JPH10134634A - Electrical connecting anisotropic conductive particle and electrical connecting anisotropic conductive material - Google Patents

Electrical connecting anisotropic conductive particle and electrical connecting anisotropic conductive material

Info

Publication number
JPH10134634A
JPH10134634A JP17945097A JP17945097A JPH10134634A JP H10134634 A JPH10134634 A JP H10134634A JP 17945097 A JP17945097 A JP 17945097A JP 17945097 A JP17945097 A JP 17945097A JP H10134634 A JPH10134634 A JP H10134634A
Authority
JP
Japan
Prior art keywords
electrodes
anisotropic conductive
conductive particles
film
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17945097A
Other languages
Japanese (ja)
Other versions
JP2836035B2 (en
Inventor
Hironori Murakami
裕紀 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP9179450A priority Critical patent/JP2836035B2/en
Publication of JPH10134634A publication Critical patent/JPH10134634A/en
Application granted granted Critical
Publication of JP2836035B2 publication Critical patent/JP2836035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PROBLEM TO BE SOLVED: To surely connect the electrodes of ICs arranged at a high density by covering the whole surfaces of conductive particles with an electrical insulating micro-capsule film, arranging the conductive particles between the electrodes, applying heat and pressure, and electrically connecting the electrodes via the conductive particles. SOLUTION: Fine particles 11 of a conductive material are confined in film shells by an electric insulating material, and anisotropic micro-capsules 10 are screen-printed or sprayed on a substrate 5 provided with electrodes 4. A closely arranged anisotropic conductive micro-capsule layer is formed, opposite other electrodes are provided, another substrate is aligned, and they are heated and crimped to obtain an anisotropic conductive material connecting the electrodes 4. The film material forming the fine particles 11 of the conductive material into capsules functions as the insulating material, and the thickness of the film is reduced and it functions to stick the electrodes 4 together when heat and pressure are applied to it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電性材料の微粒
子を電気絶縁性のカプセル化皮膜で被覆して該導電性粒
子を封じ込めてマイクロカプセル化し、任意の分解能が
得られるようにした電気接続用異方導電性粒子および電
気接続用異方導電材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrical connection in which fine particles of a conductive material are covered with an electrically insulating encapsulating film and the conductive particles are encapsulated and microencapsulated to obtain an arbitrary resolution. The present invention relates to an anisotropic conductive particle for use and an anisotropic conductive material for electrical connection.

【0002】[0002]

【従来の技術】従来の電気接続用異方導電材料として、
例えば、図4(a)に示すような、金属や低融点ハンダ
等の導電性微粒子1を絶縁性材料2からなる分散媒中に
分散させ、フィルム状に形成したものがある。同図のよ
うに、所定のパターンによる電極4が貼着された2枚の
基板5を相互に接続する場合、上述の異方導電材料を電
極4を内側にした基板5によって挟持し、この状態で全
体を加圧ならびに加熱すると、絶縁性フィルムが溶融し
て対向する電極4間から押し出され、電極4間は導電性
微粒子1で電気的に接続されるとともに基板5相互は押
し出された絶縁性フィルム2によって接続され、図4
(b)に示すように2枚の基板が異方導電材料によって
接続される。
2. Description of the Related Art As a conventional anisotropic conductive material for electric connection,
For example, as shown in FIG. 4A, there is a film formed by dispersing conductive fine particles 1 such as metal or low-melting solder in a dispersion medium made of an insulating material 2 and forming a film. As shown in the drawing, when two substrates 5 to which electrodes 4 having a predetermined pattern are adhered are connected to each other, the above-described anisotropic conductive material is sandwiched by the substrates 5 with the electrodes 4 inside. When the whole is pressurized and heated, the insulating film is melted and extruded from between the opposing electrodes 4, the electrodes 4 are electrically connected by the conductive fine particles 1, and the substrates 5 are extruded from each other. Connected by film 2, FIG.
As shown in (b), two substrates are connected by an anisotropic conductive material.

【0003】しかし、従来の異方導電材料にあっては、
数μmオーダー以下の粒径の均一な導電粒子をフィルム
中に均一に分散することが困難であるため、IC実装等
を目的とした高分解能(10本/mm以上)の多接点電極
の接続に用いることができなかった(因みに、従来技術
においては5本/mm(ラインスペース=100μm)が
限界となっている)。例えば、20本/mmの分解能を得
ようとすれば、電極ピッチは25μmとなる。このた
め、数μmオーダー以下の粒径の均一な導電粒子を均一
にフィルム中に分散する必要があるが、従来技術によれ
ば、図5の図示aの如き導電粒子の擬集、図示bの如き
大径粒子の混入による隣接電極間の短絡、および、図示
cの如き導電粒子が介在しないことによる絶縁状態の発
生等の問題を生じ、十分な信頼性を得ることができなか
った。また、従来の異方導電フィルムは、シート状ある
いはテープ状のため、(切断)→(仮付け)→(仮接
着)→(セパレータ剥離)→(回路位置合せ)→(本接
着)の如き複雑な工程を必要とするため、接続の長時間
化、歩留りの低下等を招き、ひいてはコストアップを招
く不具合がある。
However, in the conventional anisotropic conductive material,
Because it is difficult to uniformly disperse conductive particles having a particle size of several μm order or less in a film, it is suitable for connection of high-resolution (10 / mm or more) multi-contact electrodes for IC mounting and the like. It could not be used (in the related art, the limit is 5 lines / mm (line space = 100 μm)). For example, to obtain a resolution of 20 lines / mm, the electrode pitch is 25 μm. For this reason, it is necessary to uniformly disperse the conductive particles having a particle size of several μm order or less uniformly in the film. According to the conventional technique, the collection of the conductive particles as shown in FIG. As a result, problems such as short-circuiting between adjacent electrodes due to mixing of large-diameter particles and occurrence of an insulation state due to no intervening conductive particles as shown in FIG. 1C occurred, and sufficient reliability could not be obtained. In addition, since the conventional anisotropic conductive film is in the form of a sheet or a tape, it is complicated such as (cutting) → (temporary attachment) → (temporary adhesion) → (separator peeling) → (circuit positioning) → (full adhesion). Since such a process requires a complicated process, it leads to a prolonged connection time, a reduced yield, and the like, which leads to an increase in cost.

【0004】[0004]

【発明が解決しようとする課題】さらに、異方導電材料
として、本出願の原出願の出願後に公開された特開昭6
2−40183号公報に示されるような、導電性粒子を
接着剤に不溶な樹脂で被覆したものが提案されている。
この異方導電材料は、エポキシ樹脂とアミノエチルピペ
ラジンとからなる配合系樹脂に半田金属粒子を混合して
硬化させ、その後粉砕機で粉砕して粒子とし、接着剤中
に分散させ、連結シートを構成し、この連結シートを電
極上に重ねるように乗せ、圧着力により被覆を破壊し
て、電気的接続を確保している。しかしながら、この技
術では、電気絶縁性樹脂に多量の導電粒子を配合して硬
化させた塊を粉砕機によって微細に粉砕し、粉砕処理後
に導電粒子の表面に残存して付着している絶縁性樹脂を
導電粒子の絶縁被覆としているため、粉砕過程において
導電性粒子表面が露出する場合も多く、こうした粒子が
隣接して位置した場合には、対向する電極方向の導通の
みならず、目的としない粒子の隣接方向での導通を招来
してしまう。この粒子がそれぞれ異なる隣接電極間の接
合を目的として配置されていた場合には、隣接電極間で
ショートが発生するという問題がある。このため、異方
導電粒子の配置密度を増加させるのが困難となり、結果
として高密度に配置された電極間の電気接続に実際に使
用するのには問題がある。また、粉砕によって得られる
粒子形状は導電性粒子の形状にかかわらず広範な粒径分
布を有し、さらに不均一な形状となるために、高密度か
つ均一密度に配置することが困難であり、やはり実用に
は問題がある。なお、異方導電材料に関する資料とし
て、「電子技術」1984年、第26巻第7号、第11
7頁に記載の内容、「日経エレクトロニクス」1984
年7月16日号、第102頁に記載の内容等がある。
Further, as an anisotropic conductive material, Japanese Unexamined Patent Publication No.
Japanese Patent Application Laid-Open No. 2-40183 discloses a technique in which conductive particles are coated with a resin insoluble in an adhesive.
This anisotropic conductive material is obtained by mixing solder metal particles into a compounded resin composed of an epoxy resin and aminoethylpiperazine, curing the mixture, and then pulverizing the particles with a pulverizer, dispersing the particles in an adhesive, and forming a connection sheet. The connection sheet is placed on the electrode so as to overlap with the electrode, and the coating is broken by the pressing force to secure the electrical connection. However, in this technique, a mass obtained by blending a large amount of conductive particles with an electrically insulating resin is finely pulverized by a pulverizer, and the insulating resin remaining on and adhered to the surface of the conductive particles after the pulverization process is performed. Is used as an insulating coating of conductive particles, so that the surface of the conductive particles is often exposed during the pulverization process. When such particles are located adjacent to each other, not only conduction in the direction of the opposing electrode, but also undesired particles In the adjacent direction. If the particles are arranged for the purpose of bonding between different adjacent electrodes, there is a problem that a short circuit occurs between the adjacent electrodes. For this reason, it is difficult to increase the arrangement density of the anisotropic conductive particles, and as a result, there is a problem in actually using for the electrical connection between the electrodes arranged at high density. In addition, the particle shape obtained by pulverization has a wide particle size distribution regardless of the shape of the conductive particles, and furthermore, because of the non-uniform shape, it is difficult to arrange at high density and uniform density, After all there is a problem in practical use. As materials relating to anisotropic conductive materials, “Electronic Technology”, 1984, Vol. 26, No. 7,
Contents described on page 7, "Nikkei Electronics" 1984
The contents are described in the July 16, 2016 issue, page 102.

【0005】また、本出願の原出願の出願後に公開され
た特開昭62−35410号公報には、導電性繊維に被
覆用樹脂が被覆されているチョップを用いた電気接続用
異方導電材料、および、前記導電性繊維が所定の径を有
すること、ならびに、前記異方導電性繊維を剪断力を与
えながらフィルム上に形成して用いることが示されてい
る。しかしながら、この技術では、導電性繊維を用いて
いるので、導電性繊維の配向を考慮しないときには、隣
接する電極間に導通を生じてしまうおそれがあり、これ
がために導電性繊維を配向させる処理が必要となってい
た。
Japanese Patent Application Laid-Open No. 62-35410 published after the filing of the original application of the present application discloses an anisotropic conductive material for electrical connection using a chop in which conductive fibers are coated with a coating resin. It is disclosed that the conductive fiber has a predetermined diameter, and that the anisotropic conductive fiber is formed on a film while applying a shearing force. However, in this technique, since conductive fibers are used, when the orientation of the conductive fibers is not taken into consideration, there is a possibility that conduction may occur between adjacent electrodes. Was needed.

【0006】本発明は、上記問題に鑑みてなされたもの
であり、高密度に配されたICなどの電極間を確実に接
続できる電気接続用異方導電性粒子および電気接続用異
方導電材料を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has an anisotropic conductive particle for electrical connection and an anisotropic conductive material for electrical connection that can reliably connect electrodes of an IC or the like arranged at high density. Is provided.

【0007】[0007]

【課題を解決するための手段】上記問題を解決するため
に、本発明は、導電性粒子と、前記導電性粒子の全表面
を被覆する電気絶縁性のマイクロカプセル化皮膜を有
し、電極間に配置されて熱および圧力を作用させること
で前記導電性粒子を介して前記電極間を電気接続させる
ための電気接続用異方導電性粒子としたものである。さ
らに、本発明は、導電性粒子と前記導電性粒子の全表面
を被覆する電気絶縁性のマイクロカプセル化皮膜を有す
る複数の異方導電性粒子と、前記複数の異方導電性粒子
を結着するフィルム材とを備え、電極間に配置されて熱
および圧力を作用させることで前記導電性粒子を介して
前記電極間を電気接続させるためのフィルム状の電気接
続用異方導電材料としたものである。なお、本発明にお
けるマイクロカプセル化皮膜とは、マイクロカプセル化
法によって芯材全体を被覆するように形成された皮膜を
指すものである。本発明の電気接続の過程は、先に挙げ
た特開昭62−40183号公報に示されるのと同様
に、電極間に異方導電性粒子を配置させた状態で熱およ
び圧力を作用させることで、電極付近の電気絶縁性材料
を導電粒子の表面から除去し、電極間を導電粒子を介し
て電気接続が行われるものである。本発明の電気接続用
異方導電性粒子では、導電性粒子の全表面にマイクロカ
プセル化皮膜を有するので、導電性粒子の形状に従った
均一膜厚のマイクロカプセル化皮膜が導電性粒子ごとに
被覆された粒子になっており、粒径および粒子の形状が
均一となる。このために、電極に粒子を配置した場合
に、高密度かつ均一密度に異方導電性粒子が配置される
こととなる。また、本発明の電気接続用異方導電材料
は、同様に均一形状、均一径の異方導電性粒子を用いる
ので、フィルム材の中で高密度かつ均一密度に異方導電
性粒子が分散されたものとなる。そして、さらに、本発
明においては、導電性粒子の全表面に電気絶縁性のマイ
クロカプセル化皮膜を有するために、粒子が隣接しても
隣接部には必ず電気絶縁性のマイクロカプセル化皮膜が
存在するので、隣接電極間のショートの発生が防止され
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides conductive particles and an electrically insulating microencapsulated film covering the entire surface of the conductive particles. And anisotropic conductive particles for electrical connection for electrically connecting the electrodes via the conductive particles by applying heat and pressure. Furthermore, the present invention binds a plurality of anisotropic conductive particles having conductive particles and an electrically insulating microencapsulated film covering the entire surface of the conductive particles, and the plurality of anisotropic conductive particles. And a film material for electrical connection between the electrodes through the conductive particles by applying heat and pressure, which is disposed between the electrodes, and having a film-like anisotropic conductive material for electrical connection. It is. Note that the microencapsulated film in the present invention refers to a film formed so as to cover the entire core material by a microencapsulation method. In the process of the electrical connection of the present invention, heat and pressure are applied in a state in which anisotropic conductive particles are arranged between the electrodes, as described in JP-A-62-40183. Then, the electrically insulating material near the electrodes is removed from the surface of the conductive particles, and electrical connection is made between the electrodes via the conductive particles. Since the anisotropic conductive particles for electrical connection of the present invention have a microencapsulated film on the entire surface of the conductive particles, a microencapsulated film having a uniform thickness according to the shape of the conductive particles is formed for each conductive particle. The particles are coated, and the particle diameter and the shape of the particles become uniform. For this reason, when particles are arranged on the electrode, the anisotropic conductive particles are arranged with high density and uniform density. In addition, since the anisotropic conductive material for electrical connection of the present invention similarly uses anisotropic conductive particles having a uniform shape and a uniform diameter, the anisotropic conductive particles are dispersed at a high density and a uniform density in the film material. It will be. Further, in the present invention, since the electrically insulating microencapsulated film is provided on the entire surface of the conductive particles, the electrically insulating microencapsulated film always exists in the adjacent portion even if the particles are adjacent to each other. Therefore, occurrence of short circuit between adjacent electrodes is prevented.

【0008】[0008]

【発明の実施の形態】以下、本発明による電気接続用異
方導電性粒子および電気接続用異方導電材料を詳細に説
明する。図1は、本発明の一実施例を示し、図4と同一
の部分は同一の引用数字で示したので、重複する説明は
省略するが、本実施例は、導電性材料の微粒子11を電
気絶縁性の物質12によって被覆殻の中に包み込んで封
じ込めてマイクロカプセル化した異方導電マイクロカプ
セル(異方導電性粒子)10を、電極4が設けられた基
板5上へスクリーン印刷あるいは吹き付けすることによ
って密接配置した異方導電マイクロカプセル層を形成
し、対向する他の電極が設けられた他方の基板を整合さ
せた後、加熱圧着して電極相互間を接続する異方導電材
料とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the anisotropically conductive particles for electrical connection and the anisotropically conductive material for electrical connection according to the present invention will be described in detail. FIG. 1 shows an embodiment of the present invention, and the same parts as those in FIG. 4 are denoted by the same reference numerals, and therefore, the duplicate description is omitted. Screen printing or spraying anisotropically conductive microcapsules (anisotropically conductive particles) 10, which are encapsulated by being encapsulated in a covering shell with an insulating substance 12 and microencapsulated, on a substrate 5 on which the electrodes 4 are provided. Forming an anisotropic conductive microcapsule layer that is closely arranged with the other substrate provided with another opposing electrode, and then heat-pressed to form an anisotropic conductive material that connects the electrodes. is there.

【0009】ここで、図2に示すように、異方導電マイ
クロカプセル(異方導電性粒子)10は、芯物質(導電
性粒子)11と、該芯物質11を被覆する単層または多
重の皮膜物質(電気絶縁性のマイクロカプセル化皮膜)
12からなり、該芯物質を該皮膜物質で封じ込めて構成
される。
Here, as shown in FIG. 2, an anisotropic conductive microcapsule (anisotropic conductive particles) 10 is composed of a core material (conductive particles) 11 and a single layer or multiple layers covering the core material 11. Film material (electrically insulating microencapsulated film)
12, the core material being enclosed by the coating material.

【0010】芯物質11としては、金、白金、銀、銅、
鉄、ニッケル、アルミニウム、クロム等の金属および金
属化合物(ITO、ハンダ等)、導電性カーボン等の導
電性無機物および無機化合物、有機金属化合物等の導電
性有機化合物等を用いることができる。また、皮膜物質
12としては、電気絶縁性の高分子材料であるフェノー
ル樹脂,ユリヤ樹脂,メラミン樹脂,アリル樹脂,フラ
ン樹脂,ポリエステル,エポキシ樹脂,シリコーン樹
脂,ポリイミド樹脂,ポリウレタン,テフロン樹脂等の
熱硬化性高分子、ポリエチレン,ポリプロピレン,ポリ
ブチレン,ポリメタクリル酸メチル,ポリスチレン,ア
クリロニトリル−スチレン樹脂,スチレン−ブタジエン
樹脂,アクリロニトリル−スチレン−ブタジエン樹脂,
ビニル樹脂,ポリアミド樹脂,ポリエステル樹脂,ポリ
カーボネート,ポリアセタール,アイオノマー樹脂,ポ
リエーテルスルホン,ポリ(フェニルオキシド),ポリ
(プェニレンスファイド),ポリスルホン,ポリウレタ
ン,フッ化樹脂(PTFE,PCTFE,ポリフッ化ビ
ニリデン)等の熱可塑性高分子、繊維素系樹脂(エチル
セルロース,酢酸セルロース,プロピオン酸セルロー
ス,硝酸セルロース等)の有機−無機化合物を用いるこ
とができる。
As the core substance 11, gold, platinum, silver, copper,
Metals and metal compounds such as iron, nickel, aluminum, and chromium (ITO, solder, and the like), conductive inorganics and inorganic compounds such as conductive carbon, and conductive organic compounds such as organometallic compounds can be used. The coating material 12 may be a heat-insulating polymer such as phenol resin, urea resin, melamine resin, allyl resin, furan resin, polyester, epoxy resin, silicone resin, polyimide resin, polyurethane, or Teflon resin. Curable polymer, polyethylene, polypropylene, polybutylene, polymethyl methacrylate, polystyrene, acrylonitrile-styrene resin, styrene-butadiene resin, acrylonitrile-styrene-butadiene resin,
Vinyl resin, polyamide resin, polyester resin, polycarbonate, polyacetal, ionomer resin, polyether sulfone, poly (phenyl oxide), poly (phenylene sulfide), polysulfone, polyurethane, fluororesin (PTFE, PCTFE, polyvinylidene fluoride) ) And organic-inorganic compounds such as fibrous resins (ethyl cellulose, cellulose acetate, cellulose propionate, cellulose nitrate, etc.).

【0011】このような皮膜物質12で芯物質11を封
じ込めてマイクロカプセル化するに際しては、化学的製
法(例えば、界面重合法,in situ重合法,液中硬化被
覆法など)、あるいは、物理的・機械的製法(例えば、
スプレードライング法,気中懸濁被覆法,真空蒸着被覆
法,静電的合体法,融解分散冷却法,無機質カプセル化
法など)、あるいは、物理化学的製法(例えば、コアセ
ルベーション法,界面沈澱法など)によって行なわれ
る。なお、マイクロカプセルに関する文献として、近藤
保、小石真純著「マイクロカプセル」三共出版、198
1年3月1日第3刷発行等、多数がある。
When the core substance 11 is encapsulated and microencapsulated with the film substance 12, a chemical manufacturing method (for example, an interfacial polymerization method, an in situ polymerization method, a curing in liquid coating method, etc.) or a physical method is used.・ Mechanical manufacturing method (for example,
Spray drying method, air suspension coating method, vacuum evaporation coating method, electrostatic coalescence method, melting dispersion cooling method, inorganic encapsulation method, etc.), or physicochemical manufacturing method (eg coacervation method, interfacial precipitation) Law). References on microcapsules include “Microcapsules” by Tamotsu Kondo and Masazumi Koishi, published by Sankyo, 198.
There are many such as the third printing issuance on March 1, 1 year.

【0012】芯物質11を封じ込めてマイクロカプセル
化する皮膜物質12は、絶縁性物質として機能するのみ
ならず、熱および圧力を作用させることによって芯物質
11の表面に被覆した膜厚を減じて基板5に形成されて
いる電極4間を接着する機能を有している。皮膜物質1
2は多重にすることによって、絶縁用、接着用、すべり
用(異方導電マイクロカプセル間のすべりを適度に調整
することにより、下部基板に塗布した際に単一層を形成
し易くなる)等に機能を分割し、信頼性を向上させるこ
とができる。
The coating material 12 for encapsulating and microencapsulating the core material 11 not only functions as an insulating material but also reduces the film thickness coated on the surface of the core material 11 by applying heat and pressure. 5 has a function of adhering the electrodes 4 formed on each other. Film substance 1
2 is used for insulation, adhesion, and slip (by appropriately adjusting the slip between the anisotropic conductive microcapsules, it becomes easy to form a single layer when applied to the lower substrate) by multiplexing. Functions can be divided to improve reliability.

【0013】[0013]

【実施例】次に、異方導電材料の形成を基板の接続を例
にして、図1(a)、(b)により説明する。前述の製
法によって調整された図2の如き異方導電マイクロカプ
セル10を粒径5±0.2μm、膜厚0.8±0.05
μm(20本/mmの分解能の要求から割出された値)に
作成し、これをスクリーン印刷あるいはスプレー等によ
って下部電極基板5の所定部分に塗布(図1(a)に示
す)する。ついで上部電極基板5(あるいはフレキシブ
ルコネクタ,IC電極パッド等)を目合せした後、これ
らを加熱圧着することによって電気絶縁皮膜物質12の
膜厚を減じ2枚の基板間の電極を図1(b)のように接
続する。
Next, the formation of an anisotropic conductive material will be described with reference to FIGS. 1 (a) and 1 (b), taking connection of a substrate as an example. The anisotropic conductive microcapsules 10 as prepared in FIG.
μm (a value determined from the requirement of a resolution of 20 lines / mm), and this is applied to a predetermined portion of the lower electrode substrate 5 by screen printing or spraying (shown in FIG. 1A). Next, after aligning the upper electrode substrate 5 (or a flexible connector, an IC electrode pad, etc.), they are heat-pressed to reduce the thickness of the electric insulating film material 12 so that the electrode between the two substrates is formed as shown in FIG. ).

【0014】図1(b)に示すように、本発明による異
方導電材料を用いて電気接続すれば、粒径の揃った異方
導電材料10が基板5上に均質に存在するとともに、各
導電材料には絶縁材料が被覆されているので、導電微粒
子間に必ず絶縁層が形成され、導電性微粒子間に電気的
な短絡現象は生じない。したがって、図5に示した如き
従来の不具合は生じない。このため、信頼性、分解能を
共に高めることができる。なお、分解能は、芯物質11
の粒子径と皮膜12の膜厚を調整することによって、任
意の値が得られる。従来より、異方導電フィルムの形成
に際しては、絶縁性フィルム材と導電粒子を直接混練し
た後、シート状あるいは整形している。同様に本発明に
おいても、図3に示すように、導電粒子をマイクロカプ
セル化して異方導電マイクロカプセル10を形成し、こ
れをローラ15(またはヒートローラ等)によってシー
ト状あるいはテープ状の異方導電フィルムを製造するこ
とができる。
As shown in FIG. 1B, when an electrical connection is made using the anisotropic conductive material according to the present invention, the anisotropic conductive material 10 having a uniform particle size exists uniformly on the substrate 5 and each Since the conductive material is covered with the insulating material, an insulating layer is always formed between the conductive fine particles, and an electrical short-circuit phenomenon does not occur between the conductive fine particles. Therefore, the conventional problem as shown in FIG. 5 does not occur. Therefore, both the reliability and the resolution can be improved. Note that the resolution is as follows:
Arbitrary values can be obtained by adjusting the particle diameter and the thickness of the film 12. BACKGROUND ART Conventionally, when forming an anisotropic conductive film, an insulating film material and conductive particles are directly kneaded and then sheet-shaped or shaped. Similarly, in the present invention, as shown in FIG. 3, the conductive particles are microencapsulated to form anisotropic conductive microcapsules 10, which are formed into a sheet-shaped or tape-shaped anisotropic conductive microcapsule 10 by a roller 15 (or a heat roller or the like). Conductive films can be manufactured.

【0015】[0015]

【発明の効果】以上に説明した通り、本発明の電気接続
用異方導電性粒子および電気接続用異方導電材料によれ
ば、導電性粒子の全表面に電気絶縁性のマイクロカプセ
ル化皮膜を有するため、隣接する電極間に異方導電性粒
子が凝集しても隣接する異方導電性粒子間での短絡が発
生しなくなり、高密度かつ均一密度で異方導電性粒子が
配置されるので、高密度に配置された電極間を確実に電
気接続することが可能となる。
As described above, according to the anisotropically conductive particles for electrical connection and the anisotropically conductive material for electrical connection of the present invention, an electrically insulating microencapsulated film is formed on the entire surface of the conductive particles. Because, even if the anisotropic conductive particles aggregate between the adjacent electrodes, a short circuit between the adjacent anisotropic conductive particles does not occur, and the anisotropic conductive particles are arranged at high density and uniform density. In addition, it is possible to reliably electrically connect the electrodes arranged at high density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】 本発明に係るマイクロカプセル化した異方導
電性粒子の断面図。
FIG. 2 is a cross-sectional view of the microencapsulated anisotropic conductive particles according to the present invention.

【図3】 本発明における異方導電フィルムの製造説明
図。
FIG. 3 is a diagram illustrating the production of an anisotropic conductive film according to the present invention.

【図4】 従来の異方導電材料を用いた電極の接続説明
図。
FIG. 4 is a diagram illustrating connection of electrodes using a conventional anisotropic conductive material.

【図5】 従来の材料による接続トラブル発生を示す説
明図。
FIG. 5 is an explanatory view showing occurrence of a connection trouble due to a conventional material.

【符号の説明】[Explanation of symbols]

4 電極、 5 基板、 10 異方導電マイクロカプ
セル、 11 芯物質、 12 皮膜物質。
4 electrodes, 5 substrates, 10 anisotropic conductive microcapsules, 11 core materials, 12 coating materials.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】導電性粒子と、前記導電性粒子を被覆する
電気絶縁性のマイクロカプセル化皮膜を有し、電極間に
配置されて熱および圧力を作用させることで前記導電性
粒子を介して前記電極間を電気接続させるための電気接
続用異方導電性粒子。
1. An electro-conductive micro-encapsulated film for covering said conductive particles, wherein said micro-encapsulated film is provided between said electrodes, and heat and pressure are applied between said electrodes so that said conductive particles are interposed therebetween. Anisotropic conductive particles for electrical connection for electrically connecting the electrodes.
【請求項2】導電性粒子と前記導電性粒子を被覆する電
気絶縁性のマクロカプセル化皮膜を有する複数の異方導
電性粒子と、前記複数の異方導電性粒子を結着するフィ
ルム材とを備え、電極間に配置されて熱および圧力を作
用させることで前記導電性粒子を介して前記電極間を電
気接続させるためのフィルム状の電気接続用異方導電材
料。
2. A plurality of anisotropic conductive particles having conductive particles and an electrically insulating macro-encapsulated coating covering the conductive particles, and a film material binding the plurality of anisotropic conductive particles. A film-shaped anisotropic conductive material for electrical connection, which is disposed between the electrodes to apply heat and pressure to electrically connect the electrodes via the conductive particles.
JP9179450A 1997-07-04 1997-07-04 Electrical connection Expired - Lifetime JP2836035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9179450A JP2836035B2 (en) 1997-07-04 1997-07-04 Electrical connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9179450A JP2836035B2 (en) 1997-07-04 1997-07-04 Electrical connection

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60217598A Division JPH0618082B2 (en) 1985-09-30 1985-09-30 Anisotropically conductive material for electrical connection

Publications (2)

Publication Number Publication Date
JPH10134634A true JPH10134634A (en) 1998-05-22
JP2836035B2 JP2836035B2 (en) 1998-12-14

Family

ID=16066078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9179450A Expired - Lifetime JP2836035B2 (en) 1997-07-04 1997-07-04 Electrical connection

Country Status (1)

Country Link
JP (1) JP2836035B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100179A1 (en) * 2003-05-06 2004-11-18 Hanwha Chemical Corporation Insulated conductive ball for anisotropic conductive connection, method of preparing the same, and product using the same
WO2005109447A1 (en) * 2004-05-12 2005-11-17 Cheil Industries Inc. Insulated conductive particles and anisotropic conductive adhesive film containing the particles
KR100554925B1 (en) * 1999-11-05 2006-03-03 소니 케미카루 가부시키가이샤 Particle material for anisotropic conductive connection and anisotropic conductive connection material
KR100683440B1 (en) * 2003-07-30 2007-02-20 티디케이가부시기가이샤 Composite particle for electrode and process for producing thereof, electrode and process for producing thereof, and electrochemical element and process for producing thereof
US7436051B2 (en) 2004-01-09 2008-10-14 Tdk Corporation Component for fabricating an electronic device and method of fabricating an electronic device
CN103079343A (en) * 2011-10-26 2013-05-01 日立化成工业株式会社 Circuit component

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554925B1 (en) * 1999-11-05 2006-03-03 소니 케미카루 가부시키가이샤 Particle material for anisotropic conductive connection and anisotropic conductive connection material
WO2004100179A1 (en) * 2003-05-06 2004-11-18 Hanwha Chemical Corporation Insulated conductive ball for anisotropic conductive connection, method of preparing the same, and product using the same
KR100683440B1 (en) * 2003-07-30 2007-02-20 티디케이가부시기가이샤 Composite particle for electrode and process for producing thereof, electrode and process for producing thereof, and electrochemical element and process for producing thereof
US7436051B2 (en) 2004-01-09 2008-10-14 Tdk Corporation Component for fabricating an electronic device and method of fabricating an electronic device
WO2005109447A1 (en) * 2004-05-12 2005-11-17 Cheil Industries Inc. Insulated conductive particles and anisotropic conductive adhesive film containing the particles
US7815999B2 (en) 2004-05-12 2010-10-19 Cheil Industries, Inc. Insulated conductive particles and anisotropic conductive adhesive film containing the particles
CN103079343A (en) * 2011-10-26 2013-05-01 日立化成工业株式会社 Circuit component
KR20130045827A (en) * 2011-10-26 2013-05-06 히타치가세이가부시끼가이샤 Circuit component and process for producing the same
JP2013110404A (en) * 2011-10-26 2013-06-06 Hitachi Chemical Co Ltd Circuit component and manufacturing method therefor
US9019714B2 (en) 2011-10-26 2015-04-28 Hitachi Chemical Company, Ltd. Circuit component and method of making the same

Also Published As

Publication number Publication date
JP2836035B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
EP0512546B1 (en) Anisotropically conductive material and method for connecting integrated circuits by using the same
KR100273499B1 (en) Semiconductor device having a semiconductor chip electrically connected to a wiring substrate
JP3800631B2 (en) Method for manufacturing anisotropic conductive adhesive, method for manufacturing connection structure, and method for manufacturing liquid crystal device
JP2794009B2 (en) Method for producing anisotropically conductive particles for electrical connection and method for producing anisotropically conductive material for electrical connection
JPH0799644B2 (en) Anisotropically conductive material for electrical connection
GB2064233A (en) Liquid crystal display device
JP2836035B2 (en) Electrical connection
JPH053739B2 (en)
KR100772454B1 (en) Anisotropic conductive film and method of manufacturing the same
JP3280685B2 (en) Anisotropic conductive adhesive resin layer and method for producing the same
JPS61231066A (en) Anisotropically conductive hot-melt adhesive
JPH04292803A (en) Anisotropic conductive film
JPH0615429Y2 (en) Adhesive heat fusion type connector
JP3004042B2 (en) Metal-containing resin particles and uses thereof
KR940001260B1 (en) Conductive connecting structure
JPS63102110A (en) Anisotropic conductor and making thereof
JP2003297516A (en) Connection method of flexible board
JPH09147928A (en) Connecting member
JP2579458B2 (en) Anisotropic conductive film and method for producing the same
JPH08148210A (en) Connection member
JPS61195568A (en) Film connector
KR101117768B1 (en) Anisotropic Conductive Film
JPH0429504Y2 (en)
JPH0878074A (en) Anisotropic conductor adhesive sheet and its mauafacture
JP2995244B2 (en) Anisotropic conductive adhesive

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term