JP2005019274A - Manufacturing method of anisotropic conductive film - Google Patents

Manufacturing method of anisotropic conductive film Download PDF

Info

Publication number
JP2005019274A
JP2005019274A JP2003184088A JP2003184088A JP2005019274A JP 2005019274 A JP2005019274 A JP 2005019274A JP 2003184088 A JP2003184088 A JP 2003184088A JP 2003184088 A JP2003184088 A JP 2003184088A JP 2005019274 A JP2005019274 A JP 2005019274A
Authority
JP
Japan
Prior art keywords
conductive particles
conductive film
anisotropic conductive
manufacturing
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003184088A
Other languages
Japanese (ja)
Inventor
Tatsumi Kawaguchi
竜巳 河口
Takashi Yoshitome
孝志 吉留
Wataru Okada
亘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003184088A priority Critical patent/JP2005019274A/en
Publication of JP2005019274A publication Critical patent/JP2005019274A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]

Landscapes

  • Non-Insulated Conductors (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an anisotropic conductive film in which terminal connection excellent in connection reliability and insulation becomes possible at a low cost by arranging regularly conductive particles only in a specified region. <P>SOLUTION: This manufacturing method of an anisotropic conductive film has a process in which, using a roll 11 of which the protruded part is worked so as to become a desired arrangement pattern, the conductive particles are captured on the surface of the roll 11 when passing through paste 13 dispersed with the conductive particles, then only the conductive particles captured on the protruded part are regularly transferred on the substrate 14 using liquid as a binder. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、微細な回路同志の電気的接続、例えば、液晶ディスプレイ(LCD)とフレキシブル回路基板の接続や、半導体ICとIC搭載用基板のマイクロ接合等に用いることのできる異方導電フィルムの製造方法に関するものである。
【0002】
【従来の技術】
最近の電子機器の小型化・薄型化に伴い、微細な回路同志の接続、微小部分と微細な回路の接続等の必要性が飛躍的に増大してきており、その接続方法として、半田接合技術の進展とともに、新しい材料として、異方性の導電性接着剤やフィルムが使用されている(例えば、特許文献1〜13参照)。特に、最近、半田付けでは対応できないLCDパネルとドライバICを搭載したTCP(テープキャリアパッケージ)との接続に適用され、LCDには必要不可欠の接続材料となっている。
【0003】
この方法は、図1にその一例を示したように、接続したい部材間に異方導電フィルムを挟み加熱加圧することにより、面方向の隣接端子間では電気的絶縁性を保ち、上下の端子間では電気的に導通させるものである。このような用途に異方導電フィルムが多用されてきたのは、被着体の耐熱性がないことや微細な回路では隣接端子間で電気的にショートしてしまうなど半田付けなどの従来の接続方法が適用できないことが理由である。
【0004】
特許文献14等に開示されているとおり、一般に異方導電フィルムは、絶縁性の接着剤中に導電粒子が均一に分散したもので、IC電極と基板電極とで位置合わせを行い、異方導電フィルムを圧着することにより異方導電フィルム中の導電粒子が圧接されて重なり合う電極間だけが電気的に接続される。
【0005】
この異方導電フィルムは、導電粒子としてはニッケル、金等にて表面をめっきしたプラスチック粒子等が用いられており、絶縁性接着剤としては熱可塑タイプのものと熱硬化タイプのものに分類されるが、最近では熱可塑タイプのものより、信頼性の優れたエポキシ樹脂系の熱硬化タイプのものが広く用いられつつある。
【0006】
近年の回路接続ピッチは微細化が進み、従来の異方導電フィルムでは横導通の問題が生じてきた。図1に示したように、絶縁性接着剤3中に導電粒子2を分散させている場合、異方導電フィルムが圧着されると、絶縁性接着剤の中ほどに位置する導電粒子は端子外に流出しやすく、その結果、隣接端子間に高密度に導電粒子が存在することになり、端子間の絶縁性が不充分になったり、リークやショートを発生する等、絶縁性の保持に問題が生じる。
横導通を防止するためには異方導電フィルム中の導電粒子の混入率を低下させることが考えられるが、導電粒子の混入率を低下させると、導電粒子と端子との接続面積が落ちるので、接続抵抗が高くなるという問題があった。
【0007】
また、製品品質上の問題のほか、一般的に導電粒子は1グラム当たり数千円と非常に高価であり、その多くが本来目的とする端子間の接続に使用されないことは、生産コストの増加に繋がっていた。
【0008】
そのため、導電粒子を規則的に配列させる方式が検討されており、例えば、NEDOのベンチャー企業支援型地域コンソーシアム研究開発(中小企業創造基盤型)ファインピッチ対応異方性導電材の研究開発として、圧着温度で溶融しない樹脂フィルムに孔を開けて、そこに導電粒子を埋め込んだ後、上下を溶融する樹脂で挟み込む方式が提案されている。この方式では、導電粒子を規則的に配列するための格子孔はフォトリソグラフィーとレーザの2つの技術が利用されている。しかし、このような方式では、規則的な孔を開けるための特別なメタルマスクの作製やレーザ照射装置が必要であり、微細なものが得られる反面、製造装置が高価であるという問題があった。
【0009】
【特許文献1】
特開昭59−120436号公報
【特許文献2】
特開昭60−84718号広報
【特許文献3】
特開昭60−191228号広報
【特許文献4】
特開昭61−55809号広報
【特許文献5】
特開昭61−274394号広報
【特許文献6】
特開昭61−287974号広報
【特許文献7】
特開昭62−244142号広報
【特許文献8】
特開昭63−153534号広報
【特許文献9】
特開昭63−305591号広報
【特許文献10】
特開昭64−47084号広報
【特許文献11】
特開昭64−81878号広報
【特許文献12】
特開平1−46549号広報
【特許文献13】
特開平1−251787各号公報
【特許文献14】
特開昭61─78069号公報
【0010】
【発明が解決しようとする課題】
本発明は、微細な回路同志の接続、微小部分と微細な回路の接続等であっても、接続信頼性と絶縁性とに優れた端子接続が可能となる異方導電フィルムを安価に製造できる方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
すなわち本発明は、
(1) 導電粒子が特定の領域にのみ規則的に配置されている異方導電フィルムの製造方法であって、所望の配置パターンとなるように凸部を加工したロールの凸部に導電粒子を捕捉させた後、基材上に導電粒子を転写させる工程を有することを特徴とする異方導電フィルムの製造方法。
(2) 前記導電粒子が液体中に分散したペースト状である(1)の異方導電フィルムの製造方法。
(3) 前記基材に粘着層を有する(1)〜(2)の異方導電フィルムの製造方法。
(4) 転写後に絶縁性接着剤で導電粒子を被覆する工程を有する(1)〜(3)の異方導電フィルムの製造方法。
である。
【0012】
【発明の実施の形態】
本発明の製造方法の一例を、図2および図3に基づき説明する。基材14上に導電粒子17を規則的に配置するために、所望の配置パターンとなるように凸部を加工したロール11を用い、導電粒子が分散しているペースト13中に、ロール表面を浸漬させてロール表面に導電粒子を捕捉させた後、凸部に捕捉した導電粒子のみを液体19をバインダーとして基材上に転写させる。基材に転写した導電粒子を固定化するため、転写後に絶縁性接着剤で導電粒子を被覆する工程を有しても良い。ロールを使用した転写方式は簡便でかつ生産性の高い方式であるとともに、高価な導電性粒子を規則的に配列するために、導電粒子同士の接続による横導通を防止でき、少ない導電粒子で効率よく端子間を導通できるため、材料面からも安価なコストで製造することができる。
【0013】
上記方式にて製造された異方導電フィルムの使用例を図4に示す。絶縁性接着剤20で導電粒子17を被服した後、例えば、LCDパネル4上に加熱加圧により仮圧着し、基材14を剥離しTCP5を載せ、加圧により仮止めを行う。更に、加熱加圧により本圧着を行うが、導電粒子は、絶縁性接着剤の一方に存在しているため、端子外に流出しにくく、効率的に端子間を導通させることができる。
【0014】
上記基材14としては、特に制限は無いが、粘着層を有する基材を使用することができる。上記粘着層を有する基材は、例えば、基材上に粘着性を有する材料を薄く塗布することにより製造することができる。粘着性があると、導電粒子17を転写した後、振動や次工程での外力に対して導電粒子が移動することを防止することができる。
【0015】
上記粘着性を有する材料としては、後に用いる絶縁性接着剤が粘着性を持つものであれば、その絶縁性接着剤を薄く塗布することにより、粘着性のある材料として用いることができる。また、絶縁性接着剤が、溶剤等により希釈された場合、完全に乾燥する前で粘着性を示すものであるならば、同様に粘着性を有する材料として用いることができる。上記粘着性を有する材料は、絶縁性接着剤と異なってもよく、更には、基材自体が粘着性を持つものであれば、別途粘着性を有する材料を塗布する必要はない。
【0016】
ロールに加工されている凸部18は、導電性粒子1個以上を捕捉でき、補足された導電粒子が隣接する凸部に補足された導電粒子と接触しない間隔を有していれば特に制限は無く、円形、四角形、不定形などの凸部形状に加工することができる。凸部のパターンは、回路設計に合わせても良いし、いずれの回路にも適用できるよう千鳥格子などのように凸部を一定間隔に配置したパターンでも良い。凸部に捕捉できる導電性粒子の数は、2個以上が好ましい。2個以上捕捉できる凸部であれば、補足した全ての導電粒子が基材上に転写されなくとも1個以上の導電粒子が捕捉できれば、導電性を有することができる。導電粒子が分散しているペースト13中に、ロール表面を浸漬させた際、凸部以外の部分にも導電粒子は付着するが、ロールが基材と接触する力をコントロールすることにより、凸部以外を基材と接触させず、凸部の導電粒子のみを基材へ転写させることが可能である。
【0017】
所望の配置パターンに加工したロールの凸部に導電粒子を規則的に捕捉させるために、導電粒子をあらかじめ分散させておく液体19は、後に用いる絶縁性接着剤を希釈あるいは濃縮したものや導電粒子を溶解しない材料であれば特に制限は無く、水や各種有機溶剤を用いることができる。
【0018】
本発明に用いられる導電性粒子17は、導電性を有するものであれば特に制限するものではなく、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金など各種金属や金属合金、金属酸化物、カーボン、グラファイト、ガラスやセラミック、高分子粒子の表面に金属をコートしたもの等が適用できるが、接続の信頼性や微細な回路接続への適用を考慮すると高分子核材に金属被覆を施したものが望ましい。
【0019】
ここで、高分子核材は特に組成などの制限はなく、例えば、エポキシ樹脂、ウレタン樹脂、メラミン樹脂、フェノール樹脂、アクリル樹脂、ポリエステル樹脂、スチレン樹脂、スチレンブタジエン共重合体等のポリマー中から1種単独あるいは2種以上組み合わせて使用すれば良い。
【0020】
高分子核材の表面に施す金属被覆には特に制限は無いが、導通の安定性を考慮すると通常適用されるニッケルと金の被覆が望ましい。
【0021】
被膜の厚さには特に制限はないが、厚すぎると凝集が生じやすくなるなどの問題があるため、0.01〜0.2μm程度が望ましい。また、被覆の形成方法では、この被覆と高分子核材との密着力・導電性などを考慮し、均一に形成されている方が良いことは言うまでもなく、従来から用いられているメッキなどが望ましい。
【0022】
導電性粒子の粒径や配合量は、接続したい回路のピッチやパターン、回路端子の厚みや材質等によって適切なものを選ぶことができる。
【0023】
導電性粒子の粒径は、特に制限はするものではないが、望ましくは平均2〜15μmである方がよい。2μmより小さい場合では、微細な回路接続で高い接続信頼性を得るために導電性粒子数を多く配合することは可能であるが、凝集することなく高分子核材に均一に金属被覆を施すことは現状の技術では極めて困難であり、実際には微細な回路の接続を安定して行うことは困難である。逆に、15μmより大きい場合には、凝集なく均一に金属被覆を施すことは可能であるが、微細な回路を接続する場合には、端子間の電気的絶縁性が保てなくなるため、粒子数はあまり多く配合できず、接続信頼性の向上にも限界がでてくる。例えば、LCDパネルとTCPやFPCとの接続、特に50μmピッチ程度の極ファインピッチ回路の接続においては、平均粒径3〜5μm程度が望ましい。もちろん粒度分布がシャープな方が好ましいことは言うまでもなく、平均粒径±10%以内であればなお好ましい。
【0024】
基材上に転写された導電粒子を固定化するための絶縁性接着剤20は特に限定されず、例えば、接着性シート等に用いられる熱可塑性材料や、熱や光により硬化性を示す材料等が挙げられる。なかでも、接続後硬化させることにより耐熱性や耐湿性に優れることから、硬化性材料が好ましい。特にエポキシ系接着剤として用いられる材料は短時間で硬化し、接着性に優れる等の点から好適に用いられる。硬化性樹脂を使用する場合には、異方導電性フィルムとして使用する際に、溶融流動する必要があるため、導電粒子を固定化させている状態は半硬化状態が好ましい。
【0025】
導電粒子を固定化するための絶縁性接着剤を塗布する方法に、特に制限は無く、コーティングやスプレー噴霧、キャストなどの方式を使用することができる。
絶縁性接着剤の厚みは、加熱加圧の本圧着時に導電性粒子以外の端子間を満たすに十分な量に相当していれば特に制限はなく、必然的に導電粒子の直径よりも大きな厚みとなる。例えば、LCDパネルとTCPやFPCとの接続においては、10〜20μmの厚みが好ましい。
【0026】
導電粒子を絶縁性接着剤で固定化した後に、導電粒子が存在する場所は、本方式に則れば、必然的に基材側に偏った分布となる。絶縁性接着剤の中ほどに位置する導電粒子は、加熱加圧の本圧着時に端子外へ流出し易いが、基材側に偏って存在するため、端子外への流出が少なくなり、効率的に端子間を導通させることができる。
【0027】
【発明の効果】
本発明の製造方法によれば、導電粒子が規則的に配列している異方導電フィルムを得ることができるので、微細な回路同志の接続、微小部分と微細な回路の接続等であっても、接続信頼性と絶縁性とに優れた端子接続が可能となり、高価な導電性粒子を規則的に配列するために、導電粒子同士の接続による横導通を防止でき、少ない導電粒子で効率よく端子間を導通できるため、安価なコストで製造することができる。
【図面の簡単な説明】
【図1】従来の異方導電フィルムとその接続方法の一例を示す断面図
【図2】本発明の一実施例である製造方法を示す図
【図3】凸部を加工したロールに導電粒子が補足された様子を示す図
【図4】本発明の異方導電フィルムとその接続方法の一例を示す断面図
【符号の説明】
1 基材
2 導電粒子
3 絶縁性接着剤
4 LCDパネル
5 TCP
6 端子
11 ロール
12 導電粒子補足後のロール
13 ペースト
14 基材
15 導電粒子転写後の基材
16 バックロール
17 導電粒子
18 ロール凸部
19 液体
20 絶縁性接着剤
[0001]
BACKGROUND OF THE INVENTION
The present invention provides an anisotropic conductive film that can be used for electrical connection between minute circuits, for example, a connection between a liquid crystal display (LCD) and a flexible circuit board, a micro junction between a semiconductor IC and an IC mounting board, and the like. It is about the method.
[0002]
[Prior art]
With the recent miniaturization and thinning of electronic devices, the need for connections between minute circuits and connections between minute parts and minute circuits has increased dramatically. With progress, anisotropic conductive adhesives and films are used as new materials (see, for example, Patent Documents 1 to 13). In particular, it has recently been applied to the connection between an LCD panel that cannot be handled by soldering and a TCP (tape carrier package) equipped with a driver IC, and has become an indispensable connection material for LCDs.
[0003]
In this method, as shown in FIG. 1, an anisotropic conductive film is sandwiched between members to be connected and heated and pressed to maintain electrical insulation between adjacent terminals in the plane direction, and between the upper and lower terminals. Then, it is electrically connected. The anisotropic conductive film has been widely used for such applications because of the lack of heat resistance of the adherend and conventional connections such as soldering that cause electrical shorts between adjacent terminals in fine circuits. This is because the method is not applicable.
[0004]
As disclosed in Patent Document 14 and the like, generally, an anisotropic conductive film is a film in which conductive particles are uniformly dispersed in an insulating adhesive, and alignment is performed between an IC electrode and a substrate electrode to perform anisotropic conduction. By crimping the film, the conductive particles in the anisotropic conductive film are brought into pressure contact so that only the overlapping electrodes are electrically connected.
[0005]
This anisotropic conductive film uses plastic particles, etc. whose surfaces are plated with nickel, gold, etc. as the conductive particles, and the insulating adhesive is classified into a thermoplastic type and a thermosetting type. However, recently, an epoxy resin-based thermosetting type having excellent reliability is being used more widely than a thermoplastic type.
[0006]
In recent years, the circuit connection pitch has been miniaturized, and the problem of lateral conduction has occurred in the conventional anisotropic conductive film. As shown in FIG. 1, when the conductive particles 2 are dispersed in the insulating adhesive 3, when the anisotropic conductive film is pressure-bonded, the conductive particles located in the middle of the insulating adhesive are outside the terminal. As a result, conductive particles exist at a high density between adjacent terminals, resulting in insufficient insulation between terminals, leakage, short circuit, etc. Occurs.
In order to prevent lateral conduction, it is conceivable to reduce the mixing rate of the conductive particles in the anisotropic conductive film, but if the mixing rate of the conductive particles is reduced, the connection area between the conductive particles and the terminal decreases, There was a problem that connection resistance became high.
[0007]
In addition to product quality problems, conductive particles are generally very expensive at several thousand yen per gram, and many of them are not used for connections between intended terminals, which increases production costs. It was connected to.
[0008]
Therefore, a method of regularly arranging conductive particles has been studied. For example, NEDO's venture company-supported regional consortium R & D (SME creation foundation type) Fine pitch compatible anisotropic conductive material R & D There has been proposed a method in which a hole is formed in a resin film that does not melt at a temperature, conductive particles are embedded therein, and then sandwiched with a resin that melts the top and bottom. In this method, two techniques of photolithography and laser are used for the lattice holes for regularly arranging the conductive particles. However, such a method requires the production of a special metal mask for forming regular holes and a laser irradiation device, and a fine device can be obtained, but the manufacturing device is expensive. .
[0009]
[Patent Document 1]
JP 59-120436 A [Patent Document 2]
Japanese Laid-Open Patent Publication No. 60-84718 [Patent Document 3]
Japanese Laid-Open Patent Publication No. 60-191228 [Patent Document 4]
Japanese Laid-Open Patent Publication No. 61-55809 [Patent Document 5]
Japanese Laid-Open Patent Publication No. 61-274394 [Patent Document 6]
Japanese Laid-Open Patent Publication No. 61-287974 [Patent Document 7]
Japanese Laid-Open Patent Publication No. Sho 62-244142 [Patent Document 8]
Japanese Laid-Open Patent Publication No. 63-153534 [Patent Document 9]
Japanese Laid-Open Patent Publication No. 63-305591 [Patent Document 10]
Japanese Laid-Open Patent Publication No. 64-47084 [Patent Document 11]
Japanese Laid-Open Patent Publication No. 64-81878 [Patent Document 12]
Japanese Laid-Open Patent Publication No. 1-446549 [Patent Document 13]
JP-A-1-251787 [Patent Document 14]
Japanese Patent Laid-Open No. 61-78069 [0010]
[Problems to be solved by the invention]
INDUSTRIAL APPLICABILITY The present invention can inexpensively manufacture an anisotropic conductive film that enables terminal connection with excellent connection reliability and insulation even when the connection is between minute circuits, the connection between minute portions and minute circuits, or the like. It aims to provide a method.
[0011]
[Means for Solving the Problems]
That is, the present invention
(1) A method for producing an anisotropic conductive film in which conductive particles are regularly arranged only in a specific region, wherein the conductive particles are applied to the convex portions of a roll obtained by processing the convex portions so as to have a desired arrangement pattern. A method for producing an anisotropic conductive film comprising a step of transferring conductive particles onto a substrate after capturing.
(2) The method for producing an anisotropic conductive film according to (1), wherein the conductive particles are in a paste form dispersed in a liquid.
(3) The manufacturing method of the anisotropic conductive film of (1)-(2) which has an adhesion layer in the said base material.
(4) The method for producing an anisotropic conductive film according to (1) to (3), comprising a step of coating the conductive particles with an insulating adhesive after transfer.
It is.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An example of the manufacturing method of the present invention will be described with reference to FIGS. In order to regularly arrange the conductive particles 17 on the base material 14, the roll 11 having a convex portion processed so as to have a desired arrangement pattern is used, and the surface of the roll is placed in the paste 13 in which the conductive particles are dispersed. After the conductive particles are captured on the roll surface by dipping, only the conductive particles captured on the convex portions are transferred onto the substrate using the liquid 19 as a binder. In order to fix the conductive particles transferred to the base material, a step of coating the conductive particles with an insulating adhesive after the transfer may be included. The transfer method using a roll is simple and highly productive. In addition, since expensive conductive particles are regularly arranged, lateral conduction due to the connection between the conductive particles can be prevented, and the efficiency is reduced with fewer conductive particles. Since the terminals can be electrically connected, it can be manufactured at a low cost from the viewpoint of materials.
[0013]
The usage example of the anisotropic conductive film manufactured by the said system is shown in FIG. After the conductive particles 17 are coated with the insulating adhesive 20, for example, temporary bonding is performed on the LCD panel 4 by heating and pressing, the base material 14 is peeled off, the TCP 5 is placed, and temporary fixing is performed by pressing. Further, the main pressure bonding is performed by heating and pressurization. However, since the conductive particles are present in one of the insulating adhesives, it is difficult for the conductive particles to flow out of the terminals, and the terminals can be conducted efficiently.
[0014]
Although there is no restriction | limiting in particular as the said base material 14, The base material which has an adhesion layer can be used. The base material having the adhesive layer can be produced, for example, by thinly applying an adhesive material on the base material. If there is adhesiveness, it is possible to prevent the conductive particles from moving due to vibration or external force in the next process after the conductive particles 17 are transferred.
[0015]
If the insulating adhesive used later has adhesiveness, the adhesive material can be used as an adhesive material by thinly applying the insulating adhesive. In addition, when the insulating adhesive is diluted with a solvent or the like, it can be used as a material having adhesiveness as long as it exhibits adhesiveness before being completely dried. The material having adhesiveness may be different from the insulating adhesive. Furthermore, if the base material itself has adhesiveness, it is not necessary to apply an adhesive material separately.
[0016]
The protrusion 18 processed into a roll can capture one or more conductive particles, and there is a particular limitation as long as the captured conductive particles have an interval that does not contact the conductive particles captured by the adjacent convex portions. And can be processed into a convex shape such as a circle, a quadrangle, and an irregular shape. The pattern of the convex portions may be adapted to the circuit design, or may be a pattern in which the convex portions are arranged at a constant interval such as a staggered lattice so as to be applicable to any circuit. The number of conductive particles that can be captured by the convex portions is preferably 2 or more. If it is a convex part which can capture two or more, it can have conductivity if one or more conductive particles can be captured even if all of the captured conductive particles are not transferred onto the substrate. When the roll surface is immersed in the paste 13 in which the conductive particles are dispersed, the conductive particles adhere to portions other than the convex portions, but the convex portions are controlled by controlling the force with which the roll contacts the substrate. It is possible to transfer only the conductive particles of the convex portion to the base material without bringing the other parts into contact with the base material.
[0017]
In order to regularly capture the conductive particles on the convex portions of the roll processed into a desired arrangement pattern, the liquid 19 in which the conductive particles are dispersed in advance is a diluted or concentrated insulating adhesive used later or conductive particles. If it is a material which does not melt | dissolve, there will be no restriction | limiting in particular, Water and various organic solvents can be used.
[0018]
The conductive particles 17 used in the present invention are not particularly limited as long as they have conductivity, and various metals and metals such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, and gold. Alloys, metal oxides, carbon, graphite, glass and ceramics, polymer particles with metal coated surfaces, etc. can be applied, but considering the reliability of connection and application to fine circuit connection, polymer core material It is desirable to apply metal coating to
[0019]
Here, the polymer core material is not particularly limited in composition and the like. For example, one of the polymers such as epoxy resin, urethane resin, melamine resin, phenol resin, acrylic resin, polyester resin, styrene resin, styrene butadiene copolymer is used. A single species or a combination of two or more species may be used.
[0020]
Although there is no particular limitation on the metal coating applied to the surface of the polymer core material, a nickel and gold coating that is usually applied is desirable in consideration of the stability of conduction.
[0021]
Although there is no restriction | limiting in particular in the thickness of a film, Since there exists a problem of becoming easy to produce aggregation when too thick, about 0.01-0.2 micrometer is desirable. In addition, in the method of forming the coating, it is needless to say that the coating is uniformly formed in consideration of the adhesion and conductivity between the coating and the polymer core material. desirable.
[0022]
The particle size and blending amount of the conductive particles can be selected appropriately depending on the pitch and pattern of the circuit to be connected, the thickness and material of the circuit terminal, and the like.
[0023]
The particle diameter of the conductive particles is not particularly limited, but it is preferably 2 to 15 μm on average. If it is smaller than 2 μm, it is possible to mix a large number of conductive particles in order to obtain high connection reliability with fine circuit connection, but uniformly coat the polymer core material without agglomeration. Is extremely difficult with the current technology, and it is actually difficult to stably connect fine circuits. On the other hand, if it is larger than 15 μm, it is possible to uniformly coat the metal without agglomeration. However, when a fine circuit is connected, the electrical insulation between the terminals cannot be maintained. Can not be blended too much, and there is a limit to improving connection reliability. For example, in the connection between the LCD panel and TCP or FPC, particularly in the connection of a very fine pitch circuit having a pitch of about 50 μm, an average particle size of about 3 to 5 μm is desirable. Needless to say, it is preferable that the particle size distribution is sharp, and it is more preferable if the average particle size is within ± 10%.
[0024]
The insulating adhesive 20 for fixing the conductive particles transferred onto the substrate is not particularly limited. For example, a thermoplastic material used for an adhesive sheet or the like, a material that exhibits curability by heat or light, or the like. Is mentioned. Especially, since it is excellent in heat resistance and moisture resistance by making it harden | cure after a connection, a curable material is preferable. In particular, a material used as an epoxy-based adhesive is preferably used from the viewpoint of curing in a short time and excellent adhesiveness. In the case of using a curable resin, it is necessary to melt and flow when used as an anisotropic conductive film. Therefore, the state in which the conductive particles are fixed is preferably a semi-cured state.
[0025]
There is no restriction | limiting in particular in the method of apply | coating the insulating adhesive agent for fixing electroconductive particle, Systems, such as coating, spraying, and casting, can be used.
The thickness of the insulating adhesive is not particularly limited as long as it corresponds to an amount sufficient to satisfy the space between terminals other than the conductive particles at the time of the main pressure bonding of heat and pressure, and the thickness is necessarily larger than the diameter of the conductive particles. It becomes. For example, in the connection between the LCD panel and TCP or FPC, a thickness of 10 to 20 μm is preferable.
[0026]
After the conductive particles are fixed with the insulating adhesive, the locations where the conductive particles exist are inevitably distributed to the substrate side according to this method. Conductive particles located in the middle of the insulating adhesive are likely to flow out of the terminal during the main pressure bonding of heating and pressurization, but since they are biased toward the substrate side, the flow out of the terminal is reduced and efficient. Can be conducted between the terminals.
[0027]
【The invention's effect】
According to the manufacturing method of the present invention, an anisotropic conductive film in which conductive particles are regularly arranged can be obtained. Therefore, even in the case of connection between minute circuits, connection between minute parts and minute circuits, etc. Terminal connection with excellent connection reliability and insulation is possible, and since expensive conductive particles are regularly arranged, lateral conduction due to the connection between the conductive particles can be prevented, and terminals can be efficiently made with fewer conductive particles. Since it can conduct between, it can manufacture at low cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a conventional anisotropic conductive film and a connection method thereof. FIG. 2 is a view showing a manufacturing method according to an embodiment of the present invention. FIG. 4 is a cross-sectional view showing an example of the anisotropic conductive film of the present invention and its connection method.
DESCRIPTION OF SYMBOLS 1 Base material 2 Conductive particle 3 Insulating adhesive 4 LCD panel 5 TCP
6 Terminal 11 Roll 12 Roll 13 after supplementing conductive particles Paste 14 Substrate 15 Substrate 16 after transfer of conductive particles Back roll 17 Conductive particles 18 Roll protrusion 19 Liquid 20 Insulating adhesive

Claims (4)

導電粒子が特定の領域にのみ規則的に配置されている異方導電フィルムの製造方法であって、所望の配置パターンとなるように凸部を加工したロールの凸部に導電粒子を捕捉させた後、基材上に導電粒子を転写させる工程を有することを特徴とする異方導電フィルムの製造方法。A method for producing an anisotropic conductive film in which conductive particles are regularly arranged only in a specific region, and the conductive particles are captured by the convex portions of a roll in which the convex portions are processed so as to have a desired arrangement pattern. Then, the manufacturing method of the anisotropic conductive film characterized by having the process of transferring electroconductive particle on a base material. 前記導電粒子が液体中に分散したペースト状である請求項1記載の異方導電フィルムの製造方法。The method for producing an anisotropic conductive film according to claim 1, wherein the conductive particles are in a paste form dispersed in a liquid. 前記基材に粘着層を有する請求項1もしくは2記載の異方導電フィルムの製造方法。The manufacturing method of the anisotropic conductive film of Claim 1 or 2 which has an adhesion layer in the said base material. 転写後に絶縁性接着剤で導電粒子を被覆する工程を有する請求項1〜3何れか一項記載の異方導電フィルムの製造方法。The method for producing an anisotropic conductive film according to any one of claims 1 to 3, further comprising a step of coating the conductive particles with an insulating adhesive after transfer.
JP2003184088A 2003-06-27 2003-06-27 Manufacturing method of anisotropic conductive film Pending JP2005019274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184088A JP2005019274A (en) 2003-06-27 2003-06-27 Manufacturing method of anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184088A JP2005019274A (en) 2003-06-27 2003-06-27 Manufacturing method of anisotropic conductive film

Publications (1)

Publication Number Publication Date
JP2005019274A true JP2005019274A (en) 2005-01-20

Family

ID=34183965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184088A Pending JP2005019274A (en) 2003-06-27 2003-06-27 Manufacturing method of anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP2005019274A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049783A (en) * 2004-06-29 2006-02-16 Yuji Suda Manufacturing method and electrode connection method for anisotropic conductive adhesive film
JP2016092004A (en) * 2014-10-31 2016-05-23 デクセリアルズ株式会社 Anisotropically conductive film
US20220135753A1 (en) * 2016-05-05 2022-05-05 Dexerials Corporation Filler disposition film
CN114512832A (en) * 2014-11-17 2022-05-17 迪睿合株式会社 Anisotropic conductive film, method for producing same, and connection structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049783A (en) * 2004-06-29 2006-02-16 Yuji Suda Manufacturing method and electrode connection method for anisotropic conductive adhesive film
JP2016092004A (en) * 2014-10-31 2016-05-23 デクセリアルズ株式会社 Anisotropically conductive film
KR20170078586A (en) * 2014-10-31 2017-07-07 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film
US10513635B2 (en) 2014-10-31 2019-12-24 Dexerials Corporation Anisotropic conductive film
JP2020202185A (en) * 2014-10-31 2020-12-17 デクセリアルズ株式会社 Anisotropically conductive film
TWI747809B (en) * 2014-10-31 2021-12-01 日商迪睿合股份有限公司 Anisotropic conductive film
KR102520294B1 (en) * 2014-10-31 2023-04-10 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film
CN114512832A (en) * 2014-11-17 2022-05-17 迪睿合株式会社 Anisotropic conductive film, method for producing same, and connection structure
CN114512832B (en) * 2014-11-17 2024-03-01 迪睿合株式会社 Anisotropic conductive film, method for producing same, and connection structure
US20220135753A1 (en) * 2016-05-05 2022-05-05 Dexerials Corporation Filler disposition film
US11732105B2 (en) * 2016-05-05 2023-08-22 Dexerials Corporation Filler disposition film

Similar Documents

Publication Publication Date Title
KR101883577B1 (en) Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
KR101843297B1 (en) Method for manufacturing electroconductive adhesive film, electroconductive adhesive film, and method for manufacturing connection body
KR102639862B1 (en) Connection body and connection body production method
JP2010251337A (en) Anisotropic conductive film, method for manufacturing the same and connection structure
JP2017175093A (en) Electronic component, connection body, and method of designing electronic component
JP7369756B2 (en) Connection body and method for manufacturing the connection body
JP2013207115A (en) Connection structure and manufacturing method of the same, electronic component and manufacturing method of the same, connection method of electronic component
JP2007115560A (en) Anisotropic conductive film and its manufacturing method
JP6769721B2 (en) Design methods for electronic components, anisotropic connection structures, and electronic components
JP2010251336A (en) Anisotropic conductive film and method for manufacturing connection structure using the same
JP2004335663A (en) Method for manufacturing different direction electric conduction film
JP2005019274A (en) Manufacturing method of anisotropic conductive film
JP2005209454A (en) Manufacturing method of anisotropic conductive film
KR101096677B1 (en) Anisotropic conductive adhesive, method for forming nana conductive pattern and method for packaging electronic parts using the same
JP2006024551A (en) Method of manufacturing anisotropic conductive film
JP2005216611A (en) Manufacturing method of anisotropic conductive film
JP5608504B2 (en) Connection method and connection structure
KR101117768B1 (en) Anisotropic Conductive Film
CN105430901B (en) Electronic component and connection method thereof, connection body and manufacturing method thereof, and buffer material
JP2011211245A (en) Method of manufacturing connection structure, connection structure, and connection method
JP2002075488A (en) Anisotropic electroconductive film and its manufacturing method
JP6719529B2 (en) Electronic component, connecting body, manufacturing method of connecting body, and connecting method of electronic component
JP6434210B2 (en) Electronic component, connecting body, manufacturing method of connecting body, and connecting method of electronic component
JP5890614B2 (en) Connection method, connection structure, and manufacturing method of connection structure
JP2017191780A (en) Method for manufacturing conductive adhesive film, conductive adhesive film, and method for manufacturing connection body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216