JP2006310583A - Composite substrate and manufacturing method thereof - Google Patents

Composite substrate and manufacturing method thereof Download PDF

Info

Publication number
JP2006310583A
JP2006310583A JP2005131853A JP2005131853A JP2006310583A JP 2006310583 A JP2006310583 A JP 2006310583A JP 2005131853 A JP2005131853 A JP 2005131853A JP 2005131853 A JP2005131853 A JP 2005131853A JP 2006310583 A JP2006310583 A JP 2006310583A
Authority
JP
Japan
Prior art keywords
conductive
particles
substrates
composite substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005131853A
Other languages
Japanese (ja)
Inventor
Tomohito Kitada
智史 北田
Yoshihito Seki
善仁 関
Hiroki Maruo
弘樹 圓尾
Yoshiharu Unami
義春 宇波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005131853A priority Critical patent/JP2006310583A/en
Publication of JP2006310583A publication Critical patent/JP2006310583A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite substrate in which insulation performance between adjacent conductors can be enhanced, and in addition, cost reduction can be realized, and to provide a manufacturing method thereof. <P>SOLUTION: A non-conductive resin film 7 deformable by an external force is provided on the surface of a conductive section 4 of a substrate 1, and connection particles 9 made of a conductive material and each having an external diameter wider than the inside diameter of each of openings 8 are arranged so that one part of each of the particles is positioned in the openings 8. Substrates 1 and 2 are pressed in a direction of the substrates coming close to each other to crush the connection particles 9 and push away the non-conductive resin, thereby jointing the conductive portions 4 and 6 through the connection particle 9 and making them conducting. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の基板を接合して得られた複合基板およびその製造方法に関する。   The present invention relates to a composite substrate obtained by bonding a plurality of substrates and a method for manufacturing the same.

電子機器の小型化、軽量化に伴い、複数の回路基板を互いに接合した複合基板が用いられている。
複合基板としては、一対の基板どうしを、異方性導電膜を用いて接合したものがある(例えば特許文献1を参照)。
図12は、異方性導電膜を用いた複合基板の一例を示すもので、この複合基板では、第1基板1と第2基板2とが異方性導電膜31を介して接合されている。
第1および第2基板1、2は、基材3、5の一方の面に、それぞれ端子4、6(導電部)が形成されている。異方性導電膜31は、導体粒子32を樹脂材料33に分散させたものである。
この複合基板では、端子4と端子6との間に介在する導体粒子32によって、端子4、6が電気的に接続されている。
特開平5−191008号公報
Along with the reduction in size and weight of electronic devices, a composite substrate in which a plurality of circuit boards are bonded to each other is used.
As a composite substrate, there is one in which a pair of substrates are joined using an anisotropic conductive film (see, for example, Patent Document 1).
FIG. 12 shows an example of a composite substrate using an anisotropic conductive film. In this composite substrate, the first substrate 1 and the second substrate 2 are bonded via an anisotropic conductive film 31. .
In the first and second substrates 1 and 2, terminals 4 and 6 (conductive portions) are formed on one surface of the base materials 3 and 5, respectively. The anisotropic conductive film 31 is obtained by dispersing conductive particles 32 in a resin material 33.
In this composite substrate, the terminals 4 and 6 are electrically connected by the conductor particles 32 interposed between the terminals 4 and 6.
JP-A-5-191008

上記複合基板は、高価な異方性導電膜31を使用するためコストが増大するという問題がある。また、端子4、6と、これに隣接する端子4、6との間に、導体粒子32を含む異方性導電膜31が充填されるため、これら端子4、6間の絶縁性が不十分になりやすかった。
また、上記複合基板では、端子4、6の電気的導通は導体粒子32と端子4、6との間の接触に依存するため、はんだ接合などと比較して端子4、6間の抵抗値が高くなるという問題がある。
本発明は、上記事情に鑑みてなされたものであって、隣り合う導電部間の絶縁性を高めることができ、かつ接続される導電部における導電性を高めることができ、しかもコスト低減が可能となる複合基板およびその製造方法を提供することを目的とする。
The composite substrate has a problem that the cost increases because the expensive anisotropic conductive film 31 is used. Further, since the anisotropic conductive film 31 including the conductive particles 32 is filled between the terminals 4 and 6 and the terminals 4 and 6 adjacent thereto, the insulation between the terminals 4 and 6 is insufficient. It was easy to become.
In the composite substrate, since the electrical continuity of the terminals 4 and 6 depends on the contact between the conductor particles 32 and the terminals 4 and 6, the resistance value between the terminals 4 and 6 is smaller than that of solder bonding. There is a problem of becoming higher.
The present invention has been made in view of the above circumstances, and can improve the insulation between adjacent conductive parts, and can improve the conductivity of the conductive parts to be connected, and can reduce the cost. An object of the present invention is to provide a composite substrate and a manufacturing method thereof.

本発明の請求項1に係る複合基板の製造方法は、導電部を有する一対の基板が互いに接合された複合基板を製造する方法であって、前記一対の基板のうち少なくとも一方の導電部表面に、開口部を有し、外力により変形可能な非導電性樹脂フィルムを設置するフィルム設置工程と、導電材料からなり、前記開口部内径よりも外径が大きい接続粒子を、その一部が前記非導電性樹脂フィルムの開口部内に位置するように配置し、前記一対の基板を互いに接近する方向に押圧することによって前記接続粒子を押しつぶすとともに、前記非導電性樹脂を押しのけて、前記接続粒子を介して前記導電部どうしを導電可能に接合する押圧工程と、を含むことを特徴とする。
本発明の請求項2に係る複合基板の製造方法は、請求項1において、前記押しのけられた非導電性樹脂が、前記導電部の周囲に絶縁部を形成することを特徴とする。
本発明の請求項3に係る複合基板の製造方法は、請求項1または2において、前記非導電性樹脂が熱硬化性樹脂であり、前記押圧工程を経た非導電性樹脂を、加熱により硬化させることを特徴とする。
本発明の請求項4に係る複合基板の製造方法は、請求項1〜3のうちいずれか1項において、前記接続粒子が嵌合可能な嵌合口部を有する配置板を使用し、前記押圧工程において導電部間に挟み込む接続粒子を、前記嵌合口部に嵌合させた状態で導電層表面に配置することを特徴とする。
本発明の請求項5に係る複合基板の製造方法は、請求項1〜3のうちいずれか1項において、前記接続粒子が通過可能な通過口部を有する配置板を使用し、前記押圧工程において導電部間に挟み込む接続粒子を、前記通過口部から落とし込むことによって導電層表面に配置することを特徴とする。
A method of manufacturing a composite substrate according to claim 1 of the present invention is a method of manufacturing a composite substrate in which a pair of substrates having conductive portions are bonded to each other, and is provided on the surface of at least one conductive portion of the pair of substrates. A film installation step for installing a non-conductive resin film having an opening and deformable by an external force, and a part of connection particles made of a conductive material and having an outer diameter larger than the inner diameter of the opening. The conductive resin film is disposed so as to be positioned in the opening, and the connection particles are crushed by pressing the pair of substrates in a direction approaching each other, and the non-conductive resin is pushed away to pass through the connection particles. And a pressing step for joining the conductive portions so as to be conductive.
A method for manufacturing a composite substrate according to a second aspect of the present invention is characterized in that, in the first aspect, the pushed nonconductive resin forms an insulating portion around the conductive portion.
The method for producing a composite substrate according to claim 3 of the present invention is the method according to claim 1 or 2, wherein the nonconductive resin is a thermosetting resin, and the nonconductive resin that has undergone the pressing step is cured by heating. It is characterized by that.
The method for manufacturing a composite substrate according to a fourth aspect of the present invention uses the pressing plate according to any one of the first to third aspects, using a placement plate having a fitting opening portion into which the connection particles can be fitted. The connecting particles sandwiched between the conductive portions in FIG. 5 are arranged on the surface of the conductive layer in a state of being fitted in the fitting opening portion.
In the manufacturing method of the composite substrate according to claim 5 of the present invention, in any one of claims 1 to 3, a placement plate having a passage opening through which the connection particles can pass is used, and in the pressing step, The connecting particles sandwiched between the conductive portions are disposed on the surface of the conductive layer by dropping from the passage opening portion.

本発明の請求項6に係る複合基板は、導電部を有する一対の基板が互いに接合された複合基板であって、前記一対の基板と、これら基板の導電部の間に圧縮され導電部どうしを導電可能に接合する接続粒子と、導電部表面に形成された非導電性樹脂が押圧変形されて前記導電部の周囲に形成された絶縁部とを備えていることを特徴とする。   A composite substrate according to claim 6 of the present invention is a composite substrate in which a pair of substrates having conductive portions are bonded to each other, and the conductive portions are compressed between the pair of substrates and the conductive portions of these substrates. It is characterized by comprising connecting particles that are joined so as to be conductive, and an insulating portion formed around the conductive portion by pressing and deforming a nonconductive resin formed on the surface of the conductive portion.

本発明の製造方法では、開口部を有する非導電性樹脂フィルムを用い、開口部内径よりも外径が大きい接続粒子を開口部内に配置し、基板を押圧することによって接続粒子を押しつぶすとともに、非導電性樹脂を押しのけて、接続粒子を介して導電部どうしを導電可能に接合する。
開口部内径よりも外径が大きい接続粒子を用いることによって、接続粒子が開口部内で転動しにくくなるため、接続粒子の位置ずれを防ぎ、接続粒子を正確な位置で導電部に接合することができる。
また、押しつぶされた接続粒子によって導電部どうしが接合されるため、これらの間の導電性を高めることができる。
また、押しのけられた非導電性樹脂によって、隣り合う導電部間の絶縁性を高めるとともに、基板の接合強度を高めることができる。
また、隣り合う導電部間に、非導電性樹脂を容易かつ確実に配置することができ、製造工程を簡略化し、製造コストの削減を図ることができる。
In the production method of the present invention, a non-conductive resin film having an opening is used, connecting particles having an outer diameter larger than the inner diameter of the opening are arranged in the opening, and the connecting particles are crushed by pressing the substrate. The conductive resin is pushed away, and the conductive portions are joined to each other through the connection particles so as to be conductive.
By using connecting particles whose outer diameter is larger than the inner diameter of the opening, it becomes difficult for the connecting particles to roll in the opening, thereby preventing displacement of the connecting particles and joining the connecting particles to the conductive portion at an accurate position. Can do.
Moreover, since the conductive parts are joined by the crushed connecting particles, the conductivity between them can be increased.
Further, the pushed non-conductive resin can enhance the insulation between the adjacent conductive portions and can increase the bonding strength of the substrates.
Further, the non-conductive resin can be easily and surely disposed between the adjacent conductive portions, the manufacturing process can be simplified, and the manufacturing cost can be reduced.

以下、図面を参照して本発明の複合基板の製造方法の第1の例を詳細に説明する。
図1に示すように、板状の基材3の一方の面に、複数の端子4(導電部)が形成された第1基板1を用意する。
端子4の構成材料としては、銅、クロム、アルミニウム、ニッケル、チタン、チタン−タングステン合金、金のうち1または2以上を挙げることができる。なかでも特に、銅を用いるのが好ましい。端子4の幅は例えば50μm以上であり、厚さは例えば9〜35μmである。
Hereinafter, a first example of a method for producing a composite substrate of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, a first substrate 1 having a plurality of terminals 4 (conductive portions) formed on one surface of a plate-like base material 3 is prepared.
Examples of the constituent material of the terminal 4 include one or more of copper, chromium, aluminum, nickel, titanium, titanium-tungsten alloy, and gold. Especially, it is preferable to use copper. The terminal 4 has a width of, for example, 50 μm or more and a thickness of, for example, 9 to 35 μm.

図2に示すように、端子4の表面に、非導電性樹脂フィルム7を設置する。
非導電性樹脂フィルム7を構成する非導電性樹脂としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂、フェノール樹脂などの熱硬化性樹脂を用いてもよいし、アクリル樹脂、酢酸ビニル樹脂などの熱可塑性樹脂を用いてもよいが、特に、熱硬化性樹脂を用いるのが好ましい。
非導電性樹脂フィルム7は、外力が加えられた場合にその外力に従って変形可能であり、表面粘着性を有することが好ましい。
非導電性樹脂フィルム7の厚さは、例えば20〜100μmとすることができる。
As shown in FIG. 2, a nonconductive resin film 7 is installed on the surface of the terminal 4.
As the non-conductive resin constituting the non-conductive resin film 7, a thermosetting resin such as an epoxy resin, a polyimide resin, a polyester resin, or a phenol resin may be used, or a thermoplastic resin such as an acrylic resin or a vinyl acetate resin. A resin may be used, but it is particularly preferable to use a thermosetting resin.
The non-conductive resin film 7 can be deformed according to the external force when an external force is applied, and preferably has surface adhesiveness.
The thickness of the nonconductive resin film 7 can be set to, for example, 20 to 100 μm.

非導電性樹脂フィルム7は、端子4表面の一部に相当する位置に、開口部8を有することが好ましい。開口部8は、端子4の中央に形成するのが好ましく、その内径は、接続粒子9の外径より小さくされる。開口部8の内径は20〜120μmが好ましい。
以下、非導電性樹脂フィルム7を端子4表面に設置する工程をフィルム設置工程という。
The nonconductive resin film 7 preferably has an opening 8 at a position corresponding to a part of the surface of the terminal 4. The opening 8 is preferably formed in the center of the terminal 4, and the inner diameter thereof is made smaller than the outer diameter of the connecting particles 9. The inner diameter of the opening 8 is preferably 20 to 120 μm.
Hereinafter, the process of installing the nonconductive resin film 7 on the surface of the terminal 4 is referred to as a film installation process.

次いで、図3に示すように、導電性の接続粒子9を端子4表面に配置する。接続粒子9は、その一部が開口部8内に位置している。
接続粒子9の構成材料としては、金属材料が好ましく、銅、クロム、アルミニウム、チタン、チタン−タングステン合金、金のうち1または2以上を挙げることができる。
また、接続粒子9には、端子4、6の構成材料に比べ、融点が同じまたは低い材料を用いることもできる。例えば、端子4、6に銅を用い、接続粒子9にスズ、亜鉛、アルミニウムのうち1以上を含む材料を用いることができる。
Next, as shown in FIG. 3, conductive connecting particles 9 are arranged on the surface of the terminal 4. A part of the connecting particles 9 is located in the opening 8.
As a constituent material of the connection particle 9, a metal material is preferable, and one or more of copper, chromium, aluminum, titanium, titanium-tungsten alloy, and gold can be used.
The connecting particles 9 may be made of a material having the same or lower melting point than the constituent materials of the terminals 4 and 6. For example, copper can be used for the terminals 4 and 6, and a material containing one or more of tin, zinc, and aluminum can be used for the connection particles 9.

接続粒子9の形状は、特に限定されないが、略球状、略楕円体状、略円柱状、略多角柱状、略円錐状、略多角錐状、直方体などとすることができる。
特に、端子4に対し点接触する形状、例えば球状の接続粒子9を用いると、押圧工程(後述)後における端子4と接続粒子9との間の電気抵抗を低くすることができる。
The shape of the connection particle 9 is not particularly limited, but may be a substantially spherical shape, a substantially elliptical shape, a substantially cylindrical shape, a substantially polygonal column shape, a substantially conical shape, a substantially polygonal pyramid shape, a rectangular parallelepiped shape, or the like.
In particular, when a shape that makes point contact with the terminal 4, for example, spherical connecting particles 9, is used, the electrical resistance between the terminal 4 and the connecting particles 9 after the pressing step (described later) can be reduced.

接続粒子9の外径は、開口部8の内径より大きい。すなわち、接続粒子9の外径に対する開口部8の内径の比は1未満である。この比は0.8以下が好ましい。
開口部8内径よりも外径が大きい接続粒子9を用いることによって、接続粒子9は、開口部8内で転動しにくくなる。このため、接続粒子9の位置ずれを防ぎ、接続粒子9を正確な位置で端子4、6に接合することができる。
接続粒子9の外径に対する開口部8の内径の比は、小さすぎれば接続粒子9が開口部8から転出しやすくなるため、0.25以上が好ましい。
接続粒子9の直径は、50μm以上、例えば50〜200μmとすると、押圧後の端子4、6と接続粒子9の間の電気抵抗を低くすることができる。
The outer diameter of the connecting particle 9 is larger than the inner diameter of the opening 8. That is, the ratio of the inner diameter of the opening 8 to the outer diameter of the connecting particle 9 is less than 1. This ratio is preferably 0.8 or less.
By using the connecting particles 9 whose outer diameter is larger than the inner diameter of the opening 8, the connecting particles 9 are less likely to roll within the opening 8. For this reason, the displacement of the connecting particles 9 can be prevented, and the connecting particles 9 can be joined to the terminals 4 and 6 at accurate positions.
The ratio of the inner diameter of the opening 8 to the outer diameter of the connecting particle 9 is preferably 0.25 or more because the connecting particle 9 tends to be transferred from the opening 8 if it is too small.
When the diameter of the connecting particles 9 is 50 μm or more, for example, 50 to 200 μm, the electrical resistance between the terminals 4 and 6 and the connecting particles 9 after pressing can be reduced.

図3に示すように、接続粒子9を非導電性樹脂フィルム7上に配置した状態では、接続粒子9は端子4に達していないが、図4に示すように、接続粒子9を端子4に達するまで押圧することによって、接続粒子9と非導電性樹脂フィルム7との接触面積を大きくし、接続粒子9を非導電性樹脂フィルム7に付着させることができる。これによって、接続粒子9が端子4から転落しにくくなる。
このように、接続粒子9を端子4表面に配置する工程を接続粒子配置工程と呼ぶ。
As shown in FIG. 3, in a state where the connecting particles 9 are arranged on the non-conductive resin film 7, the connecting particles 9 do not reach the terminals 4, but as shown in FIG. 4, the connecting particles 9 are connected to the terminals 4. By pressing until reaching, the contact area between the connection particles 9 and the non-conductive resin film 7 can be increased, and the connection particles 9 can be adhered to the non-conductive resin film 7. This makes it difficult for the connecting particles 9 to fall from the terminals 4.
Thus, the process of arrange | positioning the connection particle | grains 9 on the terminal 4 surface is called a connection particle | grain arrangement | positioning process.

図5に示すように、板状の基材5の一方の面に、端子6(導電部)が形成された第2基板2を用意する。第2基板2は、第1基板1と同様の構成とすることができる。
第2基板2を、端子6が端子4に向かい合うように配置し、接続粒子9を非導電性樹脂フィルム7とともに端子4、6間に挟み込んだ状態で、第1および第2基板1、2を互いに接近する方向に押圧する。
押圧力は100kgf/cm以上、200kgf/cm以下が好適である。なお、1kgfは9.80665Nに相当する。
押圧時の温度は160℃以上、好ましくは240℃以上が好適である。この温度は300℃以下とするのが好ましい。処理時間は10分程度が好ましい。
As shown in FIG. 5, the 2nd board | substrate 2 with which the terminal 6 (electrically conductive part) was formed in one surface of the plate-shaped base material 5 is prepared. The second substrate 2 can have the same configuration as the first substrate 1.
The second substrate 2 is disposed so that the terminals 6 face the terminals 4, and the first and second substrates 1 and 2 are placed in a state where the connection particles 9 are sandwiched between the terminals 4 and 6 together with the non-conductive resin film 7. Press in directions approaching each other.
Pressing force 100 kgf / cm 2 or more, is preferably 200 kgf / cm 2 or less. 1 kgf corresponds to 9.80665N.
The temperature during pressing is 160 ° C or higher, preferably 240 ° C or higher. This temperature is preferably 300 ° C. or lower. The treatment time is preferably about 10 minutes.

図6に示すように、押圧によって、接続粒子9が押圧方向に押しつぶされる。図示例では、端子4、6に、接続粒子9に沿う凹部15、16が形成されるとともに、接続粒子9が押圧方向に圧縮される。
接続粒子9は、端子4、6に対し、金属結合などにより強固かつ導電可能に接合する。
以下、端子4、6間に接続粒子9および非導電性樹脂フィルム7を挟み込んだ状態で、基板1、2を押圧する工程を押圧工程という。
As shown in FIG. 6, the connecting particles 9 are crushed in the pressing direction by pressing. In the illustrated example, the recesses 15 and 16 along the connection particles 9 are formed in the terminals 4 and 6, and the connection particles 9 are compressed in the pressing direction.
The connecting particles 9 are bonded to the terminals 4 and 6 in a strong and conductive manner by metal bonding or the like.
Hereinafter, the process of pressing the substrates 1 and 2 with the connecting particles 9 and the non-conductive resin film 7 sandwiched between the terminals 4 and 6 is referred to as a pressing process.

押圧工程では、接続粒子9の圧縮率(圧縮前の接続粒子9の寸法に対する、圧縮による接続粒子9寸法の減少量)は、30%以上とすることによって、接続粒子9と端子4、6とを強固に接合できる。なお、接続粒子9の寸法とは押圧方向の寸法をいう。
接続粒子9の直径を非導電性樹脂フィルム7の厚さの2.5〜6.5倍として、接続粒子9を非導電性樹脂フィルム7と同程度の厚さまで圧縮することにより、圧縮率は60〜85%となる。これによって、接続粒子9と端子4、6とを強固に接合できる。圧縮率は75〜85%がより好ましい。
押圧後の接続粒子9の幅は、端子4、6の幅と同じかまたはそれより小さくすることができる。
In the pressing step, the compression rate of the connection particles 9 (the amount of reduction in the size of the connection particles 9 due to compression relative to the size of the connection particles 9 before compression) is 30% or more, whereby the connection particles 9 and the terminals 4 and 6 Can be joined firmly. In addition, the dimension of the connection particle 9 means the dimension of a pressing direction.
By reducing the diameter of the connecting particles 9 to 2.5 to 6.5 times the thickness of the non-conductive resin film 7 and compressing the connecting particles 9 to the same thickness as the non-conductive resin film 7, the compression rate is 60-85%. Thereby, the connection particle 9 and the terminals 4 and 6 can be firmly joined. The compression rate is more preferably 75 to 85%.
The width of the connecting particles 9 after pressing can be the same as or smaller than the width of the terminals 4 and 6.

押圧工程においては、非導電性樹脂フィルム7は、接続粒子9および端子4、6に応じた形状となる。
すなわち、接続粒子9および端子4、6が変形し、これらの隙間が小さくなるに従って、非導電性樹脂は、接続粒子9によって押しのけられ、隣り合う端子4、6間の空間である端子間空間14に流れ込み、絶縁部19となる。
図示例では、絶縁部19は、接続粒子9と端子4、6の周りに、これらを囲むように形成されるため、接続粒子9と端子4、6を外気から遮断し、腐食を防止できる。
また、接続粒子9が介在しない部分である、端子4、6の周縁部17、18の間の非導電性樹脂によって端子4、6間の接合強度がさらに高められる。
押圧工程においては、押し出された非導電性樹脂が端子間空間14を満たすようにすると、隣り合う端子4、6間の絶縁性を高めるとともに、基板1、2の接合強度をさらに高めることができる。
In the pressing step, the nonconductive resin film 7 has a shape corresponding to the connection particles 9 and the terminals 4 and 6.
That is, as the connecting particles 9 and the terminals 4 and 6 are deformed and the gap between them is reduced, the nonconductive resin is pushed away by the connecting particles 9 and the inter-terminal space 14 which is a space between the adjacent terminals 4 and 6. Into the insulating portion 19.
In the illustrated example, since the insulating portion 19 is formed around the connection particles 9 and the terminals 4 and 6 so as to surround them, the connection particles 9 and the terminals 4 and 6 can be shielded from the outside air to prevent corrosion.
Further, the bonding strength between the terminals 4 and 6 is further increased by the non-conductive resin between the peripheral portions 17 and 18 of the terminals 4 and 6, which are portions where the connection particles 9 are not interposed.
In the pressing step, when the extruded non-conductive resin fills the inter-terminal space 14, the insulation between the adjacent terminals 4 and 6 can be improved and the bonding strength of the substrates 1 and 2 can be further increased. .

非導電性樹脂として熱硬化性樹脂を用いた場合には、前記押圧工程において、または押圧工程後において、加熱により非導電性樹脂を硬化させ、第1基板1と第2基板2との間の接合強度を高めることができる。加熱温度は、例えば160℃以上とすることができる。
例えば、半硬化させたゲル状のエポキシ樹脂を用いて非導電性樹脂フィルム7を形成し、これを加熱しつつ前記押圧を行う方法をとることができる。
以上の過程を経て、第1基板1と第2基板2とが接合された複合基板が得られる。
When a thermosetting resin is used as the non-conductive resin, in the pressing step or after the pressing step, the non-conductive resin is cured by heating, and between the first substrate 1 and the second substrate 2. Bonding strength can be increased. The heating temperature can be, for example, 160 ° C. or higher.
For example, a non-conductive resin film 7 is formed using a semi-cured gel epoxy resin, and the pressing can be performed while heating the non-conductive resin film 7.
Through the above process, a composite substrate in which the first substrate 1 and the second substrate 2 are bonded is obtained.

なお、上記製造方法では、端子4に非導電性樹脂フィルム7を設置したが、非導電性樹脂フィルム7は、端子6の表面に設置してもよいし、端子4、6の両方に設置してもよい。   In the above manufacturing method, the non-conductive resin film 7 is installed on the terminal 4. However, the non-conductive resin film 7 may be installed on the surface of the terminal 6 or on both the terminals 4 and 6. May be.

上記製造方法では、開口部8内径よりも外径が大きい接続粒子9を、開口部8内に配置し、基板1、2を押圧することによって接続粒子9を押しつぶすとともに、非導電性樹脂を押しのけて、接続粒子9を介して端子4、6を導電可能に接合する。
開口部8内径よりも外径が大きい接続粒子9を用いることによって、接続粒子9は、開口部8内で転動しにくくなる。このため、接続粒子9の位置ずれを防ぎ、接続粒子9を正確な位置で端子4、6に接合することができる。
また、押しつぶされた接続粒子9によって端子4、6どうしが接合されるため、これらの間の導電性を高めることができる。
また、押しのけられた非導電性樹脂からなる絶縁部19によって、隣り合う端子4、6間の絶縁性を高めるとともに、基板1、2の接合強度を高めることができる。
また、端子4、6の周囲の端子間空間14に、非導電性樹脂を容易かつ確実に配置することができ、製造工程を簡略化し、製造コストの削減を図ることができる。
In the above manufacturing method, the connecting particles 9 having an outer diameter larger than the inner diameter of the opening 8 are arranged in the opening 8 and the connecting particles 9 are crushed by pressing the substrates 1 and 2 and the non-conductive resin is pushed away. Thus, the terminals 4 and 6 are joined via the connection particles 9 so as to be conductive.
By using the connecting particles 9 whose outer diameter is larger than the inner diameter of the opening 8, the connecting particles 9 are less likely to roll within the opening 8. For this reason, the displacement of the connecting particles 9 can be prevented, and the connecting particles 9 can be joined to the terminals 4 and 6 at accurate positions.
Moreover, since the terminals 4 and 6 are joined by the crushed connecting particles 9, the conductivity between them can be increased.
Further, the insulating portion 19 made of the pushed non-conductive resin can enhance the insulation between the adjacent terminals 4 and 6 and can increase the bonding strength of the substrates 1 and 2.
In addition, the non-conductive resin can be easily and reliably disposed in the inter-terminal space 14 around the terminals 4 and 6, and the manufacturing process can be simplified and the manufacturing cost can be reduced.

上記製造方法では、接続粒子9を端子4、6に挟み込んだ状態で、これらが変形するように基板1、2を押圧するので、端子4、6と接続粒子9との間の電気的抵抗を低減するとともに、これらの接合強度を高めることができる。
端子4、6と接続粒子9との間の導電性および接合強度を高めることができる理由については、次の推測が可能である。
端子4、6および接続粒子9の表面には、空気中の酸素の影響により酸化被膜が形成されることがある。
押圧工程においては、端子4、6、接続粒子9が変形する際に酸化被膜が壊れ、端子4、6と接続粒子9とが、酸化被膜が介在することなく、金属結合などにより直接接合されることになる。
従って、これらの間の電気的抵抗を抑えるとともに、接合強度を高めることができる。
また、基板1、2を、安価な接続粒子9を介して接合するので、高価な異方性導電膜を使用する場合に比べ、低コスト化が可能となる。
In the above manufacturing method, since the connection particles 9 are sandwiched between the terminals 4 and 6 and the substrates 1 and 2 are pressed so as to be deformed, the electrical resistance between the terminals 4 and 6 and the connection particles 9 is reduced. While reducing, these joint strengths can be raised.
About the reason which can improve the electroconductivity and joining strength between the terminals 4 and 6 and the connection particle | grains 9, the following estimation is possible.
An oxide film may be formed on the surfaces of the terminals 4 and 6 and the connecting particles 9 due to the influence of oxygen in the air.
In the pressing step, when the terminals 4 and 6 and the connection particles 9 are deformed, the oxide film is broken, and the terminals 4 and 6 and the connection particles 9 are directly bonded to each other by a metal bond or the like without any oxide film interposed. It will be.
Therefore, the electrical resistance between them can be suppressed and the bonding strength can be increased.
Further, since the substrates 1 and 2 are bonded through the inexpensive connection particles 9, the cost can be reduced as compared with the case where an expensive anisotropic conductive film is used.

上記製造方法によって得られた複合基板において、端子4、6と接続粒子9と境界部分のうち一部領域には、非導電性樹脂が介在することがある。   In the composite substrate obtained by the above manufacturing method, a non-conductive resin may be interposed in a part of the boundary portions between the terminals 4 and 6 and the connection particles 9.

図7〜図9に示すように、接続粒子9を非導電性樹脂フィルム7上に配置する際には、端子4に相当する位置に、接続粒子9の外径より小さい内径の嵌合口部10を有する配置板11を使用することができる。
例えば、図示せぬ減圧手段によって配置板11の嵌合口部10内の気圧を大気圧より低くして接続粒子9を嵌合口部10に保持させた状態で、接続粒子9を非導電性樹脂フィルム7上に配置する方法をとることができる。
As shown in FIGS. 7 to 9, when the connection particles 9 are arranged on the non-conductive resin film 7, the fitting opening 10 having an inner diameter smaller than the outer diameter of the connection particles 9 is provided at a position corresponding to the terminal 4. A placement plate 11 having
For example, the connecting particles 9 are held in the non-conductive resin film in a state where the connecting particles 9 are held in the fitting port 10 by reducing the atmospheric pressure in the fitting port 10 of the arrangement plate 11 below atmospheric pressure by a decompression means (not shown). 7 can be used.

図10および図11に示すように、接続粒子9を非導電性樹脂フィルム7上に配置する際には、端子4に相当する位置に、接続粒子9が通過可能な通過口部20を有する配置板21を使用し、通過口部20を通して接続粒子9を非導電性樹脂フィルム7上に落とし込む方法をとることもできる。   As shown in FIGS. 10 and 11, when the connection particles 9 are arranged on the non-conductive resin film 7, the arrangement has a passage opening portion 20 through which the connection particles 9 can pass at a position corresponding to the terminal 4. A method of dropping the connection particles 9 onto the non-conductive resin film 7 through the passage opening 20 using the plate 21 can also be used.

端子4に相当する位置に嵌合口部10または通過口部20を有する配置板11、21を用いることによって、接続粒子9を端子4に対し正確な位置に配置することができる。
なお、接続粒子9を把持するマウンタを用いて接続粒子9を非導電性樹脂フィルム7上に供給することもできる。
By using the placement plates 11 and 21 having the fitting opening 10 or the passage opening 20 at a position corresponding to the terminal 4, the connecting particles 9 can be arranged at an accurate position with respect to the terminal 4.
The connecting particles 9 can also be supplied onto the non-conductive resin film 7 using a mounter that holds the connecting particles 9.

また、上記製造方法では、一対の端子4、6に対し1つの接続粒子9を用いたが、複数の接続粒子9を用いることもできる。   In the above manufacturing method, one connection particle 9 is used for the pair of terminals 4 and 6, but a plurality of connection particles 9 can also be used.

(実施例1)
基板1、2として、ポリイミドからなる基材3(厚さ25μm)上に、銅箔(厚さ18μm)が張りあわされた銅張積層板((株)新日鐵化学製PNS1018EEW)を使用した。これをエッチング処理することにより、幅400μmの端子4、6を形成した。
非導電性樹脂としてエポキシ樹脂を主成分とするフィルム(日立化成(株)製NCF−F)を用意し、端子4、6に相当する箇所に、UV−YAGレーザにて直径80μmの開口部8を形成した。このフィルムを端子4、6に貼ることによって非導電性樹脂フィルム7(厚さ50μm)を形成した。
無酸素銅からなる球状の接続粒子9(直径200μm)を基板1の非導電性樹脂フィルム7の開口部8に配置した。
基板2を、端子4、6が向かい合うように基板1に重ね、プレス装置を用いて、温度240℃、圧力100kgf/cmで10分間押圧することによって、基板1、2を接続した。押圧後の接続粒子9の厚さは60μmとなった。
Example 1
As the substrates 1 and 2, a copper clad laminate (PNS1018EEW manufactured by Nippon Steel Chemical Co., Ltd.) in which a copper foil (thickness 18 μm) was stretched on a base material 3 (thickness 25 μm) made of polyimide was used. . By etching this, terminals 4 and 6 having a width of 400 μm were formed.
A film mainly composed of an epoxy resin (NCF-F manufactured by Hitachi Chemical Co., Ltd.) is prepared as a non-conductive resin, and an opening 8 having a diameter of 80 μm is formed at a position corresponding to the terminals 4 and 6 with a UV-YAG laser. Formed. A non-conductive resin film 7 (thickness 50 μm) was formed by pasting this film on the terminals 4 and 6.
Spherical connecting particles 9 (diameter 200 μm) made of oxygen-free copper were placed in the opening 8 of the non-conductive resin film 7 of the substrate 1.
The board | substrate 2 was piled up on the board | substrate 1 so that the terminals 4 and 6 might face each other, and the board | substrates 1 and 2 were connected by pressing for 10 minutes by the temperature of 240 degreeC and the pressure of 100 kgf / cm < 2 > using a press apparatus. The thickness of the connecting particles 9 after pressing was 60 μm.

本発明の複合基板には、プリント配線基板などの回路基板を適用することができる。また、半導体基板を使用することもできる。
本発明の複合基板は、例えば、2つのプリント配線基板を接合した構成とすることができる。また、プリント配線基板と半導体基板とを備えた構成としてもよいし、2つの半導体基板を接合した構成としてもよい。
A circuit board such as a printed wiring board can be applied to the composite board of the present invention. A semiconductor substrate can also be used.
The composite substrate of the present invention can be configured, for example, by joining two printed wiring boards. Moreover, it is good also as a structure provided with the printed wiring board and the semiconductor substrate, and good also as a structure which joined two semiconductor substrates.

本発明の複合基板の製造方法の一例を説明する工程図である。It is process drawing explaining an example of the manufacturing method of the composite substrate of this invention. 前図に続く工程図である。It is process drawing following a previous figure. 前図に続く工程図である。It is process drawing following a previous figure. 前図に続く工程図である。It is process drawing following a previous figure. 前図に続く工程図である。It is process drawing following a previous figure. 前図に続く工程図である。It is process drawing following a previous figure. 本発明の複合基板の製造方法の他の例を説明する工程図である。It is process drawing explaining the other example of the manufacturing method of the composite substrate of this invention. 前図に続く工程図である。It is process drawing following a previous figure. 前図に続く工程図である。It is process drawing following a previous figure. 本発明の複合基板の製造方法のさらに他の例を説明する工程図である。It is process drawing explaining the further another example of the manufacturing method of the composite substrate of this invention. 前図に続く工程図である。It is process drawing following a previous figure. 従来の複合基板の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the conventional composite substrate.

符号の説明Explanation of symbols

1…第1基板、2…第2基板、3、5…基材、4、6…端子(導電部)、7…非導電性樹脂フィルム、8…開口部、9…接続粒子、10…嵌合口部、11、21…配置板、19…絶縁部、20…通過口部 DESCRIPTION OF SYMBOLS 1 ... 1st board | substrate, 2 ... 2nd board | substrate, 3, 5 ... Base material, 4, 6 ... Terminal (conductive part), 7 ... Nonelectroconductive resin film, 8 ... Opening part, 9 ... Connection particle, 10 ... Fit Joint part, 11, 21 ... Arrangement plate, 19 ... Insulating part, 20 ... Passing mouth part

Claims (6)

導電部を有する一対の基板が互いに接合された複合基板を製造する方法であって、
前記一対の基板のうち少なくとも一方の導電部表面に、開口部を有し、外力により変形可能な非導電性樹脂フィルムを設置するフィルム設置工程と、
導電材料からなり、前記開口部内径よりも外径が大きい接続粒子を、その一部が前記非導電性樹脂フィルムの開口部内に位置するように配置し、前記一対の基板を互いに接近する方向に押圧することによって前記接続粒子を押しつぶすとともに、前記非導電性樹脂を押しのけて、前記接続粒子を介して前記導電部どうしを導電可能に接合する押圧工程と、を含むことを特徴とする複合基板の製造方法。
A method of manufacturing a composite substrate in which a pair of substrates having conductive portions are bonded to each other,
A film installation step of installing a non-conductive resin film having an opening on the surface of at least one of the pair of substrates and deformable by external force;
A connecting particle made of a conductive material and having an outer diameter larger than the inner diameter of the opening is arranged so that a part thereof is positioned in the opening of the non-conductive resin film, and the pair of substrates are arranged in a direction approaching each other. A pressing step of crushing the connecting particles by pressing and pressing the non-conductive resin to join the conductive portions through the connecting particles in a conductive manner. Production method.
前記押しのけられた非導電性樹脂が、前記導電部の周囲に絶縁部を形成することを特徴とする請求項1に記載の複合基板の製造方法。   The method of manufacturing a composite substrate according to claim 1, wherein the pushed non-conductive resin forms an insulating portion around the conductive portion. 前記非導電性樹脂が熱硬化性樹脂であり、前記押圧工程を経た非導電性樹脂を、加熱により硬化させることを特徴とする請求項1または2に記載の複合基板の製造方法。   The method of manufacturing a composite substrate according to claim 1, wherein the non-conductive resin is a thermosetting resin, and the non-conductive resin that has undergone the pressing step is cured by heating. 前記接続粒子が嵌合可能な嵌合口部を有する配置板を使用し、前記押圧工程において導電部間に挟み込む接続粒子を、前記嵌合口部に嵌合させた状態で導電層表面に配置することを特徴とする請求項1〜3のうちいずれか1項に記載の複合基板の製造方法。   Using a placement plate having a fitting port part into which the connection particle can be fitted, and arranging the connection particles sandwiched between the conductive parts in the pressing step on the surface of the conductive layer in a state of being fitted to the fitting port part. The method for manufacturing a composite substrate according to any one of claims 1 to 3. 前記接続粒子が通過可能な通過口部を有する配置板を使用し、前記押圧工程において導電部間に挟み込む接続粒子を、前記通過口部から落とし込むことによって導電層表面に配置することを特徴とする請求項1〜3のうちいずれか1項に記載の複合基板の製造方法。   Using an arrangement plate having a passage opening portion through which the connection particles can pass, and connecting particles sandwiched between the conductive portions in the pressing step are arranged on the surface of the conductive layer by dropping from the passage opening portions. The manufacturing method of the composite substrate of any one of Claims 1-3. 導電部を有する一対の基板が互いに接合された複合基板であって、
前記一対の基板と、これら基板の導電部の間に圧縮され導電部どうしを導電可能に接合する接続粒子と、導電部表面に形成された非導電性樹脂が押圧変形されて前記導電部の周囲に形成された絶縁部とを備えていることを特徴とする複合基板。
A composite substrate in which a pair of substrates having conductive portions are bonded to each other,
The pair of substrates, the connecting particles that are compressed between the conductive portions of the substrates and bonded to each other so as to be conductive, and the non-conductive resin formed on the surface of the conductive portions are pressed and deformed to surround the conductive portions. And an insulating part formed on the substrate.
JP2005131853A 2005-04-28 2005-04-28 Composite substrate and manufacturing method thereof Withdrawn JP2006310583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005131853A JP2006310583A (en) 2005-04-28 2005-04-28 Composite substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005131853A JP2006310583A (en) 2005-04-28 2005-04-28 Composite substrate and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006310583A true JP2006310583A (en) 2006-11-09

Family

ID=37477132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005131853A Withdrawn JP2006310583A (en) 2005-04-28 2005-04-28 Composite substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006310583A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153729A (en) * 2008-12-26 2010-07-08 Fujikura Ltd Printed circuit board and method for manufacturing the same, and method of connecting the same
JP2012084587A (en) * 2010-10-07 2012-04-26 Lintec Corp Protective sheet for solar cell module and solar cell module
CN108976876A (en) * 2017-06-02 2018-12-11 戴垄科技股份有限公司 Water-tight device and keep the device conductive and less than 10 micromicroamperes conductive methods of leakage current

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153729A (en) * 2008-12-26 2010-07-08 Fujikura Ltd Printed circuit board and method for manufacturing the same, and method of connecting the same
US8604354B2 (en) 2008-12-26 2013-12-10 Fujikura Ltd. Printed wiring board, method of manufacturing printed wiring board, and method of connecting printed wiring board
JP2012084587A (en) * 2010-10-07 2012-04-26 Lintec Corp Protective sheet for solar cell module and solar cell module
CN108976876A (en) * 2017-06-02 2018-12-11 戴垄科技股份有限公司 Water-tight device and keep the device conductive and less than 10 micromicroamperes conductive methods of leakage current

Similar Documents

Publication Publication Date Title
CN101299908A (en) Method for manufacturing printed circuit board having embedded component
CN103493610A (en) Rigid-flexible substrate and method for manufacturing same
JP2003086949A (en) Method for manufacturing printed substrate and printed substrate formed thereby
JPH1056099A (en) Multilayer circuit board and manufacture thereof
JPH1126631A (en) Semiconductor device and manufacture thereof
JP2008091874A (en) Ceramic circuit substrate and method for manufacturing the same
CN103004294B (en) Method for surface mounting electronic component, and substrate having electronic component mounted thereon
JP2006310583A (en) Composite substrate and manufacturing method thereof
JPH1116949A (en) Acf-bonding structure
JP2011151103A (en) Electronic component interconnecting structure and connecting method
CN102437133A (en) Semiconductor device
CN104640382B (en) Composite substrate and rigid substrates
JP3438583B2 (en) Anisotropic conductive film connection method
JP2011233848A (en) Flexible printed circuit board and its connecting structure, manufacturing method thereof, and electronic equipment
JP2011077125A (en) Wiring board, manufacturing method of wiring board, connection structure of wiring board, and connection method of wiring board
JP2006310582A (en) Complex substrate and manufacturing method thereof
JP2009043833A (en) Manufacturing method of wiring board with hollow hinge
JP4699089B2 (en) Chip-on-film semiconductor device
JP2007165028A (en) Anisotropic conductive material and mounting method using it
CN205016516U (en) Semiconductor device and electronic device
JP3944794B2 (en) Circuit connection structure
CN113036571B (en) Preparation method of connector, connector and integrated device
JP5516069B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2954559B2 (en) Wiring board electrode structure
JPH1116946A (en) Mounting method of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701