JP2005209454A - Manufacturing method of anisotropic conductive film - Google Patents

Manufacturing method of anisotropic conductive film Download PDF

Info

Publication number
JP2005209454A
JP2005209454A JP2004013528A JP2004013528A JP2005209454A JP 2005209454 A JP2005209454 A JP 2005209454A JP 2004013528 A JP2004013528 A JP 2004013528A JP 2004013528 A JP2004013528 A JP 2004013528A JP 2005209454 A JP2005209454 A JP 2005209454A
Authority
JP
Japan
Prior art keywords
conductive particles
particles
conductive film
anisotropic conductive
captured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004013528A
Other languages
Japanese (ja)
Inventor
Tatsumi Kawaguchi
竜巳 河口
Takashi Yoshitome
孝志 吉留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004013528A priority Critical patent/JP2005209454A/en
Publication of JP2005209454A publication Critical patent/JP2005209454A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an anisotropic conductive film which enables a terminal connection with excellent connection reliability and insulation property even in connecting minute circuits to each other, or connecting a minute part to the minute circuit. <P>SOLUTION: On the manufacturing method of the anisotropic conductive film, particles 13 are made to be captured in holes of a porous plate 12, on which holes with a diameter smaller than that of conductive particles are distributed with a distance same as the distance of an intended pattern to be distributed, and afterwards, the conductive particles are transferred on a base material. If necessary, a process of shaking off particles other than those captured in the holes of the porous plate is included. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、微細な回路同士の電気的接続、例えば、液晶ディスプレイ(LCD)とフレキシブル回路基板の接続や、半導体ICとIC搭載用基板のマイクロ接合等に用いることのできる異方導電フィルムの製造方法に関するものである。   The present invention provides an anisotropic conductive film that can be used for electrical connection between fine circuits, for example, connection between a liquid crystal display (LCD) and a flexible circuit board, micro-bonding between a semiconductor IC and an IC mounting board, and the like. It is about the method.

最近の電子機器の小型化・薄型化に伴い、微細な回路同士の接続、微小部分と微細な回路の接続等の必要性が飛躍的に増大してきており、その接続方法として、半田接合技術の進展とともに、新しい材料として、異方性の導電性接着剤やフィルムが使用されている(例えば、特許文献1〜13参照)。特に、最近、半田付けでは対応できないLCDパネルとドライバICを搭載したTCP(テープキャリアパッケージ)との接続に適用され、LCDには必要不可欠の接続材料となっている。   With the recent downsizing and thinning of electronic devices, the need for connections between minute circuits and connections between minute parts and minute circuits has increased dramatically. With progress, anisotropic conductive adhesives and films are used as new materials (see, for example, Patent Documents 1 to 13). In particular, it has recently been applied to the connection between an LCD panel that cannot be handled by soldering and a TCP (tape carrier package) equipped with a driver IC, and has become an indispensable connection material for LCDs.

この方法は、図1にその一例を示したように、接続したい部材間に異方導電フィルムを挟み加熱加圧することにより、面方向の隣接端子間では電気的絶縁性を保ち、上下の端子間では電気的に導通させるものである。このような用途に異方導電フィルムが多用されてきたのは、被着体の耐熱性がないことや微細な回路では隣接端子間で電気的にショートしてしまうなど半田付けなどの従来の接続方法が適用できないことが理由である。   In this method, as shown in FIG. 1, an anisotropic conductive film is sandwiched between members to be connected and heated and pressed to maintain electrical insulation between adjacent terminals in the plane direction, and between the upper and lower terminals. Then, it is electrically connected. The anisotropic conductive film has been widely used for such applications because of the lack of heat resistance of the adherend and conventional connections such as soldering that cause electrical shorts between adjacent terminals in fine circuits. This is because the method is not applicable.

特許文献14等に開示されているとおり、一般に異方導電フィルムは、絶縁性の接着剤中に導電粒子が均一に分散したもので、IC電極と基板電極とで位置合わせを行い、異方導電フィルムを圧着することにより異方導電フィルム中の導電粒子が圧接されて重なり合う電極間だけが電気的に接続される。   As disclosed in Patent Document 14 and the like, generally, an anisotropic conductive film is a film in which conductive particles are uniformly dispersed in an insulating adhesive, and alignment is performed between an IC electrode and a substrate electrode to perform anisotropic conduction. By crimping the film, the conductive particles in the anisotropic conductive film are brought into pressure contact so that only the overlapping electrodes are electrically connected.

この異方導電フィルムは、導電粒子としてはニッケル、金等にて表面をめっきしたプラスチック粒子等が用いられており、絶縁性接着剤としては熱可塑タイプのものと熱硬化タイプのものに分類されるが、最近では熱可塑タイプのものより、信頼性の優れたエポキシ樹脂系の熱硬化タイプのものが広く用いられつつある。   This anisotropic conductive film uses plastic particles, etc. whose surfaces are plated with nickel, gold, etc. as the conductive particles, and the insulating adhesive is classified into a thermoplastic type and a thermosetting type. However, recently, an epoxy resin-based thermosetting type having excellent reliability is being used more widely than a thermoplastic type.

近年の回路接続ピッチは微細化が進み、従来の異方導電フィルムでは横導通の問題が生じてきた。図1に示したように、絶縁性接着剤3中に導電粒子2を分散させている場合、異方
導電フィルムが圧着されると、絶縁性接着剤の中ほどに位置する導電粒子は端子外に流出しやすく、その結果、隣接端子間に高密度に導電粒子が存在することになり、端子間の絶縁性が不充分になったり、リークやショートを発生する等、絶縁性の保持に問題が生じる。
横導通を防止するためには異方導電フィルム中の導電粒子の混入率を低下させることが考えられるが、導電粒子の混入率を低下させると、導電粒子と端子との接続面積が落ちるので、接続抵抗が高くなるという問題があった。
In recent years, the circuit connection pitch has been miniaturized, and the problem of lateral conduction has occurred in the conventional anisotropic conductive film. As shown in FIG. 1, when the conductive particles 2 are dispersed in the insulating adhesive 3, when the anisotropic conductive film is crimped, the conductive particles located in the middle of the insulating adhesive are outside the terminal. As a result, conductive particles exist at a high density between adjacent terminals, resulting in insufficient insulation between terminals, leakage, short circuit, etc. Occurs.
In order to prevent lateral conduction, it is conceivable to reduce the mixing rate of the conductive particles in the anisotropic conductive film, but if the mixing rate of the conductive particles is reduced, the connection area between the conductive particles and the terminal decreases, There was a problem that connection resistance became high.

また、製品品質上の問題のほか、一般的に導電粒子は1グラム当たり数千円と非常に高
価であり、その多くが本来目的とする端子間の接続に使用されないことは、生産コストの増加に繋がっていた。
In addition to product quality problems, conductive particles are generally very expensive at several thousand yen per gram, and many of them are not used for the connection between intended terminals, which increases production costs. It was connected to.

そのため、導電粒子を規則的に配列させる方式が検討されており、例えば、NEDOのベンチャー企業支援型地域コンソーシアム研究開発(中小企業創造基盤型)ファインピッチ対応異方性導電材の研究開発として、圧着温度で溶融しない樹脂フィルムに孔を開けて、そこに導電粒子を埋め込んだ後、上下を溶融する樹脂で挟み込む方式が提案されている。こ
の方式では、導電粒子を規則的に配列するための格子孔はフォトリソグラフィーとレーザの2つの技術が利用されている。しかし、このような方式では、規則的な孔を開けるため
の特別なメタルマスクの作製やレーザ照射装置が必要であり、微細なものが得られる反面、製造装置が高価であるという問題があった。
For this reason, a method of regularly arranging conductive particles has been studied. For example, NEDO's venture company-supported regional consortium R & D (SME creation base type) R & D on anisotropic conductive materials for fine pitches, crimping There has been proposed a method in which a hole is formed in a resin film that does not melt at a temperature, conductive particles are embedded therein, and then sandwiched with a resin that melts the top and bottom. In this method, two techniques of photolithography and laser are used for the lattice holes for regularly arranging the conductive particles. However, such a method requires the production of a special metal mask for forming regular holes and a laser irradiation device, and a fine device can be obtained, but the manufacturing device is expensive. .

特開昭59−120436号公報JP 59-120436 A 特開昭60−84718号広報JP-A-60-84718 特開昭60−191228号広報JP-A-60-191228 特開昭61−55809号広報JP-A 61-55809 特開昭61−274394号広報JP-A 61-274394 特開昭61−287974号広報JP-A 61-287974 特開昭62−244142号広報JP-A 62-244142 特開昭63−153534号広報JP-A-63-153534 特開昭63−305591号広報JP-A 63-305591 特開昭64−47084号広報JP-A 64-47084 特開昭64−81878号広報JP-A-64-81878 特開平1−46549号広報JP-A-1-46549 特開平1−251787各号公報JP-A-1-251787 特開昭61─78069号公報JP 61-78069 A

本発明は、微細な回路同士の接続、微小部分と微細な回路の接続等であっても、接続信頼性と絶縁性とに優れた端子接続が可能となる異方導電フィルムを安価に製造できる方法を提供することを目的とする。   INDUSTRIAL APPLICABILITY The present invention can inexpensively produce an anisotropic conductive film that enables terminal connection with excellent connection reliability and insulation even when connecting fine circuits, connecting minute parts and fine circuits, and the like. It aims to provide a method.

すなわち本発明は、
(1) 導電粒子が特定の領域にのみ規則的に配置されている異方導電フィルムの製造方法であって、所望の配置パターンと同じ間隔で、導電粒子の粒子径より小さな孔を有する多孔板の孔に粒子を捕捉させた後、導電粒子を基材上に転写させる工程を有することを特徴とする異方導電フィルムの製造方法。
(2) 導電粒子を捕捉させた状態のまま、前記多孔板の孔に捕捉されている以外の粒子を脱落させる工程を有する(1)の異方導電フィルムの製造方法。
(3) 前記多孔板を隔てて導電粒子が存在する逆側を減圧状態とすることにより導電粒子を多孔板に捕捉させる(1)、(2)の異方導電フィルムの製造方法。
(4) 前記基材に粘着層を有する(1)〜(3)の異方導電フィルムの製造方法。
(5)転写後に絶縁性接着剤で導電粒子を被覆する工程を有する(1)〜(4)の異方導電フィルムの製造方法。
である。
That is, the present invention
(1) A method for producing an anisotropic conductive film in which conductive particles are regularly arranged only in a specific region, and a perforated plate having pores smaller than the particle diameter of the conductive particles at the same interval as a desired arrangement pattern A method for producing an anisotropic conductive film, comprising the step of capturing particles in the pores and then transferring the conductive particles onto a substrate.
(2) The method for producing an anisotropic conductive film according to (1), further including a step of dropping particles other than those captured by the holes of the porous plate while the conductive particles are captured.
(3) The method for producing an anisotropic conductive film according to (1) or (2), wherein the conductive particles are captured by the porous plate by setting the opposite side where the conductive particles are present across the porous plate to a reduced pressure state.
(4) The manufacturing method of the anisotropic conductive film of (1)-(3) which has an adhesion layer in the said base material.
(5) The method for producing an anisotropic conductive film according to (1) to (4), comprising a step of coating the conductive particles with an insulating adhesive after transfer.
It is.

本発明の製造方法によれば、導電粒子が規則的に配列している異方導電フィルムを得ることができるので、微細な回路同士の接続、微小部分と微細な回路の接続等であっても、接続信頼性と絶縁性とに優れた端子接続が可能となり、高価な導電性粒子を規則的に配列するために、導電粒子同士の接続による横導通を防止でき、少ない導電粒子で効率よく端子間を導通できるため、安価なコストで製造することができる。   According to the manufacturing method of the present invention, an anisotropic conductive film in which conductive particles are regularly arranged can be obtained. Therefore, even if the connection between fine circuits, the connection between a minute part and a minute circuit, etc. Terminal connection with excellent connection reliability and insulation is possible, and since expensive conductive particles are regularly arranged, lateral conduction due to the connection between the conductive particles can be prevented, and terminals can be efficiently made with fewer conductive particles. Since it can conduct between, it can manufacture at low cost.

本発明は、導電粒子を配置させるべき所望の配置パターンと同じ間隔で、導電粒子の粒
子径より小さな孔を有する多孔板の孔に粒子を捕捉させた後、導電粒子を基材上に転写させる異方導電フィルムの製造方法であり、必要であれば、多孔板の孔に捕捉されている以外の粒子を脱落させる工程を有するものである。
本発明の製造方法の一例を、図2〜図3に基づき説明する。容器11に、所望の配置パターンとなるように導電粒子の粒子径より小さな孔16を有する多孔板12を取り付け、容器下槽11aに導電粒子を入れる。多孔板12を隔てて導電粒子13が存在する逆側となる容器上槽11bを減圧状態とすることにより導電粒子13を多孔板12に捕捉させる。導電粒子13を捕捉する際に、凝集などにより多孔板12や捕捉した導電粒子に付着した導電粒子を脱落させる工程を有しても良い。捕捉した導電粒子13は、粘着層14を有する基材上へ転写させる。基材15に転写した導電粒子13を固定化するため、転写後に絶縁性接着剤で導電粒子13を被覆する工程を有しても良い。簡便な方法で高価な導電粒子を必要とする分のみを捕捉し、規則的に配列できる本方式は、導電粒子同士の接続による横導通を防止でき、少ない導電粒子で効率よく端子間を導通できるため、材料面からも安価なコストで製造することができる生産性の高い方式である。
In the present invention, particles are trapped in holes of a perforated plate having holes smaller than the particle diameter of the conductive particles at the same interval as a desired arrangement pattern in which the conductive particles are to be arranged, and then the conductive particles are transferred onto the substrate. This is a method for producing an anisotropic conductive film, and if necessary, includes a step of dropping particles other than those trapped in the holes of the perforated plate.
An example of the production method of the present invention will be described with reference to FIGS. A porous plate 12 having holes 16 smaller than the particle diameter of the conductive particles is attached to the container 11 so as to have a desired arrangement pattern, and the conductive particles are put into the container lower tank 11a. The porous plate 12 captures the conductive particles 13 by putting the container upper tank 11b on the opposite side where the conductive particles 13 are present across the porous plate 12 into a reduced pressure state. When capturing the conductive particles 13, a step of dropping the conductive particles attached to the porous plate 12 or the captured conductive particles by aggregation or the like may be provided. The captured conductive particles 13 are transferred onto the base material having the adhesive layer 14. In order to fix the conductive particles 13 transferred to the base material 15, a step of coating the conductive particles 13 with an insulating adhesive after transfer may be included. This method, which can capture only the amount of expensive conductive particles required by a simple method and arrange them regularly, can prevent lateral conduction due to the connection between the conductive particles, and can efficiently conduct between terminals with few conductive particles. Therefore, it is a highly productive method that can be manufactured at a low cost from the viewpoint of materials.

上記導電粒子13の粒子径より小さな孔16を有する多孔板12の孔径は、導電粒子13の粒子径より小さければ特に制限は無いが、孔径が粒子径に近すぎると捕捉した際に導電粒子13が孔16に挟まり、基材15へ転写できなくなる恐れが生じる。また、小さすぎる場合には、導電粒子13を効率よく捕捉できなくなるため導電粒子の直径Dに対して、孔径は0.3D〜0.9Dが好ましい。孔の形は、孔一つに対して一個の粒子を捕捉でき、捕捉する導電粒子同士が接触しない間隔を有していれば特に制限は無く、円形、多角形、不定形などに加工できる。孔のパターンは、回路設計に合わせても良いし、いずれの回路にも適用できるよう千鳥格子などのように一定間隔に配置したパターンでも良い。多孔板の材質としては導電粒子を捕捉できる強度を有するものであれば特に制限は無く、鉄、ステンレス、銅、アルミなどの金属材料やポリエチレン、ポリスチレン、ポリプロピレンといった有機材料およびこれらを組み合わせた複合材料を使用することができる。   The pore diameter of the porous plate 12 having the pores 16 smaller than the particle diameter of the conductive particles 13 is not particularly limited as long as it is smaller than the particle diameter of the conductive particles 13, but when the pore diameter is too close to the particle diameter, the conductive particles 13 are captured. May be caught between the holes 16 and may not be transferred to the base material 15. In addition, if it is too small, the conductive particles 13 cannot be captured efficiently, so that the pore diameter is preferably 0.3D to 0.9D with respect to the diameter D of the conductive particles. The shape of the hole is not particularly limited as long as one particle can be captured per hole and the conductive particles to be captured do not contact each other, and can be processed into a circular shape, a polygonal shape, an indefinite shape, or the like. The hole pattern may be adapted to the circuit design, or may be a pattern arranged at regular intervals such as a staggered lattice so as to be applicable to any circuit. The material of the perforated plate is not particularly limited as long as it has a strength capable of capturing conductive particles. Metal materials such as iron, stainless steel, copper and aluminum, organic materials such as polyethylene, polystyrene and polypropylene, and composite materials combining these materials Can be used.

上記導電粒子13を捕捉する方法としては、上記のように多孔板12を隔てて導電粒子13が存在する逆側となる容器上槽11bを減圧状態として導電粒子を吸引により捕捉する方法や
、磁力により導電粒子13を捕捉する方法等が挙げられるが、多孔板12の孔に導電粒子13を選択的に捕捉できる方法であれば特に制限はない。また、導電粒子13を効率良く捕捉するために、容器11に振動を加えたり、容器下部を多孔質材料とし下部よりエアーを吹き込み、導電粒子を流動状態とさせても良い。その際、導電粒子同士の付着を防止するために除湿した乾燥エアーを用いることが好ましい。
As a method for capturing the conductive particles 13, as described above, a method of capturing the conductive particles by suction with the container upper tank 11b on the opposite side where the conductive particles 13 exist across the porous plate 12 being in a reduced pressure state, However, there is no particular limitation as long as the method can selectively capture the conductive particles 13 in the holes of the porous plate 12. In order to capture the conductive particles 13 efficiently, the container 11 may be vibrated, or the lower part of the container may be made of a porous material and air may be blown from the lower part to make the conductive particles flow. At that time, it is preferable to use dehumidified dry air in order to prevent adhesion between the conductive particles.

上記導電粒子13を捕捉する際に、多孔板12や凝集などにより捕捉した導電粒子に付着した導電粒子を脱落させる工程としては、捕捉した導電粒子を脱落させること無く捕捉粒子以外の粒子のみを脱落させる方法であれば特に制限は無く、エアーブローやスクレッパーなどを使用することが出来る。その際、例えば多孔板12を隔てて導電粒子13が存在する逆側となる容器上槽11bは減圧状態にするなどして導電粒子を捕捉する力を作用させた状態
であれば、捕捉した粒子の脱落が防止できるため好ましい。
When capturing the conductive particles 13, the step of dropping the conductive particles adhering to the conductive particles captured by the perforated plate 12 or agglomeration is to drop only the particles other than the captured particles without dropping the captured conductive particles. There is no particular limitation as long as it is a method to be used, and an air blower or a scraper can be used. At that time, for example, if the container upper tank 11b on the opposite side where the conductive particles 13 exist across the perforated plate 12 is in a reduced pressure state, the captured particles are applied. Is preferable because it can be prevented from falling off.

上記捕捉した導電粒子13を、粘着層14を有する基材上へ転写させる方法としては、捕捉した規則的に配列している導電粒子をそのままの状態で転写できる方法であれば特に制限は無く、捕捉している導電粒子13を粘着層14へ接触させることなどにより転写できる。導電粒子を捕捉する力を解除することにより基材15への転写を容易にすることができるが、導電粒子が孔より外れにくい場合には、導電粒子を捕捉している逆側からエアーやピンなどにより導電粒子に力を加え転写を容易にさせることもできる。   The method for transferring the captured conductive particles 13 onto the substrate having the adhesive layer 14 is not particularly limited as long as the captured regularly arranged conductive particles can be transferred as they are. Transfer can be performed by bringing the captured conductive particles 13 into contact with the adhesive layer 14 or the like. Transfer to the base material 15 can be facilitated by releasing the force to capture the conductive particles, but if the conductive particles are difficult to come off the hole, air or pins from the opposite side where the conductive particles are captured The transfer can be facilitated by applying a force to the conductive particles.

上記基材15としては、特に制限は無いが、粘着層14を有する基材を使用することができる
。上記粘着層を有する基材は、例えば、基材上に粘着性を有する材料を薄く塗布することにより製造することができる。粘着性があると、導電粒子13を転写した後、振動や次工程での外力に対して導電粒子が移動することを防止することができる。
Although there is no restriction | limiting in particular as the said base material 15, The base material which has the adhesion layer 14 can be used. The base material having the adhesive layer can be produced, for example, by thinly applying an adhesive material on the base material. If there is adhesiveness, it is possible to prevent the conductive particles from moving due to vibration or external force in the next step after the conductive particles 13 are transferred.

上記粘着性を有する材料としては、後に用いる絶縁性接着剤20が粘着性を持つものであれば、その絶縁性接着剤を薄く塗布することにより、粘着性のある材料として用いることができる。また、絶縁性接着剤20が、溶剤等により希釈された場合、完全に乾燥する前で粘着性を示すものであるならば、同様に粘着性を有する材料として用いることができる。上記粘着性を有する材料は、絶縁性接着剤と異なってもよく、更には、基材自体が粘着性を持つものであれば、別途粘着性を有する材料を塗布する必要はない。   As the above-mentioned adhesive material, if the insulating adhesive 20 used later has adhesiveness, it can be used as an adhesive material by thinly applying the insulating adhesive. Further, when the insulating adhesive 20 is diluted with a solvent or the like, it can be used as a material having adhesiveness as long as it exhibits adhesiveness before being completely dried. The material having adhesiveness may be different from the insulating adhesive. Furthermore, if the base material itself has adhesiveness, it is not necessary to apply an adhesive material separately.

本発明に用いられる導電性粒子13は、導電性を有するものであれば特に制限するものではなく、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金など各種金属や金属合金、金属酸化物、カーボン、グラファイト、ガラスやセラミック、高分子粒子の表面に金属をコートしたもの等が適用できるが、接続の信頼性や微細な回路接続への適用を考慮すると高分子核材に金属被覆を施したものが望ましい。   The conductive particles 13 used in the present invention are not particularly limited as long as they have conductivity, and various metals and metals such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, and gold Alloys, metal oxides, carbon, graphite, glass and ceramics, polymer particles with metal coated surfaces, etc. can be applied, but considering the reliability of connection and application to fine circuit connection, polymer core material It is desirable to have a metal coating on the surface.

ここで、高分子核材は特に組成などの制限はなく、例えば、エポキシ樹脂、ウレタン樹脂、メラミン樹脂、フェノール樹脂、アクリル樹脂、ポリエステル樹脂、スチレン樹脂、スチレンブタジエン共重合体等のポリマー中から1種単独あるいは2種以上組み合わせて使用すれば良い。   Here, the polymer core material is not particularly limited in composition and the like. For example, one of the polymers such as epoxy resin, urethane resin, melamine resin, phenol resin, acrylic resin, polyester resin, styrene resin, styrene butadiene copolymer is used. A single species or a combination of two or more species may be used.

高分子核材の表面に施す金属被覆には特に制限は無いが、導通の安定性を考慮すると通常適用されるニッケルと金の被覆が望ましい。   Although there is no particular limitation on the metal coating applied to the surface of the polymer core material, a nickel and gold coating that is usually applied is desirable in consideration of the stability of conduction.

被膜の厚さには特に制限はないが、厚すぎると凝集が生じやすくなるなどの問題があるため、0.01〜0.2μm程度が望ましい。また、被覆の形成方法では、この被覆と高分子核材との密着力・導電性などを考慮し、均一に形成されている方が良いことは言うまでもなく、従来から用いられているメッキなどが望ましい。   Although there is no restriction | limiting in particular in the thickness of a film, Since there exists a problem of becoming easy to produce aggregation when too thick, about 0.01-0.2 micrometer is desirable. In addition, in the method of forming the coating, it is needless to say that the coating is uniformly formed in consideration of the adhesion and conductivity between the coating and the polymer core material. desirable.

導電性粒子の粒子径や配合量は、接続したい回路のピッチやパターン、回路端子の厚みや材質等によって適切なものを選ぶことができる。   The particle diameter and blending amount of the conductive particles can be selected appropriately depending on the pitch and pattern of the circuit to be connected, the thickness and material of the circuit terminal, and the like.

導電性粒子の粒子径は、特に制限はするものではないが、望ましくは平均2〜15μmである方がよい。2μmより小さい場合では、微細な回路接続で高い接続信頼性を得るために導電性粒子数を多く配合することは可能であるが、凝集することなく高分子核材に均一に金属被覆を施すことは現状の技術では極めて困難であり、実際には微細な回路の接続を安定して行うことは困難である。逆に、15μmより大きい場合には、凝集なく均一に金属被覆を施すことは可能であるが、微細な回路を接続する場合には、端子間の電気的絶縁性が保てなくなるため、粒子数はあまり多く配合できず、接続信頼性の向上にも限界がでてくる。例えば、LCDパネルとTCPやFPCとの接続、特に50μmピッチ程度の極ファインピッチ回路の接続においては、平均粒径3〜5μm程度が望ましい。もちろん粒度分布がシャープな方が好ましいことは言うまでもなく、平均粒径±10%以内であればなお好ましい。   The particle diameter of the conductive particles is not particularly limited, but is desirably 2 to 15 μm on average. If it is smaller than 2 μm, it is possible to mix a large number of conductive particles in order to obtain high connection reliability with fine circuit connection, but uniformly coat the polymer core material without agglomeration. Is extremely difficult with the current technology, and it is actually difficult to stably connect fine circuits. On the other hand, if it is larger than 15 μm, it is possible to uniformly coat the metal without agglomeration. However, when a fine circuit is connected, the electrical insulation between the terminals cannot be maintained. Can not be blended too much, and there is a limit to improving connection reliability. For example, in the connection between the LCD panel and TCP or FPC, particularly in the connection of a very fine pitch circuit having a pitch of about 50 μm, an average particle size of about 3 to 5 μm is desirable. Needless to say, it is preferable that the particle size distribution is sharp, and it is more preferable if the average particle size is within ± 10%.

基材上に転写された導電粒子13を固定化するための絶縁性接着剤20は特に限定されず、例えば、接着性シート等に用いられる熱可塑性材料や、熱や光により硬化性を示す材料等が挙げられる。なかでも、接続後硬化させることにより耐熱性や耐湿性に優れることから、硬化性材料が好ましい。特にエポキシ系接着剤として用いられる材料は短時間で硬化し、接着性に優れる等の点から好適に用いられる。硬化性樹脂を使用する場合には、異方導
電性フィルムとして使用する際に、溶融流動する必要があるため、導電粒子を固定化させている状態は半硬化状態が好ましい。
The insulating adhesive 20 for fixing the conductive particles 13 transferred onto the substrate is not particularly limited. For example, a thermoplastic material used for an adhesive sheet or the like, or a material that is curable by heat or light. Etc. Especially, since it is excellent in heat resistance and moisture resistance by making it harden | cure after a connection, a curable material is preferable. In particular, a material used as an epoxy-based adhesive is preferably used from the viewpoint of curing in a short time and excellent adhesiveness. In the case of using a curable resin, it is necessary to melt and flow when used as an anisotropic conductive film. Therefore, the state in which the conductive particles are fixed is preferably a semi-cured state.

導電粒子13を固定化するための絶縁性接着剤20を塗布する方法に、特に制限は無く、コーティングやスプレー噴霧、キャストなどの方式を使用することができる。
絶縁性接着剤の厚みは、加熱加圧の本圧着時に導電性粒子以外の端子間を満たすに十分な量に相当していれば特に制限はなく、必然的に導電粒子の直径よりも大きな厚みとなる。例えば、LCDパネルとTCPやFPCとの接続においては、10〜20μmの厚みが好ましい。
The method for applying the insulating adhesive 20 for immobilizing the conductive particles 13 is not particularly limited, and methods such as coating, spraying, and casting can be used.
The thickness of the insulating adhesive is not particularly limited as long as it corresponds to an amount sufficient to satisfy the space between the terminals other than the conductive particles during the main pressure bonding of the heat and pressure, and the thickness is necessarily larger than the diameter of the conductive particles. It becomes. For example, in the connection between the LCD panel and TCP or FPC, a thickness of 10 to 20 μm is preferable.

導電粒子を絶縁性接着剤で固定化した後に、導電粒子が存在する場所は、本方式に則れば、必然的に基材側に偏った分布となる。絶縁性接着剤の中ほどに位置する導電粒子は、加熱加圧の本圧着時に端子外へ流出し易いが、基材側に偏って存在するため、端子外への流出が少なくなり、効率的に端子間を導通させることができる。   After the conductive particles are fixed with the insulating adhesive, the locations where the conductive particles exist are inevitably distributed to the substrate side according to this method. Conductive particles located in the middle of the insulating adhesive are likely to flow out of the terminal during the main pressure bonding of heating and pressurization, but since they are biased toward the substrate side, the flow out of the terminal is reduced and efficient. Can be conducted between the terminals.

上記方式にて製造された異方導電フィルムの使用例を図4に示す。絶縁性接着剤20で導
電粒子13を被覆した後、例えば、LCDパネル4上に加熱加圧により仮圧着し、基材15を
剥離しTCP5を載せ、加圧により仮止めを行う。更に、加熱加圧により本圧着を行うが
、導電粒子は、絶縁性接着剤の一方に存在しているため、端子外に流出しにくく、効率的に端子間 同士を導通させることができる。
FIG. 4 shows an example of using the anisotropic conductive film manufactured by the above method. After the conductive particles 13 are coated with the insulating adhesive 20, for example, the pressure bonding is performed on the LCD panel 4 by heat and pressure, the base material 15 is peeled off, the TCP 5 is placed, and temporarily fixed by pressure. Further, the main pressure bonding is performed by heat and pressure. Since the conductive particles are present in one of the insulating adhesives, it is difficult for the conductive particles to flow out of the terminals, and the terminals can be efficiently connected to each other.

従来の異方導電フィルムとその接続方法の一例を示す断面図Sectional drawing which shows an example of the conventional anisotropic conductive film and its connection method 本発明の一実施例である製造方法を示す図The figure which shows the manufacturing method which is one Example of this invention 基材の粘着層に導電粒子が転写される様子を示す図The figure which shows a mode that electroconductive particle is transcribe | transferred to the adhesion layer of a base material. 本発明の異方導電フィルムとその接続方法の一例を示す断面図Sectional drawing which shows an example of the anisotropic conductive film of this invention, and its connection method

符号の説明Explanation of symbols

1 基材
2 導電粒子
3 絶縁性接着剤
4 LCDパネル
5 TCP
6 端子
11 容器
11a 容器下槽
11b 容器上槽
12 多孔板
13 導電粒子
14 粘着層
15 基材
16 孔
17 導電粒子
20 絶縁性接着剤
DESCRIPTION OF SYMBOLS 1 Base material 2 Conductive particle 3 Insulating adhesive 4 LCD panel 5 TCP
6 Terminal 11 Container 11a Container lower tank 11b Container upper tank 12 Perforated plate 13 Conductive particle 14 Adhesive layer 15 Base material 16 Hole 17 Conductive particle 20 Insulating adhesive

Claims (5)

導電粒子が特定の領域にのみ規則的に配置されている異方導電フィルムの製造方法であって、所望の配置パターンと同じ間隔で、導電粒子の粒子径より小さな孔を有する多孔板の孔に粒子を捕捉させた後、導電粒子を基材上に転写させる工程を有することを特徴とする異方導電フィルムの製造方法。 A method for producing an anisotropic conductive film in which conductive particles are regularly arranged only in a specific region, wherein the pores of the perforated plate have pores smaller than the particle diameter of the conductive particles at the same interval as a desired arrangement pattern. A method for producing an anisotropic conductive film comprising a step of transferring conductive particles onto a substrate after capturing the particles. 導電粒子を捕捉させた状態のまま、前記多孔板の孔に捕捉されている以外の粒子を脱落させる工程を有する請求項1記載の異方導電フィルムの製造方法。 The method for producing an anisotropic conductive film according to claim 1, further comprising a step of dropping particles other than those captured in the holes of the perforated plate in a state where the conductive particles are captured. 前記多孔板を隔てて導電粒子が存在する逆側を減圧状態とすることにより導電粒子を多孔板に捕捉させる請求項1もしくは2記載の異方導電フィルムの製造方法。 The method for producing an anisotropic conductive film according to claim 1 or 2, wherein the conductive particles are captured by the porous plate by setting the opposite side where the conductive particles are present across the porous plate to a reduced pressure state. 前記基材に粘着層を有する請求項1〜3何れか一項記載の異方導電フィルムの製造方法。 The manufacturing method of the anisotropic conductive film as described in any one of Claims 1-3 which has an adhesion layer in the said base material. 転写後に絶縁性接着剤で導電粒子を被覆する工程を有する請求項1〜4何れか一項記載の異方導電フィルムの製造方法。 The method for producing an anisotropic conductive film according to any one of claims 1 to 4, further comprising a step of coating the conductive particles with an insulating adhesive after the transfer.
JP2004013528A 2004-01-21 2004-01-21 Manufacturing method of anisotropic conductive film Pending JP2005209454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004013528A JP2005209454A (en) 2004-01-21 2004-01-21 Manufacturing method of anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004013528A JP2005209454A (en) 2004-01-21 2004-01-21 Manufacturing method of anisotropic conductive film

Publications (1)

Publication Number Publication Date
JP2005209454A true JP2005209454A (en) 2005-08-04

Family

ID=34899560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004013528A Pending JP2005209454A (en) 2004-01-21 2004-01-21 Manufacturing method of anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP2005209454A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025104A (en) * 2013-07-29 2015-02-05 デクセリアルズ株式会社 Manufacturing method of electric conductive glue film, electric conductive glue film and manufacturing method of connection body
KR20190141266A (en) 2015-11-26 2019-12-23 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film
KR20200060283A (en) 2018-11-21 2020-05-29 신에쓰 가가꾸 고교 가부시끼가이샤 Anisotropic film and manufacturing method of anisotropic film
US10818618B2 (en) 2018-07-24 2020-10-27 Shin-Etsu Chemical Co., Ltd. Adhesive substrate, transfer device having adhesive substrate, and method for producing adhesive substrate
CN112421262A (en) * 2014-11-17 2021-02-26 迪睿合株式会社 Anisotropic conductive film, connection structure, and method for producing same
US20220135753A1 (en) * 2016-05-05 2022-05-05 Dexerials Corporation Filler disposition film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11248148B2 (en) 2013-07-29 2022-02-15 Dexerials Corporation Method for manufacturing electrically conductive adhesive film, electrically conductive adhesive film, and method for manufacturing connector
WO2015016169A1 (en) * 2013-07-29 2015-02-05 デクセリアルズ株式会社 Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
US20160280969A1 (en) * 2013-07-29 2016-09-29 Dexerials Corporation Method for manufacturing electrically conductive adhesive film, electrically conductive adhesive film, and method for manufacturing connector
JP2015025104A (en) * 2013-07-29 2015-02-05 デクセリアルズ株式会社 Manufacturing method of electric conductive glue film, electric conductive glue film and manufacturing method of connection body
CN114512832B (en) * 2014-11-17 2024-03-01 迪睿合株式会社 Anisotropic conductive film, method for producing same, and connection structure
CN112421262B (en) * 2014-11-17 2023-06-20 迪睿合株式会社 Anisotropic conductive film, connection structure, and method for manufacturing same
CN114512832A (en) * 2014-11-17 2022-05-17 迪睿合株式会社 Anisotropic conductive film, method for producing same, and connection structure
CN112421262A (en) * 2014-11-17 2021-02-26 迪睿合株式会社 Anisotropic conductive film, connection structure, and method for producing same
US10827625B2 (en) 2015-11-26 2020-11-03 Dexerials Corporation Anisotropic conductive film
KR20190141266A (en) 2015-11-26 2019-12-23 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film
US20220135753A1 (en) * 2016-05-05 2022-05-05 Dexerials Corporation Filler disposition film
US11732105B2 (en) * 2016-05-05 2023-08-22 Dexerials Corporation Filler disposition film
US10818618B2 (en) 2018-07-24 2020-10-27 Shin-Etsu Chemical Co., Ltd. Adhesive substrate, transfer device having adhesive substrate, and method for producing adhesive substrate
KR20200060283A (en) 2018-11-21 2020-05-29 신에쓰 가가꾸 고교 가부시끼가이샤 Anisotropic film and manufacturing method of anisotropic film

Similar Documents

Publication Publication Date Title
KR101883577B1 (en) Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
EP0827632B1 (en) Semiconductor device having a semiconductor chip electrically connected to a wiring substrate
KR101843297B1 (en) Method for manufacturing electroconductive adhesive film, electroconductive adhesive film, and method for manufacturing connection body
CN101271741A (en) Anisotropic conductive film and adhesion method thereof
KR102639862B1 (en) Connection body and connection body production method
KR101986470B1 (en) Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
JP2007115560A (en) Anisotropic conductive film and its manufacturing method
JP6769721B2 (en) Design methods for electronic components, anisotropic connection structures, and electronic components
JP2005209454A (en) Manufacturing method of anisotropic conductive film
JP2004335663A (en) Method for manufacturing different direction electric conduction film
JP4175347B2 (en) Method for producing anisotropic conductive adhesive film
JP2006024551A (en) Method of manufacturing anisotropic conductive film
JP2005019274A (en) Manufacturing method of anisotropic conductive film
KR101096677B1 (en) Anisotropic conductive adhesive, method for forming nana conductive pattern and method for packaging electronic parts using the same
JP2748713B2 (en) Connection member
JP2007115676A (en) Conductive particle and conductive connection structure
JP2004006417A (en) Connecting element and connection structure of electrode using this
JP2005216611A (en) Manufacturing method of anisotropic conductive film
JP5608504B2 (en) Connection method and connection structure
KR20070079219A (en) Anisotropic conductive film with different conductive ball density, manufacturing method thereof, connecting structure of pcb using anisotropic conductive film and manufacturing method thereof
JP2002075488A (en) Anisotropic electroconductive film and its manufacturing method
JP2011211245A (en) Method of manufacturing connection structure, connection structure, and connection method
JP2006269269A (en) Manufacturing method of anisotropic conductive film
JP6719529B2 (en) Electronic component, connecting body, manufacturing method of connecting body, and connecting method of electronic component
KR101117768B1 (en) Anisotropic Conductive Film