JP2002075580A - Manufacturing method for anisotropic conductive film - Google Patents

Manufacturing method for anisotropic conductive film

Info

Publication number
JP2002075580A
JP2002075580A JP2000267374A JP2000267374A JP2002075580A JP 2002075580 A JP2002075580 A JP 2002075580A JP 2000267374 A JP2000267374 A JP 2000267374A JP 2000267374 A JP2000267374 A JP 2000267374A JP 2002075580 A JP2002075580 A JP 2002075580A
Authority
JP
Japan
Prior art keywords
conductive particles
substrate
film
adhesive
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000267374A
Other languages
Japanese (ja)
Other versions
JP2002075580A5 (en
Inventor
Masahiko Tateno
舘野  晶彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2000267374A priority Critical patent/JP2002075580A/en
Publication of JP2002075580A publication Critical patent/JP2002075580A/en
Publication of JP2002075580A5 publication Critical patent/JP2002075580A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for an anisotropic conductive film allowing electrode connection with excellent connection reliability and insulating characteristics even when a circuit connection pitch is very fine. SOLUTION: This manufacturing method for the anisotropic conductive film having conductive particles arranged only in a specific area includes a process for forming the area, which is used for concentrating the conductive particles, on a base material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種電子部品の電
極同士の接続に用いられる異方導電フィルムの製造方法
に関する。
The present invention relates to a method for manufacturing an anisotropic conductive film used for connecting electrodes of various electronic components.

【0002】[0002]

【従来の技術】厚み方向にのみ導電性を有し、厚み方向
と交叉する方向には電気的に絶縁されている薄いフィル
ムは異方導電フィルム(ACF;Anisotropi
c Conductive film)と呼ばれ、電気
回路素子の相互接続に用いられている。例えば、液晶表
示パネルへのドライバーICの実装方法はテープキャリ
アパッケージ(TCP;Tape carrier P
ackage)を異方導電フィルムで接続するTBA
(Tape Automated Bonding)工
法が実用化されている。また、ICを直接ガラス基板上
に接続するCOG(Chip On Glass)にお
いても、その接続に異方導電フィルムが用いられてい
る。
2. Description of the Related Art A thin film having conductivity only in a thickness direction and electrically insulated in a direction crossing the thickness direction is an anisotropic conductive film (ACF; Anisotropi).
c Conductive film), which is used for interconnecting electric circuit elements. For example, a method of mounting a driver IC on a liquid crystal display panel is a tape carrier package (TCP; Tape carrier P).
TBA for connecting the package) with an anisotropic conductive film
(Tape Automated Bonding) method has been put to practical use. Also, in COG (Chip On Glass) for connecting an IC directly to a glass substrate, an anisotropic conductive film is used for the connection.

【0003】異方導電フィルムは液晶表示装置の透明電
極として用いられているITO(Indum−Tin−
Oxide)等、はんだ付けできない電極の接続に適し
ている。また、はんだ付けや導電性接着剤による方法は
導電回路部のみに限定して接続部材を形成しなければな
らないが、異方導電フィルムは必要箇所のみの導電が得
られるため、高密度、高精細化の進む微細回路接続に適
している。
An anisotropic conductive film is made of ITO (Indum-Tin-) which is used as a transparent electrode of a liquid crystal display device.
Oxide) is suitable for connection of electrodes that cannot be soldered. In addition, the soldering or the method using a conductive adhesive must form the connection member only in the conductive circuit portion. However, since the anisotropic conductive film can obtain conductivity only in the necessary portions, the density is high and the definition is high. It is suitable for fine circuit connection that is becoming more and more advanced.

【0004】特開昭61─78069号公報等に開示さ
れているとおり、異方導電フィルムは絶縁性の接着剤中
に導電粒子が均一に分散したもので、IC電極と基板電
極とで位置合わせを行い、異方導電フィルムを圧着する
ことにより異方導電フィルム中の導電粒子が圧接されて
重なり合う電極間だけが電気的に接続される。
As disclosed in Japanese Patent Application Laid-Open No. 61-78069 and the like, an anisotropic conductive film is a film in which conductive particles are uniformly dispersed in an insulating adhesive, and is positioned between an IC electrode and a substrate electrode. Then, the conductive particles in the anisotropic conductive film are pressed against each other by pressing the anisotropic conductive film, so that only the overlapping electrodes are electrically connected.

【0005】このような異方導電フィルムにおいて、導
電粒子としては金属微粒子や表面が金属で覆われた樹脂
微粒子等が用いられており、接着剤としては熱硬化型エ
ポキシ樹脂等が用いられている。
In such an anisotropic conductive film, metal fine particles or resin fine particles whose surface is covered with metal are used as conductive particles, and a thermosetting epoxy resin or the like is used as an adhesive. .

【0006】近年の回路接続ピッチは微細化が進み、従
来の異方導電フィルムでは横導通の問題が生じてきた。
異方導電フィルムが圧着されると、導電粒子は電極外に
流出し、その結果、隣接電極間に高密度に導電粒子が存
在することになり、電極間の絶縁性が不充分になった
り、リークやショートを発生する等、絶縁性の保持に問
題が生じる。図2にこの様子を示した。
[0006] In recent years, the circuit connection pitch has been miniaturized, and a problem of lateral conduction has occurred in the conventional anisotropic conductive film.
When the anisotropic conductive film is pressed, the conductive particles flow out of the electrodes, and as a result, the conductive particles exist at a high density between adjacent electrodes, or the insulation between the electrodes becomes insufficient, Problems such as leaks and short-circuits occur in maintaining insulation. FIG. 2 shows this state.

【0007】図2に示すように、異方導電フィルム4が
圧着されることにより導電粒子3は電極2外に流出し、
隣接電極間に高密度に存在することになる。その結果、
リークやショートが発生し、特に接続ピッチが微細化し
てくると顕著に発生頻度が高くなる。
As shown in FIG. 2, when the anisotropic conductive film 4 is pressed, the conductive particles 3 flow out of the electrode 2.
High density exists between adjacent electrodes. as a result,
Leaks and shorts occur, particularly when the connection pitch becomes finer.

【0008】横導通を防止するためには異方導電フィル
ム中の導電粒子の混入率を低下させることが考えられる
が、導電粒子の混入率を低下させると、導電粒子と電極
との接続面積が落ちるので、接続抵抗が高くなるという
問題がある。
In order to prevent lateral conduction, it is conceivable to reduce the mixing ratio of conductive particles in the anisotropic conductive film. However, when the mixing ratio of conductive particles is reduced, the connection area between the conductive particles and the electrodes is reduced. As a result, the connection resistance increases.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記に鑑
み、回路接続ピッチが微細であっても、接続信頼性と絶
縁性とに優れた電極接続が可能となる異方導電フィルム
の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention provides a method of manufacturing an anisotropic conductive film which enables electrode connection with excellent connection reliability and insulation even if the circuit connection pitch is fine. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】本発明は、導電粒子が特
定の領域にのみ配置されている異方導電フィルムの製造
方法であって、基材上に導電粒子を集中して配置するた
めの領域を形成する工程を有する異方導電フィルムの製
造方法である。以下に本発明を詳述する。
SUMMARY OF THE INVENTION The present invention relates to a method for producing an anisotropic conductive film in which conductive particles are arranged only in a specific region, and a method for arranging conductive particles in a concentrated manner on a substrate. It is a method of manufacturing an anisotropic conductive film including a step of forming a region. Hereinafter, the present invention will be described in detail.

【0011】本発明者は、電極間の絶縁性が不充分にな
ったり、リークやショートの原因となるのは圧着により
導電粒子が電極外に流出し、隣接電極間に高密度に存在
するためであるので、図1に示すように隣接電極間に導
電粒子3が高密度に存在しないようにすれば、圧着によ
り導電粒子3が電極2外に流出して、電極間の絶縁性が
不充分になったり、リークやショートすることもなくな
ることを見いだした。本発明は、この知見に基づいて鋭
意検討後完成されたものである。
The inventor of the present invention has found that the cause of insufficient insulation between electrodes or leakage or short-circuit is that conductive particles flow out of the electrodes due to pressure bonding and exist at high density between adjacent electrodes. Therefore, as shown in FIG. 1, if the conductive particles 3 do not exist at a high density between the adjacent electrodes, the conductive particles 3 flow out of the electrodes 2 by press bonding, and the insulation between the electrodes is insufficient. And no more leaks or shorts. The present invention has been completed after intensive studies based on this finding.

【0012】本発明の製造方法は、基材上に導電粒子を
集中して配置するための領域を形成する工程を有するこ
とを特徴とする。上記基材としては、例えば、粘着層を
有する基材、電極基板等が挙げられる。上記粘着層を有
する基材は、例えば、基材上に粘着性を有する材料を薄
く塗布することにより製造することができる。粘着性が
あると、導電粒子を散布した後、振動や次工程での外力
に対して導電粒子が移動することを防止することができ
る。
[0012] The production method of the present invention is characterized in that it has a step of forming a region for arranging conductive particles on the substrate in a concentrated manner. Examples of the substrate include a substrate having an adhesive layer, an electrode substrate, and the like. The substrate having the pressure-sensitive adhesive layer can be produced, for example, by applying a thin material having tackiness on the substrate. When the conductive particles are adhered, it is possible to prevent the conductive particles from moving due to vibration or an external force in the next step after the conductive particles are sprayed.

【0013】上記粘着性を有する材料としては、後に用
いる接着剤が粘着性を持つものであれば、その接着剤を
薄く塗布することにより、粘着性のある材料として用い
ることができ、また、接着剤が、溶剤等により希釈され
た場合、完全に乾燥する前であれば粘着性を示すもので
あるならば、同様に粘着性を有する材料として用いるこ
とができる。上記粘着性を有する材料は、後に用いる接
着剤と異なってもよく、更には、基材自体が粘着性を持
つものであれば、別途粘着性を有する材料を塗布する必
要はない。
If the adhesive used later has adhesiveness, the adhesive material can be used as a sticky material by applying the adhesive thinly. When the agent is diluted with a solvent or the like, if it shows tackiness before it is completely dried, it can be similarly used as a tacky material. The adhesive material may be different from the adhesive to be used later, and if the substrate itself has adhesiveness, it is not necessary to separately apply an adhesive material.

【0014】基材上に導電粒子を集中して配置するため
の領域を形成する方法としては、例えば、開口部を有す
るマスクを用いる方法、帯電している導電粒子に対して
静電的な引力又は斥力を作用させる方法等が挙げられ
る。上記開口部を有するマスクを用いる方法としては、
例えば、図3に示すように電極に対応する領域のみが開
口しているマスク5で基材7を覆い、電極に対応する領
域のみに導電粒子3を散布することができるようにす
る。上記マスクは基材に密着させてもよいし、基材から
離して設置してもよい。上記マスクとしては特に限定さ
れず、例えば、金属薄膜にフォトリソ等によりエッチン
グをして開口部を設けたものや、樹脂フィルムにレーザ
ー等で穴を開けたもの等が挙げられる。また、上記マス
クとして、スクリーンメッシュ等を用いてもよい。
As a method of forming a region for arranging conductive particles on the substrate in a concentrated manner, for example, a method using a mask having an opening, an electrostatic attraction to charged conductive particles, Alternatively, a method of applying a repulsive force may be used. As a method using a mask having the above-mentioned opening,
For example, as shown in FIG. 3, the base material 7 is covered with a mask 5 in which only the region corresponding to the electrode is open, so that the conductive particles 3 can be sprayed only in the region corresponding to the electrode. The mask may be in close contact with the substrate or may be provided separately from the substrate. The mask is not particularly limited, and examples thereof include a mask in which an opening is formed by etching a metal thin film with photolithography or the like, and a mask in which a hole is formed in a resin film with a laser or the like. Further, a screen mesh or the like may be used as the mask.

【0015】上記帯電している導電粒子に対して静電的
な引力又は斥力を作用させる方法としては、例えば、図
4に示すように、基材として電極基板を用い、その電極
2に電圧を印加する。その上から帯電した導電粒子3を
落下させると、例えば、導電粒子3の帯電が負帯電であ
る場合、電極2に正電圧を印加することにより、引力を
作用させて、導電粒子を電極基板の電極上に集中して配
置することができる。上記導電粒子は散布時に配管内壁
と衝突を繰り返すことにより帯電する。例えば、使用す
るガスにもよるが、SUS配管に対して金メッキした導
電粒子が衝突すると負に帯電となる。電極に印加する電
圧としては、500V〜5kV程度であるのが好まし
く、より好ましくは1.5〜2.5kVである。
As a method of applying electrostatic attraction or repulsion to the charged conductive particles, for example, as shown in FIG. 4, an electrode substrate is used as a base material, and a voltage is applied to the electrode 2. Apply. When the charged conductive particles 3 are dropped from above, for example, when the charging of the conductive particles 3 is negative, a positive voltage is applied to the electrode 2 to cause an attractive force to act, thereby causing the conductive particles 3 It can be arranged on the electrode in a concentrated manner. The conductive particles are charged by repeated collision with the inner wall of the pipe during spraying. For example, depending on the gas to be used, gold-plated conductive particles collide with the SUS pipe and become negatively charged. The voltage applied to the electrode is preferably about 500 V to 5 kV, more preferably 1.5 to 2.5 kV.

【0016】帯電している導電粒子に対して静電的な引
力又は斥力を作用させる方法としては、例えば、開口部
を有するマスクを導電体で形成し、そのマスク自体に導
電粒子の帯電と同極性の電圧を印加することにより、導
電粒子に斥力を作用させ、マスク外の領域に導電粒子を
集中して配置することができる。
As a method of applying electrostatic attraction or repulsion to charged conductive particles, for example, a mask having an opening is formed of a conductive material, and the mask itself is charged with the same charge as the conductive particles. By applying a polarity voltage, a repulsive force acts on the conductive particles, and the conductive particles can be concentrated and arranged in a region outside the mask.

【0017】異方導電フィルムを製造するには、基材上
に導電粒子を集中して配置するための領域を形成した
後、基材上に導電粒子を散布する。導電粒子を集中して
配置するための領域を形成した基材上に導電粒子を散布
することにより、基材上の特定の領域のみに集中して導
電粒子を配置することができる。
In order to manufacture an anisotropic conductive film, a region for arranging conductive particles in a concentrated manner is formed on a substrate, and then the conductive particles are sprayed on the substrate. By dispersing the conductive particles on the substrate on which the region for arranging the conductive particles is formed, the conductive particles can be disposed only in a specific region on the substrate.

【0018】導電粒子の散布方法としては、例えば、ス
プレーや振動を利用することにより、効率的に導電粒子
を散布することができる。粘着層を有する基材上に開口
部を有するマスクを設置した場合は、マスクを上記基材
上に設置した状態で、導電粒子を粘着層上に接触させ、
粘着力により開口部のみに付着させてもよく、導電粒子
の散布後、プレス等により導電粒子を開口部の粘着層へ
押し込んで固定しても良い。その後、マスクを除去する
ことにより、導電粒子が特定領域に密集した状態が得ら
れる。
As a method for dispersing the conductive particles, for example, spraying or vibration can be used to efficiently disperse the conductive particles. When a mask having an opening is installed on a substrate having an adhesive layer, in a state where the mask is installed on the substrate, the conductive particles are brought into contact with the adhesive layer,
The adhesive may be adhered only to the opening by adhesive force, or after the conductive particles are scattered, the conductive particles may be pressed into the adhesive layer of the opening by a press or the like and fixed. Thereafter, by removing the mask, a state in which the conductive particles are densely packed in the specific region can be obtained.

【0019】本発明の製造方法において、基材上に導電
粒子を散布した後、更に、異なる基材上に導電粒子を転
写してもよい。例えば、電極基板上等に導電粒子を散布
した後、導電粒子を粘着層を有する基材に転写してもよ
い。
In the production method of the present invention, after the conductive particles are sprayed on the substrate, the conductive particles may be further transferred onto a different substrate. For example, after the conductive particles are sprayed on an electrode substrate or the like, the conductive particles may be transferred to a substrate having an adhesive layer.

【0020】上記導電粒子を散布した後、導電粒子が付
着した基材上に接着剤を塗布する。導電粒子が付着した
基材上に、厚みを調節しながら接着剤層を形成すること
により導電粒子が特定の領域にのみ配置された異方導電
フィルムを得ることができる。得られた異方導電フィル
ムは、導電粒子の表面が異方導電フィルム上に露出して
いてもよい。
After the conductive particles are sprayed, an adhesive is applied on the substrate to which the conductive particles have adhered. An anisotropic conductive film in which conductive particles are arranged only in a specific region can be obtained by forming an adhesive layer on a substrate to which conductive particles are adhered while controlling the thickness. In the obtained anisotropic conductive film, the surface of the conductive particles may be exposed on the anisotropic conductive film.

【0021】得られた異方導電フィルムを電極上へ圧着
し、上記基材を剥離し、次いで、対向側に導通を得るべ
き電極を加熱圧着することにより、図1に示すように接
続部のみに導電粒子を配置することができる。加熱圧着
時に導電粒子が電極外に流れる場合があるが、その場合
は導電粒子の初期の配置状態をなるべく狭い状態にする
ことにより電極外への導電粒子の流出を少なくすること
ができる。
The obtained anisotropic conductive film is pressure-bonded onto the electrode, the base material is peeled off, and then the electrode to be connected is heated and pressure-bonded to the opposite side, so that only the connection portion is formed as shown in FIG. Conductive particles can be disposed on the surface of the substrate. In some cases, the conductive particles may flow out of the electrode during thermocompression bonding. In such a case, by setting the initial arrangement state of the conductive particles as narrow as possible, the outflow of the conductive particles to the outside of the electrode can be reduced.

【0022】上記基材として電極基板を用いる場合は、
電極基板上に直接粘着層を形成してから導電粒子の散布
を行い、更に、その上に接着層を形成して電極基板上か
ら導電粒子ごと剥離しても良い。
When an electrode substrate is used as the substrate,
The adhesive layer may be formed directly on the electrode substrate, and then the conductive particles may be sprayed. Further, an adhesive layer may be formed thereon and the conductive particles may be peeled off from the electrode substrate.

【0023】上記導電粒子が配置されている領域は必ず
しも電極位置と一致していなくとも良く、電極間隔が広
い場合等は、電極間に導電粒子が存在していても、電極
間に存在する導電粒子と電極上に存在する導電粒子とが
接しなければ、リーク等は起こらないので、問題とはな
らない。
The region where the conductive particles are arranged does not necessarily have to coincide with the electrode position. For example, when the distance between the electrodes is large, even if the conductive particles exist between the electrodes, the conductive particles existing between the electrodes may be used. If the particles and the conductive particles existing on the electrode do not come into contact with each other, no leak or the like occurs, so that there is no problem.

【0024】本発明に用いられる導電粒子としては特に
限定されず、例えば、金属微粒子、合成樹脂微粒子に金
属を被覆したもの等が挙げられる。本発明に用いられる
接着剤としては特に限定されず、例えば、接着性シート
等に用いられる熱可塑性材料や、熱や光により硬化性を
示す材料等が挙げられる。なかでも、接続後の耐熱性や
耐湿性に優れることから、硬化性材料が好ましい。特に
エポキシ系接着剤として用いられる材料は短時間で硬化
し、接着性に優れる等の点から好適に用いられる。
The conductive particles used in the present invention are not particularly limited, and examples thereof include metal fine particles and synthetic resin fine particles coated with metal. The adhesive used in the present invention is not particularly limited, and examples thereof include a thermoplastic material used for an adhesive sheet or the like, and a material that is curable by heat or light. Above all, a curable material is preferable because of its excellent heat resistance and moisture resistance after connection. Particularly, a material used as an epoxy-based adhesive is preferably used because it cures in a short time and has excellent adhesiveness.

【0025】本発明の製造方法によれば、導電粒子が電
極上に集中して存在する異方導電フィルムを得ることが
できるので、微細ピッチの電極接続においても、隣接電
極間でリーク等のない電極接続を行うことができる。
According to the production method of the present invention, it is possible to obtain an anisotropic conductive film in which conductive particles are concentrated on the electrodes, so that there is no leak or the like between adjacent electrodes even in electrode connection at a fine pitch. Electrode connections can be made.

【0026】[0026]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0027】(実施例1)マスクとして30μm厚のA
lに直径30μmの開口部が30μm間隔で一面に形成
してあるものを準備した。ポリプロピレンフィルム上に
エポキシ系接着剤を薄く塗布し、上記マスクを張り付け
た。貼りつけたマスク上に導電粒子としてミクロパール
AU、5μm(積水化学工業社製)を適量乗せ、振動装
置により振動を与えた。その後、マスクを剥がしたとこ
ろ、導電粒子はマスク開口部に相当する位置のみに存在
していた。続いてエポキシ系接着剤を塗布し、接着性フ
ィルムとした。
(Example 1) A having a thickness of 30 μm was used as a mask.
1 was prepared in which openings having a diameter of 30 μm were formed on one surface at intervals of 30 μm. An epoxy-based adhesive was thinly applied on a polypropylene film, and the above mask was attached. A suitable amount of micropearl AU, 5 μm (manufactured by Sekisui Chemical Co., Ltd.) as conductive particles was placed on the attached mask, and vibration was applied by a vibration device. Thereafter, when the mask was peeled off, the conductive particles were present only at positions corresponding to the mask openings. Subsequently, an epoxy adhesive was applied to form an adhesive film.

【0028】得られた接着性フィルムをライン幅30μ
m、スペース30μmのストライプ状のITOパターン
/ガラス基板上に導電粒子の位置がITO上になるよう
に圧着させ、ポリプロピレンフィルムを剥離し、接着性
フィルムを挟んで対向側に同様のITOパターン/ガラ
ス基板を載置し、ITOパターンで位置合わせを行い、
加熱圧着によりそれぞれ上下のITOパターン同士を接
着性フィルムを介して接続した。接続した上下のITO
接続抵抗を測定した結果、1Ω以下であった。一方、隣
接するITO同士の絶縁抵抗は1×1011Ω以上であっ
た。従って、得られた接着性フィルムは異方導電フィル
ムとして機能することが判った。
The obtained adhesive film was applied with a line width of 30 μm.
m, space 30 μm stripe-shaped ITO pattern / pressed on glass substrate so that conductive particles are positioned on ITO, peeled off polypropylene film, and sandwiched adhesive film with similar ITO pattern / glass on opposite side Place the substrate, align with the ITO pattern,
The upper and lower ITO patterns were connected to each other via an adhesive film by thermocompression bonding. Upper and lower connected ITO
As a result of measuring the connection resistance, it was 1Ω or less. On the other hand, the insulation resistance between adjacent ITOs was 1 × 10 11 Ω or more. Therefore, it was found that the obtained adhesive film functions as an anisotropic conductive film.

【0029】(実施例2)ITOパターン15μm、ス
ペース15μmのストライプパターンのITO/ガラス
基板を準備した。ポリプロピレンフィルム上に薄くエポ
キシ系の接着剤を塗布し、上記ITO/ガラス基板上に
密着させた。次いで、ITOパターンに−2.5kVの
電圧を印加した状態を保ち、導電粒子としてミクロパー
ルAU、5μm(積水化学工業社製)を所定量計量し、
圧縮空気を用いて、SUS配管を経由させてポリプロピ
レンフィルム上に散布した。その結果、ポリプロピレン
フィルム上のITOパターンのスペースに相当する位置
のみにほぼ一列状態で導電粒子が付着していた。そのフ
ィルム上にエポキシ系の接着剤を塗布し、接着性フィル
ムを得た。
(Example 2) An ITO / glass substrate having a stripe pattern of 15 μm in space and 15 μm in space was prepared. A thin epoxy-based adhesive was applied on a polypropylene film, and adhered to the ITO / glass substrate. Then, while maintaining a state where a voltage of −2.5 kV was applied to the ITO pattern, a predetermined amount of micropearl AU, 5 μm (manufactured by Sekisui Chemical Co., Ltd.) was measured as conductive particles,
Using compressed air, it was sprayed on a polypropylene film via a SUS pipe. As a result, the conductive particles adhered almost in a line only to the position corresponding to the space of the ITO pattern on the polypropylene film. An epoxy adhesive was applied on the film to obtain an adhesive film.

【0030】得られた接着性フィルムをライン幅15μ
m、スペース15μmのストライプ状のITOパターン
/ガラス基板上に導電粒子の位置がITOと一致するよ
うに圧着させ、ポリプロピレンフィルムを剥離し、接着
性フィルムを挟んで対向側に同様のITOパターン/ガ
ラス基板を載置し、ITOパターンで位置合わせを行
い、加熱圧着によりそれぞれ上下のITOパターン同士
を接着性フィルムを介して接続した。接続した上下のI
TO接続抵抗を測定した結果、1Ω以下であった。一
方、隣接するITO同士の絶縁抵抗は1×1011Ω以上
であった。従って、異方導電フィルムとして機能するこ
とが判った。
The obtained adhesive film was prepared with a line width of 15 μm.
m, space 15 μm stripe-shaped ITO pattern / Glass substrate, pressure-bonded so that the positions of the conductive particles coincide with ITO, peel off the polypropylene film, and sandwich the adhesive film with the same ITO pattern / glass on the opposite side. The substrate was placed, the alignment was performed using an ITO pattern, and the upper and lower ITO patterns were connected to each other via an adhesive film by heat compression. Upper and lower connected I
As a result of measuring the TO connection resistance, it was 1 Ω or less. On the other hand, the insulation resistance between adjacent ITOs was 1 × 10 11 Ω or more. Therefore, it was found that it functions as an anisotropic conductive film.

【0031】(実施例3)実施例2で用いたITOパタ
ーン/ガラス基板に−2kVの電圧を印加し、その状態
を保ち、導電粒子としてミクロパールAU、5μm(積
水化学工業社製)を所定量計量し、圧縮空気を用いて、
SUS配管を経由させてITOパターン/ガラス基板上
に直接散布した。その結果、ITOパターンのスペース
にのみほぼ一列状態で導電粒子が配置していた。
(Example 3) A voltage of -2 kV was applied to the ITO pattern / glass substrate used in Example 2, and the state was maintained. Micropearl AU, 5 µm (manufactured by Sekisui Chemical Co., Ltd.) was used as conductive particles. Quantitative measurement, using compressed air,
It was sprayed directly onto the ITO pattern / glass substrate via a SUS pipe. As a result, the conductive particles were arranged almost in a line only in the space of the ITO pattern.

【0032】次いで、エポキシ系の接着剤が薄く塗布さ
れたポリプロピレンフィルムを接着剤面を導電粒子側に
向けて上記導電粒子が配置された基板に均一に一度貼り
付け、その後剥離を行った。その結果、導電粒子は接着
剤面に転写された。転写された導電粒子面にエポキシ系
の接着剤を塗布し、接着性フィルムを得た。
Next, a thin polypropylene film coated with an epoxy-based adhesive was uniformly and once adhered to the substrate on which the conductive particles were arranged, with the adhesive surface facing the conductive particles, and then peeled off. As a result, the conductive particles were transferred to the adhesive surface. An epoxy adhesive was applied to the surface of the transferred conductive particles to obtain an adhesive film.

【0033】得られた接着性フィルムをライン幅15μ
m、スペース15μmのストライプ状のITOパターン
/ガラス基板上に導電粒子の位置がITOの位置と一致
するように圧着させ、ポリプロピレンフィルムを剥離
し、接着性フィルムを挟んで対向側に同様のITOパタ
ーン/ガラス基板を載置し、ITOパターンで位置合わ
せを行い、加熱圧着によりそれぞれ上下のITOパター
ン同士を接着層を介して接続した。接続した上下のIT
O接続抵抗を測定した結果、1Ω以下であった。一方、
隣接するITO同士の絶縁抵抗は1×1011Ω以上であ
った。従って、上記接着性フィルムは異方導電フィルム
として機能することが判った。
The obtained adhesive film was coated with a line width of 15 μm.
m, space 15 μm stripe-shaped ITO pattern / pressed on glass substrate so that the position of conductive particles coincided with the position of ITO, peeled off the polypropylene film, and placed the same ITO pattern on the opposite side with an adhesive film in between / The glass substrate was placed, alignment was performed using an ITO pattern, and the upper and lower ITO patterns were connected to each other via an adhesive layer by heat compression. Upper and lower connected IT
As a result of measuring the O connection resistance, it was 1Ω or less. on the other hand,
The insulation resistance between adjacent ITOs was 1 × 10 11 Ω or more. Therefore, it was found that the adhesive film functions as an anisotropic conductive film.

【0034】(比較例1)エポキシ系接着剤を溶媒
(1,4−ジオキサン、メチルエチルケトン)で希釈
し、得られた溶液中に、導電粒子としてミクロパールA
U、5μm(積水化学工業社製)を15体積%になるよ
うに添加し、攪拌して溶液中に分散させた。その後、そ
の溶液をポリプロピレンフィルム上に塗布し、接着性フ
ィルムを得た。得られた接着性フィルムをライン幅15
μm、スペース15μmのストライプ状のITOパター
ン/ガラス基板上に接着させ、ポリプロピレンフィルム
を剥離し、接着層を挟んで対向側に同様のITOパター
ン/ガラス基板を載置し、ITOパターンで位置合わせ
を行い、加熱圧着によりそれぞれ上下のITOパターン
同士を接着性フィルムを介して接続した。実施例2と同
様にITOと接続して抵抗を測定したところ、上下、隣
接するITOとも1Ω以下の抵抗であった。従って、隣
接電極間でリークしていることが判った。
(Comparative Example 1) An epoxy adhesive was diluted with a solvent (1,4-dioxane, methyl ethyl ketone), and micropearl A was prepared as conductive particles in the obtained solution.
U, 5 μm (manufactured by Sekisui Chemical Co., Ltd.) was added to a concentration of 15% by volume, and the mixture was stirred and dispersed in the solution. Thereafter, the solution was applied on a polypropylene film to obtain an adhesive film. The obtained adhesive film was subjected to a line width of 15
μm, space 15μm stripe-patterned ITO pattern / glass substrate is adhered, the polypropylene film is peeled off, and the same ITO pattern / glass substrate is placed on the opposite side with the adhesive layer in between, and aligned with the ITO pattern. Then, the upper and lower ITO patterns were connected to each other via an adhesive film by heat compression. When the resistance was measured by connecting to ITO in the same manner as in Example 2, the upper and lower and adjacent ITO had a resistance of 1Ω or less. Therefore, it was found that a leak occurred between adjacent electrodes.

【0035】[0035]

【発明の効果】本発明は、上記の構成よりなるので、導
電粒子が特定の領域に集中し、微細ピッチの電極接続に
おいても、隣接電極間でリーク等のない電極接続が行え
る異方導電フィルムの製造が可能となる。
According to the present invention, since the conductive particles are concentrated in a specific region, the anisotropic conductive film can perform electrode connection without leakage between adjacent electrodes even in electrode connection at a fine pitch. Can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】隣接電極間に導電粒子が存在しないようすを示
す図である。
FIG. 1 is a view showing that conductive particles do not exist between adjacent electrodes.

【図2】異方導電フィルムが圧着され、導電粒子が電極
外に流出し、隣接電極間に高密度に導電粒子が存在する
ようすを示す図である。
FIG. 2 is a view showing that an anisotropic conductive film is pressed, conductive particles flow out of an electrode, and conductive particles exist between adjacent electrodes at a high density.

【図3】開口部を有するマスクを用いて、導電粒子の散
布を行うようすを示す図である。
FIG. 3 is a diagram showing how to spread conductive particles using a mask having openings.

【図4】負に帯電している導電粒子に対して、電極に正
の電圧を印可することにより静電的な引力を作用させ
て、導電粒子の散布を行うようすを示す図である。
FIG. 4 is a diagram showing that a positive voltage is applied to an electrode to apply negative voltage to conductive particles that are negatively charged, thereby causing the conductive particles to be dispersed.

【符号の説明】[Explanation of symbols]

1 基板 2 電極 3 導電粒子 4 異方導電フィルム 5 マスク 6 粘着層 7 基材 8 接着剤層 DESCRIPTION OF SYMBOLS 1 Substrate 2 Electrode 3 Conductive particle 4 Anisotropic conductive film 5 Mask 6 Adhesive layer 7 Base material 8 Adhesive layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導電粒子が特定の領域にのみ配置されて
いる異方導電フィルムの製造方法であって、基材上に導
電粒子を集中して配置するための領域を形成する工程を
有することを特徴とする異方導電フィルムの製造方法。
1. A method of manufacturing an anisotropic conductive film in which conductive particles are arranged only in a specific region, comprising a step of forming a region for arranging conductive particles on a substrate in a concentrated manner. A method for producing an anisotropic conductive film, comprising:
【請求項2】 更に、異なる基材上に導電粒子を転写す
る工程を有することを特徴とする請求項1記載の異方導
電フィルムの製造方法。
2. The method for producing an anisotropic conductive film according to claim 1, further comprising the step of transferring conductive particles onto different substrates.
【請求項3】 基材上に導電粒子を集中して配置するた
めの領域を形成する工程は、開口部を有するマスクを用
いることにより行うことを特徴とする請求項1又は2記
載の異方導電フィルムの製造方法。
3. The anisotropic method according to claim 1, wherein the step of forming a region for arranging the conductive particles on the substrate in a concentrated manner is performed by using a mask having an opening. A method for manufacturing a conductive film.
【請求項4】 基材上に導電粒子を集中して配置するた
めの領域を形成する工程は、帯電している導電粒子に対
して静電的な引力又は斥力を作用させることにより行う
ことを特徴とする請求項1又は2記載の異方導電フィル
ムの製造方法。
4. The step of forming a region for arranging conductive particles in a concentrated manner on a substrate is performed by applying electrostatic attraction or repulsion to charged conductive particles. The method for producing an anisotropic conductive film according to claim 1 or 2, wherein:
JP2000267374A 2000-09-04 2000-09-04 Manufacturing method for anisotropic conductive film Pending JP2002075580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000267374A JP2002075580A (en) 2000-09-04 2000-09-04 Manufacturing method for anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000267374A JP2002075580A (en) 2000-09-04 2000-09-04 Manufacturing method for anisotropic conductive film

Publications (2)

Publication Number Publication Date
JP2002075580A true JP2002075580A (en) 2002-03-15
JP2002075580A5 JP2002075580A5 (en) 2007-06-07

Family

ID=18754314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000267374A Pending JP2002075580A (en) 2000-09-04 2000-09-04 Manufacturing method for anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP2002075580A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227730B2 (en) 2004-05-28 2007-06-05 Infineon Technolgoies Ag Device for ESD protection of an integrated circuit
JP2015025103A (en) * 2013-07-29 2015-02-05 デクセリアルズ株式会社 Manufacturing method of electric conductive adhesive film, electric conductive adhesive film, and manufacturing method of connection body
US9155207B2 (en) 2007-09-20 2015-10-06 Dexerials Corporation Method for producing an anisotropic conductive film
KR20160037161A (en) * 2013-07-29 2016-04-05 데쿠세리아루즈 가부시키가이샤 Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
CN108384475A (en) * 2013-07-29 2018-08-10 迪睿合株式会社 Electric conductivity adhesive film and its manufacturing method, the manufacturing method of connector
US20190090354A1 (en) * 2015-11-26 2019-03-21 Dexerials Corporation Anisotropic conductive film
KR20220048287A (en) * 2020-10-12 2022-04-19 조선대학교산학협력단 Anisotropic conductive film and apparatus for manufacturing anisotropic conductive film using electrohydrodynamic printing technology

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227730B2 (en) 2004-05-28 2007-06-05 Infineon Technolgoies Ag Device for ESD protection of an integrated circuit
US9155207B2 (en) 2007-09-20 2015-10-06 Dexerials Corporation Method for producing an anisotropic conductive film
KR101861451B1 (en) * 2013-07-29 2018-05-29 데쿠세리아루즈 가부시키가이샤 Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
US11139629B2 (en) 2013-07-29 2021-10-05 Dexerials Corporation Method for manufacturing electrically conductive adhesive film, electrically conductive adhesive film, and method for manufacturing connector
CN105358641A (en) * 2013-07-29 2016-02-24 迪睿合株式会社 Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
KR20160037161A (en) * 2013-07-29 2016-04-05 데쿠세리아루즈 가부시키가이샤 Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
US20160149366A1 (en) * 2013-07-29 2016-05-26 Dexerials Corporation Method for manufacturing electrically conductive adhesive film, electrically conductive adhesive film, and method for manufacturing connector
KR20180054935A (en) * 2013-07-29 2018-05-24 데쿠세리아루즈 가부시키가이샤 Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
JP2015025103A (en) * 2013-07-29 2015-02-05 デクセリアルズ株式会社 Manufacturing method of electric conductive adhesive film, electric conductive adhesive film, and manufacturing method of connection body
KR101883577B1 (en) * 2013-07-29 2018-07-30 데쿠세리아루즈 가부시키가이샤 Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
CN108384475A (en) * 2013-07-29 2018-08-10 迪睿合株式会社 Electric conductivity adhesive film and its manufacturing method, the manufacturing method of connector
CN109722174B (en) * 2013-07-29 2022-04-29 迪睿合株式会社 Method for producing conductive adhesive film, and method for producing connected body
CN109722174A (en) * 2013-07-29 2019-05-07 迪睿合株式会社 Manufacturing method, the manufacturing method of electric conductivity adhesive film, connector of electric conductivity adhesive film
KR101986470B1 (en) * 2013-07-29 2019-06-05 데쿠세리아루즈 가부시키가이샤 Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
WO2015016168A1 (en) * 2013-07-29 2015-02-05 デクセリアルズ株式会社 Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
US10827625B2 (en) * 2015-11-26 2020-11-03 Dexerials Corporation Anisotropic conductive film
US20190090354A1 (en) * 2015-11-26 2019-03-21 Dexerials Corporation Anisotropic conductive film
KR20220048287A (en) * 2020-10-12 2022-04-19 조선대학교산학협력단 Anisotropic conductive film and apparatus for manufacturing anisotropic conductive film using electrohydrodynamic printing technology
KR102461932B1 (en) * 2020-10-12 2022-10-31 조선대학교 산학협력단 Anisotropic conductive film and apparatus for manufacturing anisotropic conductive film using electrohydrodynamic printing technology

Similar Documents

Publication Publication Date Title
JP3035021B2 (en) Liquid crystal display device and method of manufacturing the same
US20040183182A1 (en) Apparatus incorporating small-feature-size and large-feature-size components and method for making same
JPH03131089A (en) Connecting method for circuit board
US4999460A (en) Conductive connecting structure
EP0385787B1 (en) Method of producing connection electrodes
WO1998038701A9 (en) Connecting structure, liquid crystal device, electronic equipment, anisotropic conductive adhesive, and method for manufacturing the adhesive
JP2005128528A (en) Interconnector, display device, and method for connecting the interconnector
JP2002075580A (en) Manufacturing method for anisotropic conductive film
US7466030B2 (en) Semiconductor device and fabrication process thereof
JPH0567480A (en) Anisotropic electrically conductive adhesive resin layer and manufacture thereof
JP2004202738A (en) Adhesive tape splicing method
JP2002075488A (en) Anisotropic electroconductive film and its manufacturing method
JPH0362411A (en) Manufacture of aeolotropic conductive film
JP2004335663A (en) Method for manufacturing different direction electric conduction film
JP2888466B2 (en) Manufacturing method of heat seal connector
JPH1013002A (en) Method for mounting semiconductor element
KR100766563B1 (en) Plasma display panel and method thereof
JPH0696620A (en) Anisotropic conductive material, method for connecting circuit using same, and electric circuit substrate
JPH1084178A (en) Arrangement method of minute substances and forming method of connection structure employing the arrangement method
JPH08320498A (en) Terminal connecting structure of liquid crystal display panel
JP2000174066A (en) Method of mounting semiconductor device
JPS63299242A (en) Connection of semiconductor device
JPH1065332A (en) Anistropic conductive thin film and method for connection of polymer board using the same
JPH11330154A (en) Flexible substrate, tape-carrier package using this and mounting method thereof
JPH1167826A (en) Mounting method of component

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081008