the conductive particle transfer film after stretching so that the conductive particle spacing does not change. Examples of the holding method include a method in which the conductive particle transfer film is bonded and fixed to a metal or resin frame, a method in which the conductive particle transfer film is bonded and fixed to a support plate made of glass or metal having good smoothness, and the like. .

次いで、導電性粒子転写シートを、第1の接続端子の接続面に密着させて導電性粒子を転写し、その後、導電性粒子が転写した第1の接続端子の接続面を第2の接続端子の接続面に接続してなる接続構造体の製造方法について説明する。
本発明の導電性粒子転写シートを用いて第1の接続端子の接続面に密着させて導電性粒子を転写する方法としては、平滑な板上に導電性粒子転写シートを固定し、導電性粒子転写シート上の導電性粒子に接続端子を接触させて、転写する方法が好ましい。転写する方法としては、例えば以下の方法が挙げられる。
Next, the conductive particle transfer sheet is brought into close contact with the connection surface of the first connection terminal to transfer the conductive particles, and then the connection surface of the first connection terminal to which the conductive particles are transferred is used as the second connection terminal. A method for manufacturing a connection structure connected to the connection surface will be described.
As a method for transferring the conductive particles by using the conductive particle transfer sheet of the present invention to adhere to the connection surface of the first connection terminal, the conductive particle transfer sheet is fixed on a smooth plate, and the conductive particles are transferred. A method of transferring by connecting the connection terminals to the conductive particles on the transfer sheet is preferable. Examples of the transfer method include the following methods.

1.接続端子を導電性粒子転写シート上にプレスして、機械的に食い込ませる方法。この場合、接続端子の接続面に予め粘着層を形成する方法と組み合わせて用いることができる。組み合わせることにより、より低温、低圧で転写することができるため、好ましい。
粘着層としては、熱可塑性、熱硬化性、光硬化性、光熱硬化性の粘着剤、接着剤を用いることができるが、転写の観点から、硬化性の成分からなることが好ましい。
荷重としては、転写する粒子1個に対して、0.1gから10gの範囲であることが好ましく、より好ましくは、0.3gから5gの範囲であることが好ましい。
温度は、30℃から200℃の範囲であることが好ましく、より好ましくは、50℃から150℃である。
1. A method in which a connection terminal is pressed onto a conductive particle transfer sheet and is mechanically bitten. In this case, it can be used in combination with a method of previously forming an adhesive layer on the connection surface of the connection terminal. The combination is preferable because transfer can be performed at a lower temperature and a lower pressure.
As the adhesive layer, thermoplastic, thermosetting, photocurable, and photothermosetting adhesives and adhesives can be used, but from the viewpoint of transfer, it is preferably made of a curable component.
The load is preferably in the range of 0.1 g to 10 g, more preferably in the range of 0.3 g to 5 g, per particle to be transferred.
The temperature is preferably in the range of 30 ° C. to 200 ° C., more preferably 50 ° C. to 150 ° C.

2.接続端子を導電性粒子上に加圧しながら接触させ、超音波振動を与えて転写する方法。超音波振動印加時間は0.1秒から5秒の範囲が好ましく、より好ましくは0.2秒から1秒の範囲である。 2. A method in which a connection terminal is brought into contact with conductive particles while being pressed and transferred by applying ultrasonic vibration. The ultrasonic vibration application time is preferably in the range of 0.1 to 5 seconds, more preferably in the range of 0.2 to 1 second.

3.電極端子を導電性粒子上に接触させ、接続端子表面の金属と導電性粒子表面の金属同士が相互拡散する温度まで加熱して、金属結合を形成して転写する方法。
この場合は、比較的相互拡散しやすい金属、合金を選択する方が好ましく、導電性粒子表面の金属、合金が500℃以下好ましくは300℃以下の融点を有することが好ましい。金属酸化物の影響を低減するために、接続端子上に予めフラックス成分を塗布することが好ましい。フラックス成分を塗布後、導電性粒子を転写する場合は、導電性粒子転写後に、フラックス成分を洗浄することが好ましい。
3. A method in which an electrode terminal is brought into contact with conductive particles and heated to a temperature at which the metal on the surface of the connection terminal and the metal on the surface of the conductive particle mutually diffuse to form a metal bond and transfer.
In this case, it is preferable to select a metal or alloy that relatively easily diffuses, and the metal or alloy on the surface of the conductive particles preferably has a melting point of 500 ° C. or lower, preferably 300 ° C. or lower. In order to reduce the influence of the metal oxide, it is preferable to apply a flux component on the connection terminals in advance. When transferring the conductive particles after applying the flux component, it is preferable to wash the flux component after transferring the conductive particles.

本発明の導電性粒子転写シートを用いて接続端子に導電性粒子を転写した場合、接続端子の接続面の面積に対して転写された導電性粒子の投影面積の和が1%から70%の範囲にあることが好ましく、より好ましくは10%から60%の範囲である。接続性の観点から投影面積の和は、1%以上であることが好ましく、接続端子を基板に接続する際に、転写粒子のはみ出しなどによる絶縁性低下の観点から、投影面積の和は70%以下であることが好ましい。転写された導電性粒子の投影面積の和は、レーザー顕微鏡等を用いて粒子転写された接続端子部分を写真撮影し、画像処理することにより測定することができる。   When the conductive particles are transferred to the connection terminal using the conductive particle transfer sheet of the present invention, the sum of the projected areas of the transferred conductive particles with respect to the area of the connection surface of the connection terminal is 1% to 70%. It is preferably in the range, more preferably in the range of 10% to 60%. The sum of the projected areas is preferably 1% or more from the viewpoint of connectivity, and when the connection terminals are connected to the substrate, the sum of the projected areas is 70% from the viewpoint of a decrease in insulation due to protrusion of transfer particles. The following is preferable. The sum of the projected areas of the transferred conductive particles can be measured by taking a photograph of the connecting terminal portion to which the particles have been transferred using a laser microscope or the like, and performing image processing.

転写された導電性粒子の平均粒子間隔は、導電性粒子の平均粒径の0.3倍から5倍の範囲にあることが好ましい。また、各接続端子に転写された導電性粒子の個数の標準偏差は平均転写粒子個数の0.2倍以下であることが好ましく、0.1倍以下であることがより好ましい。
本発明の接続構造体に用いる接続端子の材料としては、公知のものを用いることができる。例としては、金、金合金、銅等の金属表面にニッケル、金をこの順で被覆したもの等である。
The average particle spacing of the transferred conductive particles is preferably in the range of 0.3 to 5 times the average particle size of the conductive particles. The standard deviation of the number of conductive particles transferred to each connection terminal is preferably 0.2 times or less, more preferably 0.1 times or less of the average number of transfer particles.
As a material for the connection terminal used in the connection structure of the present invention, a known material can be used. As an example, a metal surface such as gold, a gold alloy, or copper is coated with nickel and gold in this order.

本発明の導電性粒子転写シートを用いて、導電性粒子が転写した第1の接続端子の接続面を第2の接続端子の接続面に接続してなる接続構造体の製造方法としては、公知の方法を用いることができる。例えば、対応する端子と圧着する方法、対応する端子と超音波振動により接続する方法、加熱により、導電性粒子表面の金属、合金と対応する接続端子表面金属との間で金属同士を相互拡散させる方法等を用いることができる。
対応する接続端子が金属系の場合は、超音波振動方式、金属間の相互拡散方式を用いることができ、対応する接続端子が金属酸化物系の場合は、圧着方式を用いることができる。圧着方式、超音波方式を用いて接続する場合は、接続部以外の部分を硬化性の樹脂等で封止することが好ましい。
As a method for producing a connection structure, the connection surface of the first connection terminal transferred by the conductive particles is connected to the connection surface of the second connection terminal using the conductive particle transfer sheet of the present invention. This method can be used. For example, the method of crimping with the corresponding terminal, the method of connecting with the corresponding terminal by ultrasonic vibration, the metal on the surface of the conductive particles by heating, the metal and the connection terminal surface metal corresponding to each other is diffused between each other A method or the like can be used.
When the corresponding connection terminal is a metal type, an ultrasonic vibration method or an interdiffusion method between metals can be used, and when the corresponding connection terminal is a metal oxide type, a crimping method can be used. When connecting using a crimping method or an ultrasonic method, it is preferable to seal a portion other than the connecting portion with a curable resin or the like.

封止する方法としては、絶縁性接着シート又は接着剤を用いて封止することができる。
導電性粒子が転写した第1の接続端子の接続面と第2の接続端子の接続面を接続するに際して、絶縁性接着シートを介して接続するのは、本件の好ましい実施形態である。この場合は、接続時の加熱により硬化性樹脂を硬化させることもできる。また、接続後に、加熱して熱硬化性樹脂を硬化することもできる。金属間の相互拡散方式の場合は、接続後に、低粘度の液状封止樹脂を用いて封止することができる。
As a method of sealing, it can seal using an insulating adhesive sheet or an adhesive agent.
In connecting the connection surface of the first connection terminal to which the conductive particles are transferred and the connection surface of the second connection terminal, it is a preferable embodiment of the present case to connect via the insulating adhesive sheet. In this case, the curable resin can be cured by heating at the time of connection. Further, after the connection, the thermosetting resin can be cured by heating. In the case of the interdiffusion method between metals, after connection, it can be sealed using a low-viscosity liquid sealing resin.

絶縁性接着シート又は接着剤に用いる硬化性の絶縁性樹脂としては、熱硬化性樹脂、光硬化性樹脂、光及び熱硬化性樹脂、電子線硬化性樹脂等を用いることができる。取り扱いの容易さから、熱硬化性の絶縁性樹脂を用いることが好ましい。熱硬化性樹脂としては、エポキシ樹脂、アクリル樹脂等を用いることができるが、エポキシ樹脂が特に好ましい。   As the curable insulating resin used for the insulating adhesive sheet or adhesive, thermosetting resin, photocurable resin, light and thermosetting resin, electron beam curable resin, and the like can be used. In view of ease of handling, it is preferable to use a thermosetting insulating resin. As the thermosetting resin, an epoxy resin, an acrylic resin, or the like can be used, and an epoxy resin is particularly preferable.

エポキシ樹脂は、1分子中に2個以上のエポキシ基を有する化合物であり、グリシジルエーテル基、グリシジルエステル基、脂環式エポキシ基を有する化合物、分子内の二重結合をエポキシ化した化合物が好ましい。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、ノボラックフェノール型エポキシ樹脂あるいは、それらの変性エポキシ樹脂を用いることができる。   The epoxy resin is a compound having two or more epoxy groups in one molecule, and is preferably a compound having a glycidyl ether group, a glycidyl ester group or an alicyclic epoxy group, or a compound obtained by epoxidizing a double bond in the molecule. . Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, novolac phenol type epoxy resin, or modified epoxy resins thereof can be used.

絶縁性接着シート又は接着剤に用いる硬化剤は、前記硬化性の絶縁性樹脂を硬化できるものであればよい。硬化性の絶縁性樹脂として、熱硬化性樹脂を用いる場合は、100℃以上で熱硬化性樹脂と反応し、硬化できるものが好ましい。エポキシ樹脂の場合は、保存性の点から、潜在性硬化剤であることが好ましく、例えば、イミダゾール系硬化剤、カプセル型イミダゾール系硬化剤、カチオン系硬化剤、ラジカル系硬化剤、ルイス酸系硬化剤、アミンイミド系硬化剤、ポリアミン塩系硬化剤、ヒドラジド系硬化剤等を用いることができる。保存性、低温反応性の点から、カプセル型のイミダゾール系硬化剤が好ましい。   The curing agent used for the insulating adhesive sheet or adhesive may be any one that can cure the curable insulating resin. When a thermosetting resin is used as the curable insulating resin, a resin that can be cured by reacting with the thermosetting resin at 100 ° C. or higher is preferable. In the case of an epoxy resin, a latent curing agent is preferable from the viewpoint of storage stability. For example, an imidazole curing agent, a capsule type imidazole curing agent, a cationic curing agent, a radical curing agent, a Lewis acid curing agent. An agent, an amine imide curing agent, a polyamine salt curing agent, a hydrazide curing agent, and the like can be used. From the viewpoint of storage stability and low-temperature reactivity, capsule-type imidazole curing agents are preferred.

絶縁性接着シート又は接着剤には、硬化剤及び硬化性の絶縁性樹脂以外に、熱可塑性樹脂等を配合しても構わない。熱可塑性樹脂を配合することにより、容易にシート状に形成することが出来る。この場合の配合量は、硬化剤及び硬化性の絶縁性樹脂を合わせた成分100質量部に対して200質量部以下であることが好ましく、100質量部以下であることが特に好ましい。   In addition to the curing agent and the curable insulating resin, a thermoplastic resin or the like may be blended in the insulating adhesive sheet or adhesive. By blending a thermoplastic resin, it can be easily formed into a sheet. In this case, the blending amount is preferably 200 parts by mass or less, particularly preferably 100 parts by mass or less, based on 100 parts by mass of the components including the curing agent and the curable insulating resin.

絶縁性樹脂に配合できる熱可塑性樹脂は、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、アルキル化セルロース樹脂、ポリエステル樹脂、アクリル樹脂、スチレン樹脂、ウレタン樹脂、ポリエチレンテレフタレート樹脂等であり、それらから選ばれる1種または2種以上の樹脂を組み合わせても差し支えない。これらの樹脂の中、水酸基、カルボキシル基等の極性基を有する樹脂は、接着強度の点から好ましい。また、熱可塑性樹脂は、ガラス転移温度が80℃以上である熱可塑性樹脂を1種以上含むことが好ましい。   Thermoplastic resins that can be blended in the insulating resin are phenoxy resin, polyvinyl acetal resin, polyvinyl butyral resin, alkylated cellulose resin, polyester resin, acrylic resin, styrene resin, urethane resin, polyethylene terephthalate resin, etc. One or two or more resins may be combined. Among these resins, a resin having a polar group such as a hydroxyl group or a carboxyl group is preferable from the viewpoint of adhesive strength. Moreover, it is preferable that a thermoplastic resin contains 1 or more types of thermoplastic resins whose glass transition temperature is 80 degreeC or more.

絶縁性接着シート又は接着剤には、上記構成成分に添加剤を配合しても差し支えない。
異方導電性接着シートと被着物との密着性を向上させるために、添加剤として、カップリング剤を配合することができる。該カップリング剤としては、シランカップリング剤、チタンカップリング剤、アルミカップリング剤等を用いることができるが、シランカップリング剤が好ましい。該シランカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−メルカプトトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、β−アミノエチル−γ−アミノプロピルトリメトキシシラン、γ−ウレイドプロピルトリメトキシシラン等を用いることができる。
該カップリング剤の配合量は硬化剤および硬化性の絶縁性樹脂を合わせた成分100質量部に対して、0.01質量部から1質量部が好ましい。密着性向上の観点から0.01質量部以上が好ましく、信頼性の観点から1質量部以下が好ましい。
Insulating adhesive sheets or adhesives may contain additives in the above components.
In order to improve the adhesion between the anisotropic conductive adhesive sheet and the adherend, a coupling agent can be blended as an additive. As the coupling agent, a silane coupling agent, a titanium coupling agent, an aluminum coupling agent, or the like can be used, and a silane coupling agent is preferable. Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-mercaptotrimethoxysilane, γ-aminopropyltrimethoxysilane, β-aminoethyl-γ- Aminopropyltrimethoxysilane, γ-ureidopropyltrimethoxysilane, and the like can be used.
The blending amount of the coupling agent is preferably 0.01 parts by mass to 1 part by mass with respect to 100 parts by mass of the components including the curing agent and the curable insulating resin. 0.01 mass part or more is preferable from a viewpoint of adhesive improvement, and 1 mass part or less is preferable from a reliability viewpoint.

本発明はまた、導電性粒子転写シートにより導電性を転写した接続端子により接続された接続構造体にも関する。
本発明の接続構成体を構成する接続端子を有する基板の材質は、有機基板でも無機基板でも、差し支えない。有機基板としては、ポリイミドフィルム基板、ポリアミドフィルム基板、ポリエーテルスルホンフィルム基板、エポキシ樹脂をガラスクロスに含浸させたリジッド基板、ビスマレイミド−トリアジン樹脂をガラスクロスに含浸させたリジッド基板等を用いることができる。無機基板としては、シリコン基板、ガラス基板、アルミナ基板、窒化アルミ基板等を用いることができる。配線基板の配線材料は、インジウム錫酸化物、インジウム亜鉛酸化物等の無機配線材料、金メッキ銅、クロム−銅、アルミニウム、金バンプ等の金属配線材料、アルミニウム、クロム等の金属材料でインジウム錫酸化物等の無機配線材料を覆った複合配線材料等を用いることができる。
The present invention also relates to a connection structure connected by a connection terminal having conductivity transferred by a conductive particle transfer sheet.
The material of the substrate having the connection terminals constituting the connection structure of the present invention may be an organic substrate or an inorganic substrate. As the organic substrate, a polyimide film substrate, a polyamide film substrate, a polyethersulfone film substrate, a rigid substrate obtained by impregnating a glass cloth with an epoxy resin, a rigid substrate obtained by impregnating a glass cloth with a bismaleimide-triazine resin, or the like may be used. it can. As the inorganic substrate, a silicon substrate, a glass substrate, an alumina substrate, an aluminum nitride substrate, or the like can be used. The wiring material of the wiring board is inorganic wiring materials such as indium tin oxide and indium zinc oxide, metal wiring materials such as gold-plated copper, chromium-copper, aluminum and gold bumps, and metal materials such as aluminum and chromium indium tin oxide. A composite wiring material covering an inorganic wiring material such as an object can be used.

本発明の導電性粒子転写シートを適用する用途、あるいは本発明の接続構造体を構成する電子回路部品としては、液晶ディスプレイ機器、プラズマディスプレイ機器、エレクトロルミネッセンスディスプレイ機器等の表示機器の配線板接続用途および、それら機器のLSI等の電子部品実装用途、その他の機器の配線基板接続部分、LSI等の電子部品実装用途に使用することができる。上記表示機器の中でも、信頼性を必要とされるプラズマディスプレイ機器、エレクトロルミネッセンスディスプレイ機器に用いるのが好ましい。
次に、実施例および比較例によって本発明を説明する。
Applications for applying the conductive particle transfer sheet of the present invention or electronic circuit components constituting the connection structure of the present invention include wiring board connection applications for display devices such as liquid crystal display devices, plasma display devices, and electroluminescence display devices. It can also be used for mounting electronic components such as LSIs of these devices, wiring board connection parts of other devices, and mounting electronic components such as LSIs. Among the display devices, it is preferably used for plasma display devices and electroluminescence display devices that require reliability.
Next, the present invention will be described with reference to examples and comparative examples.

[実施例1]
厚さ90μmの無延伸ポリプロピレンフィルム上に、粘着層としてニトリルゴムラテックス−メチルメタアクリレートのグラフト共重合体接着剤を4μmの厚みに塗布したものに、導電性粒子として平均粒径3.0μmの金めっきプラスチック粒子をほぼ隙間無く単層塗布した。すなわち、該導電性粒子を該フィルム幅より大きい容器内に数層以上の厚みになるよう敷き詰めたものを用意し、該導電性粒子に対して粘着剤の塗布面を下向きにして押し付けて付着させ、その後過剰な粒子を軟質ゴムからなるスクレバーで掻き落とした。
この操作を2回繰り返すことにより、隙間無く単層塗布した導電性粒子付着フィルムを得た。
このフィルムを2軸延伸装置(東洋精機製X6H−S、パンタグラフ方式のコーナーストレッチ型の2軸延伸装置)を用いて縦横にそれぞれ10個のチャックを用いて固定し135℃、120秒間予熱し、その後10%/秒の速度で200%延伸して固定した。その後、外周1cmに接着剤を塗布した15cm角のガラス板(厚み5mm)を用いて固定し導電性粒子転写シートを得た。
得られた導電性粒子転写シートの導電性粒子のうち、無作為に20個を選び、レーザー顕微鏡(キーエンス社製、VK9500、形状測定分解能0.01μm)を用いて観察した結果、平均粒子間隔は11.2μmであり、これは、平均粒径の3.7倍であった。
触針式の膜厚計で粘着層厚みを測定したところ、1μmであり、これは、導電性粒子の平均粒径の0.33倍であった。
[Example 1]
On a non-stretched polypropylene film with a thickness of 90 μm, a graft copolymer adhesive of nitrile rubber latex-methyl methacrylate as an adhesive layer is applied to a thickness of 4 μm, and gold with an average particle size of 3.0 μm as conductive particles. The plated plastic particles were applied in a single layer with almost no gap. That is, the conductive particles are prepared in a container having a thickness of several layers or more in a container larger than the film width, and the adhesive particles are pressed and adhered to the conductive particles with the application surface of the adhesive facing downward. Then, excess particles were scraped off with a scrubber made of soft rubber.
By repeating this operation twice, a conductive particle adhesion film coated with a single layer without a gap was obtained.
This film was fixed using 10 chucks in the vertical and horizontal directions using a biaxial stretching device (X6H-S manufactured by Toyo Seiki, pantograph type corner stretch type biaxial stretching device), and preheated at 135 ° C. for 120 seconds. Thereafter, the film was stretched and fixed by 200% at a speed of 10% / second. Then, it fixed using the 15 cm square glass plate (thickness 5mm) which apply | coated the adhesive agent to 1 cm of outer periphery, and obtained the electroconductive particle transfer sheet.
As a result of randomly selecting 20 of the conductive particles of the obtained conductive particle transfer sheet and observing them using a laser microscope (Keyence Corporation, VK9500, shape measurement resolution 0.01 μm), the average particle spacing is It was 11.2 μm, which was 3.7 times the average particle size.
When the thickness of the adhesive layer was measured with a stylus-type film thickness meter, it was 1 μm, which was 0.33 times the average particle diameter of the conductive particles.

[実施例2]
厚さ100μmの無延伸ポリプロピレンフィルム上に実施例1と同じニトリルゴムラテックス−メチルメタアクリレートのグラフト共重合体接着剤を3μmの厚みに塗布したものに、導電性粒子として平均粒径5.0μmの金めっきプラスチック粒子を実施例1と同様の方法によりほぼ隙間無く単層塗布した導電性粒子付着フィルムを得た。
このフィルムを実施例1と同様の方法により2軸延伸装置を用いて縦横にそれぞれ120%延伸して固定した。その後、外周1cmに接着剤を塗布し、その内側をくり貫いたプラスチック板(正方形、15cm角、厚み5mm)に固定し、導電性粒子転写シートを得た。
得られた導電性粒子転写シートの導電性粒子のうち、無作為に20個を選び、レーザー顕微鏡(キーエンス社製、VK9500、形状測定分解能0.01μm)を用いて観察した結果、平均粒子間隔は8.49μmであり、これは、平均粒径の1.7倍であった。
触針式の膜厚計で粘着層厚みを測定したところ、0.7μmであり、導電性粒子の平均粒径の0.14倍であった。
[Example 2]
The same nitrile rubber latex-methyl methacrylate graft copolymer adhesive as in Example 1 was applied to a thickness of 3 μm on an unstretched polypropylene film having a thickness of 100 μm. A conductive particle-adhered film was obtained in which gold-plated plastic particles were applied in a single layer with almost no gap by the same method as in Example 1.
This film was fixed by stretching 120% in the longitudinal and lateral directions using a biaxial stretching apparatus in the same manner as in Example 1. Thereafter, an adhesive was applied to the outer periphery of 1 cm and fixed to a plastic plate (square, 15 cm square, thickness 5 mm) cut through the inside to obtain a conductive particle transfer sheet.
As a result of randomly selecting 20 of the conductive particles of the obtained conductive particle transfer sheet and observing them using a laser microscope (Keyence Corporation, VK9500, shape measurement resolution 0.01 μm), the average particle spacing is It was 8.49 μm, which was 1.7 times the average particle size.
When the thickness of the adhesive layer was measured with a stylus type film thickness meter, it was 0.7 μm, which was 0.14 times the average particle diameter of the conductive particles.

[実施例3]
厚さ100μmの無延伸ポリプロピレンフィルム上にエチレン−酢酸ビニル共重合体接着剤を3μm塗布したものに、導電性粒子として平均粒径3.2μmの金めっき銅粒子を実施例1と同様の方法によりほぼ隙間無く単層塗布した導電性粒子付着フィルムを得た。
このフィルムを実施例1と同様の方法により2軸延伸装置を用いて縦横にそれぞれ150%延伸して固定した。その後、外周1cmに接着剤を塗布し、その内側をくり貫いたプラスチック板(正方形、15cm角、厚み5mm)に固定し、導電性粒子転写シートを得た。
得られた導電性粒子転写シートの導電性粒子のうち、無作為に20個を選び、レーザー顕微鏡(キーエンス社製、VK9500、形状測定分解能0.01μm)を用いて観察した結果、導電性粒子の平均粒子間隔は6.72μmであり、これは、平均粒径の2.11倍であった。
触針式の膜厚計で粘着層厚みを測定したところ、0.49μmであり、導電性粒子の平均粒径の0.15倍であった。
[Example 3]
In the same manner as in Example 1, gold-plated copper particles having an average particle diameter of 3.2 μm were applied as conductive particles to an unstretched polypropylene film having a thickness of 100 μm coated with 3 μm of an ethylene-vinyl acetate copolymer adhesive. A conductive particle adhesion film coated with a single layer with almost no gap was obtained.
This film was fixed by stretching 150% in the longitudinal and lateral directions using a biaxial stretching apparatus in the same manner as in Example 1. Thereafter, an adhesive was applied to the outer periphery of 1 cm and fixed to a plastic plate (square, 15 cm square, thickness 5 mm) cut through the inside to obtain a conductive particle transfer sheet.
As a result of randomly selecting 20 of the conductive particles of the obtained conductive particle transfer sheet and observing them with a laser microscope (VK9500, manufactured by Keyence Corporation, shape measurement resolution 0.01 μm), The average particle spacing was 6.72 μm, which was 2.11 times the average particle size.
When the thickness of the adhesive layer was measured with a stylus type film thickness meter, it was 0.49 μm, which was 0.15 times the average particle diameter of the conductive particles.

[比較例1]
厚さ10μmの無延伸ポリプロピレンフィルム上に、粘着層としてニトリルゴムラテックス−メチルメタアクリレートのグラフト共重合体接着剤を0.5μmの厚みを塗布したものに、導電性粒子として平均粒径3.0μmの金めっきプラスチック粒子をほぼ隙間無く単層塗布した。すなわち、該導電性粒子を該フィルム幅より大きい容器内に数層以上の厚みになるよう敷き詰めたものを用意し、該導電性粒子に対して粘着剤の塗布面を下向きにして押し付けて付着させ、その後過剰な粒子を軟質ゴムからなるスクレバーで掻き落とした後、外周1cmに接着剤を塗布した15cm角のガラス板(厚み5mm)を用いて固定し導電性粒子転写シートを得た。導電性粒子は密集充填されているため、平均粒子間隔の測定は困難であった。
上記実施例及び比較例の導電性粒子転写シートについての導電性粒子の平均粒径、その他の数値をまとめたものを表1に示す。
[Comparative Example 1]
An average particle size of 3.0 μm as conductive particles is applied to a non-stretched polypropylene film having a thickness of 10 μm and a 0.5 μm thick nitrile rubber latex-methyl methacrylate graft copolymer adhesive as an adhesive layer. A single layer of gold-plated plastic particles was applied with almost no gap. That is, the conductive particles are prepared in a container having a thickness of several layers or more in a container larger than the film width, and the adhesive particles are pressed and adhered to the conductive particles with the application surface of the adhesive facing downward. Thereafter, excess particles were scraped off with a scrubber made of soft rubber, and then fixed using a 15 cm square glass plate (thickness 5 mm) coated with an adhesive on the outer periphery 1 cm to obtain a conductive particle transfer sheet. Since the conductive particles are densely packed, it is difficult to measure the average particle spacing.
Table 1 shows a summary of the average particle diameter of the conductive particles and other numerical values for the conductive particle transfer sheets of the above Examples and Comparative Examples.

Figure 0004958417
Figure 0004958417

実施例及び比較例の導電性粒子転写シートを用いて接続端子を接続した試験結果を以下で述べる。まず、試験方法等を以下に示す。
(絶縁性接着シート)
フェノキシ樹脂(ガラス転移温度98℃、数平均分子量14000)34g、ビスフェノールA型エポキシ樹脂(エポキシ当量190、25℃粘度、14000mPa・S)29g、γ−グリシドキシプロピルトリメトキシシラン0.4gを酢酸エチル−トルエンの混合溶剤(混合比1:1)に溶解し、固形分50%溶液とする。
マイクロカプセル型潜在性イミダゾール硬化剤を含有する液状エポキシ樹脂(マイクロカプセルの平均粒径5μm、活性温度125℃)37g、前記固形分50%溶液に配合分散させる。その後、厚さ50μmのポリエチレンテレフタレートフィルム(ベースフィルム)上に塗布し、60℃で15分間送風乾燥し、膜厚18μmのフィルム状の絶縁性接着シートを得た。
The test results of connecting the connection terminals using the conductive particle transfer sheets of Examples and Comparative Examples will be described below. First, test methods and the like are shown below.
(Insulating adhesive sheet)
Acetic acid is 34 g of phenoxy resin (glass transition temperature 98 ° C., number average molecular weight 14000), 29 g of bisphenol A type epoxy resin (epoxy equivalent 190, 25 ° C. viscosity, 14000 mPa · S), 0.4 g of γ-glycidoxypropyltrimethoxysilane. Dissolve in a mixed solvent of ethyl-toluene (mixing ratio 1: 1) to obtain a 50% solid content solution.
A liquid epoxy resin containing a microcapsule-type latent imidazole curing agent (average particle diameter of microcapsule 5 μm, active temperature 125 ° C.) 37 g is mixed and dispersed in the 50% solid content solution. Then, it apply | coated on the 50-micrometer-thick polyethylene terephthalate film (base film), air-dried at 60 degreeC for 15 minute (s), and the film-form insulating adhesive sheet with a film thickness of 18 micrometers was obtained.

(接続抵抗値測定方法)
縦横が1.6mm×15.1mmのシリコン片(厚み0.5mm)全面に酸化膜を形成後、外辺部から40μm内側に横74.5μm、縦120μmのアルミ薄膜(1000Å)をそれぞれが0.1μm間隔になるように長辺側に各々175個、短辺側に各々16個形成する。それらアルミ薄膜上に15μm間隔になるように横25μm、縦80μmの金バンプ(厚み15μm)をそれぞれ2個ずつ形成するために、それぞれの金バンプ配置個所の外周部から7.5μm内側に横10μm、縦85μmの開口部を残す以外の部分にポリイミドの保護膜を常法により前記開口部以外の全面に形成する。その後、前記金バンプを形成し、試験チップとする。
厚み0.7mmの無アルカリガラス上に前記アルミ薄膜上の金バンプが隣接するアルミ薄膜上の金バンプと対になる位置関係で接続されるようにインジウム錫酸化物膜(1500Å)の接続パッド(横66μm、縦120μm)を形成する。20個の金バンプが接続される毎に前記接続パッドにインジウム亜鉛酸化物薄膜の引き出し配線を形成し、引出し配線上はアルミニウム−チタン薄膜(チタン1%、3000Å)を形成し、接続評価基板とする。
(Connection resistance measurement method)
After an oxide film is formed on the entire surface of a silicon piece (thickness 0.5 mm) of 1.6 mm × 15.1 mm in length and width, an aluminum thin film (1000 mm) having a width of 74.5 μm and a length of 120 μm is 40 μm inside from the outer side. 175 pieces are formed on the long side and 16 pieces are formed on the short side, respectively, so as to have an interval of 1 μm. In order to form two gold bumps (thickness: 15 μm) each having a width of 25 μm and a length of 80 μm on the aluminum thin film at intervals of 15 μm, the inner side of each gold bump is placed 7.5 μm inside by 10 μm laterally. Then, a polyimide protective film is formed on the entire surface other than the opening by a conventional method except for leaving the opening having a length of 85 μm. Thereafter, the gold bump is formed to obtain a test chip.
A connection pad (1500 mm) of indium tin oxide film (1500 mm) so that gold bumps on the aluminum thin film are connected to a gold bump on the adjacent aluminum thin film on a non-alkali glass having a thickness of 0.7 mm. 66 μm wide and 120 μm long). Each time 20 gold bumps are connected, a lead wire of an indium zinc oxide thin film is formed on the connection pad, and an aluminum-titanium thin film (titanium 1%, 3000 mm) is formed on the lead wire. To do.

ガラス基板上に厚み1μmで表1記載の粘着剤を塗布したものの上にバンプが接触するように前記試験チップを載せ、0.1MPa、2秒間荷重をかけてバンプ上に粘着剤を転写した。その後、ガラス基板上に導電性粒子転写シートを載せ、導電性粒子面上に該チップを載せ、40℃、3秒間、1MPa加圧してバンプ上に導電性粒子を転写し、導電性粒子転写試験チップとした。前記接続評価基板上に、前記接続パッドがすべて覆われるように、幅2mm、長さ17mmの絶縁性接着シートを仮張りし、2.5mm幅の圧着ヘッドを用いて、80℃、0.3MPa、3秒間加圧した後、ポリエチレンテレフタレートのベースフィルムを剥離する。そこへ、前記接続パッドと金バンプの位置が合うように導電性粒子転写試験チップを載せ、210℃、5秒間2.0MPa加圧圧着する。圧着後、前記引出し配線間(金バンプ20個のデイジーチェイン)の抵抗値を四端子法の抵抗計で抵抗測定し、接続抵抗値とする。
The test chip was placed on a glass substrate coated with the adhesive listed in Table 1 with a thickness of 1 μm so that the bumps contacted, and the adhesive was transferred onto the bumps by applying a load of 0.1 MPa for 2 seconds. Thereafter, a conductive particle transfer sheet is placed on the glass substrate, the chip is placed on the conductive particle surface, and the conductive particles are transferred onto the bumps by applying pressure of 1 MPa at 40 ° C. for 3 seconds. Chip. An insulating adhesive sheet having a width of 2 mm and a length of 17 mm is temporarily stretched on the connection evaluation board so as to cover all the connection pads, and a pressure bonding head having a width of 2.5 mm is used. After pressurizing for 3 seconds, the polyethylene terephthalate base film is peeled off. Then, a conductive particle transfer test chip is placed so that the positions of the connection pads and the gold bumps are matched, and pressure bonding with pressure is performed at 210 ° C. for 5 seconds at 2.0 MPa. After the crimping, the resistance value between the lead wires (daisy chain of 20 gold bumps) is measured with a four-terminal resistance meter to obtain a connection resistance value.

(絶縁抵抗試験方法)
厚み0.7mmの無アルカリガラス上に前記アルミ薄膜上の2個の金バンプがそれぞれ接続されるような位置関係にインジウム亜鉛酸化物膜(1500Å)の接続パッド(横65μm、縦120μm)を形成する。前記接続パッドを1個おきに5個接続できるようにインジウム亜鉛酸化物薄膜の接続配線を形成し、さらにそれらと対になり、櫛型パターンを形成するように1個おきに5個接続できるようにインジウム亜鉛酸化物薄膜の接続配線を形成する。それぞれの接続配線にインジウム亜鉛酸化物薄膜の引出し配線を形成し、引き出し配線上にアルミニウム−チタン薄膜(チタン1%、3000Å)を形成して、絶縁性評価基板とする。前記絶縁性評価基板上に、前記接続パッドがすべて覆われるように、幅2mm、長さ17mmの接着シートを仮張りし、2.5mm幅の圧着ヘッドを用いて、80℃、0.3MPa、3秒間加圧した後、ポリエチレンテレフタレートのベースフィルムを剥離する。そこへ、前記接続パッドと金バンプの位置が合うように(接続抵抗値測定方法)で作製した導電性粒子転写試験チップを載せ、200℃、10秒間1.2MPa加圧圧着し、絶縁抵抗試験基板とする。
この絶縁抵抗試験基板に定電圧定電流電源を用いて、対になる引き出し配線間に100Vの直流電圧を印加する。この配線間の絶縁抵抗を測定し、絶縁抵抗値が1MΩ以下のものを×、1MΩ以上の場合を○とする。
(Insulation resistance test method)
A connection pad (65 μm wide, 120 μm long) of an indium zinc oxide film (1500 mm) is formed on a non-alkali glass with a thickness of 0.7 mm so that the two gold bumps on the aluminum thin film are connected to each other. To do. A connection wiring of an indium zinc oxide thin film is formed so that every other five connection pads can be connected, and further, every five other connection pads can be connected so as to form a comb pattern. A connection wiring of an indium zinc oxide thin film is formed. A lead wire of an indium zinc oxide thin film is formed on each connection wire, and an aluminum-titanium thin film (titanium 1%, 3000 mm) is formed on the lead wire to obtain an insulating evaluation substrate. On the insulating evaluation substrate, an adhesive sheet having a width of 2 mm and a length of 17 mm is temporarily stretched so as to cover all the connection pads, and using a 2.5 mm width crimping head, 80 ° C., 0.3 MPa, After pressurizing for 3 seconds, the polyethylene terephthalate base film is peeled off. A conductive particle transfer test chip prepared in such a manner that the connection pads and gold bumps are aligned with each other (connection resistance value measuring method) is mounted and pressure-bonded at 200 ° C. for 10 seconds and 1.2 MPa, and an insulation resistance test is performed. A substrate is used.
A DC voltage of 100 V is applied between a pair of lead wires using a constant voltage constant current power source on this insulation resistance test substrate. The insulation resistance between these wirings is measured, and those having an insulation resistance value of 1 MΩ or less are evaluated as x, and cases where the resistance is 1 MΩ or more are evaluated as ◯.

以上の結果を表2に示す。表2から明らかなように、本発明の異方導電性接着シートは、非常に優れた絶縁信頼性を示す。
表2において、比較例1は、適当な導電粒子間隔を保持していなかったため、接続面に転写後、パターン面内の接続端子間に導電性粒子が詰まった。
The results are shown in Table 2. As is apparent from Table 2, the anisotropic conductive adhesive sheet of the present invention exhibits very excellent insulation reliability.
In Table 2, since Comparative Example 1 did not maintain an appropriate conductive particle interval, conductive particles were clogged between connection terminals in the pattern surface after being transferred to the connection surface.

Figure 0004958417
Figure 0004958417

本発明の導電性粒子シートは、低接続抵抗、高絶縁信頼性を示し、微細回路接続が求められるベアチップ接続用材料および、高精細なディスプレイ装置等の接続材料として好適である。   The conductive particle sheet of the present invention exhibits low connection resistance and high insulation reliability and is suitable as a connection material for bare chip connection materials that require fine circuit connection and high-definition display devices.

本発明の導電性粒子転写シートの断面の構造を示す概略図である。It is the schematic which shows the structure of the cross section of the electroconductive particle transfer sheet of this invention. 本発明の接続構造体の断面の構造を示す概略図である。It is the schematic which shows the structure of the cross section of the connection structure of this invention.

符号の説明Explanation of symbols

1 導電性粒子
2 粘着剤
3 支持体
4 絶縁性樹脂および硬化剤
5 接続端子
DESCRIPTION OF SYMBOLS 1 Conductive particle 2 Adhesive 3 Support body 4 Insulating resin and hardening agent 5 Connection terminal

Claims (4)

接続端子の接続面に導電性粒子を転写するための導電性粒子転写シートであって、支持体と該支持体の表面に形成した粘着層と該粘着層の表面に付着した導電性粒子とからなり、近接する導電性粒子同士の平均粒子間隔が導電性粒子の平均粒径の0.3〜5倍となるように導電性粒子が配列している導電性粒子転写シートを、第1の接続端子の接続面のみに密着させて導電性粒子を転写し、その後、導電性粒子が転写した第1の接続端子の接続面を第2の接続端子の接続面に接続することを特徴とする接続構造体の製造方法。 A conductive particle transfer sheet for transferring conductive particles to a connection surface of a connection terminal, comprising a support, an adhesive layer formed on the surface of the support, and conductive particles attached to the surface of the adhesive layer The conductive particle transfer sheet in which the conductive particles are arranged so that the average particle interval between the adjacent conductive particles is 0.3 to 5 times the average particle size of the conductive particles. The connection is characterized in that the conductive particles are transferred only in contact with the connection surfaces of the terminals, and then the connection surfaces of the first connection terminals transferred by the conductive particles are connected to the connection surfaces of the second connection terminals. Manufacturing method of structure. 導電性粒子転写シートを、第1の接続端子の接続面のみに密着させて導電性粒子を転写するに際して、該接続面に予め粘着層を形成して、導電性粒子を転写することを特徴とする請求項1に記載の接続構造体の製造方法。 When transferring conductive particles by bringing the conductive particle transfer sheet into close contact with only the connection surface of the first connection terminal, an adhesive layer is formed on the connection surface in advance to transfer the conductive particles. The manufacturing method of the connection structure of Claim 1. 導電性粒子が転写した第1の接続端子の接続面を第2の接続端子の接続面に接続するに際して、絶縁性接着シートを介して、接続することを特徴とする請求項1又は2に記載の接続構造体の製造方法。   3. The connection according to claim 1, wherein when the connection surface of the first connection terminal to which the conductive particles are transferred is connected to the connection surface of the second connection terminal, the connection is made via an insulating adhesive sheet. Method for manufacturing the connection structure of the present invention. 請求項1〜3のいずれか1項に記載の接続構造体の製造方法により製造された接続構造体。   The connection structure manufactured by the manufacturing method of the connection structure of any one of Claims 1-3.
JP2005234082A 2005-08-12 2005-08-12 Conductive particle transfer sheet and connection structure Active JP4958417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005234082A JP4958417B2 (en) 2005-08-12 2005-08-12 Conductive particle transfer sheet and connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005234082A JP4958417B2 (en) 2005-08-12 2005-08-12 Conductive particle transfer sheet and connection structure

Publications (2)

Publication Number Publication Date
JP2007048687A JP2007048687A (en) 2007-02-22
JP4958417B2 true JP4958417B2 (en) 2012-06-20

Family

ID=37851334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005234082A Active JP4958417B2 (en) 2005-08-12 2005-08-12 Conductive particle transfer sheet and connection structure

Country Status (1)

Country Link
JP (1) JP4958417B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029587B2 (en) * 2008-12-09 2012-09-19 パナソニック株式会社 Electronic component mounting structure and electronic component mounting method
JP5783329B2 (en) * 2012-06-25 2015-09-24 株式会社村田製作所 Anisotropic conductive sheet and electrode joining method using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240761A (en) * 1988-08-29 1993-08-31 Minnesota Mining And Manufacturing Company Electrically conductive adhesive tape
JP3092118B2 (en) * 1991-07-14 2000-09-25 ソニーケミカル株式会社 Conductive particle transfer type anisotropic conductive film and electrical connection method
JPH10321678A (en) * 1997-05-14 1998-12-04 Ricoh Co Ltd Conductive particle arrangement method and conductive particle arrangement tape
JP2002076607A (en) * 2000-08-25 2002-03-15 Sekisui Chem Co Ltd Method for transferring and disposing fine particles, fine particle disposing film, conductively connecting film and conductively connecting structure
WO2005054388A1 (en) * 2003-12-04 2005-06-16 Asahi Kasei Emd Corporation Anisotropic conductive adhesive sheet and coupling structure

Also Published As

Publication number Publication date
JP2007048687A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
JP4822322B2 (en) Method for producing anisotropic conductive adhesive sheet
JP4993880B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP4890053B2 (en) Anisotropic conductive film for microcircuit inspection
KR970008547B1 (en) Electrically conductive pressure sensitive adhesive tape
KR101183317B1 (en) Adhesive composition, circuit connecting material using the adhesive composition, method for connecting circuit member, and circuit connecting body
JP4789738B2 (en) Anisotropic conductive film
TW200810243A (en) Conducting particles placement sheet and anisotropic conductive film
JP2010199087A (en) Anisotropic conductive film and manufacturing method therefor, and junction body and manufacturing method therefor
JP2007224111A (en) Anisotropic conductive adhesive sheet and its production method
JP5152815B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP5225766B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP4993877B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP4994653B2 (en) Anisotropic conductive adhesive sheet
JP4958417B2 (en) Conductive particle transfer sheet and connection structure
JP4766943B2 (en) CIRCUIT ADHESIVE SHEET AND METHOD FOR MANUFACTURING THE SAME
JP5445558B2 (en) Anisotropic conductive adhesive sheet and connection method
JP4925405B2 (en) Method for manufacturing connection structure
JP2007224112A (en) Anisotropic conductive adhesive sheet and method for producing the same
JP5370694B2 (en) Connection structure
JP2009238635A (en) Joining body, its manufacturing method, anisotropic conductive material and its manufacturing method
JP4045471B2 (en) Electronic component mounting method
JP4223581B2 (en) Multi-chip mounting method
JP5164257B2 (en) Method for manufacturing connection structure
JP2013045737A (en) Anisotropic conductive film, connection structure and method of manufacturing connection structure
JP2014062257A (en) Anisotropic electroconductive adhesive sheet and connection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4958417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250