JPS63102110A - Anisotropic conductor and making thereof - Google Patents

Anisotropic conductor and making thereof

Info

Publication number
JPS63102110A
JPS63102110A JP24673686A JP24673686A JPS63102110A JP S63102110 A JPS63102110 A JP S63102110A JP 24673686 A JP24673686 A JP 24673686A JP 24673686 A JP24673686 A JP 24673686A JP S63102110 A JPS63102110 A JP S63102110A
Authority
JP
Japan
Prior art keywords
conductive particles
resin
conductive
anisotropic conductor
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24673686A
Other languages
Japanese (ja)
Inventor
裕紀 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP24673686A priority Critical patent/JPS63102110A/en
Publication of JPS63102110A publication Critical patent/JPS63102110A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers

Landscapes

  • Wire Bonding (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、加圧方向には導電性を示すが、その他の方
向には絶縁性を示す異方導電体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an anisotropic conductor that exhibits electrical conductivity in the direction of pressure but exhibits insulation in other directions.

〔従来の技術〕[Conventional technology]

従来よシ、加圧方向には導電性を示すがその他の方向に
は絶縁性を示す異方導電体ないし異方導電フィルムが提
案されている。(例えば特開昭60−193353号公
報、特開昭61−7687号公報1%公昭57−346
57号公報、特公昭6〇−140791号公報、特公昭
59−2179号公報参照)0例えば、ゴムフィルム中
に直径30μm前後の金属粒子を一様に分散せしめてな
る異方導電膜(例えば電子材料Vol、23.階7. 
 p69−73(1984)参照)がある。これは2例
えば第6図(a)に示すように、フレキシブルプリント
基板61の電極パターン62と、ガラス基板63上の電
極パターン64との間にこの異方導電膜65を挾み。
Conventionally, anisotropic conductors or anisotropic conductive films have been proposed that exhibit conductivity in the direction of pressure but insulate in other directions. (For example, JP-A-60-193353, JP-A-61-7687, 1% JP-A-57-346)
57, Japanese Patent Publication No. 60-140791, Japanese Patent Publication No. 59-2179) 0 For example, an anisotropic conductive film made by uniformly dispersing metal particles of around 30 μm in diameter in a rubber film (for example, Material Vol, 23. Floor 7.
p69-73 (1984)). For example, as shown in FIG. 6(a), this anisotropic conductive film 65 is sandwiched between an electrode pattern 62 on a flexible printed circuit board 61 and an electrode pattern 64 on a glass substrate 63.

約150℃の温度を加えながら圧着するだけで両電極パ
ターン間の接続が行なわれる。
Connection between both electrode patterns can be established simply by applying pressure to the electrodes at a temperature of approximately 150°C.

この異方導電膜中の金属粒子Mには、鉛−錫系(Pb 
−Sn )の低融点ノ・ンダが用いられておシ、約15
0℃に加熱されるとこの金属粒子が溶け、これと同時に
ゴムフィルムも溶ける0これによυ前記金属が両基板の
電極パターン上に広がってこれらの間の電気的接続が達
成される。
The metal particles M in this anisotropic conductive film include lead-tin (Pb
-Sn) low melting point powder is used, approximately 15
When heated to 0° C., the metal particles melt, and at the same time, the rubber film melts as well. This causes the metal to spread over the electrode patterns on both substrates and establish an electrical connection between them.

一方、加圧によって電極間から押し出されるゴムは、隣
接電極間にで、各電極の段差によってできる空間を埋め
る。その結果、第6図(b)に示す如くこの空間をうめ
るゴムの体積に対する金属粒子の充てん密度は下がシ、
電極パターン間の膜の厚さ方向には導電性を保ち、他の
方向には絶縁性を保つように接続が行なわれる。従って
、5本/■程度の密度に形成された電極パターン(ここ
では。
On the other hand, the rubber extruded from between the electrodes by pressure fills the space created by the difference in level between each electrode between adjacent electrodes. As a result, as shown in Figure 6(b), the packing density of metal particles relative to the volume of rubber filling this space is as follows:
Connections are made so that conductivity is maintained in the thickness direction of the film between the electrode patterns, and insulation is maintained in other directions. Therefore, the electrode pattern is formed at a density of about 5 electrodes/■ (in this case).

電極幅W、 = 100 pm )に対しては、良好な
分解能を示すことが報告されている0 〔発明が解決しようとする問題点〕 しかしながら、VLSI(超大規模集積回路)が多用さ
れてくると、このVLSIの接続にも。
It has been reported that good resolution is shown for electrode width W, = 100 pm) [Problems to be solved by the invention] However, as VLSI (Very Large Scale Integrated Circuits) are increasingly used, , also for this VLSI connection.

このような異方導電膜の使用が望まれてくるが。It is desired to use such an anisotropic conductive film.

VLSIにおいては高精細度の多接点電極(10本/m
以上)が用いられておシ、そのままでは使用不可能とな
る。例えば、20本/■の電極パターン(電極幅W2 
= 25μm)同志を接続する際には。
In VLSI, high-definition multi-contact electrodes (10 electrodes/m
If the above) is used, it becomes unusable as is. For example, 20/■ electrode pattern (electrode width W2
= 25μm) when connecting the same.

数μmオーダー以下の粒径の均一な導電性粒子が均一に
フィルムに分散されなければならないが。
Uniform conductive particles with a particle size on the order of several μm or less must be uniformly dispersed in the film.

第7図(a)に示すごとく粒子M同志の凝集や、第7図
(b)に示すような大径粒子の混入による隣接電極間の
ショートや、第7図(C)に示すような2粒子Mが存在
しないことKよる接続不良等の問題点が生ずること罠な
り、10本/■以上の高精細度の多接点電極をこのよう
な異方導電膜で接続することは困難であった。
As shown in FIG. 7(a), particles M may aggregate together, short-circuits between adjacent electrodes may occur due to the mixing of large-diameter particles as shown in FIG. 7(b), and short-circuits may occur between adjacent electrodes as shown in FIG. The absence of particles M causes problems such as connection failure due to K, and it is difficult to connect high-definition multi-contact electrodes of 10 or more electrodes with such an anisotropic conductive film. .

また、第8図(a) 、 (b)に示すように、所定0
粒径範囲以下の導電粒子が上下電極パッド81.82或
いは電極パターン間に多数存在するようにしたものの場
合は。
Moreover, as shown in FIGS. 8(a) and (b), a predetermined 0
In the case where a large number of conductive particles having a particle size within the range are present between the upper and lower electrode pads 81, 82 or between the electrode patterns.

(1)接続抵抗が増大する。(1) Connection resistance increases.

(2)点接触の連続のため、電流が点接触部分に集中し
9発熱により樹脂の変質や素子の破壊にまで至る。
(2) Because of the continuous point contact, current concentrates on the point contact portions, resulting in heat generation, leading to deterioration of the resin and destruction of the element.

(3)パッド間で、抵抗値、電流容量、静電容量等の電
気特性が均一にならない。
(3) Electrical characteristics such as resistance value, current capacity, and capacitance are not uniform between pads.

などの欠点を有し、電気接続材料としての信頼性に欠け
るという問題点を有している。
It has the following drawbacks, and has the problem of lacking reliability as an electrical connection material.

そこで、第8図(e)に示すようにボール状のスペーサ
83を入れて、上下電極パターン間の距離を一定となる
ようにするものが提案されたが、パターン当りの導電粒
子数がパラつく、上下電極に加えられる加圧力が導電粒
子に充分加わらなくなるので接続抵抗が増大する等の問
題点を有している。
Therefore, it has been proposed to insert a ball-shaped spacer 83 to keep the distance between the upper and lower electrode patterns constant, as shown in FIG. 8(e), but the number of conductive particles per pattern varies. However, since the pressurizing force applied to the upper and lower electrodes is not sufficiently applied to the conductive particles, there are problems such as an increase in connection resistance.

その外、第8図(C)に示すように、半田粒84を用い
たものも、加圧、加熱によって溶融84’L、。
In addition, as shown in FIG. 8(C), solder particles 84 are also melted by applying pressure and heating.

電極パターン間の平行度がくるうこと、それによって接
続抵抗値が均一にならないこと等、前記第8図(a) 
、 (b)のものと同様の問題点を有している。
As shown in Fig. 8(a), the parallelism between the electrode patterns may vary and the connection resistance may not be uniform due to this.
, has the same problem as (b).

半田粒84の外にスペーサ83を混入することも考えら
れるが、第8図(e)と同様の問題点をもつことは明ら
かである。
Although it is conceivable to mix the spacer 83 in addition to the solder grains 84, it is clear that this would have the same problems as in FIG. 8(e).

それに加え、半田を用いるものの場合、上下電極パター
ンの材料を選ぶか、あるいは何らかのブロッキング層を
形成しなければならないという新たな問題点も生ずる。
In addition, in the case of using solder, new problems arise in that materials for the upper and lower electrode patterns must be selected or some kind of blocking layer must be formed.

さらに、このような異方導電体を使用してICチップを
接続した場合、ICチップのエツジ部分でショートする
ことがあるという問題点がある。
Furthermore, when an IC chip is connected using such an anisotropic conductor, there is a problem that a short circuit may occur at the edge of the IC chip.

第8図(f)において、基板上の電極パターン82に対
し、ICチップ85のバッド86が対向するように配置
し9両者を従来の異方導電体87によって接続するもの
とする。ICチップ85は、拡大図に示すように2時と
してパリ85′を有するときがあシ、これが電極パター
ン82にショートする。
In FIG. 8(f), it is assumed that a pad 86 of an IC chip 85 is arranged to face an electrode pattern 82 on a substrate, and both are connected by a conventional anisotropic conductor 87. As shown in the enlarged view, the IC chip 85 sometimes has a contact 85', which short-circuits to the electrode pattern 82.

この問題点を回避するものとして、第8図(g)に示す
ようにスペーサ88を置くものが提案されたが、これで
は量産性に欠けること、信頼性に欠け。
In order to avoid this problem, it has been proposed to place a spacer 88 as shown in FIG. 8(g), but this method lacks mass productivity and lacks reliability.

歩留りを高くすることができないこと1等の新たな問題
点を生じていた。
New problems such as the inability to increase the yield have arisen.

この発明は、このような点に鑑みてなされたものであシ
、電極パターン間或いは電極パッド間の電気特性のバラ
ツキのない、また信頼性の高い。
The present invention has been made in view of the above points, and has high reliability without variations in electrical characteristics between electrode patterns or between electrode pads.

量産性の優れた。しかもスペーサを用いる必要のない異
方導電体を提供することを目的とする。
Excellent mass production. Moreover, it is an object of the present invention to provide an anisotropic conductor that does not require the use of spacers.

〔問題点を解決するための手段および作用〕この発明に
おいては、前記問題点を解決するため、導電粒子を絶縁
物によって電気的に絶縁して分散配置し、加圧方向に対
しては、電気的に接続するようにした異方導電体におい
て、前記導電粒子の直径を1.0〜100μmとし、か
つ特定の直径において粒子の粒径分布を±5%以内に収
めた球状粒子とすると共に、この導電粒子を単層に分散
配置せしめたことを特徴とする。
[Means and effects for solving the problem] In order to solve the above-mentioned problem, in the present invention, the conductive particles are electrically insulated and distributed with an insulator, and the electrical conductive particles are In the anisotropic conductor, the conductive particles have a diameter of 1.0 to 100 μm, and are spherical particles with a particle size distribution within ±5% at a specific diameter, It is characterized in that the conductive particles are dispersed and arranged in a single layer.

これによれば、目的とする分解能に応じて導電粒子の直
径をかえ、また必要とする接続抵抗に応じて導電粒子の
分散比を調整することによりそれぞれ目的とする特性の
電気接続を実現でき、しかもパッド当シの抵抗値が均一
な信頼性の高い電気接続を行なうことができる。
According to this, by changing the diameter of the conductive particles according to the desired resolution and adjusting the dispersion ratio of the conductive particles according to the required connection resistance, electrical connections with the desired characteristics can be realized. Furthermore, a highly reliable electrical connection with uniform resistance values of the pads can be achieved.

〔実施例〕〔Example〕

以下図面を参照して、この発明の詳細な説明する。第1
図はこの発明の1実施例の異方導電体の構造を示す。図
において、1は球状の導電粒子であシ、絶縁性樹脂2中
に夫々独立して、かつ一層として分散配置されている。
The present invention will be described in detail below with reference to the drawings. 1st
The figure shows the structure of an anisotropic conductor according to an embodiment of the present invention. In the figure, spherical conductive particles 1 are dispersed in an insulating resin 2, each independently and as a single layer.

球状の導電粒子1は、適度の硬度の導電性金属でも良い
が、この実施例では、第2図(b)に示すように、ジビ
ニルベンゼン樹脂からなる球形の芯物質11と、その表
面を被覆するニッケルメッキ層12からなる導電粒子が
用いられている。この球状導電粒子1をポリ−4−メチ
ルペンテン−1熱可塑性樹脂中に分散し、フィルム状と
している。
The spherical conductive particles 1 may be made of a conductive metal with appropriate hardness, but in this embodiment, as shown in FIG. Conductive particles consisting of a nickel plating layer 12 are used. The spherical conductive particles 1 are dispersed in a poly-4-methylpentene-1 thermoplastic resin to form a film.

導電粒子1が絶縁性樹脂2中に単層で分散されるために
、絶縁性樹脂2の厚さ!は、その時の導電粒子1の直径
Rの2倍以内とされている。
Since the conductive particles 1 are dispersed in a single layer in the insulating resin 2, the thickness of the insulating resin 2! is within twice the diameter R of the conductive particles 1 at that time.

第1の実施例の詳細は以下のとおシである。Details of the first embodiment are as follows.

芯物質11は、ジビニルベンゼンを懸濁重合した後1分
級により粒径10.0±0.2μm としたものを用い
た。この芯物質11の比重は1.19 、  耐熱性3
27℃(TGA)、硬度1239体積抵抗率3、6 X
 1014Ω・ロ、熱膨張率9.8 X 10−’aa
/aa @’Cであった。ニッケルメッキ層12は無電
解メッキ法により得、膜厚は約900人であった。
As the core material 11, divinylbenzene was suspension-polymerized and then classified for 1 time to give a particle size of 10.0±0.2 μm. The specific gravity of this core material 11 is 1.19, and the heat resistance is 3.
27℃ (TGA), hardness 1239 volume resistivity 3.6
1014Ω・Ro, coefficient of thermal expansion 9.8 x 10-'aa
/aa @'C. The nickel plating layer 12 was obtained by electroless plating and had a thickness of approximately 900 mm.

絶縁性樹脂2を構成するポリ−4−メチルペンテン−1
は体積抵抗率101@Ω・ロ以上、硬度60R1比重0
.83 、融点240℃、吸水率0.01%(ASTM
D 570 )である。
Poly-4-methylpentene-1 constituting insulating resin 2
Has a volume resistivity of 101@Ω・Ro or higher, a hardness of 60R1, and a specific gravity of 0.
.. 83, melting point 240℃, water absorption 0.01% (ASTM
D570).

フィルム形成方法としては、以下の2方法があげられる
。(1)ポリ−4−メチルペンテン−1を高比重溶媒(
例えばトリクロルエチレン、クロロホルムetc )に
所定量溶解し、加圧ろ過により0.2μm以上のゴミ、
不純物を除く。この溶液中に所定量の前記導電粒子を加
えホモジナイザーで高速攪拌2分散した。前記分散溶液
を所定のベースフィルム上に所定量塗布、乾燥し、所望
の膜厚のフィルムを形成する。
As the film forming method, there are the following two methods. (1) Poly-4-methylpentene-1 in a high specific gravity solvent (
For example, by dissolving a predetermined amount in trichlorethylene, chloroform, etc., and filtering under pressure, remove dust with a size of 0.2 μm or more.
Remove impurities. A predetermined amount of the conductive particles were added to this solution and dispersed with high speed stirring using a homogenizer. A predetermined amount of the dispersion solution is applied onto a predetermined base film and dried to form a film with a desired thickness.

(2)前記ポリ−4−メチルペンテン−1を250℃。(2) The poly-4-methylpentene-1 at 250°C.

Ni下で溶融し、所定量の前記導電粒子を加え、これを
攪拌分散した。この分散溶融液を所定のローラで圧延、
冷却して所望の膜厚のフィルムを作成する。
The mixture was melted under Ni, and a predetermined amount of the conductive particles were added thereto, followed by stirring and dispersion. This dispersed molten liquid is rolled with a predetermined roller,
Cool to create a film of desired thickness.

第5図は、この発明による異方導電体の導電粒子(10
μm)の添加量と分散個数の関係を示すものである。ま
た、導電粒子の添加量が約0.6(mg/−)よシ少な
いとはぼ単層構成とすることができ、それよシ多いと一
部2層になる部分が生ずることがわかった。
FIG. 5 shows conductive particles (10
This figure shows the relationship between the amount of added microorganisms (μm) and the number of dispersed particles. It was also found that if the amount of conductive particles added was less than about 0.6 (mg/-), a nearly single-layer structure could be obtained, but if it was more than that, some parts would become two layers. .

このときの電気特性を第1表にまとめる。The electrical characteristics at this time are summarized in Table 1.

なお測定は9本発明分については、150μmX150
μmで間隔25μmのもの1個について行ない。
In addition, the measurement is 150 μm x 150 for 9 parts of the present invention.
This was done for one piece with an interval of 25 μm.

市販品1.1については、150μmX150μmでは
導通が粒子の存在確率に依頼し、はとんど0PENで測
定不可能であったので、55μmXa■にて測定し、1
50μmX150μmK換算した。
Regarding commercial product 1.1, conductivity at 150 μm x 150 μm depends on the probability of existence of particles, and it was almost impossible to measure at 0 PEN, so we measured it at 55 μm
It was converted into 50μm×150μmK.

第3図は、この発明の他の実施例を示す。第3図(a)
 において、4はベースフィルムであシ、このベースフ
ィルム上に絶縁性樹脂でマイクロカプセル化した導電粒
子3を一列に配置している。マイクロカプセル化した導
電粒子3は、第3図(b)K示すように、導電粒子1を
絶縁性樹脂で包み込むことによって得られる。導電粒子
3は、第2図(b)に示したものと同様の構成であれば
良い。この導電粒子3を包み込む絶縁性樹脂は、第1図
の絶縁性樹脂2と同様のもの例えば、ポリ−4−メチル
−1−ペンテンあるいは、ポリブチレンフタレート熱可
塑性樹脂等が用いられる。そしてこの場合もやは9マイ
クロカプセル化した導電粒子3の粒径をそろえておく必
要がある。即ち、マイクロカプセル化した導電粒子3(
以下、単にマイクロカプセルという)は、必要とする分
解能に応じて1μm〜100μmのうちから特定の粒径
を選び、その特定の粒径において2粒径分布を±5%以
内に収める0 このような粒径分布とすることにより9%別なスペーサ
ーの必要はなくなる。
FIG. 3 shows another embodiment of the invention. Figure 3(a)
, 4 is a base film, and conductive particles 3 microencapsulated with an insulating resin are arranged in a row on this base film. The microencapsulated conductive particles 3 are obtained by wrapping the conductive particles 1 with an insulating resin, as shown in FIG. 3(b)K. The conductive particles 3 may have a structure similar to that shown in FIG. 2(b). The insulating resin surrounding the conductive particles 3 may be the same as the insulating resin 2 shown in FIG. 1, such as poly-4-methyl-1-pentene or polybutylene phthalate thermoplastic resin. In this case, it is also necessary to make the particle diameters of the conductive particles 3 that have been encapsulated into nine microcapsules the same. That is, microencapsulated conductive particles 3 (
Microcapsules (hereinafter simply referred to as microcapsules) are made by selecting a specific particle size from 1 μm to 100 μm depending on the required resolution, and keeping the two-particle size distribution within ±5% at that specific particle size. The particle size distribution eliminates the need for a 9% separate spacer.

このベースフィルム4に仮固定されたマイクロカプセル
3を基板の電極部等必要な個所に転写する◇その後、I
C等の電子部品を配置し、加熱加圧する。
The microcapsules 3 temporarily fixed to this base film 4 are transferred to the necessary locations such as the electrode parts of the substrate ◇After that, the I
Electronic components such as C are placed and heated and pressurized.

第4図は、ICチップ6を基板10の電極9上に固定し
た例を示している。ICチップ6のパッド部分7は、導
電粒子1によって電極9に接続される。このとき導電粒
子10粒径は均一であり。
FIG. 4 shows an example in which the IC chip 6 is fixed on the electrode 9 of the substrate 10. Pad portion 7 of IC chip 6 is connected to electrode 9 by conductive particles 1 . At this time, the diameters of the 10 conductive particles are uniform.

かつ導電粒子1は一列に配列しているので、接続抵抗等
電気特性が均一化される。
Moreover, since the conductive particles 1 are arranged in a line, electrical characteristics such as connection resistance are made uniform.

マイクロカプセルを用いる場合、ベースフィルムを用い
ることなく直接、接続部分に配置しても良い。例えばヒ
ートロー2等で直接、あるいは所定の溶媒に分散した後
、ディスペンサ、スプレー。
When using microcapsules, they may be placed directly on the connection portion without using a base film. For example, directly with Heat Row 2, etc., or after dispersing in a specified solvent, using a dispenser or spraying.

スクリーン印刷等で基板の必要個所に単層に配置しても
曳い。
It can also be printed in a single layer at the required locations on the board using screen printing, etc.

なお、各層に用いられた材料物質としては、実施例に使
用した物質に限定されるものではなく。
Note that the materials used for each layer are not limited to those used in the examples.

他にも種々利用できる。以下、その選定の際に考慮すべ
き評価基準を上げる。
Various other methods are also available. Below, we list the evaluation criteria that should be considered when making a selection.

芯物質、絶縁性樹脂の選定基準としては、(1)融点、
(2)軟化点、(3)耐湿性(吸水率)、(4)被着体
に対する接着力、(5)体積抵抗率、(6)色、(7)
硬度、(8)溶融粘度がある。
The selection criteria for the core material and insulating resin are (1) melting point;
(2) Softening point, (3) Moisture resistance (water absorption), (4) Adhesion to adherend, (5) Volume resistivity, (6) Color, (7)
hardness, and (8) melt viscosity.

例えば、ICチップの接続に用いる場合には。For example, when used for connecting IC chips.

比較的高温度(約300℃)にすることができるので、
融点、軟化点の高いものが選択でき、よシ耐環境信頼性
の高いものとすることが出来る。液晶を使用した装置で
は、融点、軟化点の低いものが要求されることなどであ
る。特に半導体装置用に適する特性としては、DTA(
示差熱分析)曲線において、融解に伴う吸熱ピークの立
ち上がシが200℃(少なくとも150’C以上)以上
であシ。
Because it can be kept at a relatively high temperature (approximately 300℃),
A material with a high melting point and a high softening point can be selected, and it can be made to have high environmental resistance and reliability. Devices using liquid crystals require materials with low melting and softening points. In particular, characteristics suitable for semiconductor devices include DTA (
In the differential thermal analysis) curve, the rise of the endothermic peak due to melting must be 200°C (at least 150'C or higher) or higher.

300℃以内の温度領域で酸化等の変質が起らないこと
(発熱ピークが観測されないこと)0また300℃以内
の温度領域内で、溶融粘度が1,000ポアズ以下であ
L  150’CX100時間で劣化しないこと、など
である。具体的な物質としては、フェノール樹脂、不飽
和ポリエステル樹脂、アルキド樹脂、キシレン樹脂等が
使用でき、またユリャ樹脂、メラミン樹脂、アリル樹脂
、フラン樹脂、ポリエステル樹脂、エポキシ樹脂、シリ
コーン樹脂。
No deterioration such as oxidation occurs in the temperature range of 300℃ or less (no exothermic peak is observed) or the melt viscosity is 1,000 poise or less in the temperature range of 300℃ or less L 150'CX 100 hours and that it does not deteriorate. Specific materials that can be used include phenol resin, unsaturated polyester resin, alkyd resin, xylene resin, etc., as well as urea resin, melamine resin, allyl resin, furan resin, polyester resin, epoxy resin, and silicone resin.

ポリアミド樹脂、ポリアミド−イミド樹脂、ポリイミド
樹脂、ポリウレタン樹脂、テフロン樹脂。
Polyamide resin, polyamide-imide resin, polyimide resin, polyurethane resin, Teflon resin.

ポリオレフィン樹脂、ベンゾグアナミン樹脂等の熱硬化
性高分子、ポリエチレン樹脂、ポリプロピレン樹脂、ポ
リブチレン樹脂、ポリメタクリル酸樹脂、メチル樹脂、
ポリスチレン樹脂、アクリロニトリル−スチレン樹脂、
ポリスチレン樹脂、アクリロニトリルースチレンーフタ
ジ二ンW脂、ビニル樹脂、ポリアミド樹脂、ポリエステ
ル樹脂。
Thermosetting polymers such as polyolefin resin, benzoguanamine resin, polyethylene resin, polypropylene resin, polybutylene resin, polymethacrylic acid resin, methyl resin,
polystyrene resin, acrylonitrile-styrene resin,
Polystyrene resin, acrylonitrile-styrene-phtazidine W resin, vinyl resin, polyamide resin, polyester resin.

ポリカーボネート樹脂、ポリアセタール樹脂、アイオノ
マー樹脂、ポリエーテルスルオン樹脂、ポリフェニルオ
キシド樹脂、ポリフェニレンスル7アイド樹脂、ポリフ
ェニレンオキシド樹脂、芳香族ポリイミド樹脂、フッ素
樹脂、塩化エーテル樹脂、スチロール樹脂、塩化ビニリ
デン樹脂、ビニルカルバゾール樹脂、ビニルブチラール
樹脂、ビニルホルマール樹脂、ビニルアセタール樹脂、
ポリビニルアルコール樹脂、酢酸ビニル樹脂、塩化ビニ
ル樹脂、ポリアミド酸樹脂、ポリエーテルイミド樹脂、
ポリオレフィン樹脂、ボリアリレート樹脂、ポリスルホ
ン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサ
ルファイド樹脂、ポリスルホン樹脂、ポリウレタン樹脂
、フェノール樹脂等の熱可塑性高分子、エチルセルロー
ス樹脂、酢酸セルロース樹脂等の繊維素系樹脂、のうち
から適宜選択組合せ可能である。
Polycarbonate resin, polyacetal resin, ionomer resin, polyether sulfone resin, polyphenyl oxide resin, polyphenylene sulfide resin, polyphenylene oxide resin, aromatic polyimide resin, fluororesin, chlorinated ether resin, styrene resin, vinylidene chloride resin, vinyl carbazole resin, vinyl butyral resin, vinyl formal resin, vinyl acetal resin,
Polyvinyl alcohol resin, vinyl acetate resin, vinyl chloride resin, polyamic acid resin, polyetherimide resin,
Thermoplastic polymers such as polyolefin resins, polyarylate resins, polysulfone resins, polyethersulfone resins, polyphenylene sulfide resins, polysulfone resins, polyurethane resins, phenol resins, and cellulose resins such as ethyl cellulose resins and cellulose acetate resins. Appropriate selection and combinations are possible.

市販品としては、ジビニルベンゼンmJIWにニッケル
メツ中したもので積水ファインケミカル株式会社製のミ
クロパール5P−Niがある。
A commercially available product is Micropearl 5P-Ni manufactured by Sekisui Fine Chemical Co., Ltd., which is divinylbenzene mJIW mixed with nickel.

また導電メッキ層としては、無電解メッキ可能なもので
あシ、電極パッドに損傷を与えないような材料を選択す
る。具体的な金属としては、金。
The conductive plating layer is selected from a material that can be plated electrolessly and that does not damage the electrode pads. Gold is a specific metal.

白金、パラジウム、銀、銅、鉄、ニッケル、アルミニウ
ム、クロム、ハンダ等の金属化合物、導電性カーボン等
の導電性無機化合物及び、有機金属化合物等の導電性有
機化合物等のうちから上下電極基の材質等に応じて適宜
選択可能である。
The upper and lower electrode groups are selected from metal compounds such as platinum, palladium, silver, copper, iron, nickel, aluminum, chromium, and solder, conductive inorganic compounds such as conductive carbon, and conductive organic compounds such as organometallic compounds. It can be selected as appropriate depending on the material etc.

また、実施例では、導電層の形成を無電解メッキ法によ
って行なったが、導電層の形成は無電解メッキ法の他、
無電解メツキー電解メッキ法、真空蒸着法等、使用導電
材料に応じて適宜選択可能である0また導電層は一層に
限定されず多層あるいは前記金属の合金であってもよく
被接続電極に応じて適宜選択可能である。その他気中懸
濁被覆法、無機質カプセル化法等、他の方法を用いても
良いことはいうまでもない。
In addition, in the examples, the conductive layer was formed by electroless plating, but the conductive layer could be formed by other methods besides electroless plating.
Electroless Metsky electrolytic plating method, vacuum evaporation method, etc. can be selected as appropriate depending on the conductive material used. Furthermore, the conductive layer is not limited to one layer, but may be multilayer or an alloy of the metals mentioned above, depending on the electrode to be connected. It can be selected as appropriate. It goes without saying that other methods such as an air suspension coating method and an inorganic encapsulation method may also be used.

ここで、芯物質と絶縁性樹脂層とは同一物質を使用する
ことも可能であるが、芯物質の方が表面層よシもやや融
点あるいは軟化点が高くなるように複合度等を調整する
のが望ましい(通常数〜数十℃以上)0 〔発明の効果〕 以上述べたように、この発明によれば9粒径の均一な導
電粒子によって異方導電体を構成しているので、特別な
スペーサを用いることなく、高分解能でかつ寸法精度の
高い異方導電体を得るととができる。
Here, it is possible to use the same material for the core material and the insulating resin layer, but the degree of complexity etc. is adjusted so that the core material has a slightly higher melting point or softening point than the surface layer. [Effects of the Invention] As described above, according to the present invention, since the anisotropic conductor is composed of conductive particles having a uniform particle size of 9, It is possible to obtain an anisotropic conductor with high resolution and high dimensional accuracy without using a spacer.

また、導電粒子を一層に配列しているので、パッド当り
の接続抵抗値の低い、かつバラツキのない接続が可能と
なる。
Furthermore, since the conductive particles are arranged in a single layer, connection with low connection resistance per pad and without variation is possible.

芯物質に合成樹脂を用いたものでは、導電性物質で球状
物質を形成する場合に比べ9粒径分布を均一化し易い上
9粒径あるいは膜厚の調整が容易でおシ、従って、高分
解能の異方導電体を得ることができる。また9粒子自体
が適度の弾力性を有するため、熱圧着時に接着部品にク
ラックが生じたシすることもなく、密着性も向上する。
When a synthetic resin is used as the core material, it is easier to make the particle size distribution uniform than when a spherical substance is formed using a conductive material, and it is also easier to adjust the particle size or film thickness, which results in high resolution. It is possible to obtain an anisotropic conductor of. Furthermore, since the 9 particles themselves have appropriate elasticity, no cracks occur in the bonded parts during thermocompression bonding, and adhesion is improved.

更に、予めフィルム状にしたものでは基板の必要部分に
配置或いは転写することによって簡単に接続を行なうこ
とができるため9作業性の高い実装が可能となる。
Furthermore, if the film is made in advance, the connection can be easily made by placing or transferring it onto the required part of the board, which allows for highly efficient mounting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、導電粒子を絶縁性樹脂に分散したこ
の発明の実施例を示す図、第3図は、マイク党カプセル
を用いたこの発明の実施例を示す図、第4図は、ICチ
ップの接着に応用した例を示す図、第5図は、この発明
の特性を示す図、第6図、第7図、第8図は従来例を示
す図である。 1・・−球状導電粒子。 2・・・絶縁性樹脂。 3・・・マイクロカプセル。 4・・・ベース・フィルム。 5・・・絶縁性樹脂皮膜。 6・・・ICチップ。 7・・・電極パッド。 8…パツシベーシヨ/膜。 9・・・下部電極パターン。 10・・・基板。 11・・・芯物質。 12・・・導電性メッキ。 13・・・絶縁性樹脂0
Figures 1 and 2 show an embodiment of the invention in which conductive particles are dispersed in an insulating resin, Figure 3 shows an embodiment of the invention using a microphone capsule, and Figure 4. FIG. 5 is a diagram showing the characteristics of the present invention, and FIGS. 6, 7, and 8 are diagrams showing conventional examples. 1...- Spherical conductive particles. 2...Insulating resin. 3...Microcapsule. 4...Base film. 5...Insulating resin film. 6...IC chip. 7... Electrode pad. 8... Patsushibasyo/membrane. 9... Lower electrode pattern. 10...Substrate. 11... Core substance. 12... Conductive plating. 13... Insulating resin 0

Claims (1)

【特許請求の範囲】 (1)導電粒子を絶縁物によつて互いに電気的に絶縁し
て分散配置せしめ、加圧接着したときに加圧方向に電気
的に良導体となるようにした異方導電体において、前記
導電粒子の直径を1.0〜100.0μmで、かつ、前
記範囲の特定の直径に対し、粒径の分布が±5%以内に
収められた球状粒子とすると共に、この導電粒子を単層
に分散配置せしめたことを特徴とする異方導電体。 (2)前記導電粒子を絶縁物の層中に分散させると共に
前記絶縁物の厚さを、前記導電粒子の直径の2倍以内に
したことを特徴とする特許請求の範囲第1項に記載の異
方導電体。(3)前記導電粒子を絶縁する絶縁物が、導
電粒子をそれぞれ包みこみ、マイクロカプセル化してい
ることを特徴とする特許請求の範囲第1項に記載の異方
導電体。 (4)前記マイクロカプセル化された導電粒子が、シー
ト上に単層に配列していることを特徴とする特許請求の
範囲第3項に記載の異方導電体。 (5)溶媒あるいは加熱により絶縁物を溶かした後、導
電粒子を加え、攪拌分散せしめた後、この導電粒子分散
液を所定のローラで圧延・冷却して所望の膜厚のフィル
ムを得ることを特徴とする異方導電体の製造方法。 (6)導電粒子を絶縁体で包んでマイクロカプセル化し
た後、シート上に固着したことを特徴とする異方導電体
の製造方法。
[Scope of Claims] (1) Anisotropic conduction in which conductive particles are electrically insulated from each other by an insulator and distributed in a dispersed manner so that when bonded under pressure, they become electrically good conductors in the direction of pressure. In the body, the conductive particles are spherical particles with a diameter of 1.0 to 100.0 μm and a particle size distribution within ±5% with respect to a specific diameter in the range, and An anisotropic conductor characterized by having particles dispersed in a single layer. (2) The conductive particles are dispersed in a layer of an insulator, and the thickness of the insulator is within twice the diameter of the conductive particles. Anisotropic conductor. (3) The anisotropic conductor according to claim 1, wherein the insulator that insulates the conductive particles wraps each conductive particle to form a microcapsule. (4) The anisotropic conductor according to claim 3, wherein the microencapsulated conductive particles are arranged in a single layer on a sheet. (5) After melting the insulator with a solvent or heating, add conductive particles, stir and disperse, and then roll and cool this conductive particle dispersion with a predetermined roller to obtain a film with a desired thickness. A method for producing a characteristic anisotropic conductor. (6) A method for producing an anisotropic conductor, characterized in that conductive particles are wrapped in an insulator to form microcapsules and then fixed on a sheet.
JP24673686A 1986-10-17 1986-10-17 Anisotropic conductor and making thereof Pending JPS63102110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24673686A JPS63102110A (en) 1986-10-17 1986-10-17 Anisotropic conductor and making thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24673686A JPS63102110A (en) 1986-10-17 1986-10-17 Anisotropic conductor and making thereof

Publications (1)

Publication Number Publication Date
JPS63102110A true JPS63102110A (en) 1988-05-07

Family

ID=17152882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24673686A Pending JPS63102110A (en) 1986-10-17 1986-10-17 Anisotropic conductor and making thereof

Country Status (1)

Country Link
JP (1) JPS63102110A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108210A (en) * 1989-09-21 1991-05-08 Hitachi Chem Co Ltd Manufacture of anisotropic conductive resin film mold
JP2007035743A (en) * 2005-07-25 2007-02-08 Asahi Kasei Electronics Co Ltd Circuit connection method and connection structure
WO2009037964A1 (en) * 2007-09-20 2009-03-26 Sony Chemical & Information Device Corporation Anisotropic conductive film and its production method, and bonded body employing anisotropic conductive film
JP2009134914A (en) * 2007-11-29 2009-06-18 Sony Chemical & Information Device Corp Anisotropic conductive film, and bonded body using the same
JP2010267627A (en) * 2008-06-26 2010-11-25 Hitachi Chem Co Ltd Resin film sheet and electronic component
JP2011034966A (en) * 2009-07-31 2011-02-17 Denshi Buhin Kenkyuin Anisotropy particle arrangement, and manufacturing method thereof
JP2013037944A (en) * 2011-08-09 2013-02-21 Takigawa Tadahiro Anisotropic conductive film and conductive connector
JP2016131152A (en) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 Anisotropically conductive film

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108210A (en) * 1989-09-21 1991-05-08 Hitachi Chem Co Ltd Manufacture of anisotropic conductive resin film mold
JP2007035743A (en) * 2005-07-25 2007-02-08 Asahi Kasei Electronics Co Ltd Circuit connection method and connection structure
WO2009037964A1 (en) * 2007-09-20 2009-03-26 Sony Chemical & Information Device Corporation Anisotropic conductive film and its production method, and bonded body employing anisotropic conductive film
US9155207B2 (en) 2007-09-20 2015-10-06 Dexerials Corporation Method for producing an anisotropic conductive film
JP2009134914A (en) * 2007-11-29 2009-06-18 Sony Chemical & Information Device Corp Anisotropic conductive film, and bonded body using the same
JP4661985B2 (en) * 2008-06-26 2011-03-30 日立化成工業株式会社 Resin film sheet and electronic parts
JP4661986B2 (en) * 2008-06-26 2011-03-30 日立化成工業株式会社 Resin film sheet and electronic parts
JP2010284973A (en) * 2008-06-26 2010-12-24 Hitachi Chem Co Ltd Resin film sheet and electronic component
CN102298988A (en) * 2008-06-26 2011-12-28 日立化成工业株式会社 Resin diaphragm having conductive particles inside and electronic components electrically connected by the same
JP2010267627A (en) * 2008-06-26 2010-11-25 Hitachi Chem Co Ltd Resin film sheet and electronic component
JP2011034966A (en) * 2009-07-31 2011-02-17 Denshi Buhin Kenkyuin Anisotropy particle arrangement, and manufacturing method thereof
JP2013037944A (en) * 2011-08-09 2013-02-21 Takigawa Tadahiro Anisotropic conductive film and conductive connector
JP2016131152A (en) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 Anisotropically conductive film
CN107112067A (en) * 2015-01-13 2017-08-29 迪睿合株式会社 Anisotropic conductive film
JP2018200880A (en) * 2015-01-13 2018-12-20 デクセリアルズ株式会社 Anisotropic conductive film
CN107112067B (en) * 2015-01-13 2019-04-16 迪睿合株式会社 Anisotropic conductive film
JP2019087536A (en) * 2015-01-13 2019-06-06 デクセリアルズ株式会社 Anisotropic conductive film
KR20210088023A (en) * 2015-01-13 2021-07-13 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film
US11591499B2 (en) 2015-01-13 2023-02-28 Dexerials Corporation Anisotropic conductive film

Similar Documents

Publication Publication Date Title
JP2509053B2 (en) Electronic device
CN1532919B (en) Circuit device and its producing method
JP2899540B2 (en) Film carrier and semiconductor device using the same
US8846142B2 (en) Conductive particle, anisotropic conductive interconnection material that uses the conductive particle, and method for producing the conductive particle
WO2003063211A1 (en) Apparatus incorporating small-feature-size and large-feature-size components and method for making same
AU2003205307A1 (en) Apparatus incorporating small-feature-size and large-feature-size components and method for making same
JPH06101614B2 (en) Electrical interconnection device
JPWO2003084297A1 (en) Wiring structure and manufacturing method thereof
JPS63102110A (en) Anisotropic conductor and making thereof
JPH053739B2 (en)
JP3581618B2 (en) Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
JPH0799644B2 (en) Anisotropically conductive material for electrical connection
JPH06333965A (en) Anisotropic conductive adhesive sheet
JPH04292803A (en) Anisotropic conductive film
JPH08335407A (en) Anisotropic conductive material for electric connection
JPS6353805A (en) Anisotropic conducting material and mounting of semiconductor device using the same
JP2579458B2 (en) Anisotropic conductive film and method for producing the same
TW550714B (en) Bonding material, semiconductor device, method of manufacturing semiconductor device, circuit board and electronic device
JP3455602B2 (en) Manufacturing method of semiconductor device mounting substrate
JP2001155540A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
JPH09306231A (en) Conductive particulate and substrate
JP4925405B2 (en) Method for manufacturing connection structure
JPH09147928A (en) Connecting member
JPH10134634A (en) Electrical connecting anisotropic conductive particle and electrical connecting anisotropic conductive material