JPH112830A - Liquid crystal device and its manufacture - Google Patents

Liquid crystal device and its manufacture

Info

Publication number
JPH112830A
JPH112830A JP15405997A JP15405997A JPH112830A JP H112830 A JPH112830 A JP H112830A JP 15405997 A JP15405997 A JP 15405997A JP 15405997 A JP15405997 A JP 15405997A JP H112830 A JPH112830 A JP H112830A
Authority
JP
Japan
Prior art keywords
particles
liquid crystal
conductive particles
electrode terminal
crystal device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15405997A
Other languages
Japanese (ja)
Inventor
Shotaro Takei
庄太郎 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15405997A priority Critical patent/JPH112830A/en
Publication of JPH112830A publication Critical patent/JPH112830A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve connection reliability by constituting an anisotropic conductive adhesion(ACF) film by mixing and dispersing particles of grain size larger than the basic grain size of conductive particles and particles of smaller grain size of a conductive material in the ACF in addition to the conductive particles of the basic grain size. SOLUTION: In the ACF, resin balls 8 of 10 μm coated with gold alloy are dispersed uniformly as the basic conductive particles of the center diameter. Further, the balls 9 of resin of the same kind of 16 μm are mixed by 5% of the dispersion amount of the basic conductive particles. Further, resin balls of 4 μm are mixed by 40% of the dispersion amount of the basic conductive particles. The ACF 5 which has three kinds of particle contained and mixed is temporarily pressed against to the electrode 7 of a flexible substrate(COF) 6, positioned, and further aligned, and compression bonding is carried out at a specific heating temperature. The conductive particles 8 to 10 are crushed to connect the electrode terminal 2 formed on a liquid crystal panel to the electrode terminal 7 of the COF 6, securing electric continuity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶パネルに配さ
れた電極端子と、駆動用ICを装着したフレキシブル基
板に配されたる電極端子とを接続した液晶装置に関す
る。
The present invention relates to a liquid crystal device in which electrode terminals provided on a liquid crystal panel are connected to electrode terminals provided on a flexible substrate on which a driving IC is mounted.

【0002】[0002]

【従来の技術】薄型平面表示装置の中で、液晶を用いた
平面表示装置は近年産業機器の多様化に伴い超小型のマ
イクロサイズから超大型のハイビジョン対応まで幅広い
用途に対しての展開がなされている。また、これらの平
面表示装置はテレビ受像機やOA機器及び伝送機器の表
示、もしくは映像機器,娯楽機器の表示デバイスとして
用いられている。特に、映像機器の表示デバイスとして
用いるためには高解像度の液晶デバイスの実現、急峻性
の実現、より高品質、高画質の実現等多用なニーズへの
対応が必要となっている。
2. Description of the Related Art Among thin flat display devices, a flat display device using a liquid crystal has been developed for a wide range of applications from ultra-small micro size to ultra-large HDTV with recent diversification of industrial equipment. ing. Further, these flat display devices are used as displays for television receivers, OA equipment and transmission equipment, or as display devices for video equipment and entertainment equipment. In particular, in order to use it as a display device for video equipment, it is necessary to meet various needs such as realization of a high-resolution liquid crystal device, realization of steepness, realization of higher quality and higher image quality.

【0003】また、これらの要求を満たすために各分野
でたゆまぬ研究開発が積み重ねられ、多様の表示方式や
方法が提唱され、かつ市場における低コスト化に対応す
べく日夜の努力が続けられている。
In order to satisfy these demands, continuous research and development have been carried out in various fields, various display methods and methods have been proposed, and efforts have been made day and night to respond to cost reduction in the market. I have.

【0004】例えば、高解像度の液晶表示デバイスを構
成するためには液晶表示デバイス内の信号線を増やし、
画素数も増加させることにより高解像度の液晶表示デバ
イスが実現するものである。
For example, in order to configure a high-resolution liquid crystal display device, the number of signal lines in the liquid crystal display device is increased,
By increasing the number of pixels, a high-resolution liquid crystal display device is realized.

【0005】しかし、このように画素数が増加し、さら
に信号線が増加するとそれに伴って液晶パネルに配置さ
れる信号線の細密化と電極端子の細密化、さらにはデバ
イス内の信号線の低抵抗化も不可欠であり、信号線及び
電極端子の金属化と構造の複雑化も余儀なくされるもの
である。
However, as the number of pixels increases and the number of signal lines further increases, the signal lines arranged on the liquid crystal panel and electrode terminals become finer and the signal lines in the device become lower. Resistance is also indispensable, and metallization of signal lines and electrode terminals and complication of the structure are inevitable.

【0006】このような電極構造としては例えば細密化
として端子ピッチ100ミクロン、クロムとITO被覆
電極に対し、端部への保護パシベーション膜の構成が公
知の技術として提唱されている。
[0006] As such an electrode structure, for example, for a chromium and ITO coated electrode with a terminal pitch of 100 microns as a fine structure, a configuration of a protective passivation film at the end has been proposed as a known technique.

【0007】以下、図14図〜17図を用いて説明す
る。図14は、従来の液晶パネルの接続方法を示す断面
図である。また、図15は、 図14における異方性導
電接着膜の接続方法を説明するための断面図でり、図1
6は図14における接続完了した構成を示す図である。
A description will be given below with reference to FIGS. FIG. 14 is a cross-sectional view showing a conventional method of connecting a liquid crystal panel. FIG. 15 is a cross-sectional view for explaining a method of connecting the anisotropic conductive adhesive film in FIG.
FIG. 6 is a diagram showing a configuration in which connection in FIG. 14 is completed.

【0008】従来は、図14などに示される、ガラス基
板11上に配された電極端子12はITOで構成され、
端子ピッチも広くかつ平坦性も良好な電極構成のため、
駆動用IC13を装着したフレキシブル基板14(以下
COFと呼ぶ)をアウターリードボンデイング(以下O
LBと呼ぶ)によりガラス基板11に接続するために用
いる異方性導電接着膜15(以下ACFと呼ぶ)は熱圧
着機により押しつぶされ、接続面積は充分確保でき接続
抵抗も問題視されていなかった。
Conventionally, an electrode terminal 12 arranged on a glass substrate 11 shown in FIG.
Because the electrode pitch is wide and the flatness is good,
The flexible substrate 14 (hereinafter referred to as COF) on which the driving IC 13 is mounted is attached to the outer lead bonding (hereinafter referred to as O).
The anisotropic conductive adhesive film 15 (hereinafter referred to as ACF) used to connect to the glass substrate 11 by LB) is crushed by a thermocompression bonding machine, the connection area is sufficiently secured, and the connection resistance is not regarded as a problem. .

【0009】しかし、画素数の増加に伴い電極端子が増
加し端子幅が細密化へと進むにしたがい端子間ショー
ト、また接続抵抗の増大が課題として挙げられ、いくつ
かの対策が考えられる中からガラス基板に配される電極
に対しては図17のごとく電極端子2の金属化、そして
密着を補うためのITO3の上付け、さらには水平方向
へのショート防止としてパシベーション膜4の設置が行
われることにより電極構造は複雑化した。また、ACF
中に介在する導電粒子の微細化と粒径の均一化が行われ
た。
However, as the number of electrode terminals increases with an increase in the number of pixels, and as the terminal widths become finer, short-circuiting between terminals and an increase in connection resistance are cited as problems. As shown in FIG. 17, the electrodes arranged on the glass substrate are metallized with the electrode terminals 2, ITO 3 is added to supplement the adhesion, and a passivation film 4 is provided to prevent a short circuit in the horizontal direction. This has complicated the electrode structure. Also, ACF
The conductive particles interposed therein were made finer and the particle size was made uniform.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前記の
従来のような電極端子の微細化、構造の複雑化が進行し
た電極端子の接続部にあっては、接続信頼性の低下をも
たらすといった問題点を有していた。
However, in the connection portion of the electrode terminal in which the miniaturization of the electrode terminal and the complicated structure are advanced as in the prior art, the connection reliability is lowered. Had.

【0011】そこで、本発明は電極端子間の接続信頼性
を向上させた液晶装置を提供することを目的とする。
Accordingly, an object of the present invention is to provide a liquid crystal device with improved connection reliability between electrode terminals.

【0012】[0012]

【課題を解決するための手段】請求項1に関わる発明
は、液晶パネルと該液晶パネルを駆動するための駆動用
ICを装着した基板とを有する液晶装置において、前記
液晶パネルの一方の基板に形成された第1の電極端子
と、駆動用ICを装着したフレキシブル基板に形成され
た第2の電極端子とを異方性導電接着膜により接続して
なり、該異方性導電接着膜には少なくとも第1の導電粒
子と該第1の導電粒子とは粒径の異なる第2の導電粒子
とが混合されてなることを特徴とする。
According to a first aspect of the present invention, there is provided a liquid crystal device having a liquid crystal panel and a substrate on which a driving IC for driving the liquid crystal panel is mounted. The formed first electrode terminal and the second electrode terminal formed on the flexible substrate on which the driving IC is mounted are connected by an anisotropic conductive adhesive film. At least the first conductive particles and the second conductive particles having different particle diameters from the first conductive particles are mixed.

【0013】このような構成とすることにより、電極端
子同士を確実に接続させることができるとともに、電極
間のピッチが狭い構成の電極端子の場合であっても確実
に双方の電極端子を接続することが可能となる。
With such a configuration, the electrode terminals can be reliably connected to each other, and even when the electrode terminals have a narrow pitch between the electrodes, both electrode terminals can be reliably connected. It becomes possible.

【0014】請求項2に関わる発明は、前記異方性導電
接着膜中に前記第1の導電粒子とは異なる粒径を有する
複数の粒子が混合されてなり、前記複数の粒子は前記第
1の導電粒子の粒径に対して±5%〜60%の粒径を有
することを特徴とする。このような範囲に粒径を分散さ
せることにより、電極ピッチの狭い構成の液晶パネルで
あっても容易に接続することができる。
According to a second aspect of the present invention, in the anisotropic conductive adhesive film, a plurality of particles having a different particle size from the first conductive particles are mixed, and the plurality of particles are the first conductive particles. Characterized by having a particle size of ± 5% to 60% with respect to the particle size of the conductive particles. By dispersing the particle size in such a range, even a liquid crystal panel having a configuration in which the electrode pitch is narrow can be easily connected.

【0015】請求項3に関わる発明は、前記第1の導電
粒子に対して、前記複数の粒子を5%〜40%の割合で
増量させ、前記異方性導電接着膜内に分散させてなるこ
とを特徴とする。異なる材料を違法性導電接着剤の中に
分散させ、且つ第1の導電粒子に対し5〜40%の割合
で増量させることによっても確実に電極端子同士を接続
させることができる。
According to a third aspect of the present invention, the plurality of particles are increased in a ratio of 5% to 40% with respect to the first conductive particles and dispersed in the anisotropic conductive adhesive film. It is characterized by the following. The electrode terminals can be reliably connected to each other by dispersing a different material in the illegal conductive adhesive and increasing the amount by 5 to 40% with respect to the first conductive particles.

【0016】請求項4に関わる発明は、前記第1の導電
粒子とは異なる材料により前記複数の粒子が形成されて
なることを特徴とする。更に請求項5に関わる発明は、
前記異方性導電接着膜中の粒子は、表面にニッケル、金
合金等によりめっき処理されたスチレンボール、または
ニッケル粒子、カーボン粒子により構成され、異なる材
料によって形成された導電粒子が前記異方性導電接着膜
内に混合されてなることを特徴とする。
The invention according to claim 4 is characterized in that the plurality of particles are formed of a material different from the first conductive particles. The invention according to claim 5 further includes:
The particles in the anisotropic conductive adhesive film are composed of styrene balls plated with nickel, a gold alloy or the like on the surface, or nickel particles, and carbon particles. It is characterized by being mixed in the conductive adhesive film.

【0017】請求項6に関わる発明は、前記異方性導電
接着膜により、前記液晶パネルに形成された第1の電極
端子と、フレキシブル基板に形成された第2の電極端子
とを接続する液晶装置の製造方法において、第1の電極
端子と第2の電極端子とを超音波により仮圧着する工
程、第1の電極端子と第2の電極端子とを加圧する工
程、とを有することを特徴とする。このような製法を採
用することによって、圧着機によるOLB仮圧着時に超
音波(以下USCと呼ぶ)の発振波により、端子間のギ
ャップの狭い部分にはさみ込まれた大きな粒子を広いギ
ャップ部分へ、もしくは端子の外部へ移動させることに
より平坦性の保たれた接続を得ることが出来る。また確
実な接続により信頼性の高い液晶装置が供給できる。
The invention according to claim 6 is a liquid crystal for connecting a first electrode terminal formed on the liquid crystal panel and a second electrode terminal formed on a flexible substrate by the anisotropic conductive adhesive film. The method for manufacturing an apparatus includes a step of temporarily pressing the first electrode terminal and the second electrode terminal by ultrasonic waves and a step of pressing the first electrode terminal and the second electrode terminal. And By adopting such a manufacturing method, large particles trapped in a narrow portion between terminals by an ultrasonic wave (hereinafter, referred to as USC) at the time of OLB temporary pressing by a pressing machine to a wide gap portion. Alternatively, a connection with flatness can be obtained by moving the terminal to the outside. In addition, a reliable liquid crystal device can be supplied by reliable connection.

【0018】[0018]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて説明する。
Embodiments of the present invention will be described below.

【0019】異方性導電接着膜(ACF)内に、導電材
粒子の基本粒径をなす粒子に加え、前記基本粒径に対し
粒径の大きな粒子と小さな粒子の導電材を混合分散させ
てACFを構成する。このACFを両電極端子間に配置
し、圧着することによりギャップの狭い部分と広い部分
を有する端子間にすき間なく導電材が入り込むため接続
信頼性が向上する。
In the anisotropic conductive adhesive film (ACF), in addition to the particles having the basic particle size of the conductive material particles, a conductive material having a particle size larger and smaller than the basic particle size is mixed and dispersed. Configure ACF. By placing this ACF between the two electrode terminals and crimping it, the conductive material enters without gap between the terminals having the narrow portion and the wide portion, so that the connection reliability is improved.

【0020】また、スチレンボールにニッケル、金めっ
きを施した基本粒子に加え、大小のバラツキを持った導
電粒子を混合分散させたACFを用いることによって相
方の特長を活かすことも可能である。
Further, by using an ACF in which conductive particles having large and small variations are mixed and dispersed in addition to the basic particles obtained by plating nickel and gold on a styrene ball, it is possible to take advantage of the characteristics of each other.

【0021】[0021]

【実施例】以下本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0022】(実施例1)図1は、請求項1記載の発明
に係わる液晶装置の第1の実施例の要部を示す図であ
る。図1において、1はガラス基板、2はクロム電極端
子、3はITO、4はパシベーション膜、5はACF、
6はフレキシブル基板、7は電極端子、8、9、10、
は導電粒子であって、図2は図1の接続完了図である。
図3は図2の上視図である。
(Embodiment 1) FIG. 1 is a diagram showing a main part of a first embodiment of the liquid crystal device according to the first aspect of the present invention. In FIG. 1, 1 is a glass substrate, 2 is a chromium electrode terminal, 3 is ITO, 4 is a passivation film, 5 is ACF,
6 is a flexible substrate, 7 is an electrode terminal, 8, 9, 10,
Is a conductive particle, and FIG. 2 is a diagram showing the connection completion of FIG.
FIG. 3 is a top view of FIG.

【0023】まず、構成を説明する。ガラス基板1にパ
ターニング処理されて配置されたフィンガー幅50ミク
ロン、スペース幅50ミクロン構成の100ミクロンピ
ッチの端子群240本の表面を清浄に保ち、基本導電粒
子として金合金により被覆された10ミクロンの樹脂ボ
ール8を均一に分散させ、中心径粒子とした。また、基
本導電粒子とともに、16ミクロンの同種樹脂ボール9
を10ミクロンボールの基本導電粒子の分散量に対し5
%混合した。さらに、4ミクロンの樹脂ボール10を1
0ミクロンボールの基本導電粒子の分散量に対して40
%の割合で混合した。このような3種の粒子を含有し、
混合したACF5をCOF6の電極7に仮圧着し、その
後位置合わせを行い、更にアライメントを行い、所定の
加熱温度270℃のもとに20秒間圧着を行った。そし
て、導電粒子8、9、10を押しつぶすことより、液晶
パネルに形成された電極端子2とCOFの電極端子7を
接続し、導通を確保した。
First, the configuration will be described. The surface of 240 terminals having a finger width of 50 μm and a space width of 50 μm and having a pitch of 100 μm and having a pitch of 50 μm arranged on the glass substrate 1 is kept clean. The resin balls 8 were uniformly dispersed to obtain central diameter particles. In addition, together with the basic conductive particles, a resin ball 9 of the same type of 16 microns is used.
Is 5 with respect to the dispersion amount of the basic conductive particles of a 10 micron ball.
% Mixed. In addition, 4 micron resin balls 10
40 with respect to the dispersion amount of the basic conductive particles of the 0 micron ball.
%. Containing these three types of particles,
The mixed ACF5 was preliminarily pressure-bonded to the electrode 7 of COF6, alignment was performed, alignment was further performed, and pressure-bonding was performed at a predetermined heating temperature of 270 ° C. for 20 seconds. Then, by crushing the conductive particles 8, 9, and 10, the electrode terminals 2 formed on the liquid crystal panel were connected to the electrode terminals 7 of the COF, thereby ensuring conduction.

【0024】実施例1において使用した導電粒子径は大
径側において16ミクロンであり、基本粒子径に対して
60%の大きさである。一方、小径側においては4ミク
ロンであり、基本粒子の粒径に対し40%の大きさであ
る。
The conductive particle diameter used in Example 1 is 16 microns on the large diameter side, which is 60% of the basic particle diameter. On the other hand, the diameter is 4 μm on the small diameter side, which is 40% of the particle diameter of the basic particles.

【0025】粒子径が更に大きくなった場合、OLB接
続における粒子のつぶし量が大きすぎるため、つぶし後
の占有面積が過大となり電極端子からのはみだしが大き
くなる。従って、狭ピッチ接続においては隣接端子との
ショートもしくはリークが発生することがある。
When the particle diameter is further increased, the crushing amount of the particles in the OLB connection is too large, so that the occupied area after the crushing becomes excessive and the protrusion from the electrode terminal increases. Therefore, in a narrow pitch connection, a short circuit or a leak with an adjacent terminal may occur.

【0026】また、粒子径がさらに小径化した場合に
は、つぶれ量が過小のため接続面積確保に難が生じるた
め初期の目的を失うことになる。
Further, when the particle diameter is further reduced, the initial purpose is lost because it is difficult to secure a connection area due to an excessively small crushing amount.

【0027】さらに含有量については、5%以下では分
散量のバラツキ限界の範囲外となり40%を越えてしま
うと総分散量が過大となるため、電極端子間に存在する
スペースにおける滞留量が過剰となり、粒子相互間、さ
らには電極端子間でのリークが表面化してしまうもので
ある。
Further, when the content is less than 5%, the dispersion is out of the range of the dispersion limit, and when it exceeds 40%, the total dispersion becomes excessive, so that the amount of residence in the space existing between the electrode terminals is excessive. The leakage between the particles and further between the electrode terminals becomes a surface.

【0028】上述のような構成によれば、ACF中に介
在する10ミクロンの基本粒子径の導電粒子と16ミク
ロンと4ミクロンの大小異なる粒子径の導電粒子とが電
極端子間で押しつぶされているので接続面積が大きく、
かつ接続抵抗を小さくでき確実な導通を保つことができ
る。
According to the above-described structure, the conductive particles having a basic particle diameter of 10 μm and the conductive particles having different particle diameters of 16 μm and 4 μm interposed in the ACF are crushed between the electrode terminals. So the connection area is large,
In addition, the connection resistance can be reduced and reliable conduction can be maintained.

【0029】(実施例2)図4は請求項2、及び3に記
載の発明に係わる液晶装置の第2実施例の要部を示す図
である。図5は図4の接続完了図である。図6は図5の
上視図である。
(Embodiment 2) FIG. 4 is a view showing a main part of a second embodiment of the liquid crystal device according to the second and third aspects of the present invention. FIG. 5 is a diagram showing the connection completion of FIG. FIG. 6 is a top view of FIG.

【0030】素子基板より引き出されたITOによる配
線パターンから続く電極端子2を120ミクロンピッチ
で設け、さらに前記電極端子部(単に電極部とも言う)
2をアルミニウム金属3により厚さ1200Åで形成し
たガラス基板1と、対向基板とにより液晶セルを構成し
た。そして、中心粒径10ミクロンの表面に金めっきを
施した樹脂ボールを分散させたACF5に、前記10ミ
クロン粒子の分散量に対して30%増量し15μmの導
電粒子と、同様に前記10μm粒子の分散量に対して2
0%増量した6ミクロンの異径導電粒子とをそれぞれ混
合分散せしめた。なお、これらの異径導電粒子の表面に
はニッケル、アルミニウムなどの金属によりコーティン
グが施されている。
Electrode terminals 2 are provided at a 120-micron pitch from a wiring pattern made of ITO drawn out of the element substrate, and the electrode terminal portions (also simply referred to as electrode portions) are provided.
A liquid crystal cell was composed of a glass substrate 1 formed of aluminum metal 3 at a thickness of 1200 ° and an opposite substrate. Then, in the ACF5 in which resin balls having a center particle diameter of 10 microns and gold plating is dispersed on the surface, conductive particles of 15 μm, which is increased by 30% with respect to the dispersion amount of the 10 μm particles, and similarly, the 10 μm particles 2 for the amount of dispersion
The conductive particles of 6 μm having different diameters increased by 0% were mixed and dispersed. The surfaces of these different-diameter conductive particles are coated with a metal such as nickel or aluminum.

【0031】このように、3種の導電粒子を混合して形
成したACFを用いて、120ミクロンピッチでパター
ン形成されたCOF6の電極端子7の長さ2mmの実装
エリアに対して仮圧着を行った。
As described above, using the ACF formed by mixing three kinds of conductive particles, a temporary compression bonding is performed on the mounting area of the electrode terminals 7 of the COF 6 having a pattern of 120 μm and having a length of 2 mm. Was.

【0032】次に、前記液晶セルを清浄に保ちながら、
液晶セルの電極端子2とCOFの電極端子7との位置合
わせを行い、アライメント誤差1ミクロン以内としたう
えで圧着機を用い、ツール温度を250℃に保ちながら
20秒間圧着した。このときの圧着最終ギャップは2ミ
クロンとした。また、この時用いたACFは熱硬化型の
樹脂を使用した。
Next, while keeping the liquid crystal cell clean,
The electrode terminal 2 of the liquid crystal cell was aligned with the electrode terminal 7 of the COF, the alignment error was kept within 1 micron, and then the substrate was crimped for 20 seconds using a crimping machine while keeping the tool temperature at 250 ° C. The final pressure gap at this time was 2 microns. The ACF used at this time was a thermosetting resin.

【0033】上述のような構成によれば、各電極端子の
接続部は通常のつぶれに加え15ミクロンの大きさを持
った導電粒子がアルミニウム金属に埋め込まれるように
して圧着しているので低抵抗の接続ができ高い信頼性が
得られた。
According to the above-described structure, the connection portion of each electrode terminal is compressed by applying pressure so that conductive particles having a size of 15 μm are embedded in the aluminum metal in addition to the normal collapse. Connection and high reliability was obtained.

【0034】(実施例3)図7は請求項4記載の発明に
係わる液晶装置の第3実施例の要部を示す図である。図
8は図7の接続完了図である。図9は図8の上視図であ
る。
(Embodiment 3) FIG. 7 is a view showing a main part of a third embodiment of the liquid crystal device according to the present invention. FIG. 8 is a diagram showing the connection completion of FIG. FIG. 9 is a top view of FIG.

【0035】ガラス基板1にパターニング処理により1
200Åの厚さと45ミクロンの幅をもつクロム電極端
子2を設け、さらにクロムのガラスへ密着を補うべく端
子の両側に300Åの厚さのITO3を重ねて設け、9
0ミクロンピッチの端子郡を形成した。さらに細密化し
たピッチによる信号のリーク、ショートを防ぐべくパシ
ベーション層4の一部分が各端子の一部分を包み込むよ
うに構成した。
The glass substrate 1 is patterned by a patterning process.
A chromium electrode terminal 2 having a thickness of 200 mm and a width of 45 microns is provided, and a 300 mm thick ITO3 is provided on both sides of the terminal so as to supplement the adhesion of chrome to the glass.
A group of terminals having a pitch of 0 micron was formed. Further, in order to prevent signal leakage and short circuit due to the fine pitch, a part of the passivation layer 4 is configured to wrap a part of each terminal.

【0036】かかる端子部に相対すべくパターン化し造
りあげたるCOF6にACF5を仮圧着した。この時用
いたACFに介在する導電材は、中心粒子径10ミクロ
ンであり、表面に金めっきが施されたスチレン樹脂ボー
ルを用いた。
ACF5 was preliminarily pressure-bonded to COF6, which was patterned and formed to face the terminal portion. The conductive material interposed in the ACF used at this time was a styrene resin ball having a center particle diameter of 10 μm and a gold plating on the surface.

【0037】また、異径粒子径13ミクロン及び5ミク
ロンのニッケル金属粒子を各々が中心径粒子の分散量に
対し15%、及び10%の割合で増量し、これらを混合
分散せしめた。続いてガラス基板1上の電極端子2とC
OF6の電極端子7とをアライメントし仮圧着した。さ
らに加熱温度250℃のツールを用いて20秒間圧着し
た。
Further, nickel metal particles having different diameters of 13 μm and 5 μm were respectively increased in proportions of 15% and 10% with respect to the dispersion amount of the center diameter particles, and these were mixed and dispersed. Subsequently, the electrode terminals 2 on the glass substrate 1 and C
The electrode terminal 7 of the OF 6 was aligned and temporarily press-bonded. Furthermore, it crimped for 20 seconds using the tool of 250 degreeC of heating temperature.

【0038】上述のような構成により、圧着接続した端
子はスチレン樹脂による弾性と、ニッケル金属のもつ硬
さにより抵抗の少ない接続の液晶装置を供給出来た。
With the above-described configuration, a liquid crystal device having a low resistance can be supplied due to the elasticity of the styrene resin and the hardness of the nickel metal for the crimp-connected terminals.

【0039】(実施例4)第4の実施例は図7〜図9に
基づいて説明する。
(Embodiment 4) A fourth embodiment will be described with reference to FIGS.

【0040】ガラス基板1にパターニング処理により1
800Åの厚さで、60ミクロンの幅をもつクロム電極
2を設け、さらに端子電極の周囲にITO3を400Å
の厚さに配置した。また駆動用ICを搭載すべく配線し
たフレキシブル基板6の端子ピッチを120ミクロンと
してガラス基板上の端子電極に相対するように造りあげ
た。
The glass substrate 1 is patterned by a patterning process.
A chromium electrode 2 having a thickness of 800 mm and a width of 60 μm is provided, and ITO 3 is coated with 400 mm around the terminal electrode.
It was arranged at the thickness of. Also, the terminal pitch of the flexible substrate 6 wired to mount the driving IC was set to 120 μm so as to face the terminal electrode on the glass substrate.

【0041】かかるCOF6にACF5を仮圧着した。
この時用いたACF5に分散している導電材は中心粒子
径10ミクロンであり、表面にニッケル、もしくは/及
び金とニッケルの合金の積層めっき、が施されたスチレ
ンボールを用いた。また異径粒子径8ミクロン及び14
ミクロンのカーボンを各々の分散量がスチレンボールの
分散量の30%増量させ混合分散せしめた。
ACF5 was temporarily bonded to the COF6.
The conductive material dispersed in the ACF 5 used at this time was a styrene ball having a center particle diameter of 10 μm and having a surface plated with nickel or / and an alloy of gold and nickel. In addition, different diameters of 8 microns and 14
Micron carbon was mixed and dispersed by increasing the dispersion amount of each by 30% of the dispersion amount of the styrene ball.

【0042】続いてガラス基板1上の電極端子2とCO
F6の電極端子7とをアライメントし仮圧着した。さら
に加熱温度270℃のツールを用いて25秒間圧着し
た。
Subsequently, the electrode terminal 2 on the glass substrate 1 and CO
The electrode terminal 7 of F6 was aligned and pre-bonded. Further, pressure bonding was performed for 25 seconds using a tool having a heating temperature of 270 ° C.

【0043】上述のような構成により圧着接続した電極
端子はスチレン樹脂による弾性とニッケル金属のもつ硬
さにより、抵抗の少ない、かつ平坦性に優れた接続状態
の液晶装置を供給することができた。
The electrode terminals crimped and connected by the above-described structure can provide a liquid crystal device in a connected state with low resistance and excellent flatness due to the elasticity of styrene resin and the hardness of nickel metal. .

【0044】(実施例5)図10は液晶装置の第5実施
例の要部を示す図である。図11は、図10における仮
圧着状態を示す図である。図12は、図11の接続完了
図である。図13は図12の上視図である。
(Embodiment 5) FIG. 10 is a view showing a main part of a fifth embodiment of the liquid crystal device. FIG. 11 is a diagram showing a temporary pressure bonding state in FIG. FIG. 12 is a diagram showing the connection completion of FIG. FIG. 13 is a top view of FIG.

【0045】液晶パネルの素子基板より引き出されたI
TOによる配線パターンから続く電極端子2を端子幅5
0ミクロン、スペース50ミクロンの設定とし、100
ミクロンピッチで金属クロムにより1600Åの厚さに
形成した。さらに、ガラス基板1と金属クロムとの密着
を向上させ補うために端子の周囲にITO3を400Å
の厚さに配置した。さらに狭ピッチによる信号のリー
ク、ショートを防止するために絶縁層4をITO層3の
外側に配した。
I drawn from the element substrate of the liquid crystal panel
The electrode terminal 2 continuing from the wiring pattern by TO has a terminal width of 5
0 micron, space 50 micron, 100
It was formed to a thickness of 1600 ° by chromium metal at a micron pitch. Furthermore, in order to improve and supplement the adhesion between the glass substrate 1 and the metal chromium, ITO3 is applied around the terminals at 400 mm.
It was arranged at the thickness of. Further, the insulating layer 4 is disposed outside the ITO layer 3 in order to prevent signal leakage and short circuit due to a narrow pitch.

【0046】また、駆動用ICを搭載すべく配線したフ
レキシブル基板6の端子ピッチを100ミクロンとして
補正処理をしてCOFを造りあげた。
Further, a COF was produced by performing a correction process with the terminal pitch of the flexible substrate 6 wired for mounting the driving IC set to 100 μm.

【0047】かかるCOF6に異径粒子を混合分散させ
たるACF5を仮圧着せしめた。この時用いたACF5
には、スチレン樹脂5ミクロンボールに金めっきを施こ
した導電材を中心径粒子とし、異径粒子にはスチレン樹
脂7ミクロン及び3ミクロンボールを中心径粒子に対し
各々20%増量した量と、15%増量した量とを加え混
合分散させた。
ACF5 in which particles of different diameters were mixed and dispersed in the COF6 was temporarily compressed. ACF5 used at this time
The conductive material obtained by applying gold plating to a styrene resin 5 micron ball is used as the central diameter particles, and the styrene resin 7 micron and 3 micron balls are increased by 20% with respect to the central diameter particles to the different diameter particles, respectively. The mixture was mixed and dispersed with an amount increased by 15%.

【0048】次に前記ガラス基板1上の電極端子2を清
浄に保ち、COF6の電極端子7とを位置合わせを行い
仮圧着した。仮圧着に際しては、USC発振器を用いて
超音波11を発振させ、この発振波による振動を利用す
ることにより電極端子間の狭ギャップ部分に挟まれてい
る大径粒子を広ギャップ部分もしくは端子外へ移動さ
せ、ギャップの平坦性を確保した。続いて熱圧着機によ
り、圧着ツール温度265℃において20秒間圧着し
た。
Next, the electrode terminals 2 on the glass substrate 1 were kept clean, and the electrode terminals 7 of the COF 6 were aligned and preliminarily pressed. At the time of temporary compression bonding, the ultrasonic waves 11 are oscillated using a USC oscillator, and the large-diameter particles sandwiched between the narrow gaps between the electrode terminals are moved out of the wide gaps or out of the terminals by using the vibration caused by the oscillation waves. The gap was moved to ensure the flatness of the gap. Subsequently, compression bonding was performed for 20 seconds at a bonding tool temperature of 265 ° C. using a thermocompression bonding machine.

【0049】上述のような構成によれば、圧着平坦性に
優れ、長期信頼性の高い液晶装置の供給が可能となっ
た。
According to the above configuration, it is possible to supply a liquid crystal device which is excellent in flatness in pressure bonding and has high long-term reliability.

【0050】[0050]

【発明の効果】本発明は、以上のような構成とすること
により、電極端子同士を確実に接続させることができ
る。
According to the present invention having the above-described structure, the electrode terminals can be reliably connected to each other.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施例を示す主要断面図。FIG. 1 is a main cross-sectional view showing a first embodiment of the present invention.

【図2】 図1における接続完了図。FIG. 2 is a diagram showing connection completion in FIG. 1;

【図3】 図2の上視図。FIG. 3 is a top view of FIG. 2;

【図4】 本発明の第2の実施例を示す主要断面図。FIG. 4 is a main sectional view showing a second embodiment of the present invention.

【図5】 図4における接続完了図。FIG. 5 is a diagram showing connection completion in FIG. 4;

【図6】 図5の上視図。FIG. 6 is a top view of FIG. 5;

【図7】 本発明の第3及び第4の実施例を示す主要断
面図。
FIG. 7 is a main sectional view showing third and fourth embodiments of the present invention.

【図8】 図7における接続完了図。FIG. 8 is a diagram showing the connection completion in FIG. 7;

【図9】 図8の上視図。9 is a top view of FIG.

【図10】 本発明の第5の実施例を示す主要断面図。FIG. 10 is a main sectional view showing a fifth embodiment of the present invention.

【図11】 図10における仮圧着状態を示す図。FIG. 11 is a diagram showing a provisional pressure bonding state in FIG. 10;

【図12】 図11における接続完了図。FIG. 12 is a diagram showing the connection completion in FIG. 11;

【図13】 図12の上視図。FIG. 13 is a top view of FIG. 12;

【図14】 従来の液晶パネルの接続方法を示す断面
図。
FIG. 14 is a cross-sectional view illustrating a conventional liquid crystal panel connection method.

【図15】 図14における異方性導電接着膜の接続方
法を説明するための断面図。
FIG. 15 is a sectional view for explaining a method of connecting the anisotropic conductive adhesive film in FIG. 14;

【図16】 図14における接続完了図。FIG. 16 is a diagram showing the connection completion in FIG. 14;

【図17】 複雑化した端子構造図。FIG. 17 is a complicated terminal structure diagram.

【符号の説明】[Explanation of symbols]

1. ガラス基板 2. 電極端子 3. ITO 4. パシベーション 5. 異方性導電接着膜(ACF) 6. フレキシブル基板(COF) 7. 電極端子 8. 導電粒子 9. 導電粒子 10. 導電粒子 11. ガラス基板 12. ITO配線端子 13. 駆動用IC 14. フレキシブル基板 15. 異方性導電接着膜(ACF) 21. 超音波 22. 加圧力 1. Glass substrate 2. 2. Electrode terminal ITO 4. Passivation 5. 5. Anisotropic conductive adhesive film (ACF) 6. Flexible board (COF) Electrode terminal 8. Conductive particles 9. Conductive particles 10. Conductive particles 11. Glass substrate 12. ITO wiring terminal 13. Drive IC 14. Flexible substrate 15. Anisotropic conductive adhesive film (ACF) 21. Ultrasound 22. Pressing force

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】液晶パネルと該液晶パネルを駆動するため
の駆動用ICを装着した基板とを有する液晶装置におい
て、前記液晶パネルの一方の基板に形成された第1の電
極端子と、駆動用ICを装着したフレキシブル基板に形
成された第2の電極端子とを異方性導電接着膜により接
続してなり、該異方性導電接着膜には少なくとも第1の
導電粒子と該第1の導電粒子とは粒径の異なる第2の導
電粒子とが混合されてなることを特徴とする液晶装置。
1. A liquid crystal device having a liquid crystal panel and a substrate on which a driving IC for driving the liquid crystal panel is mounted, a first electrode terminal formed on one substrate of the liquid crystal panel, A second electrode terminal formed on a flexible substrate on which an IC is mounted is connected by an anisotropic conductive adhesive film, wherein the anisotropic conductive adhesive film has at least a first conductive particle and the first conductive particle. A liquid crystal device comprising a mixture of particles and second conductive particles having different particle diameters.
【請求項2】前記異方性導電接着膜中に前記第1の導電
粒子とは異なる粒径を有する複数の粒子が混合されてな
り、前記複数の粒子は前記第1の導電粒子の粒径に対し
て±5%〜60%の粒径を有することを特徴とする請求
項1記載の液晶装置。
2. The method according to claim 1, wherein a plurality of particles having a particle size different from that of the first conductive particles are mixed in the anisotropic conductive adhesive film, and the plurality of particles have a particle size of the first conductive particles. 2. The liquid crystal device according to claim 1, wherein the liquid crystal device has a particle size of ± 5% to 60% with respect to.
【請求項3】 前記第1の導電粒子に対して、前記複数
の粒子を5%〜40%の割合で増量させ、前記異方性導
電接着膜内に分散させてなることを特徴とする請求項1
記載の液晶装置。
3. The method according to claim 1, wherein the plurality of particles are increased in an amount of 5% to 40% with respect to the first conductive particles and dispersed in the anisotropic conductive adhesive film. Item 1
The liquid crystal device according to the above.
【請求項4】 前記第1の導電粒子とは異なる材料によ
り前記複数の粒子が形成されてなることを特徴とする請
求項1記載の液晶装置。
4. The liquid crystal device according to claim 1, wherein the plurality of particles are formed of a material different from the first conductive particles.
【請求項5】 前記異方性導電接着膜中の粒子は、表面
にニッケル、金合金等によりめっき処理されたスチレン
ボール、またはニッケル粒子、カーボン粒子により構成
され、異なる材料によって形成された導電粒子が前記異
方性導電接着膜内に混合されてなることを特徴とする請
求項1記載の液晶装置。
5. The particles in the anisotropic conductive adhesive film are composed of styrene balls plated on the surface with nickel, a gold alloy or the like, or nickel particles or carbon particles, and conductive particles formed of different materials. 2. The liquid crystal device according to claim 1, wherein said liquid crystal is mixed in said anisotropic conductive adhesive film.
【請求項6】 前記異方性導電接着膜により、前記液晶
パネルに形成された第1の電極端子と、フレキシブル基
板に形成された第2の電極端子とを接続する液晶装置の
製造方法において、第1の電極端子と第2の電極端子と
を超音波により仮圧着する工程、第1の電極端子と第2
の電極端子とを加圧する工程、とを有することを特徴と
する液晶装置の製造方法。
6. A method of manufacturing a liquid crystal device, wherein a first electrode terminal formed on the liquid crystal panel and a second electrode terminal formed on a flexible substrate are connected by the anisotropic conductive adhesive film. A step of temporarily crimping the first electrode terminal and the second electrode terminal by ultrasonic waves;
Pressurizing the electrode terminals of the liquid crystal device.
JP15405997A 1997-06-11 1997-06-11 Liquid crystal device and its manufacture Withdrawn JPH112830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15405997A JPH112830A (en) 1997-06-11 1997-06-11 Liquid crystal device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15405997A JPH112830A (en) 1997-06-11 1997-06-11 Liquid crystal device and its manufacture

Publications (1)

Publication Number Publication Date
JPH112830A true JPH112830A (en) 1999-01-06

Family

ID=15576017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15405997A Withdrawn JPH112830A (en) 1997-06-11 1997-06-11 Liquid crystal device and its manufacture

Country Status (1)

Country Link
JP (1) JPH112830A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186708A (en) * 2008-02-06 2009-08-20 Seiko Epson Corp Method of manufacturing electro-optical device and electro-optical device
JP2012256050A (en) * 1999-07-22 2012-12-27 Semiconductor Energy Lab Co Ltd Contact structure
WO2013047334A1 (en) * 2011-09-30 2013-04-04 シャープ株式会社 Electronic component and electronic device provided with same
CN109037998A (en) * 2018-08-08 2018-12-18 武汉华星光电半导体显示技术有限公司 Electrical connection module and display device, electrically connected method
US10222667B2 (en) 2004-06-23 2019-03-05 Samsung Display Co., Ltd. Display apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256050A (en) * 1999-07-22 2012-12-27 Semiconductor Energy Lab Co Ltd Contact structure
JP2013243372A (en) * 1999-07-22 2013-12-05 Semiconductor Energy Lab Co Ltd Contact structure
US8624253B2 (en) 1999-07-22 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Contact structure and semiconductor device
US10222667B2 (en) 2004-06-23 2019-03-05 Samsung Display Co., Ltd. Display apparatus
JP2009186708A (en) * 2008-02-06 2009-08-20 Seiko Epson Corp Method of manufacturing electro-optical device and electro-optical device
WO2013047334A1 (en) * 2011-09-30 2013-04-04 シャープ株式会社 Electronic component and electronic device provided with same
CN109037998A (en) * 2018-08-08 2018-12-18 武汉华星光电半导体显示技术有限公司 Electrical connection module and display device, electrically connected method

Similar Documents

Publication Publication Date Title
KR100456064B1 (en) Anisotropic conductive film for ultra-fine pitch COG application
JP3415845B2 (en) Electrical connection structure and electrical connection method thereof
JP3910527B2 (en) Liquid crystal display device and manufacturing method thereof
KR100622170B1 (en) Method of mounting electronic component, structure for mounting electronic component, electronic component module, and electronic apparatus
JP3516379B2 (en) Anisotropic conductive film
JPH09293751A (en) Tape carrier package and connection method
JP4575845B2 (en) Wiring connection structure and liquid crystal display device
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
JPH112830A (en) Liquid crystal device and its manufacture
JP2004212587A (en) Liquid crystal display panel and mounting method of flexible board used for liquid crystal display panel
JP2007027712A (en) Adhering method and manufacturing method of liquid crystal device
JPH10199930A (en) Connection structure of electronic components and connecting method therefor
JP3876993B2 (en) Adhesive structure, liquid crystal device, and electronic device
JP2004134653A (en) Substrate connecting structure and fabricating process of electronic parts therewith
JPH0775177B2 (en) Junction structure
JP3447569B2 (en) Anisotropic conductive film and electrode connection structure using the same
JP3256659B2 (en) Anisotropic conductive thin film and method for connecting polymer substrate using the anisotropic conductive thin film
JP2002217239A (en) Anisotropic conductive film
JP2004071857A (en) Structure of substrate connection part, electronic component having the structure and liquid crystal display device
JP2979151B2 (en) How to connect electronic components
JP3665467B2 (en) Display device and method for manufacturing display device
JP2805948B2 (en) Connection structure of IC chip
JPH05174618A (en) Binder for conduction and conductive connection structure
JPS63299242A (en) Connection of semiconductor device
KR20010094570A (en) low contact resistance chip bonding method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907