JP2007217503A - Anisotropically electroconductive adhesive film - Google Patents

Anisotropically electroconductive adhesive film Download PDF

Info

Publication number
JP2007217503A
JP2007217503A JP2006038041A JP2006038041A JP2007217503A JP 2007217503 A JP2007217503 A JP 2007217503A JP 2006038041 A JP2006038041 A JP 2006038041A JP 2006038041 A JP2006038041 A JP 2006038041A JP 2007217503 A JP2007217503 A JP 2007217503A
Authority
JP
Japan
Prior art keywords
conductive particles
resin
binder resin
less
adhesive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006038041A
Other languages
Japanese (ja)
Inventor
Taketoshi Usui
健敏 臼井
Toru Kusakabe
透 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2006038041A priority Critical patent/JP2007217503A/en
Publication of JP2007217503A publication Critical patent/JP2007217503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wire Bonding (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anisotropically electroconductive adhesive film excellent in preservation stability which film, in fine pattern electrical connection, gives excellent electrical connection of small area electrodes, hardly causes dielectric breakdown (short circuit) between fine wirings and can be electrically connected to semiconductor chips having different electrode patterns and give connection with long term reliability. <P>SOLUTION: The anisotropically electroconductive adhesive film comprises a binder resin disposed with electroconductive particles on its surface layer as a single layer, and an insulating adhesive superposed on at least one surface of the binder resin and having lower melt viscosity at 180°C than that of the binder resin, and has electroconductivity when pressured in the thickness direction, wherein the average distance between the centers of the electroconductive particles is ≥2 μm but ≤20 μm and is ≥1.5 times but ≤5 times based on the electroconductive particle diameter and the coefficient of variation thereof is ≥0.1 but ≤0.4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、微細パターンの電気的接続において、微小面積の電極の電気的接続性に優れると共に、微細な配線間の絶縁破壊(ショート)が起こりにくく、異なる電極パターンの半導体チップに対しても電気的接続が可能で、長期信頼性を与える接続が可能な、保存安定性の高い異方導電性接着フィルムに関する。   The present invention is excellent in electrical connection of electrodes having a small area in electrical connection of fine patterns, and is less likely to cause dielectric breakdown (short circuit) between fine wirings, and can be electrically connected to semiconductor chips having different electrode patterns. The present invention relates to an anisotropic conductive adhesive film having a high storage stability and capable of providing a long-term reliability.

異方導電性接着フィルムは、絶縁性接着剤中に導電粒子を分散させたフィルムであり、液晶ディスプレイと半導体チップやTCPとの接続又はFPCとTCPとの接続、FPCとプリント配線板との接続を簡便に行うために使用される接続部材で、例えば、ノート型パソコンや携帯電話の液晶ディスプレイと制御ICとの接続用として広範に用いられ、最近では、半導体チップを直接プリント基板やフレキシブル配線板に搭載するフリップチップ実装にも用いられている(特許文献1、2、3)。   Anisotropic conductive adhesive film is a film in which conductive particles are dispersed in an insulating adhesive. Connection between liquid crystal display and semiconductor chip or TCP, connection between FPC and TCP, connection between FPC and printed wiring board. For example, it is widely used for connecting a liquid crystal display of a notebook personal computer or a mobile phone and a control IC. Recently, a semiconductor chip is directly connected to a printed circuit board or a flexible wiring board. It is also used for flip chip mounting to be mounted on (Patent Documents 1, 2, and 3).

この分野では近年、接続される配線パターンや電極パターンの寸法が益々微細化されている。微細化された配線や電極の幅は10数μmレベルまで微細化される場合も多くなってきている一方で、これまで用いられてきた導電粒子の平均粒径は、配線や電極の線幅と同レベルの数μmから10μmレベルの粒子であった。そうすると、接続される電極パターンの寸法が小さくなると、導電粒子がランダムに分散配置されている異方導電性接着フィルムでは、導電粒子の分布に偏差が生じているため、接続すべき電極パターンが導電粒子の存在しない位置に配置されてしまい、電気的に接続されない場合が、確率論として避けられない。   In recent years, the dimensions of connected wiring patterns and electrode patterns have been increasingly miniaturized in this field. On the other hand, the width of the miniaturized wirings and electrodes has been increased to a level of a few tens of μm. On the other hand, the average particle size of the conductive particles used so far is the line width of the wirings and electrodes. The particles were at the same level of several μm to 10 μm. Then, when the dimension of the electrode pattern to be connected is reduced, in the anisotropic conductive adhesive film in which conductive particles are randomly dispersed and arranged, there is a deviation in the distribution of the conductive particles. A case where the particles are arranged at positions where no particles exist and are not electrically connected is inevitable as a probability theory.

この問題点を解決するためには、より小さな導電粒子を高密度でフィルム内に分散させることが有効であるが、導電粒子の寸法を小さくすると、表面積が急激に大きくなって2次凝集し易くなり、隣接電極間の絶縁を保持できなくなり、逆に、絶縁を保持するために導電粒子の密度を下げると、今度は、接続されない配線パターンや電極パターンが発生してしまうため、接続信頼性を保ったまま微細化に対応することは困難とされていた(特許文献4)。
さらに、導電粒子を小粒径化すればするほど、用いる絶縁性接着剤によっては、絶縁抵抗が低くなったり、接続抵抗が高くなったり、隣接電極間でショートが発生したりといった長期接続信頼性が低下する場合が多くなることが判り、その対策が併せて求められていた。
In order to solve this problem, it is effective to disperse smaller conductive particles in the film at a high density. However, when the size of the conductive particles is reduced, the surface area is rapidly increased and secondary aggregation is likely to occur. As a result, if the density of the conductive particles is lowered to maintain the insulation, a wiring pattern or an electrode pattern that is not connected is generated. It has been considered difficult to cope with miniaturization while maintaining (Patent Document 4).
Furthermore, the smaller the conductive particle size, the longer the long-term connection reliability, depending on the insulating adhesive used, such as low insulation resistance, high connection resistance, or short-circuit between adjacent electrodes. It has been found that there are many cases in which the decrease in the number of cases, and countermeasures have also been required.

一方、微細パターンの接続に対応する技術として、粒子を配列する技術が提案されている。例えば、帯電させた導電粒子を絶縁性接着剤の表面に散布して、表面に付着した導電粒子を絶縁接着剤の表層中に埋め込む方法(特許文献5)や、所定配置された吸引孔を有する導電粒子吸着治具を用いて、導電粒子を配列し絶縁性接着剤に埋め込む方法(特許文献6)、延伸を利用して導電粒子を配列し、絶縁性接着剤に埋め込む方法(特許文献7)等が開示されていが、折角配列した導電粒子を、接続時の絶縁樹脂の流動に抗して、その配列状態を大きく崩す事無く接続するためには、使用できる電極や接続条件が限られており、実用上において大きな制約となっている。一方、接続時の導電粒子の流動を抑えることで、微細パターンの接続に対応しようとする試みがなされ、例えば、流動性の高い絶縁層と流動性の低い異方導電層よりなる技術が提案されている(特許文献8,9)が、元の導電粒子の配列具合が低いため、非常に微細な電極パターンの接続には対応できていないのが実情である。一方、配列具合が非常に高い場合は、導電粒子の配列ピッチにあった電極パターンの接続に対しては、高い接続性を示すものの、導電粒子の配列パターンと接続したい電極パターンが合っていない場合は、やはり接続信頼性が劣ることとなる。即ち、電極パターンの異なる複数の半導体チップを接続するためには、異なる種類の異方導電性接着フィルムを使用する必要があり、生産性において課題を有している。   On the other hand, as a technique corresponding to the connection of fine patterns, a technique for arranging particles has been proposed. For example, a method in which charged conductive particles are dispersed on the surface of an insulating adhesive and the conductive particles attached to the surface are embedded in the surface layer of the insulating adhesive (Patent Document 5), or suction holes arranged in a predetermined manner are provided. A method of arranging conductive particles and embedding them in an insulating adhesive using a conductive particle adsorption jig (Patent Document 6), A method of arranging conductive particles using stretching and embedding them in an insulating adhesive (Patent Document 7) However, in order to connect the conductive particles arranged at an angle against the flow of the insulating resin at the time of connection without greatly destroying the arrangement state, usable electrodes and connection conditions are limited. This is a major limitation in practical use. On the other hand, attempts are made to cope with the connection of fine patterns by suppressing the flow of conductive particles at the time of connection. For example, a technique comprising an insulating layer having high fluidity and an anisotropic conductive layer having low fluidity has been proposed. (Patent Documents 8 and 9), however, the actual condition is that the arrangement of the original conductive particles is low, so that it cannot cope with connection of very fine electrode patterns. On the other hand, when the arrangement is very high, the electrode pattern that matches the arrangement pitch of the conductive particles shows high connectivity, but the electrode pattern to be connected does not match the arrangement pattern of the conductive particles As a result, connection reliability is inferior. That is, in order to connect a plurality of semiconductor chips having different electrode patterns, it is necessary to use different kinds of anisotropic conductive adhesive films, which has a problem in productivity.

特開平03-107888号公報Japanese Patent Laid-Open No. 03-107888 特開平04-366630号公報Japanese Patent Laid-Open No. 04-366630 特開昭61-195179号公報JP-A 61-195179 特開平09-312176号公報Japanese Patent Laid-Open No. 09-312176 特開2000-151084号公報JP 2000-151084 A 特開2002-332461号公報JP 2002-332461 A 国際出願PCT/JP2004/017944号公報International Application PCT / JP2004 / 017944 特開昭63-310581号公報Japanese Patent Laid-Open No. 63-310581 特開2000-178511号公報JP 2000-178511 A

本発明は、微細パターンの電気的接続において、微小面積の電極の電気的接続性に優れると共に、微細な配線間の絶縁破壊(ショート)が起こりにくく、異なる電極パターンの半導体チップに対しても電気的接続が可能で、長期信頼性を与える接続が可能な、保存安定性の高い異方導電性接着フィルムの提供を目的とする。   The present invention is excellent in electrical connection of electrodes having a small area in electrical connection of fine patterns, and is less likely to cause dielectric breakdown (short circuit) between fine wirings, and can be electrically connected to semiconductor chips having different electrode patterns. It is an object of the present invention to provide an anisotropic conductive adhesive film having a high storage stability and capable of providing a long-term reliability.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、粒子間距離が特定の平均値と特定の変動係数を有する様に、導電粒子を表面層に単層に配置した特定のバインダー樹脂と、それより溶融粘度の低い特定の絶縁性接着剤よりなる異方導電性接着フィルムが上記目的に適合しうることを見出した。
上記課題を解決するために本願出願以前に行われた上記技術開示からは、単に導電粒子の配列性を制御し、高溶融粘度のバインダー樹脂に埋め込むと言う工夫だけで、上記課題を解決できたことは、確率論的な問題を内在させたままであった特許文献5や、膨大でしかも延々と数が増えつづける冶具を用意しなければならず、電気的接続工程の生産性向上にも限界があった特許文献6の技術開示に鑑みて、当業者にとって予想だにできなかった、驚くべき発見であった。
As a result of intensive studies to solve the above problems, the present inventors have determined that a specific layer in which conductive particles are arranged in a single layer on the surface layer so that the interparticle distance has a specific average value and a specific coefficient of variation. It has been found that an anisotropic conductive adhesive film comprising a binder resin and a specific insulating adhesive having a lower melt viscosity can meet the above-mentioned purpose.
From the above technical disclosure performed prior to the filing of the present application in order to solve the above problems, the above problems could be solved by simply controlling the arrangement of the conductive particles and embedding them in a binder resin having a high melt viscosity. This means that Patent Document 5 where the probabilistic problem remains inherent and jigs that are enormous and continue to increase in number must be prepared, and there is a limit to improving the productivity of the electrical connection process. In view of the technical disclosure of Patent Document 6, there was a surprising discovery that could not be anticipated by those skilled in the art.

即ち、本発明は、下記の通りである。
1) 導電粒子を表面層に単層に配置したバインダー樹脂と、該バインダー樹脂の少なくとも片面に積層され、バインダー樹脂よりも180℃の溶融粘度が低い絶縁性接着剤よりなり、厚さ方向に加圧することで導電性を有する異方導電性接着フィルムにおいて、導電粒子の中心間距離の平均が2μm以上20μm以下、かつ、導電粒子の平均粒径に対して1.5倍以上5倍以下であり、その変動係数が、0.1以上0.4未満である異方導電性接着フィルム。
2)バインダー樹脂の180℃の溶融粘度が50Pa・s以上である上記1)記載の異方導電性接着フィルム。
3)絶縁性接着剤が潜在性硬化剤を用いた熱硬化性エポキシ樹脂系接着剤である上記1)あるいは2)に記載の異方導電性接着フィルム。
4)該導電粒子の平均粒径が0.5μm以上10μm未満である上記1)〜3)のいずれかに記載の異方導電性接着フィルム。
5)粘着剤によって導電粒子が単層に固定された延伸可能なシートを延伸した後、導電粒子側に、バインダー樹脂を重ねてラミネートし、バインダー樹脂に導電粒子を埋め込むことを特徴とする上記1)〜5)のいずれかに記載の異方導電性接着フィルムの製造方法。
That is, the present invention is as follows.
1) A binder resin in which conductive particles are arranged in a single layer on the surface layer, and an insulating adhesive that is laminated on at least one side of the binder resin and has a melt viscosity of 180 ° C. lower than that of the binder resin. In the anisotropic conductive adhesive film having conductivity by pressing, the average distance between the centers of the conductive particles is 2 μm or more and 20 μm or less, and 1.5 times or more and 5 times or less with respect to the average particle diameter of the conductive particles An anisotropic conductive adhesive film whose coefficient of variation is 0.1 or more and less than 0.4.
2) The anisotropic conductive adhesive film according to 1) above, wherein the binder resin has a melt viscosity at 180 ° C. of 50 Pa · s or more.
3) The anisotropic conductive adhesive film as described in 1) or 2) above, wherein the insulating adhesive is a thermosetting epoxy resin adhesive using a latent curing agent.
4) The anisotropic conductive adhesive film according to any one of 1) to 3), wherein the conductive particles have an average particle size of 0.5 μm or more and less than 10 μm.
5) The above 1 characterized in that after stretching a stretchable sheet in which conductive particles are fixed in a single layer by an adhesive, a binder resin is laminated on the conductive particle side and laminated, and the conductive particles are embedded in the binder resin. The manufacturing method of the anisotropically conductive adhesive film in any one of -5).

本発明の異方導電性接着フィルムは、保存安定性が高く、微細面積の電極の電気的接続性に優れると共に、微細な配線間の絶縁破壊(ショート)を起こしにくく、微細ピッチの接続性に優れると共に、異なる電極パターンの半導体チップ毎に異方導電性接着フィルムを替える必要がなく生産性に優れ、長期信頼性を与える接続を可能にする効果を有する。   The anisotropic conductive adhesive film of the present invention has high storage stability, excellent electrical connectivity of electrodes with a small area, and is less prone to dielectric breakdown (short) between fine wirings, and has a fine pitch connectivity. In addition to being excellent, there is no need to change the anisotropic conductive adhesive film for each semiconductor chip having a different electrode pattern, and the productivity is excellent, and there is an effect of enabling connection that gives long-term reliability.

本発明について、以下具体的に説明する。
本発明は、厚さ方向に加圧することで導電性を有する異方導電性接着フィルムに関する。
本発明の異方導電性接着フィルムは、導電粒子が表面層に単層に配置したバインダー樹脂が構成要素の1つである。
The present invention will be specifically described below.
The present invention relates to an anisotropic conductive adhesive film having conductivity by applying pressure in the thickness direction.
In the anisotropic conductive adhesive film of the present invention, a binder resin in which conductive particles are arranged in a single layer on the surface layer is one of the constituent elements.

ここで表面層に配置するとは、導電粒子の一部または全体がバインダーの表面に埋め込まれている状態を意味する。また、導電粒子の粒径よりもバインダー樹脂を薄くして、バインダー樹脂の上下に導電粒子が露出していても構わない。導電粒子の一部が埋め込まれている場合、導電粒子はその平均粒径に対して1/3以上がバインダー樹脂に埋め込まれていることでバインダー樹脂からの脱離が起こりにくくなり、接続不良を抑制する効果があり好ましい。更に好ましくは1/2以上埋め込まれていることであり、更に好ましくは2/3以上埋め込まれていることである。一方、導電粒子がバインダー樹脂に完全に埋め込まれている場合、導電粒子とバインダー樹脂の表面との間のバインダー樹脂の厚みは、接続のための加圧の際に導電粒子の移動を抑えるために、導電粒子の平均粒径に対して1.0倍未満が好ましい。更に好ましくは0.8倍未満、更に好ましくは0.5倍未満、更に好ましくは0.3倍未満、更に好ましくは0.1倍未満である。本発明では、厚み方向の導電性と面方向の絶縁性(以下しばしば異方導電性と称す)を高レベルで確保するために、導電粒子はバインダー樹脂に単層で配置される。ここで、単層で配置されるとは、導電粒子の中心高さのバラツキが導電粒子の平均粒径に対して2倍未満であることを意味する。導電粒子の平均粒径に対する中心高さのバラツキは0に近いほど好ましく、好ましくは、1倍未満、更に好ましくは0.8倍未満、更に好ましくは0.6倍未満である。ここで、導電粒子の中心高さのバラツキとは、バインダー樹脂表面から導電粒子の中心までの距離の標準偏差であり、導電粒子の中心がバインダー樹脂に埋め込まれていない場合は、中心高さはその距離にマイナスをつけた値である。   Here, disposing in the surface layer means a state in which part or all of the conductive particles are embedded in the surface of the binder. Alternatively, the binder resin may be thinner than the particle size of the conductive particles, and the conductive particles may be exposed above and below the binder resin. When a part of the conductive particles are embedded, the conductive particles are embedded in the binder resin with 1/3 or more of the average particle size, and it is difficult for the conductive particles to be detached from the binder resin, resulting in poor connection. There is an effect of suppressing, which is preferable. More preferably, ½ or more are embedded, and more preferably 2/3 or more are embedded. On the other hand, when the conductive particles are completely embedded in the binder resin, the thickness of the binder resin between the conductive particles and the surface of the binder resin is to suppress the movement of the conductive particles during pressurization for connection. The average particle size of the conductive particles is preferably less than 1.0 times. More preferably, it is less than 0.8 times, more preferably less than 0.5 times, more preferably less than 0.3 times, and still more preferably less than 0.1 times. In the present invention, the conductive particles are arranged in a single layer on the binder resin in order to ensure the conductivity in the thickness direction and the insulation in the plane direction (hereinafter often referred to as anisotropic conductivity) at a high level. Here, being arranged in a single layer means that the variation in the center height of the conductive particles is less than twice the average particle size of the conductive particles. The variation in the center height with respect to the average particle diameter of the conductive particles is preferably close to 0, preferably less than 1 time, more preferably less than 0.8 time, and further preferably less than 0.6 time. Here, the variation in the center height of the conductive particles is a standard deviation of the distance from the binder resin surface to the center of the conductive particles. When the center of the conductive particles is not embedded in the binder resin, the center height is This is the value minus the distance.

本発明では、導電粒子がバインダー樹脂の表面層に単層として存在することにより、特に、半導体チップと液晶パネルの接続の様に、接続する電極高さが高いものとほぼ平らなものとの接続において、配列した導電粒子が接続時に大きく移動してしまう事を抑制することが可能となっている。   In the present invention, since the conductive particles exist as a single layer on the surface layer of the binder resin, in particular, the connection between a high connection height and a substantially flat connection, such as a connection between a semiconductor chip and a liquid crystal panel. In this case, it is possible to prevent the arranged conductive particles from largely moving at the time of connection.

本発明の異方導電性接着フィルムは、導電粒子が特定の中心間距離で、更にその中心間距離が特定の変動係数を有して配列されることによって、高い異方導電性を有している。即ち、本発明の異方導電性接着フィルムは、その導電粒子の中心間距離の平均が2μm以上20μm以下であり、かつ、導電粒子の平均粒径の1.5倍以上5倍以下である。2μm以上の中心間距離でかつ導電粒子の平均粒径の1.5倍以上にすることで、面方向の絶縁性、即ち、隣接する電極間の絶縁性を高レベルで維持できる。一方、中心間距離を20μm以下でかつ導電粒子の平均粒径の5倍以下にすることで、厚さ方向の導電性、即ち接続電極間の電気的接続性を維持できる導電粒子密度を得ることができ、異方導電性接着フィルムとして高い性能を発揮する。導電粒子の中心間距離の平均は、好ましくは2.5μm以上18μm以下、更に好ましくは3μm以上16μm以下、更に好ましくは3.5μm以上15μm以下であり、更に好ましくは4μm以上13μm以下であり、導電粒子の平均粒径に対して、好ましくは1.55倍以上4.6倍以下、更に好ましくは1.6倍以上4.3倍以下、更に好ましくは1.65倍以上4.0以下である。導電粒子の中心間距離の変動係数は、導電粒子の中心間距離の標準偏差をその平均値で割った値であり、本発明においては、0.1以上0.4未満である。好ましくは0.11以上0.36未満、更に好ましくは0.12以上0.34未満、更に好ましくは0.13以上0.32未満、更に好ましくは0.14以上0.3未満である。変動係数を0.1以上にすることで、接続電極間の電気的接続性に悪影響する接続時の導電粒子の流動を起こすことなく、異なる電極パターンの半導体チップを安定に接続することが可能であり、一方、0.4未満とすることで、接続電極間に捕捉される導電粒子数の電極毎のバラツキを小さく抑えることができ、電極毎の接続抵抗のバラツキが小さく、安定した接続が得られる。   The anisotropic conductive adhesive film of the present invention has high anisotropic conductivity because the conductive particles are arranged with a specific center distance, and the center distance is arranged with a specific coefficient of variation. Yes. That is, the anisotropic conductive adhesive film of the present invention has an average distance between the centers of the conductive particles of 2 μm or more and 20 μm or less, and 1.5 times or more and 5 times or less of the average particle diameter of the conductive particles. By setting the distance between centers to 2 μm or more and 1.5 times or more the average particle diameter of the conductive particles, the insulation in the surface direction, that is, the insulation between adjacent electrodes can be maintained at a high level. On the other hand, by setting the distance between centers to 20 μm or less and 5 times or less the average particle diameter of the conductive particles, a conductive particle density capable of maintaining the electrical conductivity in the thickness direction, that is, the electrical connectivity between the connection electrodes, is obtained. And exhibits high performance as an anisotropic conductive adhesive film. The average distance between the centers of the conductive particles is preferably 2.5 μm or more and 18 μm or less, more preferably 3 μm or more and 16 μm or less, further preferably 3.5 μm or more and 15 μm or less, and further preferably 4 μm or more and 13 μm or less. Preferably it is 1.55 times or more and 4.6 times or less with respect to the average particle diameter of particle | grains, More preferably, they are 1.6 times or more and 4.3 times or less, More preferably, they are 1.65 times or more and 4.0 or less. . The variation coefficient of the distance between the centers of the conductive particles is a value obtained by dividing the standard deviation of the distance between the centers of the conductive particles by the average value, and is 0.1 or more and less than 0.4 in the present invention. Preferably they are 0.11 or more and less than 0.36, More preferably, they are 0.12 or more and less than 0.34, More preferably, they are 0.13 or more and less than 0.32, More preferably, they are 0.14 or more and less than 0.3. By setting the coefficient of variation to 0.1 or more, it is possible to stably connect semiconductor chips having different electrode patterns without causing flow of conductive particles during connection that adversely affects the electrical connectivity between connection electrodes. On the other hand, by setting it to less than 0.4, the variation in the number of conductive particles trapped between the connection electrodes can be kept small, and the variation in connection resistance between the electrodes is small, so that a stable connection is obtained. It is done.

本発明に用いられる導電粒子としては、金属粒子、炭素からなる粒子や高分子核材に金属薄膜を被覆した粒子等を用いる事ができる。
金属粒子としては、例えば、金、銀、銅、ニッケル、アルミニウム、亜鉛、錫、鉛、半田、インジウム、パラジウム等の単体や、2種以上のこれらの金属が層状あるいは傾斜状に組み合わされている粒子が例示される。
As the conductive particles used in the present invention, metal particles, particles composed of carbon, particles obtained by coating a polymer thin film with a metal thin film, and the like can be used.
As the metal particles, for example, a simple substance such as gold, silver, copper, nickel, aluminum, zinc, tin, lead, solder, indium, palladium, etc., or two or more of these metals are combined in a layered or inclined manner. Particles are exemplified.

高分子核材に金属薄膜を被覆した粒子としては、エポキシ樹脂、スチレン樹脂、シリコーン樹脂、アクリル樹脂、ポリオレフィン樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ウレタン樹脂、フェノール樹脂、ポリエステル樹脂、ジビニルベンゼン架橋体、NBR、SBR等のポリマーの中から1種あるいは2種以上組み合わせた高分子核材に、金、銀、銅、ニッケル、アルミニウム、亜鉛、錫、鉛、半田、インジウム、パラジウム等の中から1種あるいは2種以上組み合わせてメッキ等により金属被覆した粒子が例示される。金属薄膜の厚さは0.005μm以上1μm以下の範囲が、接続安定性と粒子の凝集性の観点から好ましい。金属薄膜は均一に被覆されていることが接続安定性上好ましい。これら導電粒子の表面を更に絶縁被覆した粒子も使用することができる。   Particles in which a polymer thin film is coated on a polymer core material include epoxy resin, styrene resin, silicone resin, acrylic resin, polyolefin resin, melamine resin, benzoguanamine resin, urethane resin, phenol resin, polyester resin, divinylbenzene crosslinked product, NBR , SBR and other polymer core materials combined with one or more polymers, gold, silver, copper, nickel, aluminum, zinc, tin, lead, solder, indium, palladium, etc. The particle | grains which metal-coated by plating etc. in combination of 2 or more types are illustrated. The thickness of the metal thin film is preferably in the range of 0.005 μm to 1 μm from the viewpoint of connection stability and particle cohesion. It is preferable in terms of connection stability that the metal thin film is uniformly coated. Particles obtained by further insulating coating the surfaces of these conductive particles can also be used.

導電粒子の平均粒径は、0.5μm以上10μm未満の範囲が粒子の凝集性と異方導電性の観点から好ましい。更に好ましくは1.0μm以上7μm未満、更に好ましくは1.5μm以上6μm未満、更に好ましくは2.0μm以上5.5μm未満、更に好ましくは2.5μm以上5.0μm未満である。導電粒子の粒子径の標準偏差は小さいほど好ましく、平均粒径の50%以下が好ましい。更に好ましくは20%以下、一層好ましくは、10以下、更に一層好ましくは5%以下である。   The average particle diameter of the conductive particles is preferably in the range of 0.5 μm or more and less than 10 μm from the viewpoint of particle aggregation and anisotropic conductivity. More preferably, they are 1.0 micrometer or more and less than 7 micrometers, More preferably, they are 1.5 micrometers or more and less than 6 micrometers, More preferably, they are 2.0 micrometers or more and less than 5.5 micrometers, More preferably, they are 2.5 micrometers or more and less than 5.0 micrometers. The standard deviation of the particle diameter of the conductive particles is preferably as small as possible, and is preferably 50% or less of the average particle diameter. More preferably, it is 20% or less, more preferably 10 or less, and still more preferably 5% or less.

本発明に用いられるバインダー樹脂は、熱硬化性樹脂、熱可塑性樹脂、光硬化性樹脂、電子線硬化性樹脂から選ばれた1種類以上の樹脂を含有する。これらの樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂、アクリル樹脂、ポリイミド樹脂、フェノキシ樹脂、ポリビニルブチラール樹脂、SBR、SBS、NBR、ポリエーテルスルフォン樹脂、ポリエーテルテレフタレート樹脂、ポリフェニレンスルフィド樹脂、ポリアミド樹脂、ポリエーテルオキシド樹脂、ポリアセタール樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリイソブチレン樹脂、アルキルフェノール樹脂、スチレンブタジエン樹脂、カルボキシル変性ニトリル樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂等又はそれらの変性樹脂が挙げられる。   The binder resin used in the present invention contains one or more kinds of resins selected from thermosetting resins, thermoplastic resins, photocurable resins, and electron beam curable resins. Examples of these resins include epoxy resins, phenol resins, silicone resins, urethane resins, acrylic resins, polyimide resins, phenoxy resins, polyvinyl butyral resins, SBR, SBS, NBR, polyether sulfone resins, polyether terephthalate resins, polyphenylenes. Sulfide resin, polyamide resin, polyether oxide resin, polyacetal resin, polystyrene resin, polyethylene resin, polyisobutylene resin, alkylphenol resin, styrene butadiene resin, carboxyl-modified nitrile resin, polyphenylene ether resin, polycarbonate resin, polyether ketone resin, etc. Of the modified resin.

特に接続後の長期信頼性を必要とする場合には、エポキシ樹脂を含有することが好ましい。
ここで用いられるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラメチルビスフェノールA型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、脂肪族エーテル型エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、グリシジルエーテルエステル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環族エポキサイド等があり、これらエポキシ樹脂はハロゲン化や水素添加されていても良く、また、ウレタン変性、ゴム変性、シリコーン変性等の変性されたエポキシ樹脂でも良い。
In particular, when long-term reliability after connection is required, it is preferable to contain an epoxy resin.
Examples of the epoxy resin used here include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetramethylbisphenol A type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin, and fluorene type epoxy. Resin, phenol novolac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin, glycidyl ether epoxy resin such as aliphatic ether epoxy resin, glycidyl ether ester epoxy resin, glycidyl ester epoxy resin, glycidyl amine Type epoxy resin, hydantoin type epoxy resin, alicyclic epoxide, etc., these epoxy resins may be halogenated or hydrogenated Further, it may urethane-modified, rubber-modified, even modified epoxy resins such as silicone-modified.

バインダー樹脂にエポキシ樹脂が含有される場合、エポキシ樹脂の硬化剤を含有することが好ましい。エポキシ樹脂の硬化剤は、貯蔵安定性の観点から、潜在性硬化剤が好ましい。潜在性硬化剤としては、ホウ素化合物、ヒドラジド、3級アミン、イミダゾール、ジシアンジアミド、無機酸、カルボン酸無水物、チオール、イソシアネート、ホウ素錯塩及びそれらの誘導体等の硬化剤が好ましい。潜在性硬化剤の中でも、マイクロカプセル型の硬化剤が好ましい。マイクロカプセル型硬化剤は、前記硬化剤の表面を樹脂皮膜等で安定化したもので、接続作業時の温度や圧力で樹脂皮膜が破壊され、硬化剤がマイクロカプセル外に拡散し、エポキシ樹脂と反応する。マイクロカプセル型潜在性硬化剤の中でも、アミンアダクト、イミダゾールアダクト等のアダクト型硬化剤をマイクロカプセル化した潜在性硬化剤が安定性と硬化性のバランスに優れ好ましい。これらエポキシ樹脂の硬化剤は一般に、エポキシ樹脂100質量部に対して、0〜100質量部の量で用いられる。   When an epoxy resin is contained in the binder resin, it is preferable to contain an epoxy resin curing agent. The curing agent for the epoxy resin is preferably a latent curing agent from the viewpoint of storage stability. As the latent curing agent, curing agents such as boron compounds, hydrazides, tertiary amines, imidazoles, dicyandiamides, inorganic acids, carboxylic acid anhydrides, thiols, isocyanates, boron complex salts and derivatives thereof are preferable. Among latent curing agents, microcapsule type curing agents are preferred. The microcapsule-type curing agent is a material in which the surface of the curing agent is stabilized with a resin film, etc., and the resin film is destroyed by the temperature and pressure during connection work, the curing agent diffuses outside the microcapsule, and the epoxy resin react. Among the microcapsule type latent curing agents, a latent curing agent obtained by microencapsulating an adduct type curing agent such as an amine adduct or an imidazole adduct is preferable because of excellent balance between stability and curability. Generally these epoxy resin hardening | curing agents are used in the quantity of 0-100 mass parts with respect to 100 mass parts of epoxy resins.

本発明に用いられるバインダー樹脂は、接続時に導電粒子が移動して、接続電極間に捕捉される導電粒子数が減少することを抑制するために、接続条件下において、流動性の低い特性を有することが求められ、更に、長期接続信頼性を加味すると、フェノキシ樹脂を含有することが好ましい。
ここで用いられるフェノキシ樹脂としては、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールAビスフェノールF混合型フェノキシ樹脂、ビスフェノールAビスフェノールS混合型フェノキシ樹脂、フルオレン環含有フェノキシ樹脂、カプロラクトン変性ビスフェノールA型フェノキシ樹脂等が例示される。
The binder resin used in the present invention has low fluidity characteristics under connection conditions in order to prevent the conductive particles from moving at the time of connection and reducing the number of conductive particles captured between the connection electrodes. In view of long-term connection reliability, it is preferable to contain a phenoxy resin.
Examples of the phenoxy resin used herein include bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol A bisphenol F mixed type phenoxy resin, bisphenol A bisphenol S mixed type phenoxy resin, fluorene ring-containing phenoxy resin, and caprolactone-modified bisphenol A type. Examples include phenoxy resin.

フェノキシ樹脂の重量平均分子量は2万以上10万未満が好ましい。
本発明に用いられるバインダー樹脂としてはフェノキシ樹脂とエポキシ樹脂とを併用することが好ましく、その場合、フェノキシ樹脂の使用量は、バインダー樹脂全体に対して50質量%以上用いることが好ましい。更に好ましくは、55質量%以上95質量%未満、一層好ましくは60質量%以上90質量%未満である。
バインダー樹脂には、さらに、絶縁粒子、充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤等を含有することもできる。絶縁粒子や充填剤を含有する場合、これらの最大径は導電粒子の平均粒径未満である事が好ましい。カップリング剤としてはケチミン基、ビニル基、アクリル基、アミノ基、エポキシ基及びイソシアネート基含有シランカップリング剤が、接着性の向上の点から好ましい。
The weight average molecular weight of the phenoxy resin is preferably 20,000 or more and less than 100,000.
As the binder resin used in the present invention, it is preferable to use a phenoxy resin and an epoxy resin in combination, and in this case, the amount of the phenoxy resin used is preferably 50% by mass or more based on the entire binder resin. More preferably, it is 55 mass% or more and less than 95 mass%, More preferably, it is 60 mass% or more and less than 90 mass%.
The binder resin can further contain insulating particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, coupling agents, and the like. When the insulating particles and the filler are contained, the maximum diameter is preferably less than the average particle diameter of the conductive particles. As the coupling agent, ketimine group, vinyl group, acrylic group, amino group, epoxy group, and isocyanate group-containing silane coupling agent are preferable from the viewpoint of improving adhesiveness.

バインダー樹脂の各成分を混合する場合、必要に応じ、溶剤を用いることができる。溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、酢酸エチル、酢酸ブチル、エチレングリコールモノアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルアセテート等が挙げられる。
バインダー樹脂の製造は、例えば、各成分を溶剤中で混合、塗工液を作成し、基材上にアプリケーター塗装等により塗工、オーブン中で溶剤を揮散させる事で製造できる。
バインダー樹脂は接続時に導電粒子の流動を抑制する働きがあるため、接続条件下において、流動性が低い必要があり、180℃での溶融粘度は50Pa・s以上が好ましい。更に好ましくは、65Pa・s以上2万Pa・s未満、一層好ましくは80Pa・s以上1万Pa・s未満である。溶融粘度が高くなり過ぎると、バインダー層に導電粒子を埋め込む際に、高い温度が必要となり、製造の難易度が高くなる。
When mixing each component of binder resin, a solvent can be used as needed. Examples of the solvent include methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, ethyl acetate, butyl acetate, ethylene glycol monoalkyl ether acetate, propylene glycol monoalkyl ether acetate, and the like.
The binder resin can be produced, for example, by mixing each component in a solvent, creating a coating liquid, coating the substrate by applicator coating, etc., and evaporating the solvent in an oven.
Since the binder resin has a function of suppressing the flow of the conductive particles at the time of connection, the fluidity needs to be low under the connection conditions, and the melt viscosity at 180 ° C. is preferably 50 Pa · s or more. More preferably, it is 65 Pa · s or more and less than 20,000 Pa · s, and more preferably 80 Pa · s or more and less than 10,000 Pa · s. If the melt viscosity becomes too high, a high temperature is required when embedding the conductive particles in the binder layer, and the manufacturing difficulty level increases.

尚、ここで、バインダー樹脂が熱硬化性樹脂の場合、その溶融粘度はバインダー樹脂から硬化剤を除去した、あるいは、硬化剤が未配合の状態での溶融粘度を指す。
バインダー樹脂の膜厚は導電粒子の平均粒径と同等あるいはそれ未満であることが好ましい。好ましくは、導電粒子の平均粒径の10%以上200%未満、更に好ましくは20%以上170%未満、一層好ましくは25%以上140%未満である。
バインダー樹脂の膜厚は、低い接続抵抗を得易いため、導電粒子の平均粒径未満であることが好ましく、その場合、膜の上下に導電粒子が露出していることが低い接続抵抗を得る上で更に好ましい。
Here, when the binder resin is a thermosetting resin, the melt viscosity indicates a melt viscosity obtained by removing the curing agent from the binder resin or in a state where the curing agent is not blended.
The film thickness of the binder resin is preferably equal to or less than the average particle diameter of the conductive particles. Preferably, it is 10% or more and less than 200%, more preferably 20% or more and less than 170%, more preferably 25% or more and less than 140% of the average particle diameter of the conductive particles.
The thickness of the binder resin is preferably less than the average particle size of the conductive particles because it is easy to obtain a low connection resistance. In that case, the conductive particles are exposed above and below the film to obtain a low connection resistance. And more preferable.

本発明の異方導電性接着フィルムは、導電粒子が配置されたバインダー樹脂の少なくとも片面に絶縁性接着剤が積層されている。
本発明に用いられる絶縁性接着剤は、熱硬化性樹脂、熱可塑性樹脂、光硬化性樹脂、電子線硬化性樹脂から選ばれた1種類以上の樹脂を含有する。これらの樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂、アクリル樹脂、ポリイミド樹脂、フェノキシ樹脂、ポリビニルブチラール樹脂、SBR、SBS、NBR、ポリエーテルスルフォン樹脂、ポリエーテルテレフタレート樹脂、ポリフェニレンスルフィド樹脂、ポリアミド樹脂、ポリエーテルオキシド樹脂、ポリアセタール樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリイソブチレン樹脂、アルキルフェノール樹脂、スチレンブタジエン樹脂、カルボキシル変性ニトリル樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂等又はそれらの変性樹脂が挙げられる。
In the anisotropic conductive adhesive film of the present invention, an insulating adhesive is laminated on at least one surface of a binder resin in which conductive particles are arranged.
The insulating adhesive used in the present invention contains one or more resins selected from thermosetting resins, thermoplastic resins, photocurable resins, and electron beam curable resins. Examples of these resins include epoxy resins, phenol resins, silicone resins, urethane resins, acrylic resins, polyimide resins, phenoxy resins, polyvinyl butyral resins, SBR, SBS, NBR, polyether sulfone resins, polyether terephthalate resins, polyphenylenes. Sulfide resin, polyamide resin, polyether oxide resin, polyacetal resin, polystyrene resin, polyethylene resin, polyisobutylene resin, alkylphenol resin, styrene butadiene resin, carboxyl-modified nitrile resin, polyphenylene ether resin, polycarbonate resin, polyether ketone resin, etc. Of the modified resin.

特に接続後の長期信頼性を必要とする場合には、エポキシ樹脂を含有することが好ましい。
ここで用いられるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラメチルビスフェノールA型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、脂肪族エーテル型エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、グリシジルエーテルエステル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環族エポキサイド等があり、これらエポキシ樹脂はハロゲン化や水素添加されていても良く、また、ウレタン変性、ゴム変性、シリコーン変性等の変性されたエポキシ樹脂でも良い。
In particular, when long-term reliability after connection is required, it is preferable to contain an epoxy resin.
Examples of the epoxy resin used here include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetramethylbisphenol A type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin, and fluorene type epoxy. Resin, phenol novolac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin, glycidyl ether epoxy resin such as aliphatic ether epoxy resin, glycidyl ether ester epoxy resin, glycidyl ester epoxy resin, glycidyl amine Type epoxy resin, hydantoin type epoxy resin, alicyclic epoxide, etc., these epoxy resins may be halogenated or hydrogenated Further, it may urethane-modified, rubber-modified, even modified epoxy resins such as silicone-modified.

絶縁性接着剤にエポキシ樹脂が含有される場合、エポキシ樹脂の硬化剤を含有することが好ましい。エポキシ樹脂の硬化剤としては、貯蔵安定性の観点から、潜在性硬化剤が好ましい。潜在性硬化剤としては、ホウ素化合物、ヒドラジド、3級アミン、イミダゾール、ジシアンジアミド、無機酸、カルボン酸無水物、チオール、イソシアネート、ホウ素錯塩及びそれらの誘導体等の硬化剤が好ましい。潜在性硬化剤の中でも、マイクロカプセル型の硬化剤が好ましい。マイクロカプセル型硬化剤は、前記硬化剤の表面を樹脂皮膜等で安定化したもので、接続作業時の温度や圧力で樹脂皮膜が破壊され、硬化剤がマイクロカプセル外に拡散し、エポキシ樹脂と反応する。マイクロカプセル型潜在性硬化剤の中でも、アミンアダクト、イミダゾールアダクト等のアダクト型硬化剤をマイクロカプセル化した潜在性硬化剤が安定性と硬化性のバランスに優れ好ましい。これらエポキシ樹脂の硬化剤は一般に、エポキシ樹脂100質量部に対して、2〜100質量部の量で用いられる。   When an epoxy resin is contained in the insulating adhesive, it is preferable to contain a curing agent for the epoxy resin. As the curing agent for the epoxy resin, a latent curing agent is preferable from the viewpoint of storage stability. As the latent curing agent, curing agents such as boron compounds, hydrazides, tertiary amines, imidazoles, dicyandiamides, inorganic acids, carboxylic acid anhydrides, thiols, isocyanates, boron complex salts and derivatives thereof are preferable. Among latent curing agents, microcapsule type curing agents are preferred. The microcapsule-type curing agent is a material in which the surface of the curing agent is stabilized with a resin film, etc., and the resin film is destroyed by the temperature and pressure during connection work, the curing agent diffuses outside the microcapsule, and the epoxy resin react. Among the microcapsule type latent curing agents, a latent curing agent obtained by microencapsulating an adduct type curing agent such as an amine adduct or an imidazole adduct is preferable because of excellent balance between stability and curability. Generally these epoxy resin hardening | curing agents are used in the quantity of 2-100 mass parts with respect to 100 mass parts of epoxy resins.

本発明に用いられる絶縁性接着剤は、フィルム形成性、接着性、硬化時の応力緩和製等を付与する目的で、フェノキ樹脂、ポリエステル樹脂、アクリルゴム、SBR、NBR、シリコーン樹脂、ポリビニルブチラール樹脂、ポリウレタン樹脂、ポリアセタール樹脂、尿素樹脂、キシレン樹脂、ポリアミド樹脂、ポリイミド樹脂、カルボキシル基、ヒドロシキシル基、ビニル基、アミノ基などの官能基を含有するゴム、エラストマー類等の高分子成分を含有することが好ましい。これら高分子成分は分子量が10,000〜1,000,000のものが好ましい。高分子成分の含有量は、絶縁性接着剤全体に対して2〜80質量%が好ましい。   The insulating adhesive used in the present invention is a phenoxy resin, a polyester resin, an acrylic rubber, SBR, NBR, a silicone resin, a polyvinyl butyral resin for the purpose of imparting film formability, adhesiveness, stress relaxation during curing, etc. Polyurethane resin, polyacetal resin, urea resin, xylene resin, polyamide resin, polyimide resin, rubber containing functional groups such as carboxyl group, hydroxyl group, vinyl group, amino group, and polymer components such as elastomers Is preferred. These polymer components preferably have a molecular weight of 10,000 to 1,000,000. The content of the polymer component is preferably 2 to 80% by mass with respect to the entire insulating adhesive.

これら高分子成分としては、長期接続信頼性の観点から、フェノキシ樹脂が好ましい。
ここで用いられるフェノキシ樹脂としては、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールAビスフェノールF混合型フェノキシ樹脂、ビスフェノールAビスフェノールS混合型フェノキシ樹脂、フルオレン環含有フェノキシ樹脂、カプロラクトン変性ビスフェノールA型フェノキシ樹脂等が例示される。
ここで用いられるフェノキシ樹脂の重量平均分子量は2万以上10万未満が好ましい。
本発明に用いられる絶縁性接着剤としては、貯蔵安定性が高く、接続信頼性の高い、エポキシ樹脂と潜在性硬化剤を含有する熱硬化性のエポキシ樹脂系接着剤が好ましい。フェノキシ樹脂を含有するエポキシ樹脂系接着剤が更に好ましい。その場合、フェノキシ樹脂の使用量は、絶縁性接着剤全体に対して50質量%未満が好ましい。更に好ましくは、20質量%以上46質量%未満、一層好ましくは30質量%以上44質量%未満である。
These polymer components are preferably phenoxy resins from the viewpoint of long-term connection reliability.
Examples of the phenoxy resin used herein include bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol A bisphenol F mixed type phenoxy resin, bisphenol A bisphenol S mixed type phenoxy resin, fluorene ring-containing phenoxy resin, and caprolactone-modified bisphenol A type. Examples include phenoxy resin.
The weight average molecular weight of the phenoxy resin used here is preferably 20,000 or more and less than 100,000.
As the insulating adhesive used in the present invention, a thermosetting epoxy resin adhesive containing an epoxy resin and a latent curing agent having high storage stability and high connection reliability is preferable. An epoxy resin-based adhesive containing a phenoxy resin is more preferable. In that case, the amount of the phenoxy resin used is preferably less than 50% by mass with respect to the entire insulating adhesive. More preferably, they are 20 mass% or more and less than 46 mass%, More preferably, they are 30 mass% or more and less than 44 mass%.

絶縁性接着剤には、さらに、絶縁粒子、充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤等を含有することもできる。絶縁粒子や充填剤を含有する場合、これらの最大径は導電粒子の平均粒径未満である事が好ましい。更に、絶縁性接着剤に絶縁性を阻害しない範囲で、例えば、帯電防止を目的に導電粒子が含有していても構わない。
カップリング剤としてはケチミン基、ビニル基、アクリル基、アミノ基、エポキシ基及びイソシアネート基含有シランカップリング剤が、接着性の向上の点から好ましい。
絶縁性接着剤の各成分を混合する場合、必要に応じ、溶剤を用いることができる。溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、酢酸エチル、酢酸ブチル、エチレングリコールモノアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルアセテート等が挙げられる。
The insulating adhesive may further contain insulating particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, coupling agents and the like. When the insulating particles and the filler are contained, the maximum diameter is preferably less than the average particle diameter of the conductive particles. Furthermore, the conductive particles may contain, for example, for the purpose of preventing charging, as long as the insulating adhesive does not impair the insulating properties.
As the coupling agent, ketimine group, vinyl group, acrylic group, amino group, epoxy group, and isocyanate group-containing silane coupling agent are preferable from the viewpoint of improving adhesiveness.
When mixing each component of an insulating adhesive, a solvent can be used as needed. Examples of the solvent include methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, ethyl acetate, butyl acetate, ethylene glycol monoalkyl ether acetate, propylene glycol monoalkyl ether acetate, and the like.

絶縁性接着剤の製造は、例えば、各成分を溶剤中で混合、塗工液を作成し、基材上にアプリケーター塗装等により塗工、オーブン中で溶剤を揮散させる事で製造できる。
絶縁性接着剤は接続時に流動して接続領域を封止する働きがあるため、接続条件下において、流動性が高い必要がある。流動性の高さは、バインダー樹脂の流動性との相対値が重要であり、180℃での溶融粘度がバインダー樹脂よりも低い必要がある。好ましくは、バインダー樹脂粘度の50%未満であり、更に好ましくは25%未満であり、一層好ましくは15%未満であり、更に一層好ましくは10%未満である。
絶縁性接着剤の180℃での溶融粘度の好ましい範囲は、1Pa・s以上100Pa・s未満である。更に好ましくは2Pa・s以上50Pa・s未満、一層好ましくは4Pa・s以上30Pa・s未満である。溶融粘度が高すぎると接続時に高い圧力が必要となり、一方、溶融粘度が低い場合は、使用前の変形を抑えるために低温で貯蔵する必要が発生する。
The insulating adhesive can be produced, for example, by mixing each component in a solvent, preparing a coating solution, coating the substrate by applicator coating, etc., and evaporating the solvent in an oven.
Since the insulating adhesive has a function of flowing at the time of connection and sealing the connection region, it needs to have high fluidity under the connection conditions. For the high fluidity, the relative value with the fluidity of the binder resin is important, and the melt viscosity at 180 ° C. needs to be lower than that of the binder resin. Preferably, it is less than 50% of the binder resin viscosity, more preferably less than 25%, more preferably less than 15%, and even more preferably less than 10%.
A preferable range of the melt viscosity at 180 ° C. of the insulating adhesive is 1 Pa · s or more and less than 100 Pa · s. More preferably, it is 2 Pa · s or more and less than 50 Pa · s, and more preferably 4 Pa · s or more and less than 30 Pa · s. If the melt viscosity is too high, a high pressure is required at the time of connection. On the other hand, if the melt viscosity is low, it is necessary to store at a low temperature in order to suppress deformation before use.

尚、ここで、絶縁性接着剤が熱硬化性樹脂の場合、その溶融粘度は絶縁性接着剤から硬化剤を除去した、あるいは、硬化剤が未配合の状態での溶融粘度を指す。
絶縁性接着剤はバインダー樹脂の片面のみに形成しても構わないし、両面に形成しても構わない。異方導電性接着フィルムの仮貼り付け性を向上させるために、両面に形成した方が好ましい。
絶縁性接着剤をバインダー樹脂の両面に積層する場合、それぞれの面の絶縁性接着剤は同じでも良いし、異なっていても良い。異なっている方が、被接続部材にあった配合にできる一方で、2種類の配合を用意する必要が発生する。
Here, when the insulating adhesive is a thermosetting resin, the melt viscosity refers to the melt viscosity obtained by removing the curing agent from the insulating adhesive or in the state where the curing agent is not blended.
The insulating adhesive may be formed only on one side of the binder resin, or may be formed on both sides. In order to improve the temporary sticking property of the anisotropic conductive adhesive film, it is preferable to form it on both sides.
When laminating the insulating adhesive on both surfaces of the binder resin, the insulating adhesive on each surface may be the same or different. While different ones can be formulated according to the connected member, it is necessary to prepare two types of formulations.

絶縁性接着剤をバインダー樹脂の両面に形成する場合、接続時の加圧による導電粒子の移動を抑えるため、導電粒子は異方導電性接着フィルムの片側の表面からあまり内部に入らないことが好ましく、導電粒子の中心位置が異方導電性接着フィルムの片側の表面から導電粒子の平均粒径の2.0倍未満に位置することが好ましい。更に好ましくは1.5倍未満、更に好ましくは1.0倍未満、更に好ましくは0.8倍未満である。一方、0.5倍未満では導電粒子は異方導電性接着フィルムから露出している事になり、露出する良が多くなると、異方導電性接着フィルムの仮貼り付け性が低下したり、導電粒子の欠落の原因となったりするため、0.1倍以上が好ましい。更に好ましくは0.2倍以上であり、一層好ましくは0.3倍以上である。   When the insulating adhesive is formed on both sides of the binder resin, it is preferable that the conductive particles do not enter the inside from the surface on one side of the anisotropic conductive adhesive film in order to suppress the movement of the conductive particles due to the pressure at the time of connection. The center position of the conductive particles is preferably located less than 2.0 times the average particle diameter of the conductive particles from the surface on one side of the anisotropic conductive adhesive film. More preferably, it is less than 1.5 times, More preferably, it is less than 1.0 time, More preferably, it is less than 0.8 time. On the other hand, when it is less than 0.5 times, the conductive particles are exposed from the anisotropic conductive adhesive film, and when the goodness of exposure increases, the temporary sticking property of the anisotropic conductive adhesive film decreases, 0.1 times or more is preferable because it may cause loss of particles. More preferably, it is 0.2 times or more, and more preferably 0.3 times or more.

絶縁性接着剤の膜厚は合計で4μm以上50μm未満が好ましい。更に好ましくは5μm以上30μm未満、更に好ましくは6μm以上25μm未満、更に好ましくは7μm以上22μm未満である。
絶縁性接着剤の膜厚の合計は、バインダー樹脂の膜厚の2倍以上100倍以下が好ましく、更に好ましくは3倍以上〜75倍以下、更に好ましくは4倍以上50倍以下、更に一層好ましくは5倍以上30倍以下である。
本発明の異方導電性接着フィルムの厚みは、5μm以上50μm以下が好ましく、更に好ましくは6μm以上35μm以下、更に好ましくは7μm以上25μm以下、更に好ましくは8μm以上22μm以下である。
The total thickness of the insulating adhesive is preferably 4 μm or more and less than 50 μm. More preferably, they are 5 micrometers or more and less than 30 micrometers, More preferably, they are 6 micrometers or more and less than 25 micrometers, More preferably, they are 7 micrometers or more and less than 22 micrometers.
The total film thickness of the insulating adhesive is preferably 2 to 100 times the film thickness of the binder resin, more preferably 3 to 75 times, more preferably 4 to 50 times, and still more preferably. Is 5 times or more and 30 times or less.
The thickness of the anisotropic conductive adhesive film of the present invention is preferably 5 μm or more and 50 μm or less, more preferably 6 μm or more and 35 μm or less, further preferably 7 μm or more and 25 μm or less, and further preferably 8 μm or more and 22 μm or less.

本発明の異方導電性接着フィルムは、剥離シート上に形成されていてもよい。該剥離シートとしては、ポリエチレン、ポリプロピレン、ポリスチレン、PET、PEN等のポリエステル、ナイロン、塩化ビニール、ポリビニルアルコール等のフィルムが例示される。好ましい剥離シート用の樹脂としては、ポリプロピレン、PETが挙げられる。該剥離シートはフッ素処理、シリコーン処理、アルキド処理等の表面処理を行っていることが好ましい。   The anisotropic conductive adhesive film of the present invention may be formed on a release sheet. Examples of the release sheet include films such as polyesters such as polyethylene, polypropylene, polystyrene, PET, and PEN, nylon, vinyl chloride, and polyvinyl alcohol. Preferred resins for the release sheet include polypropylene and PET. The release sheet is preferably subjected to surface treatment such as fluorine treatment, silicone treatment or alkyd treatment.

本発明の異方導電性接着フィルムは例えば下記の様な方法で製造される。
即ち、まず、単層で配列した導電粒子を粘着剤でシート上に固定した導電粒子の配列シートを製造する。配列シートを製造するには、例えば、延伸可能なシート上に粘着剤を好ましくは、導電粒子の平均粒径以下の膜厚になる様に塗布し、その上に導電粒子を充填する。その後粘着剤層に到達していない導電粒子をエアーブロー等により排除することで導電粒子が密に充填された単層の導電粒子層が形成される。必要に応じ、単層に配置した導電粒子は粘着剤に埋め込まれる。このときの全面積に対する導電粒子の投影面積の割合で定義される充填率は、好ましくは60%以上90%以下である。より好ましくは65%以上88%以下、更に好ましくは68%以上85%以下である。充填率は本発明において重要な因子である導電粒子の中心間距離の変動係数に大きく影響する。
The anisotropic conductive adhesive film of the present invention is produced, for example, by the following method.
That is, first, a conductive particle array sheet in which conductive particles arranged in a single layer are fixed on a sheet with an adhesive is manufactured. In order to manufacture the array sheet, for example, an adhesive is preferably applied on a stretchable sheet so that the film thickness is equal to or less than the average particle diameter of the conductive particles, and the conductive particles are filled thereon. Thereafter, the conductive particles that have not reached the pressure-sensitive adhesive layer are removed by air blowing or the like, thereby forming a single conductive particle layer in which the conductive particles are densely packed. If necessary, the conductive particles arranged in a single layer are embedded in the adhesive. The filling rate defined by the ratio of the projected area of the conductive particles to the total area at this time is preferably 60% or more and 90% or less. More preferably, they are 65% or more and 88% or less, More preferably, they are 68% or more and 85% or less. The filling factor greatly affects the coefficient of variation of the distance between the centers of the conductive particles, which is an important factor in the present invention.

次に、ここで得られた導電粒子が固定されたシートを、所望の延伸倍率で延伸することで、個々の導電粒子が、本発明に必要な変動係数をもって、所望の中心間距離となる様に配置された導電粒子の配列シートが得られる。
延伸可能なシートとしては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、PET、PEN等のポリエステル、ナイロン、塩化ビニール、ポリビニルアルコール等のシートが例示される。粘着剤としては、例えば、ウレタン樹脂、アクリル樹脂、ユリア樹脂、メラミン樹脂、フェノール樹脂、酢酸ビニル、クロロプレン等が例示される。
Next, the sheet on which the conductive particles are fixed is drawn at a desired draw ratio so that each conductive particle has a desired center-to-center distance with a coefficient of variation necessary for the present invention. As a result, an array sheet of conductive particles arranged on the substrate is obtained.
Examples of the stretchable sheet include sheets of polyester such as polyethylene, polypropylene, polystyrene, PET, and PEN, nylon, vinyl chloride, and polyvinyl alcohol. Examples of the adhesive include urethane resin, acrylic resin, urea resin, melamine resin, phenol resin, vinyl acetate, chloroprene and the like.

延伸は縦方向延伸と横方向延伸の両方が行われる、所謂、2軸延伸であり、公知の方法で実施することができる。例えば、クリップ等でフィルムの2辺または4辺を挟んで引っ張る方法や、2本以上のロールで挟んでロールの回転速度を変えることで延伸する方法等が挙げられる。延伸は縦方向と横方向を同時に延伸する同時二軸延伸でも良いし、一方向を延伸した後、他方を延伸する逐次ニ軸延伸でも良い。延伸時の導電粒子の配列乱れを起こし難いので同時ニ軸延伸が好ましい。延伸を精度良く行うために、延伸可能なフィルムを軟化させて行うのが好ましく、使用する延伸可能なシートによるが、例えば、70℃以上250℃未満で延伸を行うのが好ましい。更に好ましくは75℃以上200℃未満であり、一層好ましくは、80℃以上160℃未満であり、更に一層好ましくは85℃以上145℃未満である。延伸温度が高すぎると粘着剤の粘着力が低下して、導電粒子の配列が乱れてしまい、導電粒子の中心間距離の変動係数が大きくなってしまう。   Stretching is so-called biaxial stretching in which both longitudinal stretching and lateral stretching are performed, and can be performed by a known method. Examples of the method include a method of pulling between two or four sides of the film with a clip or the like, and a method of stretching by changing the rotation speed of the roll while sandwiching between two or more rolls. The stretching may be simultaneous biaxial stretching in which the longitudinal direction and the transverse direction are stretched simultaneously, or may be sequential biaxial stretching in which the other is stretched after stretching in one direction. Simultaneous biaxial stretching is preferred because it is difficult to cause disorder in the arrangement of the conductive particles during stretching. In order to perform stretching with high accuracy, it is preferable to soften a stretchable film. Depending on the stretchable sheet used, for example, it is preferable to perform stretching at 70 ° C. or more and less than 250 ° C. More preferably, it is 75 degreeC or more and less than 200 degreeC, More preferably, it is 80 degreeC or more and less than 160 degreeC, More preferably, it is 85 degreeC or more and less than 145 degreeC. If the stretching temperature is too high, the adhesive force of the pressure-sensitive adhesive is reduced, the arrangement of the conductive particles is disturbed, and the coefficient of variation in the distance between the centers of the conductive particles is increased.

次に、配列シートの導電粒子側に、バインダー樹脂を重ね、バインダー樹脂に導電粒子を埋め込む。埋め込む方法としては、例えば、フィルム状のバインダー樹脂を、配列シートの導電粒子側に重ねてラミネートし、熱ロ−ル等を用いて導電粒子を埋め込む方法が挙げられる。
バインダー樹脂は、導電粒子を埋め込む面と反対の面に先に絶縁性接着剤を貼り合わせておいても良いし、導電粒子を埋め込んだ後に、導電粒子を埋め込んだ面と反対のバインダー樹脂面に絶縁性接着剤をラミネート等で貼り合わせても良い。
配列シートの延伸可能なシートと粘着剤はバインダーに埋め込まれた導電粒子から剥離される。必要に応じ、導電粒子が埋め込まれたバインダー樹脂面に別の絶縁性接着剤をラミネートされる。
Next, a binder resin is stacked on the conductive particle side of the array sheet, and the conductive particles are embedded in the binder resin. Examples of the embedding method include a method in which a film-like binder resin is laminated on the conductive particle side of the array sheet and laminated, and the conductive particles are embedded using a heat roll or the like.
The binder resin may be bonded with an insulating adhesive on the surface opposite to the surface on which the conductive particles are embedded, or after the conductive particles are embedded on the surface of the binder resin opposite to the surface on which the conductive particles are embedded. An insulating adhesive may be bonded together with a laminate or the like.
The stretchable sheet and the adhesive of the array sheet are peeled from the conductive particles embedded in the binder. If necessary, another insulating adhesive is laminated on the surface of the binder resin in which the conductive particles are embedded.

本発明において、導電粒子の埋め込みは、極力低温で実施することが好ましい。特にバインダー樹脂あるいは絶縁性接着剤が潜在性硬化剤を含む熱硬化性樹脂の場合、高い温度で埋め込むと、硬化反応の進行を抑制するために低温貯蔵が必要となる。しかし温度が低ければ、バインダー樹脂の粘度が高いために埋めこみは困難となる。
導電粒子の埋め込み温度は、35℃以上120℃以下が好ましい。更に好ましくは、40℃以上100℃以下、一層好ましくは45℃以上80℃以下である。
In the present invention, the conductive particles are preferably embedded at a temperature as low as possible. In particular, in the case where the binder resin or the insulating adhesive is a thermosetting resin containing a latent curing agent, when it is embedded at a high temperature, low temperature storage is required to suppress the progress of the curing reaction. However, if the temperature is low, embedding becomes difficult because the viscosity of the binder resin is high.
The embedding temperature of the conductive particles is preferably 35 ° C. or higher and 120 ° C. or lower. More preferably, it is 40 degreeC or more and 100 degrees C or less, More preferably, it is 45 degreeC or more and 80 degrees C or less.

バインダー樹脂に導電粒子を埋め込む場合、延伸可能なシートと粘着剤を導電粒子が埋め込まれたバインダー樹脂から剥離した後に、弾性率の高いフィルムを導電粒子側に重ねて、熱ロール等を用いて更に導電粒子をバインダー樹脂内に埋め込むことが好ましい。弾性率が高いフィルムとしては、例えば、アラミドフィルム等が例示される。
導電粒子のバインダー樹脂への埋め込みが不十分の場合、導電粒子が使用前にバインダー樹脂から欠落し、接続不良の原因となる。
When embedding the conductive particles in the binder resin, after peeling the stretchable sheet and the adhesive from the binder resin in which the conductive particles are embedded, the film having a high elastic modulus is stacked on the conductive particle side, and further using a heat roll or the like. It is preferable to embed the conductive particles in the binder resin. Examples of the film having a high elastic modulus include an aramid film.
When the conductive particles are not sufficiently embedded in the binder resin, the conductive particles are missing from the binder resin before use, causing connection failure.

上記方法等によって、本発明の異方導電性接着フィルムが得られる。一般に異方導電性接着フィルムは、所望の幅にスリットされ、リール状に巻き取られる。
このようにして製造された本発明の異方導電性接着フィルムは、線幅が10数μmクラスのファインピッチ接続用に好適に用いることができ、液晶ディスプレイとTCP、TCPとFPC、FPCとプリント配線基板との接続、あるいは、半導体シリコンチップを直接基板に実装するフリップチップ実装に好適に用いることができる。
The anisotropic conductive adhesive film of the present invention is obtained by the above method and the like. Generally, an anisotropic conductive adhesive film is slit to a desired width and wound up in a reel shape.
The anisotropic conductive adhesive film of the present invention thus produced can be suitably used for fine pitch connection with a line width of a few tens of μm class, and includes a liquid crystal display and TCP, TCP and FPC, and FPC and print. It can be suitably used for connection to a wiring substrate or flip chip mounting in which a semiconductor silicon chip is directly mounted on a substrate.

本発明を実施例によりさらに詳細に説明する。
a.溶融粘度測定
HAAKE社製、RHeoStress600 Thermoを用い、20mm径のコーン(PP20H)を用いて180℃で測定した。
The invention is explained in more detail by means of examples.
a. Melt viscosity measurement It measured at 180 degreeC using 20mm diameter cone (PP20H) using the product made from HAAKE, RHeoStress600 Thermo.

[実施例1]
フェノキシ樹脂(InChem社製、商品名:PKHC,重量平均分子量43000)100質量部、ビスフェノールA型液状エポキシ樹脂(旭化成ケミカルズ株式会社製、商品名:AER2603)50質量部、マイクロカプセル型潜在性硬化剤と液状エポキシ樹脂の混合物(旭化成ケミカルズ株式会社製、商品名:ノバキュア)15質量部(液状エポキシ樹脂は10質量部含有)、シランカップリング剤(日本ユニカー社製、商品名A−187)0.25質量部、酢酸エチル300質量部を混合し、バインダーワニスを得た。このバインダーワニスを離型処理した50μmのPETフィルム製剥離シート上にブレードコーターを用いて塗布、溶剤を乾燥除去して、膜厚4μmのフィルム状のバインダー樹脂Aを得た。別途マイクロカプセル型潜在性硬化剤と液状エポキシ樹脂の混合物15質量部に替えて、液状エポキシ樹脂10質量部を配合して同様に作成したバインダー樹脂の溶融粘度を測定、バインダー樹脂Aの180℃溶融粘度は、78.4Pa・sであった。
[Example 1]
100 parts by mass of phenoxy resin (InChem, trade name: PKHC, weight average molecular weight 43000), 50 parts by mass of bisphenol A type liquid epoxy resin (trade name: AER2603, manufactured by Asahi Kasei Chemicals), microcapsule type latent curing agent 15 parts by mass (a product name: NovaCure, manufactured by Asahi Kasei Chemicals Co., Ltd.) and a silane coupling agent (product name: A-187, manufactured by Nihon Unicar Company) 25 parts by mass and 300 parts by mass of ethyl acetate were mixed to obtain a binder varnish. The binder varnish was applied onto a release sheet made of 50 μm PET film using a blade coater, and the solvent was removed by drying to obtain a film-like binder resin A having a thickness of 4 μm. Separately, instead of 15 parts by mass of the mixture of the microcapsule type latent curing agent and the liquid epoxy resin, the melt viscosity of the binder resin similarly prepared by blending 10 parts by mass of the liquid epoxy resin was measured, and the binder resin A was melted at 180 ° C. The viscosity was 78.4 Pa · s.

フェノキシ樹脂(InChem社製、商品名:PKHC,重量平均分子量43000)100質量部、ビスフェノールA型液状エポキシ樹脂(旭化成ケミカルズ株式会社製、商品名:AER2603)90質量部、マイクロカプセル型潜在性硬化剤と液状エポキシ樹脂の混合物(旭化成ケミカルズ株式会社製、商品名:ノバキュア)60質量部(液状エポキシ樹脂は40質量部含有)、シランカップリング剤(日本ユニカー社製、商品名A−187)0.25質量部、酢酸エチル200質量部を混合し、接着剤ワニスを得た。この接着剤ワニスを離型処理した50μmのPETフィルム製剥離シート上にブレードコーターを用いて塗布、溶剤を乾燥除去して、膜厚15μmのフィルム状の絶縁性接着剤Aを得た。別途マイクロカプセル型潜在性硬化剤と液状エポキシ樹脂の混合物60質量部に替えて、液状エポキシ樹脂40質量部を配合して同様に作成した絶縁性接着剤の溶融粘度を測定、絶縁性接着剤Aの180℃溶融粘度は、11.6Pa・sであった。   100 parts by mass of phenoxy resin (InChem, trade name: PKHC, weight average molecular weight 43000), 90 parts by mass of bisphenol A type liquid epoxy resin (trade name: AER2603, manufactured by Asahi Kasei Chemicals), microcapsule type latent curing agent 60 parts by mass (a product name: Novacure, manufactured by Asahi Kasei Chemicals Co., Ltd.) and a silane coupling agent (product name: A-187, manufactured by Nihon Unicar Co., Ltd.) 25 parts by mass and 200 parts by mass of ethyl acetate were mixed to obtain an adhesive varnish. The adhesive varnish was applied onto a release sheet made of 50 μm PET film using a blade coater, and the solvent was removed by drying to obtain a film-like insulating adhesive A having a film thickness of 15 μm. Separately, instead of 60 parts by mass of a mixture of a microcapsule type latent curing agent and a liquid epoxy resin, 40 parts by mass of a liquid epoxy resin was blended, and the melt viscosity of an insulating adhesive similarly prepared was measured. The 180 ° C. melt viscosity was 11.6 Pa · s.

100μm無延伸共重合ポリプロピレンフィルム上にブレードコーターを用いて酢酸エチルで樹脂分5質量%に希釈したアクリルポリマーを塗布、80℃で10分間乾燥し、厚さ2μmの粘着剤層を形成した。ここで用いたアクリルポリマーは、アクリル酸メチル62質量部、アクリル酸−2−エチルヘキシル30.6質量部、アクリル酸−2−ヒドロキシエチル7質量部を酢酸エチル233質量部中で、アゾビスイソブチロニトリル0.2質量部を開始剤とし、窒素ガス気流中65℃で8時間重合して得られた重量平均分子量が95万のものである。尚、重量平均分子量はゲル浸透クロマトグラフ法(GPC)により測定した。   An acrylic polymer diluted with ethyl acetate to a resin content of 5% by mass using a blade coater was applied onto a 100 μm unstretched copolymerized polypropylene film and dried at 80 ° C. for 10 minutes to form an adhesive layer having a thickness of 2 μm. The acrylic polymer used here was 62 parts by mass of methyl acrylate, 30.6 parts by mass of 2-ethylhexyl acrylate, and 7 parts by mass of 2-hydroxyethyl acrylate in 233 parts by mass of ethyl acetate. The weight average molecular weight obtained by polymerizing 0.2 parts by mass of nitrile at 65 ° C. for 8 hours in a nitrogen gas stream is 950,000. The weight average molecular weight was measured by gel permeation chromatography (GPC).

この粘着剤剤上に、平均粒径3μmの導電粒子を一面に充填し、エアーブローにより粘着剤に到達していない導電粒子を排除した。その結果、充填率が70%の単層導電粒子層が形成された。ここで導電粒子はジビニルベンゼン系樹脂をコアとし、その表層に無電解メッキで0.07μmのニッケル層を形成し、更に電気メッキで0.04μmの金層を形成した、長軸に対する短軸の比が0.95、粒径の標準偏差が0.2μmのものを用いた。
次に、この導電粒子が粘着剤によって固定されたポリプロピレンフィルムを、試験用二軸延伸装置を用いて、135℃で、縦横共に10%/秒の比率で3.8倍まで延伸し、徐々に室温まで冷却し、配列シートAを得た。
On this pressure-sensitive adhesive, conductive particles having an average particle diameter of 3 μm were filled on one side, and conductive particles that did not reach the pressure-sensitive adhesive were eliminated by air blowing. As a result, a single-layer conductive particle layer having a filling rate of 70% was formed. Here, the conductive particles have a core of divinylbenzene resin, a nickel layer of 0.07 μm is formed on the surface layer by electroless plating, and a gold layer of 0.04 μm is further formed by electroplating. The one with a ratio of 0.95 and a standard deviation of particle diameter of 0.2 μm was used.
Next, the conductive film is fixed to the polypropylene film with the adhesive by using a test biaxial stretching apparatus, and stretched to 3.8 times at 135 ° C. at a rate of 10% / second in both length and width. The array sheet A was obtained by cooling to room temperature.

配列シートAの導電粒子側にバインダー樹脂Aを重ね、55℃、0.3MPaの条件でラミネートを行った。更に、バインダー樹脂に積層されていた剥離シートを剥離した後、導電粒子を埋め込んだ面と反対のバインダー樹脂面に絶縁性接着剤Aを重ねて、同じ条件でラミネートを行った。次に、配列シートAのポリプロピレンフィルムと粘着剤を、導電粒子を埋め込んだバインダー樹脂面から剥離した。その一部をサンプリングして、レーザー顕微鏡(キーエンス社製,商品名VK−9500、以下同じ)を用いて導電粒子の埋め込み深さを観察した所、導電粒子が2.25μmバインダー樹脂から露出しており、ハンドリング途中に粒子の欠落が観察された。   The binder resin A was stacked on the conductive particle side of the array sheet A, and lamination was performed at 55 ° C. and 0.3 MPa. Furthermore, after peeling off the release sheet laminated on the binder resin, the insulating adhesive A was overlapped on the surface of the binder resin opposite to the surface where the conductive particles were embedded, and lamination was performed under the same conditions. Next, the polypropylene film and the adhesive of the array sheet A were peeled from the binder resin surface in which the conductive particles were embedded. When a part of the sample was sampled and the embedding depth of the conductive particles was observed using a laser microscope (manufactured by Keyence Corporation, trade name VK-9500, the same applies hereinafter), the conductive particles were exposed from the 2.25 μm binder resin. In the middle of handling, the absence of particles was observed.

次に、導電粒子が埋め込まれたバインダー樹脂面に、16μmのアラミドフィルム(帝人社製、商品名アラミカ、弾性率15Gpa)を離型剤で処理したフィルムを重ねて、60℃、1.0Mpaの条件で熱ロールによる導電粒子の埋め込みを実施後、アラミドフィルムを剥離して、異方導電性接着フィルムAを得た。   Next, a film obtained by treating a 16 μm aramid film (manufactured by Teijin Ltd., trade name: Aramika, elastic modulus: 15 Gpa) with a release agent on the binder resin surface in which the conductive particles are embedded is superposed at 60 ° C. and 1.0 MPa. After embedding the conductive particles with a heat roll under the conditions, the aramid film was peeled off to obtain an anisotropic conductive adhesive film A.

得られた異方導電性接着フィルムAの導電粒子の埋め込み深さを測定した所、バインダー樹脂からの露出は平均0.1μmであり、その埋め込み深さは導電粒子の平均粒径の97%に相当した。また、露出量より算出される、導電粒子の中心高さのバラツキは0.5μm未満であった。更に、異方導電性接着剤Aをマイクロスコープ(株式会社キーエンス製、商品名:VHX-100、以下同じ)で観察した結果、バインダー樹脂Aの表面層に導電粒子が単層で配置され、またマイクロスコープで得られた画像から、画像処理ソフト(旭化成株式会社製、商品名:A像くん、以下同じ)を用いて、導電粒子の中心間距離の平均値およびその変動係数を求めた結果、平均値が11.9μm、変動係数が0.34であった。尚、導電粒子の中心間距離は、各粒子の中心点を用いたデローニ三角分割でできる三角形の辺の長さを使用し、導電粒子の観察は0.06mm内の粒子について行った。 When the embedding depth of the conductive particles of the obtained anisotropic conductive adhesive film A was measured, the exposure from the binder resin was an average of 0.1 μm, and the embedding depth was 97% of the average particle diameter of the conductive particles. It was equivalent. Further, the variation in the center height of the conductive particles calculated from the exposure amount was less than 0.5 μm. Furthermore, as a result of observing the anisotropic conductive adhesive A with a microscope (manufactured by Keyence Corporation, trade name: VHX-100, the same shall apply hereinafter), conductive particles are arranged in a single layer on the surface layer of the binder resin A. From the image obtained with the microscope, using image processing software (trade name: A image kun, manufactured by Asahi Kasei Co., Ltd., the same applies hereinafter), the average value of the center-to-center distance of the conductive particles and the coefficient of variation thereof were determined. The average value was 11.9 μm and the coefficient of variation was 0.34. As the distance between the centers of the conductive particles, the length of a side of a triangle formed by Deloni triangulation using the center point of each particle was used, and the observation of the conductive particles was performed for particles within 0.06 mm 2 .

次に、20μm×100μmの金バンプがピッチ30μmで並んだベアチップ1、15μm×100μmの金バンプがピッチ30μmで並んだベアチップ2、13μm×150μmの金バンプがピッチ25μmで並んだベアチップ3とそれぞれのベアチップに対応した接続ピッチを有するITOガラス基板を準備し、異方導電性接着フィルムAを、3種類のITOガラス基板に70℃、5Kg/cm、2秒間の条件で熱圧着し、剥離シートを剥がした後、それぞれのITOガラス基板に対応するベアチップをフリップチップボンダー(東レエンジニアリング株式会社製FC2000、以下同じ)を用いて位置合わせをし、コンスタントヒートで2秒後に180℃に到達し、その後一定温度となる条件で30Kg/cm、20秒間加熱加圧し、ベアチップをITOガラス基板に接続した。 Next, a bare chip 1 in which gold bumps of 20 μm × 100 μm are arranged at a pitch of 30 μm, a bare chip 2 in which gold bumps of 15 μm × 100 μm are arranged at a pitch of 30 μm, and a bare chip 3 in which gold bumps of 13 μm × 150 μm are arranged at a pitch of 25 μm. An ITO glass substrate having a connection pitch corresponding to a bare chip is prepared, and an anisotropic conductive adhesive film A is thermocompression bonded to three kinds of ITO glass substrates at 70 ° C., 5 kg / cm 2 for 2 seconds, and a release sheet After peeling off, the bare chip corresponding to each ITO glass substrate was aligned using a flip chip bonder (FC2000 manufactured by Toray Engineering Co., Ltd., the same applies hereinafter), and reached 180 ° C. after 2 seconds with constant heat, and then Heating and pressing at 30 Kg / cm 2 for 20 seconds under the condition of a constant temperature, The tip was connected to an ITO glass substrate.

それぞれのベアチップとITOガラス基板からは、64箇所の接合部を有するデイジーチェーン回路と、20対の櫛を有する櫛形電極が形成され、接続抵抗測定と絶縁抵抗測定を行った。3種類のベアチップとITOガラス電極よりなる回路のすべてにおいて、デイジーチェーン回路は導通がとれすべての接続が行われていることを示した。一方、櫛形電極の絶縁抵抗は10Ω以上であり、隣接電極間でショートの発生はなかった。更に、5℃で6か月保存した異方導電性接着フィルムAを用いて、上記と同様にベアチップ1とITOガラス基板の接続を行った結果、問題なく接続が行えた。 From each bare chip and ITO glass substrate, a daisy chain circuit having 64 joints and a comb-shaped electrode having 20 pairs of combs were formed, and connection resistance measurement and insulation resistance measurement were performed. In all of the circuits consisting of the three types of bare chips and ITO glass electrodes, the daisy chain circuit was turned on, indicating that all connections were made. On the other hand, the insulation resistance of the comb electrode was 10 9 Ω or more, and no short circuit occurred between adjacent electrodes. Furthermore, using the anisotropic conductive adhesive film A stored at 5 ° C. for 6 months, the bare chip 1 and the ITO glass substrate were connected in the same manner as described above.

[実施例2]
フェノキシ樹脂(InChem社製、商品名:PKHC,重量平均分子量43000)100質量部、ビスフェノールA型液状エポキシ樹脂(旭化成ケミカルズ株式会社製、商品名:AER2603)35質量部、酢酸エチル300質量部を混合し、バインダーワニスを得た。このバインダーワニスを離型処理した50μmのPETフィルム製剥離シート上にブレードコーターを用いて塗布、溶剤を乾燥除去して、膜厚1.5μmのフィルム状のバインダー樹脂Bを得た。バインダー樹脂Bの180℃溶融粘度を測定した結果、280Pa・sであった。
[Example 2]
100 parts by mass of phenoxy resin (InChem, product name: PKHC, weight average molecular weight 43000), 35 parts by mass of bisphenol A type liquid epoxy resin (Asahi Kasei Chemicals Co., Ltd., product name: AER2603), and 300 parts by mass of ethyl acetate are mixed. And a binder varnish was obtained. The binder varnish was applied onto a release sheet made of 50 μm PET film using a blade coater, and the solvent was removed by drying to obtain a film-like binder resin B having a film thickness of 1.5 μm. As a result of measuring the 180 ° C. melt viscosity of the binder resin B, it was 280 Pa · s.

実施例1で用いた絶縁性接着剤の膜厚のみ変えたフィルムを50μmのPETフィルム製剥離シート上に形成し、膜厚1μmの絶縁性接着剤Bを得た。
導電粒子の充填率を82%とし、延伸倍率を2.5倍とした以外は実施例1と同様にして配列シートを作成し、配列シートBを得た。
A film in which only the film thickness of the insulating adhesive used in Example 1 was changed was formed on a 50 μm PET film release sheet to obtain an insulating adhesive B having a film thickness of 1 μm.
An array sheet was prepared in the same manner as in Example 1 except that the conductive particle filling rate was 82% and the draw ratio was 2.5 times, and an array sheet B was obtained.

バインダー樹脂Bと絶縁性接着剤Aを50℃、0.1MPaでラミネートし、バインダー樹脂B側の剥離シートを剥離した。次に、配列シートBの導電粒子側をバインダー樹脂Bに重ね、55℃、0.3Mpaの条件でラミネートを行った。次に、導電粒子が埋め込まれたバインダー樹脂面に、16μmのアラミドフィルム(帝人社製、商品名アラミカ、弾性率15Gpa)を離型剤で処理したフィルムを重ねて、60℃、1.0Mpaの条件で熱ロールによる導電粒子の埋め込みを実施後、アラミドフィルムを剥離して、実施例1と同様に導電粒子の埋め込み深さを測定した結果、バインダー樹脂からの露出は0.8μmであり、導電粒子はバインダー樹脂を通り越えて、一部が絶縁性接着剤層に達していることが判った。また、露出量より算出される、導電粒子の中心高さのバラツキは0.5μm未満であった。更に、導電粒子が露出した側に絶縁性接着剤Bを重ねて55℃、0.3Mpaの条件でラミネートを行い、異方導電性接着フィルムBを得た。   The binder resin B and the insulating adhesive A were laminated at 50 ° C. and 0.1 MPa, and the release sheet on the binder resin B side was peeled off. Next, the conductive particle side of the array sheet B was overlaid on the binder resin B, and lamination was performed under the conditions of 55 ° C. and 0.3 Mpa. Next, a film obtained by treating a 16 μm aramid film (manufactured by Teijin Ltd., trade name: Aramika, elastic modulus: 15 Gpa) with a release agent on the binder resin surface in which the conductive particles are embedded is superposed at 60 ° C. and 1.0 MPa. After conducting the conductive particle embedding with a heat roll under the conditions, the aramid film was peeled off and the conductive particle embedding depth was measured in the same manner as in Example 1. As a result, the exposure from the binder resin was 0.8 μm, It was found that the particles passed through the binder resin and partly reached the insulating adhesive layer. Further, the variation in the center height of the conductive particles calculated from the exposure amount was less than 0.5 μm. Furthermore, the insulating adhesive B was laminated on the side where the conductive particles were exposed, and was laminated under the conditions of 55 ° C. and 0.3 Mpa to obtain an anisotropic conductive adhesive film B.

得られた異方導電性接着フィルムBの外観を実施例1と同様に観察した所、導電粒子は、バインダー樹脂からの露出はなく、導電粒子は単層で配置され、導電粒子の中心間距離の平均値は8.3μm、その変動係数が0.17であった。
次に実施例1と同様にして、3種類のベアチップとITOガラス接続を、異方導電性接着フィルムBを用いて実施し、実施例1と同様にして接続抵抗測定と絶縁抵抗測定を行った結果、何れのベアチップとITOガラスの接続も、デイジーチェーン回路は導通がとれすべての接続が行われていることを示した。しかもその導通抵抗(配線抵抗を含む)は実施例1よりも低い抵抗を示していた。一方、櫛形電極の絶縁抵抗は10Ω以上であり、隣接電極間でショートの発生はなかった。
When the appearance of the obtained anisotropic conductive adhesive film B was observed in the same manner as in Example 1, the conductive particles were not exposed from the binder resin, the conductive particles were arranged in a single layer, and the distance between the centers of the conductive particles. The average value was 8.3 μm and the coefficient of variation was 0.17.
Next, in the same manner as in Example 1, three types of bare chips and ITO glass connection were performed using the anisotropic conductive adhesive film B, and the connection resistance measurement and the insulation resistance measurement were performed in the same manner as in Example 1. As a result, the connection of any bare chip and ITO glass showed that the daisy chain circuit was conductive and all connections were made. Moreover, the conduction resistance (including wiring resistance) was lower than that of Example 1. On the other hand, the insulation resistance of the comb electrode was 10 9 Ω or more, and no short circuit occurred between adjacent electrodes.

[比較例1]
粘着剤を塗布した無延伸共重合ポリプロピレンフィルム上への、導電粒子の充填密度を下げた以外は実施例1と同様にして異方導電性接着フィルムを得、実施例1と同様にして、外観観察と、導電粒子の中心間距離の測定を行った結果、導電粒子は、バインダー樹脂から0.1μm露出して、単層で配置され、導電粒子の中心間距離の平均値は12.6μm、その変動係数は0.48であった。更に、実施例1と同様にして、接続抵抗測定および絶縁抵抗測定を実施した結果、何れのデイジーチェーン回路も電流が流れず接続不良が観察された。また、ベアチップ3とITOガラスからなる櫛型電極間の絶縁抵抗が10Ω未満となり、ショートの発生が観察され、ファインピッチ用途には適さなかった。
[Comparative Example 1]
An anisotropic conductive adhesive film was obtained in the same manner as in Example 1 except that the packing density of the conductive particles on the unstretched copolymerized polypropylene film coated with the pressure-sensitive adhesive was lowered. As a result of observation and measurement of the distance between the centers of the conductive particles, the conductive particles were exposed to 0.1 μm from the binder resin and arranged in a single layer, and the average value of the distance between the centers of the conductive particles was 12.6 μm, The coefficient of variation was 0.48. Furthermore, connection resistance measurement and insulation resistance measurement were performed in the same manner as in Example 1. As a result, no current flowed through any daisy chain circuit, and connection failure was observed. Further, the insulation resistance between the bare chip 3 and the comb-shaped electrode made of ITO glass was less than 10 8 Ω, occurrence of short circuit was observed, and it was not suitable for fine pitch use.

[比較例2]
粘着剤を塗布した無延伸共重合ポリプロピレンフィルム上への導電粒子の充填率を上げた以外は実施例1と同様にして異方導電性接着フィルムを得、実施例1と同様にして、外観観察と、導電粒子の中心間距離の測定を行った結果、導電粒子は、バインダー樹脂から0.1μm露出して、単層で配置され、導電粒子の中心間距離の平均値は11.7μm、その変動係数は0.06であった。更に、実施例1と同様にして、接続抵抗測定および絶縁抵抗測定を実施した結果、絶縁抵抗測定値には問題がなかったが、ベアチップ3とITOガラスからなるデイジーチェーン回路は、電流が流れず接続不良が観察された。比較例2で使用した異方導電性接着フィルムは、導電粒子の中心間距離の変動係数が小さ過ぎるために、導電粒子の中心間距離の平均値に近い電極幅を用いた回路において、導電粒子の介在しない接続部ができ、接続不良による不具合が発生した。
[Comparative Example 2]
An anisotropic conductive adhesive film was obtained in the same manner as in Example 1 except that the filling rate of the conductive particles on the unstretched copolymerized polypropylene film coated with the pressure-sensitive adhesive was increased. As a result of measuring the distance between the centers of the conductive particles, the conductive particles are exposed by 0.1 μm from the binder resin and arranged in a single layer, and the average distance between the centers of the conductive particles is 11.7 μm, The coefficient of variation was 0.06. Further, the connection resistance measurement and the insulation resistance measurement were performed in the same manner as in Example 1. As a result, there was no problem in the insulation resistance measurement value, but the daisy chain circuit made of the bare chip 3 and ITO glass did not flow current. A poor connection was observed. In the anisotropic conductive adhesive film used in Comparative Example 2, the coefficient of variation in the distance between the centers of the conductive particles is too small. Therefore, in the circuit using the electrode width close to the average value of the distance between the centers of the conductive particles, the conductive particles There was a connection part that did not intervene, causing problems due to poor connection.

[比較例3]
実施例1で作成した配列シートAの導電粒子側に、絶縁性接着剤Aを重ねて、55℃、0.3MPaの条件でラミネートを行った。その後、実施例1でバインダー樹脂に導電粒子を埋め込んだのと同様の方法で導電粒子を絶縁性接着剤に埋め込み、異方導電性接着フィルムを得、実施例1と同様にして、外観観察と、導電粒子の中心間距離の測定を行った結果、導電粒子は、絶縁性接着剤からの露出はなく、単層で表面層に配置され、導電粒子の中心間距離の平均値は11.9μm、その変動係数は0.36であった。更に、実施例1と同様にして、接続抵抗測定および絶縁抵抗測定を実施した結果、ベアチップ2とITOガラスからなるデイジーチェーン回路は、電流が流れず接続不良が観察され、ベアチップ3とITOガラスからなる櫛型電極間の絶縁抵抗が10Ω未満となり、ショートの発生が観察された。
[Comparative Example 3]
The insulating adhesive A was stacked on the conductive particle side of the array sheet A prepared in Example 1, and lamination was performed at 55 ° C. and 0.3 MPa. Thereafter, the conductive particles were embedded in an insulating adhesive in the same manner as in Example 1 in which the conductive particles were embedded in the binder resin, and an anisotropic conductive adhesive film was obtained. As a result of measuring the distance between the centers of the conductive particles, the conductive particles are not exposed from the insulating adhesive, and are disposed as a single layer on the surface layer, and the average distance between the centers of the conductive particles is 11.9 μm. The coefficient of variation was 0.36. Further, as a result of conducting the connection resistance measurement and the insulation resistance measurement in the same manner as in Example 1, the daisy chain circuit composed of the bare chip 2 and the ITO glass was observed to have poor connection because no current flowed, and from the bare chip 3 and the ITO glass. The insulation resistance between the comb electrodes was less than 10 8 Ω, and occurrence of short circuit was observed.

比較例3で使用した異方導電性接着フィルムは、バインダー樹脂が含まれていないため、接続時に導電粒子が移動してしまい、導電粒子の介在しない接続部ができ、接続不良が発生し、また一方で、電極間の導電粒子の滞留が発生し絶縁破壊が起こる場合もあった。   Since the anisotropic conductive adhesive film used in Comparative Example 3 does not contain a binder resin, the conductive particles move at the time of connection, and a connection portion without conductive particles is formed, resulting in poor connection. On the other hand, there may be a case where conductive particles stay between the electrodes and cause dielectric breakdown.

本発明の異方導電性接着フィルムは、保存安定性が高く、微細面積の電極の電気的接続性に優れると共に、微細な配線間の絶縁破壊(ショート)を起こしにくく、微細ピッチの接続性に優れると共に、異なる電極パターンの半導体チップ毎に異方導電性接着フィルムを替える必要がなく生産性に優れ、長期に渡り接続安定性を保持でき、微細パターンの電気的接続用途において好適に利用できる。   The anisotropic conductive adhesive film of the present invention has high storage stability, excellent electrical connectivity of electrodes with a small area, and is less prone to dielectric breakdown (short) between fine wirings, and has a fine pitch connectivity. In addition to being excellent, it is not necessary to change the anisotropic conductive adhesive film for each semiconductor chip having a different electrode pattern, so that the productivity is excellent, the connection stability can be maintained for a long time, and it can be suitably used in the electrical connection application of a fine pattern.

Claims (5)

導電粒子を表面層に単層に配置したバインダー樹脂と、該バインダー樹脂の少なくとも片面に積層され、バインダー樹脂よりも180℃の溶融粘度が低い絶縁性接着剤よりなり、厚さ方向に加圧することで導電性を有する異方導電性接着フィルムにおいて、導電粒子の中心間距離の平均が2μm以上20μm以下、かつ、導電粒子の平均粒径に対して1.5倍以上5倍以下であり、その変動係数が、0.1以上0.4未満である異方導電性接着フィルム。   It consists of a binder resin in which conductive particles are arranged in a single layer on the surface layer, and an insulating adhesive that is laminated on at least one side of the binder resin and has a melt viscosity of 180 ° C. lower than that of the binder resin, and pressurizes in the thickness direction. In the anisotropic conductive adhesive film having electrical conductivity, the average distance between the centers of the conductive particles is 2 μm or more and 20 μm or less, and the average particle diameter of the conductive particles is 1.5 times or more and 5 times or less, An anisotropic conductive adhesive film having a coefficient of variation of 0.1 or more and less than 0.4. バインダー樹脂の180℃の溶融粘度が50Pa・s以上である請求項1記載の異方導電性接着フィルム。   The anisotropic conductive adhesive film according to claim 1, wherein the binder resin has a melt viscosity at 180 ° C. of 50 Pa · s or more. 絶縁性接着剤が潜在性硬化剤を用いた熱硬化性エポキシ樹脂系接着剤である請求項1あるいは2に記載の異方導電性接着フィルム。   The anisotropic conductive adhesive film according to claim 1 or 2, wherein the insulating adhesive is a thermosetting epoxy resin adhesive using a latent curing agent. 該導電粒子の平均粒径が0.5μm以上10μm未満である請求項1〜3のいずれかに記載の異方導電性接着フィルム。   The anisotropic conductive adhesive film according to claim 1, wherein the conductive particles have an average particle size of 0.5 μm or more and less than 10 μm. 粘着剤によって導電粒子が単層に固定された延伸可能なシートを延伸した後、導電粒子側に、バインダー樹脂を重ねてラミネートし、バインダー樹脂に導電粒子を埋め込むことを特徴とする請求項1〜4のいずれかに記載の異方導電性接着フィルムの製造方法。   The stretchable sheet in which conductive particles are fixed in a single layer by an adhesive is stretched, and then laminated with a binder resin on the conductive particle side, and the conductive particles are embedded in the binder resin. 4. The method for producing an anisotropic conductive adhesive film according to any one of 4 above.
JP2006038041A 2006-02-15 2006-02-15 Anisotropically electroconductive adhesive film Pending JP2007217503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006038041A JP2007217503A (en) 2006-02-15 2006-02-15 Anisotropically electroconductive adhesive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006038041A JP2007217503A (en) 2006-02-15 2006-02-15 Anisotropically electroconductive adhesive film

Publications (1)

Publication Number Publication Date
JP2007217503A true JP2007217503A (en) 2007-08-30

Family

ID=38495132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006038041A Pending JP2007217503A (en) 2006-02-15 2006-02-15 Anisotropically electroconductive adhesive film

Country Status (1)

Country Link
JP (1) JP2007217503A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056773A1 (en) * 2006-11-10 2008-05-15 Hitachi Chemical Company, Ltd. Adhesive film, and connection structure and connecting method for circuit member
WO2009028241A1 (en) * 2007-08-24 2009-03-05 Sony Chemical & Information Device Corporation Anisotropic electroconductive film, and process for producing connection structure using the same
JP2010009804A (en) * 2008-06-25 2010-01-14 Asahi Kasei E-Materials Corp Anisotropic conductive adhesive sheet and fine connection structure
WO2010047200A1 (en) * 2008-10-21 2010-04-29 住友電気工業株式会社 Anisotropic electroconductive film
JP2010248386A (en) * 2009-04-16 2010-11-04 Asahi Kasei E-Materials Corp Method for producing anisotropic conductive adhesive film
JP2010261003A (en) * 2009-05-11 2010-11-18 Asahi Kasei E-Materials Corp Method for producing film adhesive for circuit connection
WO2014021424A1 (en) * 2012-08-01 2014-02-06 デクセリアルズ株式会社 Method for manufacturing anisotropically conductive film, anisotropically conductive film, and connective structure
JP2014159575A (en) * 2014-03-27 2014-09-04 Dexerials Corp Anisotropic conductive adhesive film and production method of the same
KR101479658B1 (en) 2011-11-18 2015-01-06 제일모직 주식회사 Anisotropic conductive film with easy pre-bonding process
JP2015159333A (en) * 2011-12-16 2015-09-03 旭化成イーマテリアルズ株式会社 Method of manufacturing semiconductor chip with anisotropic conductive film
JP2016536763A (en) * 2013-09-10 2016-11-24 トリリオン サイエンス インコーポレイテッド Fixed array anisotropic conductive film using conductive particles and block copolymer paint
KR20170029665A (en) * 2012-08-24 2017-03-15 데쿠세리아루즈 가부시키가이샤 Anisotropic-conductive-film manufacturing method and anisotropic conductive film
KR101729867B1 (en) 2012-08-01 2017-04-24 데쿠세리아루즈 가부시키가이샤 Method for manufacturing anisotropically conductive film, anisotropically conductive film, and connective structure
CN110819264A (en) * 2015-07-13 2020-02-21 迪睿合株式会社 Anisotropic conductive film, connection structure, and method for producing same
KR102675434B1 (en) * 2012-08-01 2024-06-17 데쿠세리아루즈 가부시키가이샤 Method for manufacturing anisotropically conductive film, anisotropically conductive film, and connective structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329207A (en) * 1988-12-05 1991-02-07 Hitachi Chem Co Ltd Composition for circuit connection and connection method and connection structure of semiconductor chip using the composition
JP2000151084A (en) * 1998-11-05 2000-05-30 Hitachi Chem Co Ltd Anisotropic conductive adhesive film
JP2001052778A (en) * 1999-08-06 2001-02-23 Hitachi Chem Co Ltd Anisotropic conductive adhesive film and its manufacture
JP2002080811A (en) * 2000-06-22 2002-03-22 Sony Chem Corp Ipn(interpenetrating polymer network) adhesive, ipn adhesive sheet and adhesion process
JP2002201450A (en) * 2000-12-28 2002-07-19 Hitachi Chem Co Ltd Adhesive composition, connecting method of circuit terminal using the same, and connected structure of circuit terminal
JP2002256237A (en) * 2001-03-01 2002-09-11 Hitachi Chem Co Ltd Adhesive sheet, method for producing semiconductor device and semiconductor device
JP2002332461A (en) * 2001-05-08 2002-11-22 Asahi Kasei Corp Method for distributing particle in adhesive layer
JP2003055632A (en) * 2001-08-21 2003-02-26 Lintec Corp Pressure-sensitive adhesive tape

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329207A (en) * 1988-12-05 1991-02-07 Hitachi Chem Co Ltd Composition for circuit connection and connection method and connection structure of semiconductor chip using the composition
JP2000151084A (en) * 1998-11-05 2000-05-30 Hitachi Chem Co Ltd Anisotropic conductive adhesive film
JP2001052778A (en) * 1999-08-06 2001-02-23 Hitachi Chem Co Ltd Anisotropic conductive adhesive film and its manufacture
JP2002080811A (en) * 2000-06-22 2002-03-22 Sony Chem Corp Ipn(interpenetrating polymer network) adhesive, ipn adhesive sheet and adhesion process
JP2002201450A (en) * 2000-12-28 2002-07-19 Hitachi Chem Co Ltd Adhesive composition, connecting method of circuit terminal using the same, and connected structure of circuit terminal
JP2002256237A (en) * 2001-03-01 2002-09-11 Hitachi Chem Co Ltd Adhesive sheet, method for producing semiconductor device and semiconductor device
JP2002332461A (en) * 2001-05-08 2002-11-22 Asahi Kasei Corp Method for distributing particle in adhesive layer
JP2003055632A (en) * 2001-08-21 2003-02-26 Lintec Corp Pressure-sensitive adhesive tape

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056773A1 (en) * 2006-11-10 2008-05-15 Hitachi Chemical Company, Ltd. Adhesive film, and connection structure and connecting method for circuit member
JPWO2008056773A1 (en) * 2006-11-10 2010-02-25 日立化成工業株式会社 Adhesive film, circuit member connection structure and connection method
WO2009028241A1 (en) * 2007-08-24 2009-03-05 Sony Chemical & Information Device Corporation Anisotropic electroconductive film, and process for producing connection structure using the same
JP2009054377A (en) * 2007-08-24 2009-03-12 Sony Chemical & Information Device Corp Anisotropic conductive film, and manufacturing method of connecting structure using the same
JP2010009804A (en) * 2008-06-25 2010-01-14 Asahi Kasei E-Materials Corp Anisotropic conductive adhesive sheet and fine connection structure
JP2010102859A (en) * 2008-10-21 2010-05-06 Sumitomo Electric Ind Ltd Anisotropic conductive film
US8133412B2 (en) 2008-10-21 2012-03-13 Sumitomo Electric Industries, Ltd. Anisotropic conductive film
CN101953026B (en) * 2008-10-21 2013-08-21 住友电气工业株式会社 Opic electroconductive film
WO2010047200A1 (en) * 2008-10-21 2010-04-29 住友電気工業株式会社 Anisotropic electroconductive film
JP2010248386A (en) * 2009-04-16 2010-11-04 Asahi Kasei E-Materials Corp Method for producing anisotropic conductive adhesive film
JP2010261003A (en) * 2009-05-11 2010-11-18 Asahi Kasei E-Materials Corp Method for producing film adhesive for circuit connection
KR101479658B1 (en) 2011-11-18 2015-01-06 제일모직 주식회사 Anisotropic conductive film with easy pre-bonding process
JP2015159333A (en) * 2011-12-16 2015-09-03 旭化成イーマテリアルズ株式会社 Method of manufacturing semiconductor chip with anisotropic conductive film
KR102089738B1 (en) * 2012-08-01 2020-03-17 데쿠세리아루즈 가부시키가이샤 Method for manufacturing anisotropically conductive film, anisotropically conductive film, and connective structure
KR20200029628A (en) * 2012-08-01 2020-03-18 데쿠세리아루즈 가부시키가이샤 Method for manufacturing anisotropically conductive film, anisotropically conductive film, and connective structure
KR102675434B1 (en) * 2012-08-01 2024-06-17 데쿠세리아루즈 가부시키가이샤 Method for manufacturing anisotropically conductive film, anisotropically conductive film, and connective structure
CN107722853B (en) * 2012-08-01 2021-12-17 迪睿合电子材料有限公司 Method for manufacturing anisotropic conductive film, and connection structure
KR101729867B1 (en) 2012-08-01 2017-04-24 데쿠세리아루즈 가부시키가이샤 Method for manufacturing anisotropically conductive film, anisotropically conductive film, and connective structure
KR20180014203A (en) * 2012-08-01 2018-02-07 데쿠세리아루즈 가부시키가이샤 Method for manufacturing anisotropically conductive film, anisotropically conductive film, and connective structure
CN107722853A (en) * 2012-08-01 2018-02-23 迪睿合电子材料有限公司 Manufacture method, anisotropic conductive film and the connecting structure body of anisotropic conductive film
US10350872B2 (en) 2012-08-01 2019-07-16 Dexerials Corporation Method for manufacturing anisotropically conductive film, anisotropically conductive film, and conductive structure
KR102333363B1 (en) * 2012-08-01 2021-12-01 데쿠세리아루즈 가부시키가이샤 Method for manufacturing anisotropically conductive film, anisotropically conductive film, and connective structure
US10589502B2 (en) 2012-08-01 2020-03-17 Dexerials Corporation Anisotropic conductive film, connected structure, and method for manufacturing a connected structure
WO2014021424A1 (en) * 2012-08-01 2014-02-06 デクセリアルズ株式会社 Method for manufacturing anisotropically conductive film, anisotropically conductive film, and connective structure
KR20190104252A (en) * 2012-08-24 2019-09-06 데쿠세리아루즈 가부시키가이샤 Anisotropic-conductive-film manufacturing method and anisotropic conductive film
KR102208591B1 (en) * 2012-08-24 2021-01-27 데쿠세리아루즈 가부시키가이샤 Anisotropic-conductive-film manufacturing method and anisotropic conductive film
KR20210011077A (en) * 2012-08-24 2021-01-29 데쿠세리아루즈 가부시키가이샤 Anisotropic-conductive-film manufacturing method and anisotropic conductive film
KR102259384B1 (en) * 2012-08-24 2021-06-02 데쿠세리아루즈 가부시키가이샤 Anisotropic-conductive-film manufacturing method and anisotropic conductive film
KR102018558B1 (en) * 2012-08-24 2019-09-05 데쿠세리아루즈 가부시키가이샤 Anisotropic-conductive-film manufacturing method and anisotropic conductive film
KR20170029665A (en) * 2012-08-24 2017-03-15 데쿠세리아루즈 가부시키가이샤 Anisotropic-conductive-film manufacturing method and anisotropic conductive film
JP2016536763A (en) * 2013-09-10 2016-11-24 トリリオン サイエンス インコーポレイテッド Fixed array anisotropic conductive film using conductive particles and block copolymer paint
JP2014159575A (en) * 2014-03-27 2014-09-04 Dexerials Corp Anisotropic conductive adhesive film and production method of the same
CN110819264A (en) * 2015-07-13 2020-02-21 迪睿合株式会社 Anisotropic conductive film, connection structure, and method for producing same

Similar Documents

Publication Publication Date Title
JP5825373B2 (en) Conductive particle arrangement sheet and method for producing the same
JP4789738B2 (en) Anisotropic conductive film
JP2007217503A (en) Anisotropically electroconductive adhesive film
JP5147048B2 (en) Anisotropic conductive film
JP2006233203A (en) Anisotropically electroconductive adhesive film
JP5099987B2 (en) Circuit connection method and connection structure
JP5581605B2 (en) Method for producing anisotropic conductive adhesive film
JP2007009176A (en) Anisotropically electroconductive adhesive film
JP5147049B2 (en) Anisotropic conductive film
JP5516016B2 (en) Anisotropic conductive adhesive film and manufacturing method thereof
JP2006233202A (en) Anisotropically electroconductive adhesive film for circuit connection
JP4684087B2 (en) Connected structure
JP4657047B2 (en) Connecting member
JP2006233200A (en) Anisotropically electroconductive adhesive film
JP4703306B2 (en) Conductive particle connection structure
JP2006233201A (en) Anisotropically electroconductive adhesive film
JP5046581B2 (en) Adhesive for circuit connection
JP5682720B2 (en) Anisotropic conductive adhesive film and manufacturing method thereof
JP4953685B2 (en) Connecting material
JP5202662B2 (en) Circuit connection film
JP2024063368A (en) Connection material, connection structure, and method for producing the connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090120

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Effective date: 20120207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605