JPH0618082B2 - Anisotropically conductive material for electrical connection - Google Patents

Anisotropically conductive material for electrical connection

Info

Publication number
JPH0618082B2
JPH0618082B2 JP60217598A JP21759885A JPH0618082B2 JP H0618082 B2 JPH0618082 B2 JP H0618082B2 JP 60217598 A JP60217598 A JP 60217598A JP 21759885 A JP21759885 A JP 21759885A JP H0618082 B2 JPH0618082 B2 JP H0618082B2
Authority
JP
Japan
Prior art keywords
conductive material
anisotropic conductive
conductive
electrical connection
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60217598A
Other languages
Japanese (ja)
Other versions
JPS6276215A (en
Inventor
裕紀 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP60217598A priority Critical patent/JPH0618082B2/en
Publication of JPS6276215A publication Critical patent/JPS6276215A/en
Priority to JP4280233A priority patent/JPH0799644B2/en
Publication of JPH0618082B2 publication Critical patent/JPH0618082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導電性材料の微粒子を電気絶縁性材料の被覆
物質で被覆し所謂マイクロカプセル化し、任意の分解能
が得られるようにした電気接続用異方導電材料に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to an electrical connection in which fine particles of a conductive material are coated with a coating material of an electrically insulating material, so-called microencapsulation, and arbitrary resolution is obtained. For anisotropic conductive material.

〔従来の技術〕[Conventional technology]

従来の電気接続用異方導電材料として、例えば、第4図
(a)に示すような、金属や低融点ハンダ等の導電性微
粒子1を絶縁性材料2からなる分散媒中に分散させ、フ
ィルム状に形成したものがある。
As a conventional anisotropic conductive material for electrical connection, for example, as shown in FIG. 4 (a), conductive fine particles 1 such as metal or low melting point solder are dispersed in a dispersion medium made of an insulating material 2 to form a film. There is one formed in a shape.

同図のように、所定のパターンによる電極4が貼着され
た2枚の基板5を相互に接続する場合、上述の異方導電
材料を電極4を内側にした基板5によって挟持し、この
状態で全体を加圧ならびに加熱すると、絶縁性フィルム
が溶融して対向する電極4間から押し出させ、電極4間
は導電性微粒子1で電気的に接続されるとともに基板5
相互は押し出された絶縁性フィルム2によって接続さ
れ、第4図(b)に示すように2枚の基板が異方性導電
材料によって接続される。
As shown in the figure, when the two substrates 5 to which the electrodes 4 having a predetermined pattern are adhered are connected to each other, the anisotropic conductive material described above is sandwiched between the substrates 5 having the electrodes 4 inside, When the whole is pressurized and heated with, the insulating film is melted and extruded from between the opposing electrodes 4, and the electrodes 4 are electrically connected by the conductive fine particles 1 and the substrate 5
The two substrates are connected to each other by the extruded insulating film 2, and the two substrates are connected to each other by the anisotropic conductive material as shown in FIG. 4 (b).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、従来の異方導電材料にあっては、数μmオーダ
ー以下の粒径の均一な導電粒子をフィルム中に均一に分
散することが困難であるため、IC実装等を目的とした
高分解能(10本/mm以上)の多接点電極の接続に用いる
ことができなかった(因みに、従来技術においては5本
/mm(ラインスペース=100μm)が限界となってい
る)。
However, in the conventional anisotropically conductive material, it is difficult to uniformly disperse the uniform conductive particles having a particle size of several μm order or less in the film, and therefore, it is possible to achieve high resolution (for example, IC mounting). It could not be used for connecting multi-contact electrodes of 10 lines / mm or more) (by the way, the limit is 5 lines / mm (line space = 100 μm) in the prior art).

例えば、20本/mmの分解能を得ようとすれば、電極ピッ
チは25μmとなる。このため、数μmオーダー以下の粒
径の均一な導電粒子を均一にフィルム中に分散する必要
があるが、従来技術によれば、第5図の図示aの如くの
凝集、図示bの如く大径粒子の混入による隣接電極間の
短絡,及び図示Cの如く粒子が介在しないことによる絶
縁状態の発生等の問題を生じ、十分な信頼性を得ること
ができなかった。
For example, to obtain a resolution of 20 electrodes / mm, the electrode pitch is 25 μm. For this reason, it is necessary to uniformly disperse uniform conductive particles having a particle size on the order of several μm or less in the film. According to the conventional technique, agglomeration as shown in FIG. Due to the mixing of particles of small diameter, problems such as short circuit between adjacent electrodes and generation of an insulating state due to the absence of particles as shown in C are generated, and sufficient reliability cannot be obtained.

また、従来の異方導電フィルムは、シート状あるいはテ
ープ状のため、(切断)→(仮付け)→(仮接着)→
(セパレータ剥離)→(回路位置合せ)→(本接着)の
如き複雑な工程を必要とするため、接続の長時間化、歩
留りの低下等を招き、ひいてはコストアップを招く不具
合がある。
In addition, since the conventional anisotropic conductive film is in the form of a sheet or tape, (cut) → (temporary attachment) → (temporary adhesion) →
Since complicated steps such as (separator peeling) → (circuit alignment) → (main bonding) are required, there is a problem that the connection is lengthened, the yield is reduced, and the cost is increased.

さらに、異方導電材料として、本出願後に公開された特
開昭62−40183号公報に示されるような、導電性
粒子を接着剤に不溶な樹脂で被覆したものが提案されて
いる。
Further, as the anisotropic conductive material, there has been proposed a material in which conductive particles are coated with a resin insoluble in an adhesive as disclosed in Japanese Patent Application Laid-Open No. 62-40183 published after the present application.

この異方導電材料は、エポキシ樹脂とアミノエチルピペ
ラジンとからなる配合系樹脂に半田金属粒子を混合して
硬化させ、その後粉砕機で粉砕して粒子とし、接着剤中
に分散させ、連結シートを構成し、この連結シートを電
極上に重ねるように乗せ、圧着力により被覆を破壊し
て、電気的接続を確保している。
This anisotropic conductive material is prepared by mixing solder metal particles with a compounding resin consisting of epoxy resin and aminoethylpiperazine and curing it, then crushing it with a crusher into particles, dispersing them in an adhesive, and connecting sheets. Then, the connection sheet is placed so as to overlap the electrodes, and the coating is broken by the pressure bonding force to secure the electrical connection.

尚、異方導電材料に関するものとして、「電子技術」19
84年、第26巻第7号、第117頁に記載の内容、「日経エ
レクトロニクス」1984年7月16日号、第102頁に記載の
内容等がある。
As for the anisotropic conductive material, "Electronic Technology" 19
1984, Vol. 26, No. 7, page 117, "Nikkei Electronics" July 16, 1984, page 102, etc.

また、特開昭62−35410号公報には、導電性繊維
に被覆用樹脂が被覆されているチョップを用いた電気接
続用異方導電性材料、および前記導電性繊維が所定の径
を有すること、ならびに前記異方導電性繊維を剪断力を
与えながらフイルム状に形成して用いることが示されて
いる。
Further, in JP-A-62-35410, an anisotropic conductive material for electrical connection using a chop in which conductive fibers are coated with a coating resin, and the conductive fibers have a predetermined diameter. , And that the anisotropically conductive fiber is formed into a film while applying a shearing force.

しかしながら、この技術では、導電性繊維を用いている
ので、導電性繊維の配向を考慮しないときには隣接する
電極間に導電性繊維が配置される場合も発生し、これを
熱圧着すると隣接する電極間に導通を生じてしまうおそ
れがあり、これがために導電性繊維を配向させる処理が
必要となっていた。
However, since this technology uses conductive fibers, when conductive fiber orientation is not taken into consideration, conductive fibers may be placed between adjacent electrodes. Therefore, there is a possibility that electrical continuity may occur, which necessitates a treatment for orienting the conductive fibers.

〔問題点を解決するための手段及び作用〕[Means and Actions for Solving Problems]

本発明は上記に鑑みてなされたものであり、高分解能を
得られるようにするため、導電性材料の微粒子を電気絶
縁性高分子材料からなる殻の中に包み込んでマイクロカ
プセル化し、これらを対象面上に密着配設して膜化し、
或いはフィルム状に加工するようにした電気接続用異方
導電材料を提供するものである。
The present invention has been made in view of the above, and in order to obtain high resolution, fine particles of a conductive material are encapsulated in a shell made of an electrically insulating polymer material to form microcapsules, and these are targeted. Placed closely on the surface to form a film,
Alternatively, the invention provides an anisotropic conductive material for electrical connection, which is processed into a film shape.

〔実施例〕〔Example〕

以下、本発明による電気接続用異方導電材料を詳細に説
明する。
Hereinafter, the anisotropic conductive material for electrical connection according to the present invention will be described in detail.

第1図は本発明の一実施例を示し、第4図と同一の部分
は同一の引用数字で示したので、重複する説明は省略す
るが、本実施例は、導電性材料の微粒子を電気絶縁性の
物質によって被覆殻の中に包み込んでマイクロカプセル
化した異方導電マイクロカプセル10を、電極4が設け
られた基板5上へスクリーン印刷或いは吹き付けするこ
とによって、異方導電マイクロカプセル層を形成し、対
向する他の電極が設けられた他方の基板を整合させた後
加圧又は加熱圧着して電極相互間を接続する異方導電材
料とするものである。
FIG. 1 shows an embodiment of the present invention, and the same parts as those in FIG. 4 are indicated by the same reference numerals, so that the duplicated description will be omitted. Anisotropic conductive microcapsule layer is formed by screen-printing or spraying the anisotropic conductive microcapsule 10 which is encapsulated in an insulating material and encapsulated in a microcapsule onto a substrate 5 provided with electrodes 4. Then, the other substrate provided with the other electrodes facing each other is aligned and then pressed or heated and pressure-bonded to form an anisotropic conductive material for connecting the electrodes to each other.

ここで、異方導電マイクロカプセル10は第2図に示すよ
うに、芯物質11と、該芯物質11を被覆する単層または多
重の皮膜物質12より構成される。
Here, as shown in FIG. 2, the anisotropic conductive microcapsule 10 is composed of a core substance 11 and a single-layer or multiple coating substances 12 that coat the core substance 11.

芯物質11としては、金、白金、銀、銅、鉄、ニッケル、
アルミニウム、クロム等の金属及び金属化合物(IT
O、ハンダ等)、導電性カーボン等の導電性無機物及び
導電性無機化合物、有機金属化合物等の導電性有機化合
物等を用いることができる。また、皮膜物質12として
は、電気絶縁性の高分子材料である。フェノール樹脂,
ユリヤ樹脂,メラミン樹脂,アリル樹脂,フラン樹脂,
ポリエステル,エポキシ樹脂,シリコーン樹脂,ポリイ
ミド樹脂,ポリウレタン,テフロン樹脂等の熱硬化性高
分子、ポリエチレン,ポリプロピレン,ポリブチレン,
ポリメタクリル酸メチル,ポリスチレン,オクリロニト
リル−スチレン樹脂,スチレン−ブタジエン樹脂,アク
リルニトリル−スチレン−ブタジエン樹脂,ビニル樹
脂,ポリアミド樹脂,ポリエステル樹脂,ポリカーボネ
ート,ポリアセタール,アイオノマー樹脂,ポリエーテ
ルスルホン,ポリ(フェニルオキシド),ポリ(プェニ
レンスファイド),ポリスルホン,ポリウレタン,フッ
化樹脂(PTFE,PCTFE,ポリフッ化ビニリデ
ン)等の熱可塑性高分子、繊維素系樹脂(エチルセルロ
ース,酢酸セルロース,プロピオン酸セルロース,硝酸
セルロース等)の有機−無機化合物を用いることができ
る。
As the core substance 11, gold, platinum, silver, copper, iron, nickel,
Metals and metal compounds such as aluminum and chromium (IT
O, solder, etc.), conductive inorganic materials such as conductive carbon and conductive inorganic compounds, conductive organic compounds such as organic metal compounds, and the like can be used. The coating substance 12 is an electrically insulating polymer material. Phenolic resin,
Yuria resin, melamine resin, allyl resin, furan resin,
Thermosetting polymer such as polyester, epoxy resin, silicone resin, polyimide resin, polyurethane, Teflon resin, polyethylene, polypropylene, polybutylene,
Polymethylmethacrylate, polystyrene, ocrylonitrile-styrene resin, styrene-butadiene resin, acrylonitrile-styrene-butadiene resin, vinyl resin, polyamide resin, polyester resin, polycarbonate, polyacetal, ionomer resin, polyether sulfone, poly (phenyl) Oxide), poly (phenylene sulfide), polysulfone, polyurethane, thermoplastic resin such as fluororesin (PTFE, PCTFE, polyvinylidene fluoride), fibrin-based resin (ethyl cellulose, cellulose acetate, cellulose propionate, nitric acid) Organic-inorganic compounds such as cellulose) can be used.

このような皮膜物質12で芯物質11を包み込みマイク
ロカプセル化するに際しては、化学的製法(例えば、界
面重合法,in situ重合法、液中硬化被覆法など)ある
いは物理的・機械的製法(例えば、スプレードライング
法,気中懸濁被覆法,真空蒸着被覆法,静電的合体法,
融解分散冷却法,無機質カプセル化法など)、あるいは
物理化学的製法(例えば、コアセルベーション法,界面
沈澱法など)によって行なわれる。尚、マイクロカプセ
ルに関する文献として、近藤保、小石真純著「マイクロ
カプセル」三共出版刊等多数がある。
In encapsulating the core substance 11 with such a coating substance 12 to form microcapsules, a chemical production method (for example, an interfacial polymerization method, an in situ polymerization method, a liquid hardening coating method, etc.) or a physical / mechanical production method (for example, , Spray drying method, air suspension coating method, vacuum deposition coating method, electrostatic coalescence method,
Melt dispersion cooling method, inorganic encapsulation method, etc.) or physicochemical manufacturing method (eg, coacervation method, interfacial precipitation method, etc.). Note that there are many publications on microcapsules, such as Tamotsu Kondo and Masumi Koishi, "Microcapsules" published by Sankyo Publishing.

芯物質11を包み込みマイクロカプセル化する皮膜物質
12は、絶縁性物質として機能するのみならず、加熱に
より融解し、加圧によって芯物質11の表面に被覆した
膜圧を減じて基板5に形成されている電極4間を接着す
る機能を有している。皮膜物質12は多重にすることによ
って、絶縁用、接着用、すべり用(異方導電マイクロカ
プセル間のすべりを過度に調整することにより、下部基
板に塗布した際に単一層が形成し易くなる)等に機能を
分割し、信頼性を向上させることができる。
The coating substance 12 that wraps the core substance 11 and encapsulates it into microcapsules not only functions as an insulating substance, but is also melted by heating and formed on the substrate 5 by reducing the film pressure applied to the surface of the core substance 11 by pressing. It has a function of adhering between the electrodes 4 that are in contact with each other. Insulation, adhesion, and slip by multiplying the film substance 12 (by adjusting the slip between anisotropic conductive microcapsules excessively, a single layer is easily formed when applied to the lower substrate) It is possible to improve reliability by dividing the function into, for example.

次に、異方導電材料の形成を基板の接続を例にして、第
1図(a)、(b)により説明する。
Next, formation of the anisotropically conductive material will be described with reference to FIGS. 1 (a) and 1 (b) by taking a substrate connection as an example.

前述の製法によって調整された第2図の如き異方導電マ
イクロカプセル10を粒径5±0.2μm、膜厚0.8±0.05μ
m(20本/mmの分解能の要求から割出された値)に作成
し、これをスクリーン印刷あるいはスプレー等によって
下部電極基板5の所定部分に塗布(第1図(a)に示す)
する。ついで上部電極基板5(或いはフレキシブルコネ
クタ、IC電極パット等)を目合せしたのち、これらを
加圧或いは加熱圧着によって2枚の基板間の電極を第1
図(b)のように接続する。
An anisotropic conductive microcapsule 10 as shown in FIG.
m (value calculated from the requirement of 20 lines / mm resolution), and apply this to a predetermined portion of the lower electrode substrate 5 by screen printing or spraying (shown in FIG. 1 (a))
To do. Then, after aligning the upper electrode substrate 5 (or flexible connector, IC electrode pad, etc.), the electrodes between the two substrates are firstly pressed by pressing or thermocompression bonding these.
Connect as shown in Figure (b).

第1図(b)に示すように、本発明による異方導電材料
を用いて電気接続すれば、粒径の揃った異方導電材料1
0が基板5上に均質に存在するとともに、各導電材料の
間には、溶融した絶縁材料が介存しているので導電微粒
子間に必ず絶縁層が形成され、電気的な短絡現象は生じ
ない。したがって、第5図に示した如き従来の不具合は
生じない。このため、信頼性,分解能を共に高めること
ができる。尚、分解能は芯物質11の粒子径と皮膜12の膜
厚を調整することによって、任意の値が得られる。
As shown in FIG. 1 (b), if the anisotropic conductive material according to the present invention is used for electrical connection, the anisotropic conductive material 1 having a uniform particle size is obtained.
0 exists uniformly on the substrate 5, and a molten insulating material exists between the conductive materials, so that an insulating layer is always formed between the conductive fine particles, and an electrical short circuit phenomenon does not occur. . Therefore, the conventional inconvenience as shown in FIG. 5 does not occur. Therefore, both reliability and resolution can be improved. Incidentally, the resolving power can be obtained as an arbitrary value by adjusting the particle diameter of the core substance 11 and the film thickness of the film 12.

任意の値が得られる。Any value can be obtained.

また、軟化した皮膜物質が導電性粒子の導電部の周囲を
覆うので、導電性粒子が金属の場合は酸化、腐食、マイ
グレーシヨンを防止するので、長期安定的に導電性が得
られる。
Further, since the softened coating material covers the periphery of the conductive portion of the conductive particles, when the conductive particles are metal, oxidation, corrosion, and migration are prevented, so that conductivity can be stably obtained for a long period of time.

さらに、本発明は、異方導電性粒子を用いているので、
前記公報に開示される導電性繊維を用いたものに比較し
て、隣接する電極間の絶縁を確実に得ることができる。
Furthermore, since the present invention uses anisotropically conductive particles,
Insulation between adjacent electrodes can be surely obtained as compared with the one using the conductive fiber disclosed in the above publication.

従来より、異方導電フィルムの形成に際しては、絶縁性
フィルム材と導電粒子を直接混練したのち、シート状あ
るいはテープ状に整形している。同様に本発明において
も、第3図に示すように、導電粒子をマイクロカプセル
化して異方導電マイクロカプセル10を形成し、これをロ
ーラ15(又はヒートローラ等)によってシート状あるい
はテープ状の異方導電フィルムを製造することができ
る。
Conventionally, when forming an anisotropic conductive film, an insulating film material and conductive particles are directly kneaded and then shaped into a sheet or tape. Similarly, also in the present invention, as shown in FIG. 3, conductive particles are microencapsulated to form anisotropic conductive microcapsules 10, which are formed into a sheet or tape by a roller 15 (or a heat roller or the like). A directional conductive film can be manufactured.

〔発明の効果〕〔The invention's effect〕

以上説明した通り、本発明の電気接続用異方導電材料に
よれば、導電性微粒子を熱及び圧力の作用によって膜厚
を減じて導電性微粒子に導通部を形成しうる電気絶縁性
物質で被覆したため、すなわち、導電性粒子を電気絶縁
性物質で包み込んでマイクロカプセル化したため、導電
性粒子の側面には必ず電気絶縁性物質が存在するので、
隣接する電極間に異方導電性粒子が凝集しても短絡が発
生しなくなり、高分解能を得ることができる。さらに、
導電性粒子を被覆する電気絶縁性物質が熱の作用によっ
て、溶融軟化し、さらに加圧によって異方導電性材料の
配列方向に移動し膜厚が減じられるので、接続方向の導
電性を確実に得ることができる。しかも、導電粒子の材
料を選ばないため、あらゆる電極材料に合せてオーミッ
クな接続を行うことができる。
As described above, according to the anisotropic conductive material for electrical connection of the present invention, the conductive fine particles are coated with an electrically insulating substance capable of forming a conductive portion in the conductive fine particles by reducing the film thickness by the action of heat and pressure. Therefore, that is, since the conductive particles are wrapped with an electrically insulating substance to be microencapsulated, there is always an electrically insulating substance on the side surface of the electrically conductive particles,
Even if anisotropically conductive particles aggregate between adjacent electrodes, short circuit does not occur, and high resolution can be obtained. further,
The electrically insulating substance that coats the conductive particles is melted and softened by the action of heat, and further moved by pressure to move in the array direction of the anisotropically conductive material to reduce the film thickness, ensuring the conductivity in the connecting direction. Obtainable. Moreover, since the material of the conductive particles is not selected, ohmic connection can be performed according to any electrode material.

さらに、前記した先願技術では、加圧圧着によって被覆
樹脂を破壊しているので、対向する電極方向の破壊を生
ずるのみならず目的としない横方向の破壊をも招来して
しまい横方向の短絡を大きくする恐れがあるのに対し、
本発明は、加圧による被覆の破壊を利用するものではな
く、熱の作用によって電気絶縁性物質を溶融軟化し、さ
らに加圧によって、電気絶縁性物質が異方導電性材料の
配列方向に移動して膜厚を減じるものであるので、膜圧
を減じられた部分の絶縁耐力は極めて低くなり十分な電
気的導通を得ることができるので、対向する電極間の導
電性を確実に得ることができるとともに、横方向の電気
絶縁性が確実に確保されるという極めて優れた効果を奏
する。
Further, in the above-mentioned prior art, since the coating resin is destroyed by pressure and pressure, not only the destruction of the opposing electrodes but also the undesired lateral destruction is caused, which causes a short circuit in the lateral direction. While there is a risk of increasing
The present invention does not utilize destruction of the coating due to pressurization, but melts and softens the electrically insulating substance by the action of heat, and further moves the electrically insulative substance in the arrangement direction of the anisotropically conductive material by the pressure. Since the film thickness is reduced by this, the dielectric strength of the portion where the film pressure is reduced becomes extremely low, and sufficient electrical conduction can be obtained, so it is possible to reliably obtain conductivity between the opposing electrodes. In addition to being able to do so, it has an extremely excellent effect that the electric insulation in the lateral direction is surely secured.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)、(b)は本発明の一実施例を示す断面図、第2
図は本発明に係るマイクロ化した導電性粒子の断面図、
第3図は本発明おける異方導電フィルムの製造説明図、
第4図(a)、(b)は従来の異方導電材料を用いた電極の接
続説明図、第5図は従来の材料による接続トラブル発生
を示す説明図。 符号の説明 4……電極、5……基板 10……異方導電マイクロカプセル 11……芯物質、12……皮膜物質
1 (a) and 1 (b) are sectional views showing an embodiment of the present invention, and FIG.
FIG. 1 is a sectional view of micronized conductive particles according to the present invention,
FIG. 3 is a production explanatory view of the anisotropic conductive film in the present invention,
4 (a) and 4 (b) are explanatory views of connection of electrodes using a conventional anisotropically conductive material, and FIG. 5 is an explanatory view showing occurrence of connection troubles due to conventional materials. Explanation of symbols 4 ... Electrode, 5 ... Substrate 10 ... Anisotropic conductive microcapsule 11 ... Core material, 12 ... Coating material

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】導電性粒子の表面を、熱及び圧力の作用に
よって膜厚を減じてこの導電性粒子に導通部を形成しう
る電気絶縁性物質で被覆した異方導電性粒子を用いるこ
とを特徴とする電気接続用異方導電材料。
1. Use of anisotropically conductive particles in which the surface of the electrically conductive particles is coated with an electrically insulating substance capable of forming a conducting part in the electrically conductive particles by reducing the film thickness by the action of heat and pressure. Characteristic anisotropic conductive material for electrical connection.
【請求項2】前記異方導電性粒子が所定の粒径である特
許請求の範囲第1項に記載の電気接続用異方導電材料。
2. The anisotropic conductive material for electrical connection according to claim 1, wherein the anisotropic conductive particles have a predetermined particle size.
【請求項3】前記異方導電性粒子を密接配置して用いる
ことからなる特許請求の範囲第1項または第2項に記載
の電気接続用異方導電材料。
3. The anisotropic conductive material for electrical connection according to claim 1 or 2, which comprises using the anisotropic conductive particles in close contact with each other.
【請求項4】前記異方導電性粒子をフィルム状に形成し
て用いることからなる特許請求の範囲第1項または第2
項に記載の電気接続用異方導電材料。
4. The method according to claim 1, wherein the anisotropically conductive particles are formed into a film and used.
An anisotropic conductive material for electrical connection according to the item.
JP60217598A 1985-09-30 1985-09-30 Anisotropically conductive material for electrical connection Expired - Lifetime JPH0618082B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60217598A JPH0618082B2 (en) 1985-09-30 1985-09-30 Anisotropically conductive material for electrical connection
JP4280233A JPH0799644B2 (en) 1985-09-30 1992-10-19 Anisotropically conductive material for electrical connection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60217598A JPH0618082B2 (en) 1985-09-30 1985-09-30 Anisotropically conductive material for electrical connection
JP4280233A JPH0799644B2 (en) 1985-09-30 1992-10-19 Anisotropically conductive material for electrical connection

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP4280233A Division JPH0799644B2 (en) 1985-09-30 1992-10-19 Anisotropically conductive material for electrical connection
JP8013076A Division JP2794009B2 (en) 1996-01-29 1996-01-29 Method for producing anisotropically conductive particles for electrical connection and method for producing anisotropically conductive material for electrical connection
JP9179450A Division JP2836035B2 (en) 1997-07-04 1997-07-04 Electrical connection

Publications (2)

Publication Number Publication Date
JPS6276215A JPS6276215A (en) 1987-04-08
JPH0618082B2 true JPH0618082B2 (en) 1994-03-09

Family

ID=26522114

Family Applications (2)

Application Number Title Priority Date Filing Date
JP60217598A Expired - Lifetime JPH0618082B2 (en) 1985-09-30 1985-09-30 Anisotropically conductive material for electrical connection
JP4280233A Expired - Lifetime JPH0799644B2 (en) 1985-09-30 1992-10-19 Anisotropically conductive material for electrical connection

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP4280233A Expired - Lifetime JPH0799644B2 (en) 1985-09-30 1992-10-19 Anisotropically conductive material for electrical connection

Country Status (1)

Country Link
JP (2) JPH0618082B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176139A (en) * 1986-01-29 1987-08-01 Fuji Xerox Co Ltd Anisotropic conducting material and packaging method for semiconductor device using said material
JP3050384B2 (en) * 1989-02-01 2000-06-12 日立化成工業株式会社 Anisotropic conductive resin film-shaped molding
US5136365A (en) * 1990-09-27 1992-08-04 Motorola, Inc. Anisotropic conductive adhesive and encapsulant material
JPH04332404A (en) * 1991-05-07 1992-11-19 Nec Corp Anisotropic conductive material and connection of integrated circuit element using it
JPH05326097A (en) * 1992-05-22 1993-12-10 Sharp Corp Electrode connecting method
JP3455871B2 (en) 1997-06-23 2003-10-14 株式会社スリーボンド Method for producing microcapsule type conductive filler
JP4075132B2 (en) * 1998-04-14 2008-04-16 日本ゼオン株式会社 Resin composition
KR100527990B1 (en) 2001-11-30 2005-11-09 미쯔이카가쿠 가부시기가이샤 Paste for circuit connection, anisotropic conductive paste and uses thereof
JP4152163B2 (en) * 2002-10-16 2008-09-17 株式会社巴川製紙所 Conductive adhesive and method for producing the same
CN101483080A (en) 2003-12-04 2009-07-15 旭化成电子材料元件株式会社 Anisotropic conductive adhesive sheet and coupling structure
JP5225766B2 (en) * 2008-06-25 2013-07-03 旭化成イーマテリアルズ株式会社 Anisotropic conductive adhesive sheet and finely connected structure
JP6972216B2 (en) * 2016-03-23 2021-11-24 日東電工株式会社 Heat bonding sheet, heat bonding sheet with dicing tape, manufacturing method of bonded body, power semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298407A (en) * 1980-08-04 1981-11-03 E. I. Du Pont De Nemours And Company Flux treated solder powder composition
EP0134624A3 (en) * 1983-06-13 1987-05-13 Minnesota Mining And Manufacturing Company Multiple-connector adhesive tape
JPS6040183A (en) * 1983-08-16 1985-03-02 Yazaki Corp Refrigerant composition for absorption refrigerator
JPS60140790A (en) * 1983-12-27 1985-07-25 ソニ−ケミカル株式会社 Coupling sheet
JPS6235410A (en) * 1985-08-08 1987-02-16 株式会社フジクラ Manufacture of anisotropic conducting adhesive sheet
JP2501100B2 (en) * 1985-08-15 1996-05-29 ソニー株式会社 Connection sheet

Also Published As

Publication number Publication date
JPH0660712A (en) 1994-03-04
JPH0799644B2 (en) 1995-10-25
JPS6276215A (en) 1987-04-08

Similar Documents

Publication Publication Date Title
EP0512546B1 (en) Anisotropically conductive material and method for connecting integrated circuits by using the same
JPH0618082B2 (en) Anisotropically conductive material for electrical connection
JP2794009B2 (en) Method for producing anisotropically conductive particles for electrical connection and method for producing anisotropically conductive material for electrical connection
JPS61173471A (en) Heat compressed connector
GB2064233A (en) Liquid crystal display device
JPH053739B2 (en)
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
JPH04292803A (en) Anisotropic conductive film
JP2836035B2 (en) Electrical connection
JPH06333965A (en) Anisotropic conductive adhesive sheet
KR20070047443A (en) Conductive adhesive and connection method between terminals, and packaging method of semiconductor device employing it
JPH0615429Y2 (en) Adhesive heat fusion type connector
KR940001260B1 (en) Conductive connecting structure
JP4282097B2 (en) Circuit board connection method, connection structure, and adhesive film used therefor
JPS63102110A (en) Anisotropic conductor and making thereof
JPH10106726A (en) Manufacture of sheet-like heater element
JP2003297516A (en) Connection method of flexible board
JP2006024551A (en) Method of manufacturing anisotropic conductive film
JP2006310583A (en) Composite substrate and manufacturing method thereof
JP2005019274A (en) Manufacturing method of anisotropic conductive film
KR101117768B1 (en) Anisotropic Conductive Film
JP2006054268A (en) Joint of circuit board
JPH1116946A (en) Mounting method of semiconductor device
EP0215953A1 (en) Film connector and method of manufacturing same
JP4099475B2 (en) Conductive silicon powder, manufacturing method thereof, anisotropic conductive film and conductive paste using the same