JP4789738B2 - Anisotropic conductive film - Google Patents

Anisotropic conductive film Download PDF

Info

Publication number
JP4789738B2
JP4789738B2 JP2006206217A JP2006206217A JP4789738B2 JP 4789738 B2 JP4789738 B2 JP 4789738B2 JP 2006206217 A JP2006206217 A JP 2006206217A JP 2006206217 A JP2006206217 A JP 2006206217A JP 4789738 B2 JP4789738 B2 JP 4789738B2
Authority
JP
Japan
Prior art keywords
layer
resin
film
anisotropic conductive
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006206217A
Other languages
Japanese (ja)
Other versions
JP2008034232A (en
Inventor
健敏 臼井
仁 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2006206217A priority Critical patent/JP4789738B2/en
Publication of JP2008034232A publication Critical patent/JP2008034232A/en
Application granted granted Critical
Publication of JP4789738B2 publication Critical patent/JP4789738B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Description

本発明は、微細パターンの電気的接続において、微小面積の電極の電気的接続性に優れると共に、微細な配線間の絶縁破壊(ショート)が起こりにくく、接続時に十分な熱が供給され難い部位であっても、高い絶縁信頼性を与える接続が可能な、異方導電性フィルムに関する。   In the electrical connection of a fine pattern, the present invention is excellent in electrical connectivity of electrodes having a small area, and is difficult to cause a dielectric breakdown (short) between fine wirings, so that sufficient heat cannot be supplied at the time of connection. Even if it exists, it is related with the anisotropic conductive film in which the connection which gives high insulation reliability is possible.

異方導電性フィルムは、絶縁性接着剤中に導電粒子を分散させたフィルムであり、液晶ディスプレイと半導体チップやTCPとの接続又はFPCとTCPとの接続、FPCとプリント配線板との接続を簡便に行うために使用される接続部材で、例えば、ノート型パソコンや携帯電話の液晶ディスプレイと制御ICとの接続用として広範に用いられ、最近では、半導体チップを直接プリント基板やフレキシブル配線板に搭載するフリップチップ実装にも用いられている(特許文献1、2、3)。   Anisotropic conductive film is a film in which conductive particles are dispersed in an insulating adhesive. Connection between a liquid crystal display and a semiconductor chip or TCP, connection between FPC and TCP, connection between FPC and printed wiring board. It is a connecting member used for simple operation. For example, it is widely used for connecting a liquid crystal display of a notebook personal computer or a mobile phone and a control IC. Recently, a semiconductor chip is directly applied to a printed circuit board or a flexible wiring board. It is also used for flip chip mounting (Patent Documents 1, 2, and 3).

この分野では近年、接続される配線パターンや電極パターンの寸法が益々微細化されている。配線や電極の幅は10数μmレベルまで微細化される場合も多くなってきている。一方で、これまで用いられてきた導電粒子の平均粒径は、配線や電極の線幅と同レベルの数μmから10μmレベルの粒子であった。そうすると、接続される電極パターンの寸法が小さくなると、導電粒子がランダムに分散配置されている異方導電性フィルムでは、導電粒子の分布に偏差が生じているため、接続すべき電極パターンが導電粒子の存在しない位置に配置されてしまい、電気的に接続されない場合が、確率論として避けられない。
この問題点を解決するためには、より小さな導電粒子を高密度でフィルム内に分散させることが有効であるが、導電粒子の寸法を小さくすると、表面積が急激に大きくなって2次凝集し易くなり、隣接電極間の絶縁を保持できなくなり、逆に、絶縁を保持するために導電粒子の密度を下げると、今度は、接続されない配線パターンや電極パターンが発生してしまうため、接続信頼性を保ったまま微細化に対応することは困難とされていた(特許文献4)。
In recent years, the dimensions of connected wiring patterns and electrode patterns have been increasingly miniaturized in this field. In many cases, the width of wirings and electrodes is miniaturized to a level of a few tens of μm. On the other hand, the average particle diameter of the conductive particles that have been used so far was particles of several μm to 10 μm level, which is the same level as the line width of the wiring or electrode. Then, when the dimension of the electrode pattern to be connected is reduced, in the anisotropic conductive film in which the conductive particles are randomly dispersed and arranged, there is a deviation in the distribution of the conductive particles. It is unavoidable as a probability theory that it is arranged at a position where no exists and is not electrically connected.
In order to solve this problem, it is effective to disperse smaller conductive particles in the film at a high density. However, when the size of the conductive particles is reduced, the surface area increases rapidly and secondary aggregation easily occurs. As a result, if the density of the conductive particles is lowered to maintain the insulation, a wiring pattern or an electrode pattern that is not connected is generated. It has been considered difficult to cope with miniaturization while maintaining (Patent Document 4).

更に、小型液晶パネルを中心に高密度実装を実現するために、ガラス基板上にICチップをフェイスダウンで搭載し、異方導電性フィルムで接続を行う方法がとられている。この場合、電極同士が相対峙する様に位置合わせされて形成されたICチップとガラス基板の間に異方導電性フィルムを狭持し、ICチップの裏面から熱を加えながら圧着することで接続が行われる。これによってICチップとガラス基板との電気的接続が行われ、また、異方導電性フィルムの封止効果によって接続領域間の水分の浸入を防ぐことができ、接続信頼性を維持する事ができる。しかし、ICチップの外周部においては、異方導電性フィルムは、ICチップから十分な熱が供給され難いために、硬化反応が不十分、あるいは、未反応の状態になる場合があり、封止効果が低く、吸水し易いために、ガラス基板上の配線が腐蝕する等の課題があり、配線材料の工夫(特許文献5)や、更にICチップ周りに保護用樹脂を形成する(特許文献6)等の改良が行われている。しかし、近年では、配線間に高い電圧がかかるため、あるいは、配線が狭ピッチになるために、配線の腐蝕等による絶縁信頼性が不十分であり、更なる改良が求められている。   Furthermore, in order to realize high-density mounting centering on a small liquid crystal panel, a method of mounting an IC chip face down on a glass substrate and connecting with an anisotropic conductive film is used. In this case, an anisotropic conductive film is sandwiched between the glass chip and the IC chip that are aligned so that the electrodes face each other, and connected by applying pressure from the back of the IC chip while applying heat. Is done. As a result, the IC chip and the glass substrate are electrically connected, and the sealing effect of the anisotropic conductive film can prevent moisture from entering between the connection areas, thereby maintaining connection reliability. . However, at the outer periphery of the IC chip, the anisotropic conductive film is difficult to be supplied with sufficient heat from the IC chip, so the curing reaction may be insufficient or unreacted, Since the effect is low and it is easy to absorb water, there is a problem that the wiring on the glass substrate is corroded, and a device for the wiring material (Patent Document 5) and further a protective resin is formed around the IC chip (Patent Document 6). ) And other improvements have been made. However, in recent years, since a high voltage is applied between the wirings or the wirings have a narrow pitch, the insulation reliability due to the corrosion of the wirings is insufficient, and further improvement is required.

特開平03−107888号公報Japanese Patent Laid-Open No. 03-107888 特開平04−366630号公報Japanese Patent Laid-Open No. 04-366630 特開昭61−195179号公報JP-A-61-195179 特開平09−312176号公報JP 09-31176 A 特開平11−223825号公報Japanese Patent Laid-Open No. 11-223825 特開平05−333359号公報JP 05-333359 A

本発明は、微細パターンの電気的接続において、微小面積の電極の電気的接続性に優れると共に、微細な配線間の絶縁破壊(ショート)が起こりにくく、接続時に十分な熱が供給され難い部位であっても、高い絶縁信頼性を与える接続が可能な、異方導電性フィルムの提供を目的とする。   In the electrical connection of a fine pattern, the present invention is excellent in electrical connectivity of electrodes having a small area, and is difficult to cause a dielectric breakdown (short) between fine wirings, so that sufficient heat cannot be supplied at the time of connection. Even if it exists, it aims at provision of the anisotropic conductive film in which the connection which gives high insulation reliability is possible.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、まず、接続信頼性を保ったまま微細化に対応する課題に対しては、粒子間距離が特定の平均値と特定の標準偏差を有する様に、導電粒子を絶縁性接着剤の表面層に単層として配置する事で、上記目的に適合しうることを見出し、本発明の骨格をなした。
次に、界面層に潜在性硬化剤を含有しない熱硬化性樹脂層を設け、それに、潜在性硬化剤を含有する熱硬化性樹脂層を特定の膜厚比率で積層することで、接続時に十分な熱が供給され難い部位であっても、高い絶縁信頼性を与えると共に、熱硬化性樹脂の高い接続信頼性を与えることを見出した。この発見は、従来、高い接続信頼性および絶縁信頼性を発現するためには、熱硬化性樹脂を用い、高い硬化率が必要であると言われていた事実に鑑み、当業者にとって容易に予想できないものであった。
As a result of intensive studies to solve the above problems, the present inventors have first determined that the distance between particles is a specific average value and a specific value for a problem corresponding to miniaturization while maintaining connection reliability. It has been found that the conductive particles are arranged as a single layer on the surface layer of the insulating adhesive so as to have a standard deviation, so that it can meet the above-mentioned purpose, and the skeleton of the present invention is made.
Next, the interface layer is provided with a thermosetting resin layer that does not contain a latent curing agent, and a thermosetting resin layer that contains a latent curing agent is laminated at a specific film thickness ratio. It has been found that even if it is a part where it is difficult to supply heat, it provides high insulation reliability and high connection reliability of the thermosetting resin. This discovery is easily anticipated by those skilled in the art in view of the fact that, in the past, it has been said that a high curing rate is required using a thermosetting resin in order to exhibit high connection reliability and insulation reliability. It was impossible.

即ち、本発明は、下記の通りである。
1) 熱硬化性樹脂(A)と潜在性硬化剤を含有する第一層と、熱硬化性樹脂(B)は含有するが、潜在性硬化剤は含有しない第二層の、少なくとも前記2層から構成され、該第二層が最外層であり、導電粒子が単層に配置された、厚さ方向に加圧することで導電性を有する異方導電性フィルムにおいて、(1)導電粒子の中心間距離の平均が2μm以上20μm以下であり、その変動係数が、0.05以上0.5未満であり、(2)第一層の厚みに対する第二層の厚めが、0.01以上0.25未満であることを特徴とする異方導電性フィルム。
2)第一層に含まれる熱硬化性樹脂(A)がエポキシ樹脂である上記1)に記載の異方導電性フィルム。
3)ICチップの電極と回路基板の電極を電気的に接続する回路接続方法であって、上記1)あるいは2)に記載の異方導電性フィルムを、第二層側が回路基板と接し、ICチップよりも大きい面積で、ICチップと回路基板間にはさみ、ICチップ側から熱を供給しながら加圧することを特徴とする回路接続方法。
4)上記3)に記載の方法により接続された接続構造体。
That is, the present invention is as follows.
1) At least the two layers of the first layer containing the thermosetting resin (A) and the latent curing agent, and the second layer containing the thermosetting resin (B) but not containing the latent curing agent. In the anisotropic conductive film having the conductivity by pressing in the thickness direction, wherein the second layer is the outermost layer and the conductive particles are arranged in a single layer, (1) the center of the conductive particles The average distance is not less than 2 μm and not more than 20 μm, the coefficient of variation is not less than 0.05 and less than 0.5, and (2) the thickness of the second layer relative to the thickness of the first layer is not less than 0.01 and not more than 0.00. An anisotropic conductive film characterized by being less than 25.
2) The anisotropic conductive film as described in 1) above, wherein the thermosetting resin (A) contained in the first layer is an epoxy resin.
3) A circuit connection method for electrically connecting an electrode of an IC chip and an electrode of a circuit board, wherein the anisotropic conductive film according to the above 1) or 2) is in contact with the circuit board on the second layer side. A circuit connection method characterized in that it is sandwiched between an IC chip and a circuit board in a larger area than the chip and is pressurized while supplying heat from the IC chip side.
4) A connection structure connected by the method described in 3) above.

本発明の異方導電性接着フィルムは、微細パターンの電気的接続において、微小面積の電極の電気的接続性に優れると共に、微細な配線間の絶縁破壊(ショート)が起こりにくく、接続時に十分な熱が供給され難い部位であっても、高い絶縁信頼性を与える接続が可能にする効果を有する。   The anisotropic conductive adhesive film of the present invention is excellent in electrical connection of electrodes with a small area in electrical connection of a fine pattern, and is less likely to cause dielectric breakdown (short) between fine wirings. Even in a region where heat is difficult to be supplied, there is an effect of enabling connection that provides high insulation reliability.

本発明について、以下具体的に説明する。
本発明は、熱硬化性樹脂(A)と潜在性硬化剤を含有する第一層と、熱硬化性樹脂(B)を含有し潜在性硬化剤は含有しない第二層の、少なくとも前記2層から構成されている。
まず第一層について説明する。
第一層に用いられる、熱硬化性樹脂(A)としては、加熱により潜在性硬化剤と反応して架橋する樹脂が用いられる。この様な熱硬化性樹脂(A)としては、例えば、エポキシ樹脂、フェノール樹脂、アクリレート、ウレタン樹脂等が用いられる。それぞれの熱硬化性樹脂には、それに適した潜在性硬化剤が用いられ、例えば、分子末端に反応性二重結合を有するアクリレートであれば、潜在性硬化剤としては、加熱によってラジカルを発生する様な、過酸化物等の潜在性硬化剤が用いられる。
The present invention will be specifically described below.
The present invention provides at least the two layers of a first layer containing a thermosetting resin (A) and a latent curing agent, and a second layer containing a thermosetting resin (B) and no latent curing agent. It is composed of
First, the first layer will be described.
As the thermosetting resin (A) used in the first layer, a resin that crosslinks by reacting with a latent curing agent by heating is used. As such a thermosetting resin (A), an epoxy resin, a phenol resin, an acrylate, a urethane resin, etc. are used, for example. For each thermosetting resin, a latent curing agent suitable for it is used. For example, if the acrylate has a reactive double bond at the molecular end, the latent curing agent generates a radical by heating. A latent curing agent such as peroxide is used.

本発明においては、接続信頼性の高さから、熱硬化性樹脂(A)としてエポキシ樹脂を用いることが好ましい。
ここで用いられるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラメチルビスフェノールA型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、レゾルシン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、脂肪族エーテル型エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、グリシジルエーテルエステル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環族エポキサイド等があり、これらエポキシ樹脂はウレタン変性、ゴム変性、シリコーン変性等の変性されたエポキシ樹脂でも良い。グリシジルエーテル型エポキシ樹脂が好ましく、ナフタレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が更に好ましい。
In the present invention, it is preferable to use an epoxy resin as the thermosetting resin (A) because of high connection reliability.
Examples of the epoxy resin used here include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetramethylbisphenol A type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin, and resorcin type epoxy. Resin, fluorene type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, aliphatic ether type epoxy resin, etc. glycidyl ether type epoxy resin, glycidyl ether ester type epoxy resin, glycidyl ester type There are epoxy resins, glycidylamine type epoxy resins, hydantoin type epoxy resins, alicyclic epoxides, etc. These epoxy resins are urethane modified. , Rubber-modified, it may be a modified epoxy resin such as silicone-modified. Glycidyl ether type epoxy resins are preferable, and naphthalene type epoxy resins, bisphenol A type epoxy resins, and bisphenol F type epoxy resins are more preferable.

熱硬化性樹脂(A)としてエポキシ樹脂を用いる場合の潜在性硬化剤としては、ホウ素化合物、ヒドラジド、3級アミン、イミダゾール、ジシアンジアミド、カルボン酸無水物、チオール、イソシアネート、ホウ素錯塩及びそれらの誘導体等の硬化剤を用いることができる。中でも、アミンアダクト、イミダゾールアダクト等のアダクト型硬化剤が安定性と硬化性のバランスが取れており好ましい。アダクト型硬化剤は、1級あるいは2級アミン類やイミダゾール類と、エポキシ樹脂、イソシアネート化合物、尿素化合物等との反応により得られる。潜在性硬化剤の中でも、マイクロカプセル型の潜在性硬化剤が溶剤存在下での安定性が特に優れており、更に好ましい。マイクロカプセル型硬化剤は、前記硬化剤の表面を樹脂皮膜等で安定化したもので、接続作業時の温度や圧力で樹脂皮膜が破壊され、硬化剤がマイクロカプセル外に拡散し、エポキシ樹脂と反応する。マイクロカプセル型潜在性硬化剤の中でも、アミンアダクト、イミダゾールアダクト等のアダクト型硬化剤をマイクロカプセル化した潜在性硬化剤が安定性と硬化性のバランスに優れ、一層好ましい。   As the latent curing agent when using an epoxy resin as the thermosetting resin (A), boron compound, hydrazide, tertiary amine, imidazole, dicyandiamide, carboxylic acid anhydride, thiol, isocyanate, boron complex salt and derivatives thereof Can be used. Of these, adduct-type curing agents such as amine adducts and imidazole adducts are preferable because they balance the stability and curability. Adduct-type curing agents are obtained by reacting primary or secondary amines or imidazoles with epoxy resins, isocyanate compounds, urea compounds, and the like. Among the latent curing agents, a microcapsule type latent curing agent is particularly preferable because of its excellent stability in the presence of a solvent. The microcapsule-type curing agent is a material in which the surface of the curing agent is stabilized with a resin film, etc., and the resin film is destroyed by the temperature and pressure during connection work, the curing agent diffuses outside the microcapsule, and the epoxy resin and react. Among the microcapsule-type latent curing agents, a latent curing agent obtained by microencapsulating an adduct-type curing agent such as an amine adduct or an imidazole adduct is more preferable because of excellent balance between stability and curability.

潜在性硬化剤は、熱硬化性樹脂の高い硬化性を得るために、熱硬化性樹脂(A)100質量部に対して、1〜100質量部用いられるのが好ましい。更に好ましくは4〜60質量部、一層好ましくは8〜40質量部、更に一層好ましくは10〜30質量部であり、これによって吸水率を低く抑えることができる。
第一層には、接着性、硬化時の応力緩和製等を付与する目的で、ポリエステル樹脂、アクリルゴム、SBR、NBR、シリコーン樹脂、ポリビニルブチラール樹脂、ポリウレタン樹脂、ポリアセタール樹脂、尿素樹脂、キシレン樹脂、ポリアミド樹脂、ポリイミド樹脂、カルボキシル基、ヒドロシキシル基、ビニル基、アミノ基などの官能基を含有するゴム、エラストマー類等の高分子成分を含有することが好ましい。これら高分子成分は分子量が10,000〜3,000,000のものが好ましく、50,000〜1,500,000のものが更に好ましい。高分子成分の含有量は、熱硬化性樹脂に対して100質量%以下が好ましく、2〜80質量%が更に好ましい。
In order to obtain the high curability of the thermosetting resin, the latent curing agent is preferably used in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of the thermosetting resin (A). More preferably, it is 4-60 mass parts, More preferably, it is 8-40 mass parts, More preferably, it is 10-30 mass parts, and a water absorption rate can be restrained low by this.
In the first layer, polyester resin, acrylic rubber, SBR, NBR, silicone resin, polyvinyl butyral resin, polyurethane resin, polyacetal resin, urea resin, xylene resin for the purpose of imparting adhesiveness, stress relaxation during curing, etc. It is preferable to contain a polymer component such as a polyamide resin, a polyimide resin, a rubber containing a functional group such as a carboxyl group, a hydroxyl group, a vinyl group or an amino group, or an elastomer. These polymer components preferably have a molecular weight of 10,000 to 3,000,000, more preferably 50,000 to 1,500,000. The content of the polymer component is preferably 100% by mass or less, more preferably 2 to 80% by mass with respect to the thermosetting resin.

第一層には、フィルム形成性高分子を含有することが好ましい。フィルム形成性高分子としては、長期接続信頼性に優れるフェノキシ樹脂が好ましい。ここで用いられるフェノキシ樹脂としては、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールAビスフェノールF混合型フェノキシ樹脂、ビスフェノールAビスフェノールS混合型フェノキシ樹脂、フルオレン環含有フェノキシ樹脂、カプロラクトン変性ビスフェノールA型フェノキシ樹脂等が例示される。フィルム形成性高分子の含有量は、熱硬化性樹脂に対して10〜200質量%が好ましく、30〜150質量%が更に好ましい。
第一層には、さらに、絶縁粒子、充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤等を含有することができる。更に、接着性の観点からカップリング剤を含有することが好ましい。カップリング剤としてはケチミン基、ビニル基、アクリル基、アミノ基、エポキシ基及びイソシアネート基を含有するシランカップリング剤が、接着性の向上の観点から好ましい。
第一層の各成分を混合する場合、必要に応じ、溶剤を用いることができる。溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、酢酸エチル、酢酸ブチル、エチレングリコールモノアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルアセテート等が挙げられる。複数の溶剤を併用することもできる。
本発明において第一層は、更に複数の層より構成されていても構わない。
第一層の厚みは5μm以上50μm未満が好ましい。
The first layer preferably contains a film-forming polymer. As the film-forming polymer, a phenoxy resin having excellent long-term connection reliability is preferable. As the phenoxy resin used here, bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol A bisphenol F mixed type phenoxy resin, bisphenol A bisphenol S mixed type phenoxy resin, fluorene ring-containing phenoxy resin, caprolactone modified bisphenol A type Examples include phenoxy resin. 10-200 mass% is preferable with respect to a thermosetting resin, and, as for content of a film-forming polymer | macromolecule, 30-150 mass% is still more preferable.
The first layer can further contain insulating particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, and the like. Furthermore, it is preferable to contain a coupling agent from an adhesive viewpoint. As the coupling agent, a silane coupling agent containing a ketimine group, a vinyl group, an acrylic group, an amino group, an epoxy group and an isocyanate group is preferable from the viewpoint of improving adhesiveness.
When mixing each component of a 1st layer, a solvent can be used as needed. Examples of the solvent include methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, ethyl acetate, butyl acetate, ethylene glycol monoalkyl ether acetate, propylene glycol monoalkyl ether acetate, and the like. A plurality of solvents can be used in combination.
In the present invention, the first layer may be composed of a plurality of layers.
The thickness of the first layer is preferably 5 μm or more and less than 50 μm.

次に第二層について説明する。
第二層に用いられる熱硬化性樹脂(B)としては、例えば、エポキシ樹脂、フェノール樹脂、アクリレート、ウレタン樹脂等が用いられる。
本発明においては、接続信頼性の高さから、熱硬化性樹脂(B)としてエポキシ樹脂を用いることが好ましい。
ここで用いられるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラメチルビスフェノールA型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、レゾルシン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、脂肪族エーテル型エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、グリシジルエーテルエステル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環族エポキサイド等があり、これらエポキシ樹脂はウレタン変性、ゴム変性、シリコーン変性等の変性されたエポキシ樹脂でも良い。グリシジルエーテル型エポキシ樹脂が好ましく、ナフタレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が更に好ましい。更に、基板への貼付き性を発現するために、液状エポキシ樹脂が好ましい。液状エポキシ樹脂とは25℃で流動性を有するエポキシ樹脂である。
Next, the second layer will be described.
As a thermosetting resin (B) used for a 2nd layer, an epoxy resin, a phenol resin, an acrylate, a urethane resin etc. are used, for example.
In the present invention, it is preferable to use an epoxy resin as the thermosetting resin (B) because of high connection reliability.
Examples of the epoxy resin used here include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetramethylbisphenol A type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin, and resorcin type epoxy. Resin, fluorene type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, aliphatic ether type epoxy resin, etc. glycidyl ether type epoxy resin, glycidyl ether ester type epoxy resin, glycidyl ester type There are epoxy resins, glycidylamine type epoxy resins, hydantoin type epoxy resins, alicyclic epoxides, etc. These epoxy resins are urethane modified. , Rubber-modified, it may be a modified epoxy resin such as silicone-modified. Glycidyl ether type epoxy resins are preferable, and naphthalene type epoxy resins, bisphenol A type epoxy resins, and bisphenol F type epoxy resins are more preferable. Furthermore, a liquid epoxy resin is preferable in order to express the sticking property to the substrate. The liquid epoxy resin is an epoxy resin having fluidity at 25 ° C.

本発明において、層間の接着性を高く維持するために、熱硬化性樹脂(A)と熱硬化性樹脂(B)は同種の樹脂を用いることが好ましい。
本発明に用いられる第二層には、接着性を向上させる目的で、カップリング剤を含有することが好ましい。カップリング剤としてはケチミン基、ビニル基、アクリル基、アミノ基、エポキシ基及びイソシアネート基を含有するシランカップリング剤が、接着性の向上の観点から好ましい。
第二層においてカップリング剤の使用量は、高い接着性を得るために、熱硬化性樹脂(B)100質量部に対して、0.1〜5質量部用いられるのが好ましい。更に好ましくは0.2〜4質量部、一層好ましくは0.3〜3質量部である。
第二層には、接着性、硬化時の応力緩和製等を付与する目的で、ポリエステル樹脂、アクリルゴム、SBR、NBR、シリコーン樹脂、ポリビニルブチラール樹脂、ポリウレタン樹脂、ポリアセタール樹脂、尿素樹脂、キシレン樹脂、ポリアミド樹脂、ポリイミド樹脂、カルボキシル基、ヒドロシキシル基、ビニル基、アミノ基などの官能基を含有するゴム、エラストマー類等の高分子成分を含有することが好ましい。これら高分子成分は分子量が10,000〜3,000,000のものが好ましく、50,000〜1,500,000のものが更に好ましい。高分子成分の含有量は、熱硬化性樹脂に対して100質量%以下が好ましく、2〜80質量%が更に好ましい。
In the present invention, it is preferable to use the same kind of resin for the thermosetting resin (A) and the thermosetting resin (B) in order to maintain high adhesion between the layers.
The second layer used in the present invention preferably contains a coupling agent for the purpose of improving adhesiveness. As the coupling agent, a silane coupling agent containing a ketimine group, a vinyl group, an acrylic group, an amino group, an epoxy group and an isocyanate group is preferable from the viewpoint of improving adhesiveness.
In the second layer, the amount of the coupling agent used is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the thermosetting resin (B) in order to obtain high adhesiveness. More preferably, it is 0.2-4 mass parts, More preferably, it is 0.3-3 mass parts.
The second layer is provided with polyester resin, acrylic rubber, SBR, NBR, silicone resin, polyvinyl butyral resin, polyurethane resin, polyacetal resin, urea resin, xylene resin for the purpose of imparting adhesiveness, stress relaxation during curing, etc. It is preferable to contain a polymer component such as a polyamide resin, a polyimide resin, a rubber containing a functional group such as a carboxyl group, a hydroxyl group, a vinyl group or an amino group, or an elastomer. These polymer components preferably have a molecular weight of 10,000 to 3,000,000, more preferably 50,000 to 1,500,000. The content of the polymer component is preferably 100% by mass or less, more preferably 2 to 80% by mass with respect to the thermosetting resin.

第二層には、フィルム形成性高分子を含有することが好ましい。フィルム形成性高分子としては、長期接続信頼性に優れるフェノキシ樹脂が好ましい。ここで用いられるフェノキシ樹脂としては、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールAビスフェノールF混合型フェノキシ樹脂、ビスフェノールAビスフェノールS混合型フェノキシ樹脂、フルオレン環含有フェノキシ樹脂、カプロラクトン変性ビスフェノールA型フェノキシ樹脂等が例示される。フィルム形成性高分子の含有量は、熱硬化性樹脂に対して0.1〜50倍が好ましく、0.5〜25倍が更に好ましい。
第二層には、さらに、絶縁粒子、充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤等を含有することができる。
第二層の各成分を混合する場合、必要に応じ、溶剤を用いることができる。溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、酢酸エチル、酢酸ブチル、エチレングリコールモノアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルアセテート等が挙げられる。複数の溶剤を併用することもできる。
The second layer preferably contains a film-forming polymer. As the film-forming polymer, a phenoxy resin having excellent long-term connection reliability is preferable. As the phenoxy resin used here, bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol A bisphenol F mixed type phenoxy resin, bisphenol A bisphenol S mixed type phenoxy resin, fluorene ring-containing phenoxy resin, caprolactone modified bisphenol A type Examples include phenoxy resin. The content of the film-forming polymer is preferably 0.1 to 50 times, more preferably 0.5 to 25 times that of the thermosetting resin.
The second layer can further contain insulating particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, and the like.
When mixing each component of a 2nd layer, a solvent can be used as needed. Examples of the solvent include methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, ethyl acetate, butyl acetate, ethylene glycol monoalkyl ether acetate, propylene glycol monoalkyl ether acetate, and the like. A plurality of solvents can be used in combination.

本発明において、第二層には、熱硬化性樹脂(B)を硬化するための潜在性硬化剤を含有していない。ここで言う潜在性硬化剤は、接続時において、熱硬化剤樹脂(B)を硬化する働きを有する硬化剤を意味し、接続前に既に熱硬化性樹脂(B)と反応した硬化剤は包含されない。
本発明において第二層は、更に複数の層より構成されていても構わない。
本発明においては、第一層、第二層以外にもその他の層が更に形成していてもよい。その他の層の厚みは、第一層の厚みに対して0.25未満が好ましい。
その他の層が更に形成される場合、少なくとも第二層は最外層に形成されている必要があり、これによって、接続時に十分な熱が供給され難い部位であっても、高い絶縁信頼性が得られる。
In the present invention, the second layer does not contain a latent curing agent for curing the thermosetting resin (B). The latent curing agent here means a curing agent having a function of curing the thermosetting resin (B) at the time of connection, and includes a curing agent that has already reacted with the thermosetting resin (B) before connection. Not.
In the present invention, the second layer may further comprise a plurality of layers.
In the present invention, other layers may be further formed in addition to the first layer and the second layer. The thickness of the other layer is preferably less than 0.25 with respect to the thickness of the first layer.
When other layers are further formed, at least the second layer needs to be formed in the outermost layer, and thereby high insulation reliability is obtained even in a region where sufficient heat is difficult to be supplied at the time of connection. It is done.

本発明において、第一層の厚みに対する第二層の厚みは、0.01以上0.25未満である。好ましくは0.02以上0.20未満、より好ましくは0.04以上0.18未満、更に好ましくは0.05以上0.16未満である。第一層の厚みに対する第二層の厚みを0.01以上0.25未満にすることで、高い接着性を有し、かつ、接続時に十分な熱が供給され難い部位であっても高い絶縁信頼性を得ることができる。更に、第一層の厚みに対する第二層の厚みを0.05以上0.16未満にすることで、耐熱性が高く、性能バラツキの小さい異方導電性フィルムが得ることができる。
第二層の厚みは、0.1μm以上5μm未満が好ましい。より好ましくは0.2μm以上4μm未満、更に好ましくは0.4μm以上3.5μm未満、一層好ましくは0.5μm以上3μm未満が好ましい。第二層の厚みを0.1μm以上5μm未満にすることで、高い接着性を有し、かつ、接続時に十分な熱が供給され難い部位であっても高い絶縁信頼性を得ることができる。
In the present invention, the thickness of the second layer relative to the thickness of the first layer is 0.01 or more and less than 0.25. Preferably they are 0.02 or more and less than 0.20, More preferably, they are 0.04 or more and less than 0.18, More preferably, they are 0.05 or more and less than 0.16. By making the thickness of the second layer with respect to the thickness of the first layer 0.01 or more and less than 0.25, it has high adhesiveness and high insulation even if it is difficult to supply sufficient heat at the time of connection. Reliability can be obtained. Furthermore, when the thickness of the second layer with respect to the thickness of the first layer is 0.05 or more and less than 0.16, an anisotropic conductive film having high heat resistance and small performance variation can be obtained.
The thickness of the second layer is preferably 0.1 μm or more and less than 5 μm. More preferably, it is 0.2 μm or more and less than 4 μm, more preferably 0.4 μm or more and less than 3.5 μm, and still more preferably 0.5 μm or more and less than 3 μm. By setting the thickness of the second layer to 0.1 μm or more and less than 5 μm, it is possible to obtain high insulation reliability even in a portion that has high adhesiveness and is difficult to supply sufficient heat at the time of connection.

本発明の異方導電性フィルムは、ICチップや回路基板の電極高さのバラツキを吸収するために、導電粒子を含有する。導電粒子としては、金属粒子、炭素からなる粒子や高分子核材に金属薄膜を被覆した粒子等を用いる事ができる。
金属粒子としては、例えば、金、銀、銅、ニッケル、アルミニウム、亜鉛、錫、鉛、半田、インジウム、パラジウム等の単体や、2種以上のこれらの金属が層状あるいは傾斜状に組み合わされている粒子が例示される。
高分子核材に金属薄膜を被覆した粒子としては、エポキシ樹脂、スチレン樹脂、シリコーン樹脂、アクリル樹脂、ポリオレフィン樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ウレタン樹脂、フェノール樹脂、ポリエステル樹脂、ジビニルベンゼン架橋体、NBR、SBR等のポリマーの中から1種あるいは2種以上組み合わせた高分子核材に、金、銀、銅、ニッケル、アルミニウム、亜鉛、錫、鉛、半田、インジウム、パラジウム等の中から1種あるいは2種以上組み合わせてメッキ等により金属被覆した粒子が例示される。金属薄膜の厚さは0.005μm以上1μm以下、好ましくは0.01μm以上0.5μm以下の範囲が、接続安定性と粒子の凝集性の観点から好ましい。金属薄膜は均一に被覆されていることが接続安定性上好ましい。これら導電粒子の表面を更に絶縁被覆した粒子も使用することができる。
The anisotropic conductive film of the present invention contains conductive particles in order to absorb variations in the electrode height of an IC chip or a circuit board. As the conductive particles, metal particles, particles made of carbon, particles obtained by coating a polymer core material with a metal thin film, or the like can be used.
As the metal particles, for example, a simple substance such as gold, silver, copper, nickel, aluminum, zinc, tin, lead, solder, indium, palladium, etc., or two or more of these metals are combined in a layered or inclined manner. Particles are exemplified.
Particles with a polymer core coated with a metal thin film include epoxy resin, styrene resin, silicone resin, acrylic resin, polyolefin resin, melamine resin, benzoguanamine resin, urethane resin, phenol resin, polyester resin, divinylbenzene crosslinked product, NBR , SBR and other polymer core materials combined with one or more polymers, gold, silver, copper, nickel, aluminum, zinc, tin, lead, solder, indium, palladium, etc. The particle | grains which metal-coated by plating etc. in combination of 2 or more types are illustrated. The thickness of the metal thin film is preferably 0.005 μm or more and 1 μm or less, and more preferably 0.01 μm or more and 0.5 μm or less from the viewpoint of connection stability and particle aggregation. It is preferable in terms of connection stability that the metal thin film is uniformly coated. Particles obtained by further insulating coating the surfaces of these conductive particles can also be used.

導電粒子の平均粒径は、0.5μm以上10μm未満の範囲が導電性と絶縁性の両立と粒子の凝集性との観点から好ましい。更に好ましくは1μm以上7μm未満、更に好ましくは1.5μm以上6μm未満、更に好ましくは2μm以上5.5μm未満、更に好ましくは2.5μm以上5μm未満である。導電粒子の粒子径の標準偏差は小さいほど好ましく、平均粒径の50%以下が好ましい。更に好ましくは20%以下、一層好ましくは、10%以下、更に一層好ましくは5%以下である。
導電粒子の含有量は、本発明の異方導電性フィルムに対して0.1体積%以上20体積%未満が好ましい。より好ましくは0.13体積%以上15体積%未満、更に好ましくは0.15体積%以上10体積%未満、一層好ましくは0.2体積%以上5体積%未満、更に一層好ましくは0.25体積%以上3体積%未満である。導電粒子の含有量が0.1体積%以上20体積%未満の領域では、対向する電極間の導電性と隣接する電極間の絶縁性が両立し易い。更に、5体積%未満の含有量にすることで、接続時に十分な熱が供給され難い部位であっても高い絶縁信頼性が得やすくなる。
The average particle diameter of the conductive particles is preferably in the range of 0.5 μm or more and less than 10 μm from the viewpoints of both conductivity and insulation and particle aggregability. More preferably, they are 1 micrometer or more and less than 7 micrometers, More preferably, they are 1.5 micrometers or more and less than 6 micrometers, More preferably, they are 2 micrometers or more and less than 5.5 micrometers, More preferably, they are 2.5 micrometers or more and less than 5 micrometers. The standard deviation of the particle diameter of the conductive particles is preferably as small as possible, and is preferably 50% or less of the average particle diameter. More preferably, it is 20% or less, More preferably, it is 10% or less, More preferably, it is 5% or less.
The content of the conductive particles is preferably 0.1% by volume or more and less than 20% by volume with respect to the anisotropic conductive film of the present invention. More preferably, it is 0.13 volume% or more and less than 15 volume%, More preferably, it is 0.15 volume% or more and less than 10 volume%, More preferably, it is 0.2 volume% or more and less than 5 volume%, More preferably, it is 0.25 volume. % Or more and less than 3% by volume. In the region where the content of the conductive particles is 0.1% by volume or more and less than 20% by volume, it is easy to achieve both conductivity between opposing electrodes and insulation between adjacent electrodes. Furthermore, by making the content less than 5% by volume, high insulation reliability can be easily obtained even at a site where it is difficult to supply sufficient heat during connection.

本発明の異方導電性フィルムでは、厚み方向の導電性と面方向の絶縁性(以下しばしば異方導電性と称す)を高レベルで確保するために、導電粒子は単層に配置されている。ここで、単層で配置されるとは、異方導電性フィルム中での導電粒子の中心の高さが、導電粒子の直径を越えてばらつかないことを意味する。
本発明の異方導電性フィルムでは、導電粒子は、第二層中あるいは第二層とその他の層との界面近傍に存在している事により、配列した導電粒子が接続時に大きく移動することを抑制できるので好ましい。
In the anisotropic conductive film of the present invention, the conductive particles are arranged in a single layer in order to secure the conductivity in the thickness direction and the insulation in the plane direction (hereinafter often referred to as anisotropic conductivity) at a high level. . Here, being arranged in a single layer means that the height of the center of the conductive particles in the anisotropic conductive film does not vary beyond the diameter of the conductive particles.
In the anisotropic conductive film of the present invention, the conductive particles are present in the second layer or in the vicinity of the interface between the second layer and the other layers, so that the arranged conductive particles move greatly during connection. Since it can suppress, it is preferable.

本発明の異方導電性フィルムは、導電粒子が特定の中心間距離で、更にその中心間距離が特定の変動係数を有して配列されることによって、高い異方導電性を有している。即ち、本発明の異方導電性接着フィルムは、その導電粒子の中心間距離の平均が2μm以上20μm以下である。2μm以上の中心間距離にすることで、面方向の絶縁性、即ち、隣接する電極間の絶縁性を高レベルで維持できる。一方、中心間距離を20μm以下にすることで、厚さ方向の導電性、即ち接続電極間の電気的接続性を維持できる導電粒子密度を得ることができ、異方導電性接着フィルムとして高い性能を発揮する。導電粒子の中心間距離の平均は、好ましくは2.5μm以上18μm以下、更に好ましくは3μm以上16μm以下、更に好ましくは3.5μm以上15μm以下であり、更に好ましくは4μm以上13μm以下である。導電粒子の中心間距離の変動係数は、導電粒子の中心間距離の標準偏差をその平均値で割った値であり、本発明においては、0.05以上0.5未満である。好ましくは0.07以上0.45未満、更に好ましくは0.09以上0.4未満、更に好ましくは0.1以上0.35未満、更に好ましくは0.12以上0.3未満である。変動係数を0.05以上にすることで、接続電極間の電気的接続性に悪影響する接続時の導電粒子の流動を起こすことなく、異なる電極パターンの半導体チップを安定に接続することが可能であり、一方、0.5未満とすることで、接続電極間に捕捉される導電粒子数の電極毎のバラツキを小さく抑えることができ、電極毎の接続抵抗のバラツキが小さく、安定した接続が得られる。   The anisotropic conductive film of the present invention has high anisotropic conductivity because the conductive particles are arranged at a specific center distance and the center distance is arranged with a specific coefficient of variation. . That is, the anisotropic conductive adhesive film of the present invention has an average distance between centers of the conductive particles of 2 μm or more and 20 μm or less. By setting the distance between the centers to be 2 μm or more, the insulation in the plane direction, that is, the insulation between adjacent electrodes can be maintained at a high level. On the other hand, by setting the center-to-center distance to 20 μm or less, it is possible to obtain a conductive particle density capable of maintaining the electrical conductivity in the thickness direction, that is, the electrical connectivity between the connection electrodes, and high performance as an anisotropic conductive adhesive film. Demonstrate. The average distance between the centers of the conductive particles is preferably 2.5 μm to 18 μm, more preferably 3 μm to 16 μm, still more preferably 3.5 μm to 15 μm, and still more preferably 4 μm to 13 μm. The variation coefficient of the distance between the centers of the conductive particles is a value obtained by dividing the standard deviation of the distance between the centers of the conductive particles by the average value. In the present invention, it is 0.05 or more and less than 0.5. Preferably they are 0.07 or more and less than 0.45, More preferably, they are 0.09 or more and less than 0.4, More preferably, they are 0.1 or more and less than 0.35, More preferably, they are 0.12 or more and less than 0.3. By setting the coefficient of variation to 0.05 or more, it is possible to stably connect semiconductor chips with different electrode patterns without causing flow of conductive particles during connection that adversely affects the electrical connectivity between connection electrodes. On the other hand, by setting it to less than 0.5, the variation in the number of conductive particles trapped between the connection electrodes can be kept small, the variation in connection resistance between the electrodes is small, and a stable connection is obtained. It is done.

本発明の異方導電性フィルムは、剥離シート上に形成されていてもよい。該剥離シートとしては、ポリエチレン、ポリプロピレン、ポリスチレン、PET、PEN等のポリエステル、ナイロン、塩化ビニール、ポリビニルアルコール等のフィルムが例示される。好ましい剥離シート用の樹脂としては、ポリプロピレン、PETが挙げられる。該剥離シートはフッ素処理、シリコーン処理、アルキド処理等の表面処理を行っていることが好ましい。
本発明の異方導電性フィルムは、例えば下記の様な方法で製造される。
即ち、まず、単層で配列した導電粒子を粘着剤でシート上に固定した導電粒子の配列シートを製造する。配列シートを製造するには、例えば、延伸可能なシート上に粘着剤を好ましくは、10μm以下の膜厚になる様に塗布し、その上に導電粒子を充填する。その後粘着剤層に到達していない導電粒子をエアーブロー等により排除することで導電粒子が密に充填された単層の導電粒子層が形成される。必要に応じ、単層に配置した導電粒子は粘着剤に埋め込まれる。このときの全面積に対する導電粒子の投影面積の割合で定義される充填率は、好ましくは60%以上90%以下である。より好ましくは65%以上88%以下、更に好ましくは68%以上85%以下である。充填率は本発明において重要な因子である導電粒子の中心間距離の変動係数に大きく影響する。
The anisotropic conductive film of the present invention may be formed on a release sheet. Examples of the release sheet include films such as polyesters such as polyethylene, polypropylene, polystyrene, PET, and PEN, nylon, vinyl chloride, and polyvinyl alcohol. Preferred resins for the release sheet include polypropylene and PET. The release sheet is preferably subjected to surface treatment such as fluorine treatment, silicone treatment or alkyd treatment.
The anisotropic conductive film of the present invention is produced, for example, by the following method.
That is, first, a conductive particle array sheet in which conductive particles arranged in a single layer are fixed on a sheet with an adhesive is manufactured. In order to produce an array sheet, for example, an adhesive is preferably applied on a stretchable sheet so as to have a film thickness of 10 μm or less, and conductive particles are filled thereon. Thereafter, the conductive particles that have not reached the pressure-sensitive adhesive layer are removed by air blowing or the like, thereby forming a single conductive particle layer in which the conductive particles are densely packed. If necessary, the conductive particles arranged in a single layer are embedded in the adhesive. The filling rate defined by the ratio of the projected area of the conductive particles to the total area at this time is preferably 60% or more and 90% or less. More preferably, they are 65% or more and 88% or less, More preferably, they are 68% or more and 85% or less. The filling factor greatly affects the coefficient of variation of the distance between the centers of the conductive particles, which is an important factor in the present invention.

次に、ここで得られた導電粒子が固定されたシートを、所望の延伸倍率で延伸することで、個々の導電粒子が、本発明に必要な変動係数をもって、所望の中心間距離となる様に配置された導電粒子の配列シートが得られる。
延伸可能なシートとしては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、PET、PEN等のポリエステル、ナイロン、塩化ビニール、ポリビニルアルコール等のシートが例示される。粘着剤としては、例えば、ウレタン樹脂、アクリル樹脂、ユリア樹脂、メラミン樹脂、フェノール樹脂、酢酸ビニル、クロロプレン等が例示される。
延伸は縦方向延伸と横方向延伸の両方が行われる、所謂、二軸延伸であり、公知の方法で実施することができる。例えば、クリップ等でフィルムの2辺または4辺を挟んで引っ張る方法や、2本以上のロールで挟んでロールの回転速度を変えることで延伸する方法等が挙げられる。延伸は縦方向と横方向を同時に延伸する同時二軸延伸でも良いし、一方向を延伸した後、他方を延伸する逐次二軸延伸でも良い。延伸時の導電粒子の配列乱れを起こし難いので同時二軸延伸が好ましい。延伸を精度良く行うために、延伸可能なフィルムを軟化させて行うのが好ましく、使用する延伸可能なシートによるが、例えば、70℃以上250℃未満で延伸を行うのが好ましい。更に好ましくは75℃以上200℃未満であり、一層好ましくは、80℃以上160℃未満であり、更に一層好ましくは85℃以上145℃未満である。延伸温度が高すぎると粘着剤の粘着力が低下して、導電粒子の配列が乱れてしまい、導電粒子の中心間距離の変動係数が大きくなってしまう。
Next, the sheet on which the conductive particles are fixed is drawn at a desired draw ratio so that each conductive particle has a desired center-to-center distance with a coefficient of variation necessary for the present invention. As a result, an array sheet of conductive particles arranged on the substrate is obtained.
Examples of the stretchable sheet include sheets of polyester such as polyethylene, polypropylene, polystyrene, PET, and PEN, nylon, vinyl chloride, and polyvinyl alcohol. Examples of the adhesive include urethane resin, acrylic resin, urea resin, melamine resin, phenol resin, vinyl acetate, chloroprene and the like.
Stretching is so-called biaxial stretching in which both longitudinal stretching and lateral stretching are performed, and can be performed by a known method. Examples of the method include a method of pulling between two or four sides of the film with a clip or the like, and a method of stretching by changing the rotation speed of the roll while sandwiching between two or more rolls. The stretching may be simultaneous biaxial stretching in which the machine direction and the transverse direction are stretched simultaneously, or may be sequential biaxial stretching in which the other is stretched after stretching in one direction. Simultaneous biaxial stretching is preferred because it is difficult to cause disorder in the arrangement of the conductive particles during stretching. In order to perform stretching with high accuracy, it is preferable to soften a stretchable film. Depending on the stretchable sheet used, for example, it is preferable to perform stretching at 70 ° C. or more and less than 250 ° C. More preferably, it is 75 degreeC or more and less than 200 degreeC, More preferably, it is 80 degreeC or more and less than 160 degreeC, More preferably, it is 85 degreeC or more and less than 145 degreeC. If the stretching temperature is too high, the adhesive force of the pressure-sensitive adhesive is reduced, the arrangement of the conductive particles is disturbed, and the coefficient of variation in the distance between the centers of the conductive particles is increased.

次に、例えば、剥離シート上に、第一層、第二層の各成分をそれぞれ、均一混合した溶液を塗工し、溶剤を乾燥して、剥離シート上の第一層および、第二層を得る。
次に、配列シートの導電粒子側に、第一層を重ね、熱ロール等を用いて第一層中に導電粒子を埋め込み、延伸可能なシートを剥離した後、第二層を重ねてラミネートすることにで、本発明の異方導電性フィルムを得ることができる。導電粒子を第二層に埋め込んだ後で、第一層をラミネートしても良いし、他の層に埋め込んだ後、第二層が最外層になる様に第一層、第二層をラミネートしても構わない。更に、例えば、延伸可能なシート上に、導電粒子が密に充填された単層の導電粒子層を形成した後に、第二層の各成分を均一混合した溶液を塗工し、溶剤を乾燥した後に、延伸し、その後第一層をラミネートしても、本発明の異方導電性フィルムを得ることができる。
上記方法等によって、本発明の異方導電性フィルムが得られる。一般に異方導電性フィルムは、所望の幅にスリットされ、リール状に巻き取られる。
Next, for example, on the release sheet, a solution in which each component of the first layer and the second layer is uniformly mixed is applied, the solvent is dried, and the first layer and the second layer on the release sheet Get.
Next, the first layer is stacked on the conductive particle side of the array sheet, the conductive particles are embedded in the first layer using a heat roll or the like, the stretchable sheet is peeled off, and then the second layer is stacked and laminated. In particular, the anisotropic conductive film of the present invention can be obtained. After embedding the conductive particles in the second layer, the first layer may be laminated, or after embedding in another layer, the first layer and the second layer are laminated so that the second layer becomes the outermost layer. It doesn't matter. Furthermore, for example, after forming a single conductive particle layer in which conductive particles are closely packed on a stretchable sheet, a solution in which the components of the second layer are uniformly mixed is applied, and the solvent is dried. Later, the anisotropic conductive film of the present invention can be obtained by stretching and then laminating the first layer.
The anisotropic conductive film of the present invention is obtained by the above method and the like. Generally, an anisotropic conductive film is slit to a desired width and wound up in a reel shape.

本発明の異方導電性フィルムは、例えば、ICチップの電極と回路基板の電極を電気的に接続するために使用される。
本発明の回路接続方法としては、ITO配線や金属配線等によって回路と電極を形成したガラス基板等の回路基板と、回路基板の電極と対を成す位置に電極を形成したICチップとを準備し、ガラス基板上のICチップを配置する位置に、本発明の異方導電性フィルムを、第二層側が回路基板側となる様に貼り付ける。ここで異方導電性フィルムの面積は、ICチップより一回り大きいことが好ましい。異方導電性フィルムの幅と長さが、それぞれ、ICチップの幅と長さの100.05%〜150%であることがより好ましい。更に好ましくは、100.1%〜120%である。一回り大きくすることで、異方導電性フィルムの貼付位置不良による欠陥を抑えることができる。次に、ガラス基板とICチップをそれぞれの電極が互いに対を成すように位置を合わせた後、熱圧着される。熱圧着は、80℃〜250℃の温度範囲で1秒〜30分間行うのが好ましい。加える圧力は、チップ面に対して、0.1MPa〜50MPaが好ましい。
熱圧着を行う場合の熱の供給は、ガラス基板の性能劣化を防ぐため、ICチップ側から行われる。ガラス基板からも熱を供給する場合は、ガラス基板の温度が80℃未満であることが好ましい。
上記方法によって、本発明の接続構造体が得られる。
The anisotropic conductive film of the present invention is used, for example, to electrically connect an electrode of an IC chip and an electrode of a circuit board.
As a circuit connection method of the present invention, a circuit board such as a glass substrate in which a circuit and an electrode are formed by ITO wiring, metal wiring, etc., and an IC chip in which an electrode is formed at a position that makes a pair with the electrode of the circuit board are prepared. Then, the anisotropic conductive film of the present invention is attached to the position where the IC chip on the glass substrate is arranged so that the second layer side is the circuit board side. Here, the area of the anisotropic conductive film is preferably slightly larger than the IC chip. The width and length of the anisotropic conductive film are more preferably 100.05% to 150% of the width and length of the IC chip, respectively. More preferably, it is 100.1%-120%. By making it one size larger, it is possible to suppress defects due to defective attaching positions of the anisotropic conductive film. Next, the glass substrate and the IC chip are aligned so that the respective electrodes make a pair with each other, and then thermocompression bonded. The thermocompression bonding is preferably performed at a temperature range of 80 ° C. to 250 ° C. for 1 second to 30 minutes. The pressure to be applied is preferably 0.1 MPa to 50 MPa with respect to the chip surface.
Supply of heat when performing thermocompression bonding is performed from the IC chip side in order to prevent performance degradation of the glass substrate. When supplying heat also from a glass substrate, it is preferable that the temperature of a glass substrate is less than 80 degreeC.
By the above method, the connection structure of the present invention is obtained.

本発明を実施例によりさらに詳細に説明する。
[実施例1]
フェノキシ樹脂(InChem社製、商品名:PKHC,重量平均分子量43000、以下同じ)100質量部、ビスフェノールA型液状エポキシ樹脂(旭化成ケミカルズ株式会社製、商品名:AER2603、以下同じ)100質量部、マイクロカプセル型潜在性硬化剤と液状エポキシ樹脂の混合物(旭化成ケミカルズ株式会社製、商品名:ノバキュア3941、以下ノバキュアと称す)50質量部、シランカップリング剤(日本ユニカー社製、商品名A−187、以下同じ)1質量部、酢酸エチル500質量部を混合し、ワニスAを得た。
このワニスAを離型処理した50μmのPETフィルム製剥離シート上にブレードコーターを用いて塗布、溶剤を70℃で乾燥除去して、樹脂フィルムAを得た。樹脂フィルムAの膜厚を光電式デジタル測長機(ニコン社製、商品名:デジマイクロMH−15M/TC−101、以下同じ)を用いて測定した結果、20μmであった。
The invention is explained in more detail by means of examples.
[Example 1]
100 parts by mass of phenoxy resin (manufactured by InChem, trade name: PKHC, weight average molecular weight 43000, the same shall apply hereinafter), bisphenol A type liquid epoxy resin (manufactured by Asahi Kasei Chemicals Co., Ltd., trade name: AER 2603, same shall apply hereinafter) Mixture of capsule type latent curing agent and liquid epoxy resin (manufactured by Asahi Kasei Chemicals Co., Ltd., trade name: NOVACURE 3941, hereinafter referred to as NOVACURE) 50 parts by mass, silane coupling agent (manufactured by Nihon Unicar Co., Ltd., trade name A-187) The same applies hereinafter) 1 part by mass and 500 parts by mass of ethyl acetate were mixed to obtain varnish A.
The varnish A was applied onto a release sheet made of 50 μm PET film subjected to a release treatment using a blade coater, and the solvent was dried and removed at 70 ° C. to obtain a resin film A. It was 20 micrometers as a result of measuring the film thickness of the resin film A using the photoelectric digital length measuring machine (The Nikon company make, brand name: Digimicro MH-15M / TC-101, and the same below).

フェノキシ樹脂100質量部、ビスフェノールA型液状エポキシ樹脂100質量部、シランカップリング剤0.8質量部、酢酸エチル600質量部を混合し、ワニスBを得た。このワニスBを離型処理した38μmのPETフィルム製剥離シート上にブレードコーターを用いて塗布、溶剤を70℃で乾燥除去して、膜厚0.5μmの樹脂フィルムBを得た。
100μm無延伸共重合ポリプロピレンフィルム上にブレードコーターを用いて酢酸エチルで樹脂分5質量%に希釈したアクリルポリマーを塗布、80℃で10分間乾燥し、厚さ1μmの粘着剤層を形成した。ここで用いたアクリルポリマーは、アクリル酸メチル62質量部、アクリル酸−2−エチルヘキシル30.6質量部、アクリル酸−2−ヒドロキシエチル7質量部を酢酸エチル233質量部中で、アゾビスイソブチロニトリル0.2質量部を開始剤とし、窒素ガス気流中65℃で30時間重合して得られた重量平均分子量が95万のものである。尚、重量平均分子量はゲル浸透クロマトグラフ法(GPC)により測定した。
Varnish B was obtained by mixing 100 parts by mass of a phenoxy resin, 100 parts by mass of a bisphenol A type liquid epoxy resin, 0.8 parts by mass of a silane coupling agent, and 600 parts by mass of ethyl acetate. The varnish B was applied onto a release sheet made of 38 μm PET film which had been subjected to mold release treatment using a blade coater, and the solvent was dried and removed at 70 ° C. to obtain a resin film B having a thickness of 0.5 μm.
An acrylic polymer diluted with ethyl acetate to a resin content of 5% by mass using a blade coater was applied onto a 100 μm unstretched copolymerized polypropylene film and dried at 80 ° C. for 10 minutes to form an adhesive layer having a thickness of 1 μm. The acrylic polymer used here was 62 parts by mass of methyl acrylate, 30.6 parts by mass of 2-ethylhexyl acrylate, and 7 parts by mass of 2-hydroxyethyl acrylate in 233 parts by mass of ethyl acetate. The weight average molecular weight obtained by polymerizing 0.2 parts by mass of nitrile for 30 hours at 65 ° C. in a nitrogen gas stream is 950,000. The weight average molecular weight was measured by gel permeation chromatography (GPC).

この粘着剤上に、平均粒径4μmの導電粒子(積水化学社製、商品名:ミクロパールAU204)を一面に充填し、エアーブローにより粘着剤に到達していない導電粒子を排除した。その結果、充填率が60%の単層導電粒子層が形成された。
次に、この導電粒子が粘着剤によって固定されたポリプロピレンフィルムを、試験用二軸延伸装置を用いて、135℃で、縦横共に10%/秒の比率で2.0倍まで延伸し、徐々に室温まで冷却し、配列シートAを得た。
次に、配列シートAの導電粒子側に樹脂フィルムAを重ね、60℃、0.3MPaの条件でラミネートを行って導電粒子を樹脂フィルムAに埋め込んだ後、ポリプロピレンフィルムと粘着剤を剥離した。
On this pressure-sensitive adhesive, conductive particles having an average particle size of 4 μm (trade name: Micropearl AU204, manufactured by Sekisui Chemical Co., Ltd.) were filled on one side, and conductive particles that did not reach the pressure-sensitive adhesive were eliminated by air blowing. As a result, a single-layer conductive particle layer having a filling rate of 60% was formed.
Next, the polypropylene film on which the conductive particles are fixed with an adhesive is stretched to 2.0 times at 135 ° C. at a rate of 10% / second in both longitudinal and lateral directions using a test biaxial stretching apparatus. The array sheet A was obtained by cooling to room temperature.
Next, the resin film A was overlapped on the conductive particle side of the array sheet A and laminated under the conditions of 60 ° C. and 0.3 MPa to embed the conductive particles in the resin film A, and then the polypropylene film and the adhesive were peeled off.

次に、導電粒子側に樹脂フィルムBを重ね、50℃、0.1MPaの条件でラミネートを行い、異方導電性フィルムAを得た。異方導電性フィルムAの第一層(樹脂フィルムA)の厚みに対する第二層(樹脂フィルムB)の厚みの比は0.025であり、導電粒子の含有率は、異方導電性フィルムAに対して1.9体積%であった。
異方導電性フィルムAをマイクロスコープ(株式会社キーエンス製、商品名:VHX−100、以下同じ)で観察した結果、導電粒子は同一焦点でピントが合うことから、異方導電性フィルムA中で単層に配置されていた。またマイクロスコープで得られた画像から、画像処理ソフト(旭化成株式会社製、商品名:A像くん、以下同じ)を用いて、導電粒子の中心間距離の平均値およびその変動係数を求めた結果、平均値が9.8μm、変動係数が0.42であった。尚、導電粒子の中心間距離は、各粒子の中心点を用いたデローニ三角分割でできる三角形の辺の長さを使用し、導電粒子の観察は0.06mm内の粒子について行った。
Next, the resin film B was overlapped on the conductive particle side and laminated under the conditions of 50 ° C. and 0.1 MPa to obtain an anisotropic conductive film A. The ratio of the thickness of the second layer (resin film B) to the thickness of the first layer (resin film A) of the anisotropic conductive film A is 0.025, and the content of the conductive particles is anisotropic conductive film A. It was 1.9 volume% with respect to.
As a result of observing the anisotropic conductive film A with a microscope (manufactured by Keyence Corporation, trade name: VHX-100, the same applies hereinafter), the conductive particles are in focus at the same focal point. It was arranged in a single layer. Moreover, from the image obtained with the microscope, the result of calculating the average value of the center-to-center distance of the conductive particles and the coefficient of variation thereof using image processing software (trade name: A image-kun, manufactured by Asahi Kasei Corporation). The average value was 9.8 μm, and the coefficient of variation was 0.42. As the distance between the centers of the conductive particles, the length of a side of a triangle formed by Deloni triangulation using the center point of each particle was used, and the observation of the conductive particles was performed for particles within 0.06 mm 2 .

次に、チップサイズが1.6mm×16.1mmであり、20μm×100μmの金バンプがピッチ30μmで並んだベアチップ1、25μm×100μmの金バンプがピッチ40μmで並んだベアチップ2、16μm×90μmの金バンプがピッチ25μmで並んだベアチップ3とそれぞれのベアチップに対応した接続ピッチを有するITOガラス基板を準備し、3種類のITOガラス基板のICチップ接続位置を覆う様に、1.8mm×18mmの異方導電性フィルムAを、第二層側のPETフィルム製剥離シートを剥離して貼り付け、70℃、0.5MPa、2秒間の条件で熱圧着し、第一層側のPETフィルム製剥離シートを剥離した後、それぞれのITOガラス基板に対応するベアチップをフリップチップボンダー(東レエンジニアリング株式会社製FC2000、以下同じ)を用いて位置合わせをし、コンスタントヒートで2秒後に180℃に到達し、その後一定温度となる条件で4MPa、20秒間加熱加圧し、ベアチップをITOガラス基板に接続し、接続構造体を得た。   Next, the chip size is 1.6 mm × 16.1 mm, bare chip 1 in which 20 μm × 100 μm gold bumps are arranged at a pitch of 30 μm, bare chip 2 in which gold bumps of 25 μm × 100 μm are arranged at a pitch of 40 μm, and 16 μm × 90 μm An ITO glass substrate having a bare chip 3 in which gold bumps are arranged at a pitch of 25 μm and a connection pitch corresponding to each bare chip is prepared, and 1.8 mm × 18 mm so as to cover the IC chip connection positions of the three types of ITO glass substrates. The anisotropic conductive film A is peeled off and bonded to the second layer side PET film release sheet, and thermocompression bonded under the conditions of 70 ° C., 0.5 MPa, 2 seconds, and the first layer side PET film release is performed. After the sheet is peeled off, the bare chip corresponding to each ITO glass substrate is flip chip bonder (Toray Engineering Co., Ltd.) Alignment is performed using a formula company FC2000 (the same applies hereinafter), reaches 180 ° C after 2 seconds with constant heat, and then pressurizes and pressurizes at 4 MPa for 20 seconds under the condition of constant temperature, and connects the bare chip to the ITO glass substrate. As a result, a connection structure was obtained.

それぞれのICチップとITOガラス基板からは、32箇所の接合部を有するデイジーチェーン回路と、20対の櫛を有する櫛形電極が形成され、接続抵抗測定と絶縁抵抗測定を行い、全てのデイジーチェーン回路は導通がとれ、すべての接続が行われていることを示した。一方、櫛形電極の絶縁抵抗はいずれも10Ω以上であり、隣接電極間でショートの発生はなかった。
更に、ベアチップ2を用いて接続した接続構造体を使用して、接続信頼性試験を実施した。即ち、絶縁抵抗測定部に30Vの電圧をかけて、60℃、相対湿度90%の環境下で500時間の接続信頼性試験を行った結果、絶縁抵抗、導通抵抗ともに異常はなく、更に、電極の腐蝕、金属の析出、ICチップの基板からの浮きや剥離の発生もなかった。更に、1000時間まで接続信頼性試験を行ったところ、ICチップの外側のITO配線部に僅かに金属の析出が観察されたが、絶縁抵抗、導通抵抗共に異常は発生しなかった。
From each IC chip and ITO glass substrate, a daisy chain circuit having 32 joints and a comb-shaped electrode having 20 pairs of combs are formed, and connection resistance measurement and insulation resistance measurement are performed. Indicates that continuity is established and all connections are made. On the other hand, the insulation resistances of the comb electrodes were all 10 9 Ω or more, and no short circuit occurred between adjacent electrodes.
Further, a connection reliability test was performed using the connection structure connected using the bare chip 2. That is, as a result of conducting a connection reliability test for 500 hours in an environment of 60 ° C. and 90% relative humidity by applying a voltage of 30 V to the insulation resistance measurement unit, there is no abnormality in both insulation resistance and conduction resistance. There was no corrosion, no metal deposition, and no floating or peeling of the IC chip from the substrate. Further, when a connection reliability test was conducted for up to 1000 hours, a slight amount of metal was observed on the ITO wiring portion outside the IC chip, but no abnormality occurred in both the insulation resistance and the conduction resistance.

[実施例2]
実施例1で作成したワニスAを離型処理した50μmのPETフィルム製剥離シート上にブレードコーターを用いて塗布、溶剤を70℃で乾燥除去して、膜厚18μmの樹脂フィルムCを得た。
フェノキシ樹脂100質量部、ビスフェノールA型液状エポキシ樹脂10質量部、シランカップリング剤0.7質量部、メチルエチルケトン240質量部を混合し、ワニスDを得た。
実施例1で作成した無延伸共重合ポリプロピレンフィルム上に形成した粘着剤上に、平均粒径3μmの導電粒子(積水化学社製、商品名:ミクロパールAU203)を一面に充填し、エアーブローにより粘着剤に到達していない導電粒子を排除した。その結果、充填率が70%の導電粒子層が形成された。更に、導電粒子層の上に、ワニスDを、ブレードコーターを用いて塗布、導電粒子層の導電粒子の隙間にワニスDが進入した。更に溶剤を70℃で乾燥除去し、導電粒子を含む膜厚が10μmの樹脂フィルムDがポリプロピレンフィルムと粘着剤上に形成された複層フィルムDを得た。
[Example 2]
A 50 μm PET film release sheet obtained by releasing the varnish A prepared in Example 1 was applied using a blade coater, and the solvent was dried and removed at 70 ° C. to obtain a resin film C having a film thickness of 18 μm.
Varnish D was obtained by mixing 100 parts by mass of phenoxy resin, 10 parts by mass of bisphenol A liquid epoxy resin, 0.7 parts by mass of silane coupling agent, and 240 parts by mass of methyl ethyl ketone.
The pressure-sensitive adhesive formed on the unstretched copolymerized polypropylene film prepared in Example 1 was filled with conductive particles having an average particle size of 3 μm (trade name: Micropearl AU203, manufactured by Sekisui Chemical Co., Ltd.) and air blown. Conductive particles that did not reach the adhesive were excluded. As a result, a conductive particle layer having a filling rate of 70% was formed. Furthermore, varnish D was applied onto the conductive particle layer using a blade coater, and varnish D entered the gap between the conductive particles of the conductive particle layer. Furthermore, the solvent was removed by drying at 70 ° C. to obtain a multilayer film D in which a resin film D having a thickness of 10 μm containing conductive particles was formed on a polypropylene film and an adhesive.

次に、この複層フィルムDを、試験用二軸延伸装置を用いて、135℃で、縦横共に10%/秒の比率で2.5倍まで延伸し、徐々に室温まで冷却し、配列シートDを得た。
配列シートDの断面を、走査型電子顕微鏡(日立製作所製:S−4700、以下同じ)を用いて観察した所、樹脂フィルムDの厚みは1.5μmであった。
更に、樹脂フィルムD側に、樹脂フィルムCを重ね、50℃、0.1MPaの条件でラミネートを行い、ポリプロピレンフィルムと粘着剤を剥離し、更に、実施例1で作成した樹脂フィルムBを重ねて、50℃、0.1MPaの条件でラミネートを行い、異方導電性フィルムCを得た。
異方導電性フィルムCの第一層(樹脂フィルムC)の厚みに対する第二層(樹脂フィルムD+樹脂フィルムB)の厚みの比は0.11であり、導電粒子の含有率は、異方導電性フィルムCに対して1.1体積%であった。
Next, this multilayer film D was stretched up to 2.5 times at 135 ° C. at a rate of 10% / second in both longitudinal and lateral directions using a test biaxial stretching apparatus, and gradually cooled to room temperature, and an array sheet D was obtained.
When the cross section of the array sheet D was observed using a scanning electron microscope (manufactured by Hitachi, Ltd .: S-4700, hereinafter the same), the thickness of the resin film D was 1.5 μm.
Further, the resin film C is stacked on the resin film D side, laminated under the conditions of 50 ° C. and 0.1 MPa, the polypropylene film and the adhesive are peeled off, and the resin film B created in Example 1 is further stacked. Lamination was performed under the conditions of 50 ° C. and 0.1 MPa to obtain an anisotropic conductive film C.
The ratio of the thickness of the second layer (resin film D + resin film B) to the thickness of the first layer (resin film C) of the anisotropic conductive film C is 0.11, and the content of conductive particles is anisotropic conductive. 1.1% by volume of the conductive film C.

異方導電性フィルムCをマイクロスコープで観察した結果、導電粒子は同一焦点でピントが合うことから、異方導電性フィルムA中で単層に配置されていた。またマイクロスコープで得られた画像から、画像処理ソフトを用いて、導電粒子の中心間距離の平均値およびその変動係数を求めた結果、平均値が8.5μm、変動係数が0.25であった。尚、導電粒子の中心間距離は、各粒子の中心点を用いたデローニ三角分割でできる三角形の辺の長さを使用し、導電粒子の観察は0.06mm内の粒子について行った。
次に、実施例1と同様にして、3種類のベアチップを用いて接続抵抗測定、絶縁抵抗測定を行った結果、いずれも異常はなく、更に、実施例1と同様にして、ベアチップ3を使用した接続構造体を用いて、接続信頼性試験を実施したところ、1000時間経過後も、絶縁抵抗、導通抵抗ともに異常がなく、更に、電極の腐蝕、金属の析出、ICチップの基板からの浮きや剥離の発生もなかった。
As a result of observing the anisotropic conductive film C with a microscope, the conductive particles were in focus at the same focal point, and therefore, the anisotropic conductive film C was arranged in a single layer in the anisotropic conductive film A. Also, as a result of obtaining the average value of the center-to-center distance of the conductive particles and the coefficient of variation thereof from the image obtained by the microscope using the image processing software, the average value was 8.5 μm and the coefficient of variation was 0.25. It was. As the distance between the centers of the conductive particles, the length of a side of a triangle formed by Deloni triangulation using the center point of each particle was used, and the observation of the conductive particles was performed for particles within 0.06 mm 2 .
Next, as in Example 1, the connection resistance measurement and the insulation resistance measurement were performed using the three types of bare chips. As a result, there was no abnormality. Further, as in Example 1, the bare chip 3 was used. When the connection reliability test was performed using the connection structure, the insulation resistance and the conduction resistance were not abnormal even after 1000 hours had passed, and further, corrosion of the electrodes, metal deposition, and floating of the IC chip from the substrate There was no occurrence of peeling.

[比較例1]
樹脂フィルムBをラミネートしなかった以外は、実施例1と同様にして異方導電性フィルムを作成し、実施例1と同様にしてベアチップ2を用いた接続構造体を使用して接続信頼性試験を行った結果、300時間で絶縁抵抗が10Ω以下に低下してしまい、ICチップの外側のITO配線部に金属の析出が観察され、絶縁破壊の原因であることが判った。
比較例1で使用した異方導電性フィルムでは、第二層を有さないために、接続時に十分な熱が供給され難い部位の絶縁信頼性が低かった。
[Comparative Example 1]
An anisotropic conductive film was prepared in the same manner as in Example 1 except that the resin film B was not laminated, and a connection reliability test using a connection structure using the bare chip 2 in the same manner as in Example 1. As a result, the insulation resistance decreased to 10 7 Ω or less in 300 hours, and metal deposition was observed on the ITO wiring part outside the IC chip, which was found to be the cause of dielectric breakdown.
Since the anisotropic conductive film used in Comparative Example 1 does not have the second layer, the insulation reliability of the portion where sufficient heat is difficult to be supplied at the time of connection was low.

[比較例2]
樹脂フィルムBの膜厚を6μmに変更した以外は実施例1と同様にして異方導電性フィルムEを作成した。異方導電性フィルムEの第一層(樹脂フィルムA)の厚みに対する第二層(樹脂フィルムB)の厚みの比は0.33であった。次に、実施例1と同様にしてベアチップ2を用いた接続構造体を使用して接続信頼性試験を行った結果、20時間でデイジーチェーン回路の導通がとれなくなり、更に、ICチップの基板からの剥離が観察された。比較例2で使用した異方導電性フィルムでは、第二層の膜厚が厚過ぎたために、接続信頼性が劣っていた。
[Comparative Example 2]
An anisotropic conductive film E was prepared in the same manner as in Example 1 except that the film thickness of the resin film B was changed to 6 μm. The ratio of the thickness of the second layer (resin film B) to the thickness of the first layer (resin film A) of the anisotropic conductive film E was 0.33. Next, as a result of conducting a connection reliability test using the connection structure using the bare chip 2 in the same manner as in Example 1, the daisy chain circuit cannot be conducted in 20 hours. Peeling was observed. In the anisotropic conductive film used in Comparative Example 2, the connection reliability was inferior because the second layer was too thick.

[比較例3]
フェノキシ樹脂100質量部、ビスフェノールA型液状エポキシ樹脂30質量部、シランカップリング剤0.8質量部、平均粒径3μmの導電粒子(積水化学社製、商品名:ミクロパールAU203)30質量部、メチルエチルケトン240質量部を混合し、ワニスFを得た。このワニスFを離型処理した38μmのPETフィルム製剥離シート上にブレードコーターを用いて塗布、溶剤を70℃で乾燥除去して、膜厚3μmの樹脂フィルムFを得た。
次に、樹脂フィルムFと実施例1で得た樹脂フィルムAを、熱ロールを用いてラミネートし、更に樹脂フィルムF側のPETフィルム製剥離シートを剥がし、それと実施例1で得た樹脂フィルムBを、熱ロールを用いてラミネートし、異方導電性フィルムFを得た。異方導電性フィルムFの第一層(樹脂フィルムA)の厚みに対する第二層(樹脂フィルムF+樹脂フィルムB)の厚みの比は0.18であった。
異方導電性フィルムFをマイクロスコープで観察し、得られた画像から、画像処理ソフトを用いて、導電粒子の中心間距離の平均値およびその変動係数を求めた結果、平均値が9.1μm、変動係数が0.62であった。尚、導電粒子の中心間距離は、各粒子の中心点を用いたデローニ三角分割でできる三角形の辺の長さを使用し、導電粒子の観察は0.06mm内の粒子について行った。
次に、実施例1と同様にして、3種類のベアチップを用いて接続抵抗測定を行った結果、ベアチップ1とベアチップ3を用いた接続構造体のデイジーチェーンに電流は流れず、電気的な接続が取れておらず、接続材料としては、使用できないことが判った。
[Comparative Example 3]
100 parts by mass of a phenoxy resin, 30 parts by mass of a bisphenol A type liquid epoxy resin, 0.8 parts by mass of a silane coupling agent, 30 parts by mass of conductive particles (trade name: Micropearl AU203, manufactured by Sekisui Chemical Co., Ltd.), The varnish F was obtained by mixing 240 parts by mass of methyl ethyl ketone. The varnish F was applied onto a release sheet made of 38 μm PET film which had been subjected to mold release treatment using a blade coater, and the solvent was dried and removed at 70 ° C. to obtain a resin film F having a thickness of 3 μm.
Next, the resin film F and the resin film A obtained in Example 1 are laminated using a heat roll, and the PET film release sheet on the resin film F side is further peeled off. Then, the resin film B obtained in Example 1 is removed. Were laminated using a heat roll to obtain an anisotropic conductive film F. The ratio of the thickness of the second layer (resin film F + resin film B) to the thickness of the first layer (resin film A) of the anisotropic conductive film F was 0.18.
The anisotropic conductive film F was observed with a microscope, and the average value of the center-to-center distance of the conductive particles and the coefficient of variation thereof were obtained from the obtained image using image processing software. The average value was 9.1 μm. The coefficient of variation was 0.62. As the distance between the centers of the conductive particles, the length of a side of a triangle formed by Deloni triangulation using the center point of each particle was used, and the observation of the conductive particles was performed for particles within 0.06 mm 2 .
Next, as in Example 1, the connection resistance measurement was performed using three types of bare chips. As a result, no current flowed through the daisy chain of the connection structure using the bare chips 1 and 3, and the electrical connection was made. As a result, it was found that it cannot be used as a connection material.

本発明の異方導電性接着フィルムは、微細パターンの電気的接続において、微小面積の電極の電気的接続性に優れると共に、微細な配線間の絶縁破壊(ショート)が起こりにくく、接続時に十分な熱が供給され難い部位であっても、高い絶縁信頼性を有し、微細パターンの電気的接続用途において好適に利用できる。   The anisotropic conductive adhesive film of the present invention is excellent in electrical connection of electrodes with a small area in electrical connection of a fine pattern, and is less likely to cause dielectric breakdown (short) between fine wirings. Even a portion where heat is difficult to be supplied has high insulation reliability and can be suitably used in electrical connection applications of fine patterns.

Claims (4)

熱硬化性樹脂(A)と潜在性硬化剤を含有する第一層と、熱硬化性樹脂(B)は含有するが、潜在性硬化剤は含有しない第二層の、少なくとも前記2層から構成され、該第二層が最外層であり、導電粒子が単層に配置された、厚さ方向に加圧することで導電性を有する異方導電性フィルムにおいて、(1)導電粒子の中心間距離の平均が2μm以上20μm以下であり、その変動係数が、0.05以上0.5未満であり、(2)第一層の厚みに対する第二層の厚めが、0.01以上0.25未満であることを特徴とする異方導電性フィルム。   A first layer containing a thermosetting resin (A) and a latent curing agent, and a second layer containing a thermosetting resin (B) but not containing a latent curing agent, are composed of at least the two layers. In the anisotropic conductive film having conductivity by pressing in the thickness direction, wherein the second layer is the outermost layer and the conductive particles are arranged in a single layer, (1) Distance between centers of the conductive particles Is an average of 2 μm or more and 20 μm or less, its coefficient of variation is 0.05 or more and less than 0.5, and (2) the second layer is thicker than the first layer by 0.01 to less than 0.25 An anisotropic conductive film characterized by being: 第一層に含まれる熱硬化性樹脂(A)がエポキシ樹脂である請求項1に記載の異方導電性フィルム。   The anisotropic conductive film according to claim 1, wherein the thermosetting resin (A) contained in the first layer is an epoxy resin. ICチップの電極と回路基板の電極を電気的に接続する回路接続方法であって、請求項1あるいは2に記載の異方導電性フィルムを、第二層側が回路基板と接し、ICチップよりも大きい面積で、ICチップと回路基板間にはさみ、ICチップ側から熱を供給しながら加圧することを特徴とする回路接続方法。   A circuit connection method for electrically connecting an electrode of an IC chip and an electrode of a circuit board, wherein the anisotropic conductive film according to claim 1 or 2 is in contact with the circuit board on the second layer side, and more than the IC chip. A circuit connection method characterized by sandwiching an IC chip and a circuit board in a large area and applying pressure while supplying heat from the IC chip side. 請求項3に記載の方法により接続された接続構造体。   A connection structure connected by the method according to claim 3.
JP2006206217A 2006-07-28 2006-07-28 Anisotropic conductive film Active JP4789738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006206217A JP4789738B2 (en) 2006-07-28 2006-07-28 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006206217A JP4789738B2 (en) 2006-07-28 2006-07-28 Anisotropic conductive film

Publications (2)

Publication Number Publication Date
JP2008034232A JP2008034232A (en) 2008-02-14
JP4789738B2 true JP4789738B2 (en) 2011-10-12

Family

ID=39123433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006206217A Active JP4789738B2 (en) 2006-07-28 2006-07-28 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP4789738B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160037159A (en) 2013-07-31 2016-04-05 데쿠세리아루즈 가부시키가이샤 Anisotropically conductive film and manufacturing method therefor
KR20160108324A (en) 2014-01-16 2016-09-19 데쿠세리아루즈 가부시키가이샤 Connection body, connection body production method, connection method, anisotropic conductive adhesive
KR20160114054A (en) 2014-01-28 2016-10-04 데쿠세리아루즈 가부시키가이샤 Connection body and connection body production method
KR20160115918A (en) 2014-02-03 2016-10-06 데쿠세리아루즈 가부시키가이샤 Connection body
KR20160117455A (en) 2014-02-04 2016-10-10 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and method for producing same
KR20160117462A (en) 2014-02-04 2016-10-10 데쿠세리아루즈 가부시키가이샤 Anisotropic electroconductive film and method for producing same
KR20160117456A (en) 2014-02-04 2016-10-10 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and method for producing same
KR20160117458A (en) 2014-02-04 2016-10-10 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and method for producing same
KR20160119087A (en) 2014-02-04 2016-10-12 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and production method therefor
KR20160119086A (en) 2014-02-04 2016-10-12 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and production method therefor
KR20160127000A (en) 2014-02-27 2016-11-02 데쿠세리아루즈 가부시키가이샤 Connected article and connected-article manufacturing method and inspection method
KR20170033266A (en) 2014-07-22 2017-03-24 데쿠세리아루즈 가부시키가이샤 Connection body and method for manufacturing connection body
US9816012B2 (en) 2013-07-29 2017-11-14 Dexerials Corporation Method for manufacturing electrically conductive adhesive film, electrically conductive adhesive film, and method for manufacturing connector
KR20170135953A (en) 2015-06-16 2017-12-08 데쿠세리아루즈 가부시키가이샤 Connector, method for manufacturing connector, and testing method
KR20180054935A (en) 2013-07-29 2018-05-24 데쿠세리아루즈 가부시키가이샤 Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
US10412837B2 (en) 2012-08-29 2019-09-10 Dexerials Corporation Anisotropic conductive film and method of producing the same
US10424538B2 (en) 2013-10-15 2019-09-24 Dexerials Corporation Anisotropic conductive film

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102090154B (en) * 2008-07-11 2014-11-05 迪睿合电子材料有限公司 Anisotropic conductive film
JP5563932B2 (en) * 2010-08-30 2014-07-30 デクセリアルズ株式会社 Anisotropic conductive film
CN104508064B (en) * 2012-08-03 2016-10-12 迪睿合电子材料有限公司 Anisotropic conductive film and manufacture method thereof
CN107267076B (en) * 2012-08-24 2021-06-29 迪睿合电子材料有限公司 Method for manufacturing anisotropic conductive film and anisotropic conductive film
TWI810551B (en) 2012-08-24 2023-08-01 日商迪睿合股份有限公司 Intermediate product film, anisotropic conductive film, connection structure, and method for manufacturing the connection structure
JP6237288B2 (en) * 2014-02-04 2017-11-29 デクセリアルズ株式会社 Anisotropic conductive film and manufacturing method thereof
JP6435627B2 (en) * 2014-03-20 2018-12-12 デクセリアルズ株式会社 Anisotropic conductive film and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195179A (en) * 1985-02-25 1986-08-29 Matsushita Electric Ind Co Ltd Anisotropically conductive adhesive sheet
JPH03107888A (en) * 1989-09-21 1991-05-08 Sharp Corp Connecting structure for circuit board
JPH04366630A (en) * 1991-06-13 1992-12-18 Sharp Corp Anisotropic conductive adhesive tape
JPH05333359A (en) * 1992-05-29 1993-12-17 Sharp Corp Packaging structure for panel
JP4032439B2 (en) * 1996-05-23 2008-01-16 日立化成工業株式会社 Connection member, electrode connection structure and connection method using the connection member
JP3678547B2 (en) * 1997-07-24 2005-08-03 ソニーケミカル株式会社 Multilayer anisotropic conductive adhesive and method for producing the same
JPH11223825A (en) * 1998-02-06 1999-08-17 Sharp Corp Liquid crystal display
JP4130747B2 (en) * 2002-03-28 2008-08-06 旭化成エレクトロニクス株式会社 Anisotropic conductive adhesive sheet and manufacturing method thereof

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10412837B2 (en) 2012-08-29 2019-09-10 Dexerials Corporation Anisotropic conductive film and method of producing the same
US9816012B2 (en) 2013-07-29 2017-11-14 Dexerials Corporation Method for manufacturing electrically conductive adhesive film, electrically conductive adhesive film, and method for manufacturing connector
KR20180054935A (en) 2013-07-29 2018-05-24 데쿠세리아루즈 가부시키가이샤 Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
US11139629B2 (en) 2013-07-29 2021-10-05 Dexerials Corporation Method for manufacturing electrically conductive adhesive film, electrically conductive adhesive film, and method for manufacturing connector
US10501661B2 (en) 2013-07-29 2019-12-10 Dexerials Corporation Method for manufacturing electrically conductive adhesive film, electrically conductive adhesive film, and method for manufacturing connector
KR20160037159A (en) 2013-07-31 2016-04-05 데쿠세리아루즈 가부시키가이샤 Anisotropically conductive film and manufacturing method therefor
KR20190067254A (en) 2013-07-31 2019-06-14 데쿠세리아루즈 가부시키가이샤 Anisotropically conductive film and manufacturing method therefor
US10424538B2 (en) 2013-10-15 2019-09-24 Dexerials Corporation Anisotropic conductive film
US10175544B2 (en) 2014-01-16 2019-01-08 Dexerials Corporation Connection body, method for manufacturing a connection body, connecting method and anisotropic conductive adhesive agent
KR20160108324A (en) 2014-01-16 2016-09-19 데쿠세리아루즈 가부시키가이샤 Connection body, connection body production method, connection method, anisotropic conductive adhesive
KR20220029770A (en) 2014-01-28 2022-03-08 데쿠세리아루즈 가부시키가이샤 Connection body and connection body production method
US10299382B2 (en) 2014-01-28 2019-05-21 Dexerials Corporation Connection body and connection body manufacturing method
KR20160114054A (en) 2014-01-28 2016-10-04 데쿠세리아루즈 가부시키가이샤 Connection body and connection body production method
US9673168B2 (en) 2014-02-03 2017-06-06 Dexerials Corporation Connection body
KR20160115918A (en) 2014-02-03 2016-10-06 데쿠세리아루즈 가부시키가이샤 Connection body
US9960138B2 (en) 2014-02-03 2018-05-01 Dexerials Corporation Connection body
US9997486B2 (en) 2014-02-04 2018-06-12 Dexerials Corporation Anisotropic conductive film including oblique region having lower curing ratio
KR20160117458A (en) 2014-02-04 2016-10-10 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and method for producing same
KR20220095251A (en) 2014-02-04 2022-07-06 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and method for producing same
US11309270B2 (en) 2014-02-04 2022-04-19 Dexerials Corporation Anisotropic conductive film and production method of the same
KR20160117455A (en) 2014-02-04 2016-10-10 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and method for producing same
KR20160119086A (en) 2014-02-04 2016-10-12 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and production method therefor
US11195813B2 (en) 2014-02-04 2021-12-07 Dexerials Corporation Anisotropic conductive film and production method of the same
KR20160117462A (en) 2014-02-04 2016-10-10 데쿠세리아루즈 가부시키가이샤 Anisotropic electroconductive film and method for producing same
KR20160119087A (en) 2014-02-04 2016-10-12 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and production method therefor
US10902973B2 (en) 2014-02-04 2021-01-26 Dexerials Corporation Anisotropic conductive film and production method of the same
KR20160117456A (en) 2014-02-04 2016-10-10 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and method for producing same
US10849236B2 (en) 2014-02-04 2020-11-24 Dexerials Corporation Anisotropic conductive film and production method of the same
US9980375B2 (en) 2014-02-27 2018-05-22 Dexerials Corporation Connection body, method for manufacturing a connecting body and inspection method thereof
KR20160127000A (en) 2014-02-27 2016-11-02 데쿠세리아루즈 가부시키가이샤 Connected article and connected-article manufacturing method and inspection method
KR20220106239A (en) 2014-02-27 2022-07-28 데쿠세리아루즈 가부시키가이샤 Connected article and connected-article manufacturing method and inspection method
US10373927B2 (en) 2014-07-22 2019-08-06 Dexerials Corporation Connection body and method of manufacturing connection body
KR20170033266A (en) 2014-07-22 2017-03-24 데쿠세리아루즈 가부시키가이샤 Connection body and method for manufacturing connection body
KR20230010274A (en) 2014-07-22 2023-01-18 데쿠세리아루즈 가부시키가이샤 Connection body and method for manufacturing connection body
US10368443B2 (en) 2015-06-16 2019-07-30 Dexerials Corporation Connection body, method for manufacturing connection body, and method for inspecting same
KR20170135953A (en) 2015-06-16 2017-12-08 데쿠세리아루즈 가부시키가이샤 Connector, method for manufacturing connector, and testing method

Also Published As

Publication number Publication date
JP2008034232A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP4789738B2 (en) Anisotropic conductive film
JP5825373B2 (en) Conductive particle arrangement sheet and method for producing the same
JP2007217503A (en) Anisotropically electroconductive adhesive film
JP5147048B2 (en) Anisotropic conductive film
JP5099987B2 (en) Circuit connection method and connection structure
JP5581605B2 (en) Method for producing anisotropic conductive adhesive film
JP2007009176A (en) Anisotropically electroconductive adhesive film
JP5147049B2 (en) Anisotropic conductive film
JP5516016B2 (en) Anisotropic conductive adhesive film and manufacturing method thereof
JP2006233202A (en) Anisotropically electroconductive adhesive film for circuit connection
JP4684087B2 (en) Connected structure
JP2005194413A (en) Adhesive film for circuit connection and circuit connection structure
JP4657047B2 (en) Connecting member
JP5046581B2 (en) Adhesive for circuit connection
JP2006233201A (en) Anisotropically electroconductive adhesive film
JP2006233200A (en) Anisotropically electroconductive adhesive film
JP5228869B2 (en) Adhesive film for circuit connection and method for recognizing mark for position identification of circuit member
JP4703306B2 (en) Conductive particle connection structure
JP5682720B2 (en) Anisotropic conductive adhesive film and manufacturing method thereof
JP4953685B2 (en) Connecting material
JP5202662B2 (en) Circuit connection film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4789738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250