JP2006024551A - Method of manufacturing anisotropic conductive film - Google Patents

Method of manufacturing anisotropic conductive film Download PDF

Info

Publication number
JP2006024551A
JP2006024551A JP2005085103A JP2005085103A JP2006024551A JP 2006024551 A JP2006024551 A JP 2006024551A JP 2005085103 A JP2005085103 A JP 2005085103A JP 2005085103 A JP2005085103 A JP 2005085103A JP 2006024551 A JP2006024551 A JP 2006024551A
Authority
JP
Japan
Prior art keywords
conductive particles
conductive film
magnetic
anisotropic conductive
specific region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005085103A
Other languages
Japanese (ja)
Inventor
Tatsumi Kawaguchi
竜巳 河口
Kenichi Kanemasa
賢一 兼政
Kenji Uko
賢司 宇▼高▲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2005085103A priority Critical patent/JP2006024551A/en
Publication of JP2006024551A publication Critical patent/JP2006024551A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an anisotropic conductive film for enabling terminal connection with excellent connection reliability and insulation property at low cost regardless of connection between minute circuits, connection between a minute part and a minute circuit or the like. <P>SOLUTION: In the method of manufacturing an anisotropic conductive film in which conductive particles are regularly arranged in a specific region, magnetic recording is performed in a specific region of a magnetic medium in advance, the conductive particles of magnetic substance are captured in this specific region and then the conductive particles regularly arranged in the specific region are fixed not to move. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微細な回路同士の電気的接続、例えば、液晶ディスプレイ(LCD)とフレキシブル回路基板の接続や、半導体ICとIC搭載用基板のマイクロ接合等に用いることのできる異方導電フィルムの製造方法に関するものである。   The present invention provides an anisotropic conductive film that can be used for electrical connection between fine circuits, for example, connection between a liquid crystal display (LCD) and a flexible circuit board, micro-bonding between a semiconductor IC and an IC mounting board, and the like. It is about the method.

最近の電子機器の小型化・薄型化に伴い、微細な回路同士の接続、微小部分と微細な回路の接続等の必要性が飛躍的に増大してきており、その接続方法として、半田接合技術の進展とともに、新しい材料として、異方性の導電性接着剤やフィルムが使用されている(例えば、特許文献1〜13参照)。特に、最近、半田付けでは対応できないLCDパネルとドライバICを搭載したTCP(テープキャリアパッケージ)との接続に適用され、LCDには必要不可欠の接続材料となっている。   With the recent downsizing and thinning of electronic devices, the need for connections between minute circuits and connections between minute parts and minute circuits has increased dramatically. With progress, anisotropic conductive adhesives and films are used as new materials (see, for example, Patent Documents 1 to 13). In particular, it has recently been applied to the connection between an LCD panel that cannot be handled by soldering and a TCP (tape carrier package) equipped with a driver IC, and has become an indispensable connection material for LCDs.

この方法は、図1にその一例を示したように、接続したい部材間に異方導電フィルムを挟み加熱加圧することにより、面方向の隣接端子間では電気的絶縁性を保ち、上下の端子間では電気的に導通させるものである。このような用途に異方導電フィルムが多用されてきたのは、被着体の耐熱性がないことや微細な回路では隣接端子間で電気的にショートしてしまうなど半田付けなどの従来の接続方法が適用できないことが理由である。   In this method, as shown in FIG. 1, an anisotropic conductive film is sandwiched between members to be connected and heated and pressed to maintain electrical insulation between adjacent terminals in the plane direction, and between the upper and lower terminals. Then, it is electrically connected. The anisotropic conductive film has been widely used for such applications because of the lack of heat resistance of the adherend and conventional connections such as soldering that cause electrical shorts between adjacent terminals in fine circuits. This is because the method is not applicable.

特許文献14等に開示されているとおり、一般に異方導電フィルムは、絶縁性の接着剤中に導電粒子が均一に分散したもので、IC電極と基板電極とで位置合わせを行い、異方導電フィルムを圧着することにより異方導電フィルム中の導電粒子が圧接されて重なり合う電極間だけが電気的に接続される。   As disclosed in Patent Document 14 and the like, generally, an anisotropic conductive film is a film in which conductive particles are uniformly dispersed in an insulating adhesive, and alignment is performed between an IC electrode and a substrate electrode to perform anisotropic conduction. By crimping the film, the conductive particles in the anisotropic conductive film are brought into pressure contact so that only the overlapping electrodes are electrically connected.

この異方導電フィルムは、導電粒子としてはニッケル、金等にて表面をめっきしたプラスチック粒子等が用いられており、絶縁性接着剤としては熱可塑タイプのものと熱硬化タイプのものに分類されるが、最近では熱可塑タイプのものより、信頼性の優れたエポキシ樹脂系の熱硬化タイプのものが広く用いられつつある。   This anisotropic conductive film uses plastic particles, etc. whose surfaces are plated with nickel, gold, etc. as the conductive particles, and the insulating adhesive is classified into a thermoplastic type and a thermosetting type. However, recently, an epoxy resin-based thermosetting type having excellent reliability is being used more widely than a thermoplastic type.

近年の回路接続ピッチは微細化が進み、従来の異方導電フィルムでは横導通の問題が生じてきた。図1に示したように、絶縁性接着剤3中に導電粒子2を分散させている場合、異方導電フィルムが圧着されると、絶縁性接着剤の中ほどに位置する導電粒子は端子外に流出しやすく、その結果、隣接端子間に高密度に導電粒子が存在することになり、端子間の絶縁性が不充分になったり、リークやショートを発生する等、絶縁性の保持に問題が生じる。
横導通を防止するためには異方導電フィルム中の導電粒子の混入率を低下させることが考えられるが、導電粒子の混入率を低下させると、導電粒子と端子との接続面積が落ちるので、接続抵抗が高くなるという問題があった。
In recent years, the circuit connection pitch has been miniaturized, and the problem of lateral conduction has occurred in the conventional anisotropic conductive film. As shown in FIG. 1, when the conductive particles 2 are dispersed in the insulating adhesive 3, when the anisotropic conductive film is crimped, the conductive particles located in the middle of the insulating adhesive are outside the terminal. As a result, conductive particles exist at a high density between adjacent terminals, resulting in insufficient insulation between terminals, leakage, short circuit, etc. Occurs.
In order to prevent lateral conduction, it is conceivable to reduce the mixing rate of the conductive particles in the anisotropic conductive film, but if the mixing rate of the conductive particles is reduced, the connection area between the conductive particles and the terminal decreases, There was a problem that connection resistance became high.

また、製品品質上の問題のほか、一般的に導電粒子は1グラム当たり数千円と非常に高価であり、その多くが本来目的とする端子間の接続に使用されないことは、生産コストの増加に繋がっていた。   In addition to product quality problems, conductive particles are generally very expensive at several thousand yen per gram, and many of them are not used for the connection between intended terminals, which increases production costs. It was connected to.

そのため、導電粒子を規則的に配列させる方式が検討されており、例えば、NEDOのベンチャー企業支援型地域コンソーシアム研究開発(中小企業創造基盤型)ファインピッチ対応異方性導電材の研究開発として、圧着温度で溶融しない樹脂フィルムに孔を開けて、そこに導電粒子を埋め込んだ後、上下を溶融する樹脂で挟み込む方式が提案されている。この方式では、導電粒子を規則的に配列するための格子孔はフォトリソグラフィーとレーザの2つの技術が利用されている。しかし、このような方式では、規則的な孔を開けるための特別なメタルマスクの作製やレーザ照射装置が必要であり、微細なものが得られる反面、製造装置が高価であるという問題があった。   For this reason, a method of regularly arranging conductive particles has been studied. For example, NEDO's venture company-supported regional consortium R & D (SME creation foundation type) Fine pitch-compatible anisotropic conductive material R & D There has been proposed a method in which a hole is formed in a resin film that does not melt at a temperature, conductive particles are embedded therein, and then sandwiched with a resin that melts the top and bottom. In this method, two techniques of photolithography and laser are used for the lattice holes for regularly arranging the conductive particles. However, such a method requires the production of a special metal mask for forming regular holes and a laser irradiation device, and a fine device can be obtained, but the manufacturing device is expensive. .

また、特許文献15等に開示されているように、帯電している導電粒子に対して静電的な引力または斥力を作用させることにより特定の領域のみに導電粒子を配置する方法も提案されているが、この方式では、気相中に存在する水分により液架橋による粒子同士の凝集が生じるために粒子の制御に問題があった。   Further, as disclosed in Patent Document 15 and the like, a method of arranging conductive particles only in a specific region by applying an electrostatic attractive force or repulsive force to charged conductive particles has also been proposed. However, in this method, there is a problem in particle control because of the aggregation of particles due to liquid crosslinking due to moisture present in the gas phase.

特許文献16に開示されているように、磁界を利用した方式も提案されているが、この方式は、導電性磁性体膜と絶縁シェルの二重構造を取る円筒状の導電粒子を樹脂バインダに分散させるものであり、特定領域にのみ導電粒子を配置することを提供する本発明とは異なる。   As disclosed in Patent Document 16, a method using a magnetic field has also been proposed, but this method uses cylindrical conductive particles having a double structure of a conductive magnetic film and an insulating shell as a resin binder. The present invention is different from the present invention in which the conductive particles are arranged only in a specific region.

特開昭59−120436号公報JP 59-120436 A 特開昭60−84718号公報JP-A-60-84718 特開昭60−191228号公報JP-A-60-191228 特開昭61−55809号公報JP-A-61-55809 特開昭61−274394号公報JP-A 61-274394 特開昭61−287974号公報Japanese Patent Laid-Open No. 61-287974 特開昭62−244142号公報JP 62-244142 A 特開昭63−153534号公報JP-A-63-153534 特開昭63−305591号公報JP-A 63-305591 特開昭64−47084号公報JP-A 64-47084 特開昭64−81878号公報JP-A-64-81878 特開平1−46549号公報JP-A-1-46549 特開平1−251787各号公報JP-A-1-251787 特開昭61─78069号公報JP 61-78069 A 特開2002─075580号公報Japanese Patent Laid-Open No. 2002-075580 特許第3048973号Patent No. 3048773

本発明は、微細な回路同士の接続、微小部分と微細な回路の接続等であっても、接続信頼性と絶縁性とに優れた端子接続が可能となる異方導電フィルムを安価に製造できる方法を提供することを目的とする。   INDUSTRIAL APPLICABILITY The present invention can inexpensively produce an anisotropic conductive film that enables terminal connection with excellent connection reliability and insulation even when connecting fine circuits, connecting minute parts and fine circuits, and the like. It aims to provide a method.

すなわち本発明は、
(1) 導電粒子が特定の領域に規則的に配置されている異方導電フィルムの製造方法であって、予め磁性媒体の特定の領域に磁気記録を行い、次いで磁性体である導電粒子をこの特定領域に捕捉させる工程を有することを特徴とする異方導電フィルムの製造方法、
(2) 捕捉後に特定の領域に規則的に配置した導電粒子が移動しないよう固定化する工程を有する(1)の異方導電フィルムの製造方法、
(3)捕捉後に絶縁性接着剤で導電粒子を被覆し、固定化する工程を有する(1)又は(2)の異方導電フィルムの製造方法、
である。
That is, the present invention
(1) A method for producing an anisotropic conductive film in which conductive particles are regularly arranged in a specific region, wherein magnetic recording is performed in advance on a specific region of a magnetic medium, and then the conductive particles that are magnetic materials are A method for producing an anisotropic conductive film, characterized by having a step of capturing in a specific region,
(2) The method for producing an anisotropic conductive film according to (1), including a step of fixing so that the conductive particles regularly arranged in a specific region do not move after capture,
(3) The method for producing an anisotropic conductive film according to (1) or (2), comprising a step of covering and fixing the conductive particles with an insulating adhesive after capture,
It is.

本発明の製造方法によれば、導電粒子が特定の領域のみに規則的に配列している異方導電フィルムを得ることができるので、微細な回路同士の接続、微小部分と微細な回路の接続等であっても、接続信頼性と絶縁性とに優れた端子接続が可能となり、高価な導電性粒子を規則的に配列するために、導電粒子同士の接続による横導通を防止でき、少ない導電粒子で効率よく端子間を導通できるため、安価なコストで製造することができる。   According to the manufacturing method of the present invention, it is possible to obtain an anisotropic conductive film in which conductive particles are regularly arranged only in a specific region, so that connection between fine circuits, connection between minute portions and minute circuits is possible. Even if it is, etc., terminal connection with excellent connection reliability and insulation is possible, and since expensive conductive particles are regularly arranged, lateral conduction due to the connection between the conductive particles can be prevented, and less conductive Since the terminals can efficiently conduct between the terminals, it can be manufactured at low cost.

本発明は、予め磁性媒体の特定の領域にのみ磁気記録を行い、次いで磁性体である導電粒子をこの特定領域にのみに捕捉させる工程を有することを特徴とする異方導電フィルムの製造方法であり、加えて、捕捉後に特定の領域に規則的に配置した導電粒子が移動しないよう固定化する工程を有する製造方法も含むものである。   The present invention is a method for producing an anisotropic conductive film, comprising the steps of performing magnetic recording only in a specific region of a magnetic medium in advance and then capturing the conductive particles as a magnetic material only in the specific region. In addition, the manufacturing method includes a step of fixing the conductive particles regularly arranged in a specific region after capturing so as not to move.

本発明の製造方法の一例を、図2〜図4に基づき説明する。例えば、磁気記録装置を用いて磁性媒体の特定領域のみを磁気記録することにより磁気記録領域と無記録領域を作る。この特定領域のみ磁気記録された磁性媒体に、磁性体である導電粒子を散布することにより磁気記録領域にのみ導電粒子が付着し、特定の領域のみに導電粒子を捕捉することが出来る。   An example of the production method of the present invention will be described with reference to FIGS. For example, a magnetic recording area and a non-recording area are created by magnetic recording only a specific area of the magnetic medium using a magnetic recording apparatus. By spreading conductive particles, which are magnetic materials, on the magnetic medium magnetically recorded only in the specific region, the conductive particles adhere only to the magnetic recording region, and the conductive particles can be captured only in the specific region.

特定の領域にのみ磁気記録する方法としては、例えば任意波形発生装置により任意の周波数でパルス状の電気信号を発生させ、磁気記録装置にて、この電気信号を磁気信号に変換して磁性媒体へ磁気記録することにより磁気記録領域と無記録領域を作る方法が挙げられる。磁気記録領域と無記録領域の比率は、パルス信号における一波長当たりのパルス幅を調整することにより容易に変更でき、また、それぞれの領域の大きさは、磁気記録装置にて磁気媒体へ磁気記録する際の走行速度に対して任意波形発生装置で設定する周波数を設定することより調整が可能である。磁気記録装置として、カセットテープレコーダーやビデオカセットレコーダーを用いることが出来る。磁気記録装置および磁気媒体を選定することにより、特定の領域は帯状、島状など自由に調整することができる。   As a method of magnetic recording only in a specific area, for example, an arbitrary waveform generator generates a pulsed electric signal at an arbitrary frequency, and the magnetic recording apparatus converts the electric signal into a magnetic signal to a magnetic medium. There is a method of creating a magnetic recording area and a non-recording area by magnetic recording. The ratio of the magnetic recording area to the non-recording area can be easily changed by adjusting the pulse width per wavelength in the pulse signal, and the size of each area can be magnetically recorded on a magnetic medium by a magnetic recording device. Adjustment is possible by setting the frequency set by the arbitrary waveform generator with respect to the traveling speed at the time. As the magnetic recording device, a cassette tape recorder or a video cassette recorder can be used. By selecting the magnetic recording device and the magnetic medium, the specific area can be freely adjusted such as a band shape or an island shape.

あるいは、任意の幅と間隔で縦縞の模様を描き、これをビデオ撮影することで得られる電気信号を任意波形発生装置で発生させる電気信号の代わりとして用いることが出来る。磁気記録領域と無記録領域の比率および幅は、縦縞の模様の幅と間隔で調整できる。例えば、上記信号を、ビデオレコーダを用いて映像信号側から入力した場合、一定間隔の規則的な磁気記録域を形成させることができる。   Alternatively, a vertical stripe pattern can be drawn at an arbitrary width and interval, and an electric signal obtained by video recording can be used in place of an electric signal generated by an arbitrary waveform generator. The ratio and width of the magnetic recording area and the non-recording area can be adjusted by the width and interval of the vertical stripe pattern. For example, when the signal is input from the video signal side using a video recorder, a regular magnetic recording area with a constant interval can be formed.

また別の方法としては、例えば、フィルム等の基材に酸化チタンのゾルを塗布した後に焼成する。次いで、特定の領域に相当する箇所のみ開口しているマスクを用いてUV照射を行いながら無電解メッキを行った後、磁化することにより特定の領域にのみ磁気記録することが出来る。これらの方式が特定の領域にのみ磁気記録する方法として挙げられるが、これらに限定されるものではない。   As another method, for example, a titanium oxide sol is applied to a substrate such as a film and then baked. Next, after performing electroless plating while performing UV irradiation using a mask that is open only at a portion corresponding to a specific region, magnetic recording can be performed only on the specific region by magnetization. These methods are listed as methods for magnetic recording only in a specific area, but are not limited thereto.

磁性体である導電粒子を散布する方法は、磁性媒体に磁性体である導電粒子を捕捉出来る方法であれば、特に制限は無く、例えば導電粒子を流動させた槽へ磁性媒体を浸漬させる方式、スプレーで導電粒子を噴霧する方式、導電粒子を分散させた分散液を滴下する方式、導電粒子を分散させた分散液中に磁性媒体を浸漬させる方式などの方法が挙げられるがこの限りではなく、湿式、乾式を問わない。また、磁性媒体へ過剰に付着した導電粒子を取り除く工程を加えてもかまわない。   The method of spraying the conductive particles that are magnetic materials is not particularly limited as long as it is a method that can capture the conductive particles that are magnetic materials on the magnetic medium, for example, a method of immersing the magnetic medium in a tank in which the conductive particles are flowed, Examples include a method of spraying conductive particles by spraying, a method of dropping a dispersion in which conductive particles are dispersed, and a method of immersing a magnetic medium in a dispersion in which conductive particles are dispersed. Regardless of wet type or dry type. Further, a step of removing the conductive particles excessively attached to the magnetic medium may be added.

磁性媒体の特定の領域のみに捕捉した導電粒子を、別の基材上へ転写させることもできる。別の基材上へ方法としては、特定の領域のみに捕捉した導電粒子をそのままの状態で転写できる方法であれば特に制限は無く、捕捉している導電粒子を、粘着性を有する基材へ接触させることなどにより転写できる。   Conductive particles captured only in a specific region of the magnetic medium can be transferred onto another substrate. There is no particular limitation on the method for transferring onto another substrate as long as the conductive particles captured only in a specific region can be transferred as they are, and the captured conductive particles are transferred to a substrate having adhesiveness. It can be transferred by contact.

上記基材としては、特に制限は無いが、例えば粘着層を有する基材を使用することができる。上記粘着層を有する基材は、例えば、基材上に粘着性を有する材料を薄く塗布することにより製造することができる。粘着性があると、導電粒子を転写した後、振動や次工程での外力に対して導電粒子が移動することを防止することができる。   Although there is no restriction | limiting in particular as said base material, For example, the base material which has an adhesion layer can be used. The base material having the adhesive layer can be produced, for example, by thinly applying an adhesive material on the base material. When there is adhesiveness, it is possible to prevent the conductive particles from moving due to vibration or external force in the next step after the conductive particles are transferred.

上記粘着性を有する材料としては、後に用いる絶縁性接着剤が粘着性を持つものであれば、その絶縁性接着剤を薄く塗布することにより、粘着性のある材料として用いることができる。また、絶縁性接着剤が、溶剤等により希釈された場合、完全に乾燥する前で粘着性を示すものであるならば、同様に粘着性を有する材料として用いることができる。上記粘着性を有する材料は、絶縁性接着剤と異なってもよく、更には、基材自体が粘着性を持つものであれば、別途粘着性を有する材料を塗布する必要はない。   If the insulating adhesive used later has adhesiveness, the adhesive material can be used as an adhesive material by thinly applying the insulating adhesive. In addition, when the insulating adhesive is diluted with a solvent or the like, it can be used as a material having adhesiveness as long as it exhibits adhesiveness before being completely dried. The material having adhesiveness may be different from the insulating adhesive. Furthermore, if the base material itself has adhesiveness, it is not necessary to apply an adhesive material separately.

磁性媒体は、磁気記録した領域に磁性粒子を捕捉できるものであれば特に制限は無く、1種類の磁性体単独、2種類以上の磁性体を複合化したもの、非磁性体の基材に磁性体を複合化したもの、いずれも利用できる。また、導電粒子の捕捉性を向上させるために磁性媒体上に粘着材を塗布することもできる。この粘着材としては、後に用いる絶縁性接着剤が粘着性を持つものであれば、その絶縁性接着剤を薄く塗布することにより、粘着性のある材料として用いることができる。また、絶縁性接着剤が、溶剤等により希釈された場合、完全に乾燥する前で粘着性を示すものであるならば、同様に粘着性を有する材料として用いることができる。上記粘着性を有する材料は、絶縁性接着剤と異なってもよい。   The magnetic medium is not particularly limited as long as it can capture magnetic particles in the magnetically recorded region. One type of magnetic substance alone, a composite of two or more kinds of magnetic substances, and a non-magnetic base material are magnetic. Any compound of the body can be used. In addition, an adhesive material can be applied on the magnetic medium in order to improve the trapping property of the conductive particles. As this adhesive material, if the insulating adhesive used later has adhesiveness, it can be used as an adhesive material by thinly applying the insulating adhesive. In addition, when the insulating adhesive is diluted with a solvent or the like, it can be used as a material having adhesiveness as long as it exhibits adhesiveness before being completely dried. The material having tackiness may be different from the insulating adhesive.

磁性体である導電粒子は、導電性と磁性を有するものであれば特に制限するものではなく、ニッケル、鉄、コバルト、コバルトフェライト、アルミニウムホイスラー合金、マグネタイト、イットリウム鉄ガーネット等の強磁性体金属や、これらと銅、アルミニウム、錫、鉛、クロム、銀、金など各種金属との金属合金、あるいは、金属合金、金属酸化物、カーボン、グラファイト、ガラスやセラミック、高分子等で作られた粒子の表面に強磁性体金属や強磁性体合金をコートしたもの等が適用できるが、接続の信頼性や微細な回路接続への適用を考慮すると高分子核材に強磁性体金属被覆を施したものが望ましい。   The conductive particles that are magnetic materials are not particularly limited as long as they have electrical conductivity and magnetism. , Metal alloys of these and various metals such as copper, aluminum, tin, lead, chromium, silver, gold, or particles made of metal alloys, metal oxides, carbon, graphite, glass, ceramics, polymers, etc. The surface coated with a ferromagnetic metal or ferromagnetic alloy can be applied, but in consideration of connection reliability and application to fine circuit connections, a polymer core material with a ferromagnetic metal coating Is desirable.

ここで、高分子核材は特に組成などの制限はなく、例えば、エポキシ樹脂、ウレタン樹脂、メラミン樹脂、フェノール樹脂、アクリル樹脂、ポリエステル樹脂、スチレン樹脂、スチレンブタジエン共重合体等のポリマー中から1種単独あるいは2種以上組み合わせて使用すれば良い。   Here, the polymer core material is not particularly limited in composition and the like. For example, one of the polymers such as epoxy resin, urethane resin, melamine resin, phenol resin, acrylic resin, polyester resin, styrene resin, styrene butadiene copolymer is used. A single species or a combination of two or more species may be used.

高分子核材の表面に施す金属被覆には特に制限は無いが、導通の安定性を考慮すると通常適用されるニッケルと金の被覆が望ましい。   Although there is no particular limitation on the metal coating applied to the surface of the polymer core material, a nickel and gold coating that is usually applied is desirable in consideration of the stability of conduction.

被膜の厚さには特に制限はないが、厚すぎると凝集が生じやすくなるなどの問題があるため、0.01〜0.2μm程度が望ましい。また、被覆の形成方法では、この被覆と高分子核材との密着力・導電性などを考慮し、均一に形成されている方が良いことは言うまでもなく、従来から用いられているメッキなどが望ましい。   Although there is no restriction | limiting in particular in the thickness of a film, Since there exists a problem of becoming easy to produce aggregation when too thick, about 0.01-0.2 micrometer is desirable. In addition, in the method of forming the coating, it is needless to say that the coating is uniformly formed in consideration of the adhesion and conductivity between the coating and the polymer core material. desirable.

導電性粒子の粒子径や配合量は、接続したい回路のピッチやパターン、回路端子の厚みや材質等によって適切なものを選ぶことができる。   The particle diameter and blending amount of the conductive particles can be selected appropriately depending on the pitch and pattern of the circuit to be connected, the thickness and material of the circuit terminal, and the like.

導電性粒子の粒子径は、特に制限はするものではないが、望ましくは平均2〜15μmである方がよい。2μmより小さい場合では、微細な回路接続で高い接続信頼性を得るために導電性粒子数を多く配合することは可能であるが、凝集することなく高分子核材に均一に金属被覆を施すことは現状の技術では極めて困難であり、実際には微細な回路の接続を安定して行うことは困難である。逆に、15μmより大きい場合には、凝集なく均一に金属被覆を施すことは可能であるが、微細な回路を接続する場合には、端子間の電気的絶縁性が保てなくなるため、粒子数はあまり多く配合できず、接続信頼性の向上にも限界がでてくる。例えば、LCDパネルとTCPやFPCとの接続、特に50μmピッチ程度の極ファインピッチ回路の接続においては、平均粒径3〜5μm程度が望ましい。粒度分布はシャープな方が好ましいことは言うまでもなく、平均粒径の±10%以内であることが好ましい。   The particle diameter of the conductive particles is not particularly limited, but is desirably 2 to 15 μm on average. If it is smaller than 2 μm, it is possible to mix a large number of conductive particles in order to obtain high connection reliability with fine circuit connection, but uniformly coat the polymer core material without agglomeration. Is extremely difficult with the current technology, and it is actually difficult to stably connect fine circuits. On the other hand, if it is larger than 15 μm, it is possible to uniformly coat the metal without agglomeration. However, when a fine circuit is connected, the electrical insulation between the terminals cannot be maintained. Can not be blended too much, and there is a limit to improving connection reliability. For example, in the connection between the LCD panel and TCP or FPC, particularly in the connection of a very fine pitch circuit having a pitch of about 50 μm, an average particle size of about 3 to 5 μm is desirable. Needless to say, a sharper particle size distribution is preferable, and it is preferably within ± 10% of the average particle size.

捕捉後に特定の領域に規則的に配置した導電粒子が移動しないよう固定化する工程は、加熱加圧の本圧着時に絶縁性接着剤が導電性粒子以外の端子間に充填することを妨げずに導電粒子が移動しないよう固定化できれば特に制限は無く、例えば、導電粒子を捕捉した磁気媒体に熱硬化性絶縁性接着剤を塗布し、十分硬化が進まない程度に加熱した後、更に絶縁性接着剤を塗布するといった、絶縁性接着剤の硬化度の違いを利用する方法が挙げられる。2回に分けて塗布する絶縁性接着剤は同一でも異なるものでも特に制限はない。   The process of fixing the conductive particles regularly arranged in a specific area after capturing does not prevent the insulating adhesive from filling between terminals other than the conductive particles during the main pressure bonding of heating and pressurization. There is no particular limitation as long as the conductive particles can be fixed so that they do not move. For example, after applying a thermosetting insulating adhesive to the magnetic medium that has captured the conductive particles and heating it to such an extent that curing does not proceed sufficiently, further insulating bonding A method that utilizes the difference in the degree of curing of the insulating adhesive, such as applying an agent. There are no particular restrictions on the insulating adhesive applied in two steps, the same or different.

導電粒子を固定化する工程は、導電粒子を磁性媒体から基材へ転写する時に行っても構わない。例えば、基材に薄く絶縁性接着剤を塗布し、十分硬化が進まない程度に加熱した上に、磁性媒体上に捕捉した導電粒子を転写する方法が挙げられる。磁性媒体上に捕捉した導電粒子を転写する方法についても特に制限は無く、圧力を加え転写する方法、絶縁性接着剤の粘着性を利用して転写する方法、基材の裏側から磁力を加え転写する方法等が挙げられる。  The step of fixing the conductive particles may be performed when the conductive particles are transferred from the magnetic medium to the substrate. For example, there is a method in which a thin insulating adhesive is applied to a substrate and heated to such an extent that curing does not proceed sufficiently, and then the conductive particles captured on the magnetic medium are transferred. There are no particular restrictions on the method of transferring the conductive particles captured on the magnetic medium. The method of transferring by applying pressure, the method of transferring using the adhesiveness of the insulating adhesive, the transfer by applying magnetic force from the back side of the substrate And the like.

本発明では、捕捉後さらに絶縁性接着剤で導電粒子を被覆する工程を含むことが望ましく、その方法については、特に制限しないが、絶縁性接着剤をコーティング、スプレー噴霧、キャストするなどの方式を使用することができる。
絶縁性接着剤の厚みは、加熱加圧の本圧着時に導電性粒子以外の端子間を満たすに十分な量に相当していればよく、必然的に導電粒子の直径よりも大きな厚みとなる。例えば、LCDパネルとTCPやFPCとの接続においては、10〜20μm程度の厚みが好ましい。
In the present invention, it is desirable to further include a step of coating the conductive particles with an insulating adhesive after capturing. The method is not particularly limited, but a method such as coating, spraying, or casting the insulating adhesive is not particularly limited. Can be used.
The thickness of the insulating adhesive only needs to correspond to an amount sufficient to satisfy the space between the terminals other than the conductive particles during the main pressure bonding of the heat and pressure, and inevitably has a thickness larger than the diameter of the conductive particles. For example, when the LCD panel is connected to TCP or FPC, a thickness of about 10 to 20 μm is preferable.

基材上に転写された導電粒子を固定化するための絶縁性接着剤は特に限定されず、例えば、接着性シート等に用いられる熱可塑性材料や、熱や光により硬化性を示す材料等が挙げられる。なかでも、接続後硬化させることにより耐熱性や耐湿性に優れることから、硬化性材料が好ましい。特にエポキシ系接着剤として用いられる材料は短時間で硬化し、接着性に優れる等の点から好適に用いられる。硬化性樹脂を使用する場合には、異方導電性フィルムとして使用する際に、溶融流動する必要があるため、導電粒子を固定化させている状態は半硬化状態が好ましい。   The insulating adhesive for fixing the conductive particles transferred onto the substrate is not particularly limited. For example, a thermoplastic material used for an adhesive sheet or the like, a material that exhibits curability by heat or light, and the like. Can be mentioned. Especially, since it is excellent in heat resistance and moisture resistance by making it harden | cure after a connection, a curable material is preferable. In particular, a material used as an epoxy-based adhesive is preferably used from the viewpoint of curing in a short time and excellent adhesiveness. In the case of using a curable resin, it is necessary to melt and flow when used as an anisotropic conductive film. Therefore, the state in which the conductive particles are fixed is preferably a semi-cured state.

上記方式にて製造された異方導電フィルムの使用例を図5に示す。十分硬化が進まない程度に加熱した絶縁性接着剤20で導電粒子13を固定化し、さらに絶縁性接着剤20被覆した後、例えば、LCDパネル4上に加熱加圧により仮圧着し、基材15を剥離しTCP5を載せ、加圧により仮止めを行う。更に、加熱加圧により本圧着を行うが、導電粒子は、固定化されているため、端子外に流出しにくく、効率的に端子間を導通させることができる。   An example of using the anisotropic conductive film manufactured by the above method is shown in FIG. After fixing the conductive particles 13 with the insulating adhesive 20 heated to such an extent that the curing does not proceed sufficiently, and further covering the insulating adhesive 20, for example, the substrate 15 is temporarily pressure-bonded onto the LCD panel 4 by heating and pressing. Is peeled off, TCP5 is placed, and temporarily fixed by pressurization. Further, the main pressure bonding is performed by heating and pressurization. However, since the conductive particles are fixed, it is difficult to flow out of the terminals, and the terminals can be efficiently conducted between the terminals.

以下実施例でさらに詳細に説明するが、本発明はこれに限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

任意波形発生装置としてマルチファンクションシンセサイザ1946(エヌエフ回路ブロック社製)を用い、周波数1kHz、デューティ(波形全体に対するパルス幅の割合)5%、振幅25mVの方形波を発生させ、テープレコーダーMD-F350(シャープ社製)のマイク端子から電気信号を入力した。本テープレコーダーのテープ走行速度は、48mm/秒であるため、上記の任意波形発生装置で発生させた方形波の1サイクルは48μmとなり、そのうち磁気記録領域は2.4μmとなる。この電気信号をテープレコーダーで磁気信号に変換してオーディオカセットテープMG1−46(日立マクセル社製)に入力した。  Using a multifunction synthesizer 1946 (manufactured by NF Circuit Block) as an arbitrary waveform generator, a square wave with a frequency of 1 kHz, a duty (ratio of the pulse width to the entire waveform) of 5%, and an amplitude of 25 mV is generated, and the tape recorder MD-F350 ( Electric signal was input from the microphone terminal of Sharp Corporation. Since the tape running speed of this tape recorder is 48 mm / sec, one cycle of the square wave generated by the above arbitrary waveform generator is 48 μm, of which the magnetic recording area is 2.4 μm. This electric signal was converted into a magnetic signal by a tape recorder and input to an audio cassette tape MG1-46 (manufactured by Hitachi Maxell).

特定の領域のみ磁気記録したオーディオカセットテープを、導電粒子としてミクロパールAU、5μm(積水化学工業製)を0.1wt%分散させたエタノール溶液に浸漬したところ、オーディオカセットテープの幅方向に対して半分の領域に導電粒子で構成された約700μmの帯が走行方向に対して垂直方向に2列並び、それぞれの列において走行方向と平行方向に48μmの間隔で導電粒子が整列している様子が観察された。約700μmの帯状において、導電粒子は連続しており、帯の幅は、3〜4個の導電粒子で構成されていた。一方、磁気記録していないオーディオカセットテープの領域では、ランダムに付着している導電粒子が観察された。   When the audio cassette tape magnetically recorded only in a specific area is immersed in an ethanol solution in which 0.1% by weight of micropearl AU, 5 μm (manufactured by Sekisui Chemical Co., Ltd.) is dispersed as conductive particles, the width of the audio cassette tape is reduced. A band of approximately 700 μm composed of conductive particles is arranged in a half region in a direction perpendicular to the traveling direction, and the conductive particles are aligned at intervals of 48 μm in a direction parallel to the traveling direction in each row. Observed. In the band shape of about 700 μm, the conductive particles were continuous, and the width of the band was composed of 3 to 4 conductive particles. On the other hand, randomly attached conductive particles were observed in the area of the audio cassette tape that was not magnetically recorded.

上記のカセットテープ上に配置した導電粒子が移動しないように、カセットテープ上に絶縁性接着剤を乾燥後に5〜10μmになるように塗布し、温度120℃で30秒間硬化を進め、導電粒子を固定化した。更にこの上に絶縁性接着剤を塗布した後、65℃で10分間乾燥を行い、厚み15〜20μmの異方導電フィルムを得た。  In order to prevent the conductive particles arranged on the cassette tape from moving, an insulating adhesive is applied on the cassette tape to a thickness of 5 to 10 μm after drying, and curing is performed at a temperature of 120 ° C. for 30 seconds. Immobilized. Furthermore, after apply | coating an insulating adhesive agent on this, it dried at 65 degreeC for 10 minute (s), and obtained the anisotropic conductive film of thickness 15-20 micrometers.

得られた異方導電フィルムを、シート抵抗値30Ωの酸化インジウム/錫酸化物導電皮膜を全面に形成した厚さ1.1mmのITOガラス上に置き、80℃、0.5MPa、3秒の条件で加熱加圧して仮圧着を行った。その後、カセットテープを剥がし、TCPを上から180℃、3MPa、15秒の条件で加熱加圧して本圧着を行った。TCPは、ポリイミド基材と銅箔からできたものであり、回路加工後表面にSnメッキしたものである。接続したサンプルを使って評価を行った。隣接端子間の接続抵抗値は全端子2Ω以下と良好であった。  The obtained anisotropic conductive film was placed on a 1.1 mm thick ITO glass on which an indium oxide / tin oxide conductive film having a sheet resistance of 30Ω was formed on the entire surface, and conditions of 80 ° C., 0.5 MPa, and 3 seconds. And pressure bonding was performed by heating and pressing. Thereafter, the cassette tape was peeled off, and the TCP was heated and pressed under the conditions of 180 ° C., 3 MPa, and 15 seconds from the top to perform main pressure bonding. TCP is made of a polyimide base material and copper foil, and is Sn-plated on the surface after circuit processing. Evaluation was performed using connected samples. The connection resistance value between adjacent terminals was as good as 2Ω or less for all terminals.

実施例1と同様の装置を使用し、周波数2kHz、デューティ(波形全体に対するパルス幅の割合)10%、振幅25mVの方形波を発生させ、テープレコーダーMD-F350(シャープ社製)のマイク端子から電気信号を入力した。本条件における方形波の1サイクルは24μmとなり、そのうち磁気記録領域は2.4μmとなる。この電気信号を同様にオーディオカセットテープに入力した。  Using a device similar to that of Example 1, a square wave having a frequency of 2 kHz, a duty (ratio of the pulse width to the entire waveform) of 10%, and an amplitude of 25 mV is generated, and from a microphone terminal of a tape recorder MD-F350 (manufactured by Sharp Corporation). An electrical signal was input. One cycle of the square wave under this condition is 24 μm, of which the magnetic recording area is 2.4 μm. This electric signal was similarly input to the audio cassette tape.

上記オーディオカセットテープに、同様に導電粒子を分散させたエタノールを滴下したところ、オーディオカセットテープの幅方向に対して半分の領域に導電粒子で構成された約700μmの帯が走行方向に対して垂直方向に2列並び、それぞれの列において走行方向と平行方向に24μmの間隔で導電粒子が整列している様子が観察された。約700μmの帯状において、導電粒子はほぼ連続しており、帯の幅は、1〜3個の導電粒子で構成されていた。一方、磁気記録していないオーディオカセットテープの領域では、ランダムに付着している導電粒子が観察された。   Similarly, when ethanol in which conductive particles are dispersed is dropped onto the audio cassette tape, a band of about 700 μm composed of conductive particles is perpendicular to the running direction in a half region with respect to the width direction of the audio cassette tape. Two rows were arranged in the direction, and it was observed that the conductive particles were arranged at intervals of 24 μm in the direction parallel to the running direction in each row. In the band shape of about 700 μm, the conductive particles were almost continuous, and the width of the band was composed of 1 to 3 conductive particles. On the other hand, randomly attached conductive particles were observed in the area of the audio cassette tape that was not magnetically recorded.

以下、実施例1と同様の方法で導電粒子を固定化し、得られた異方導電フィルムの評価を行った結果、隣接端子間の接続抵抗値は全端子2Ω以下と良好であった。 Hereinafter, as a result of fixing the conductive particles by the same method as in Example 1 and evaluating the obtained anisotropic conductive film, the connection resistance value between adjacent terminals was as good as 2Ω or less for all terminals.

実施例1と同様の装置を使用し、周波数3kHz、デューティ(波形全体に対するパルス幅の割合)15%、振幅25mVの方形波を発生させ、テープレコーダーMD-F350(シャープ社製)のマイク端子から電気信号を入力した。本条件における方形波の1サイクルは16μmとなり、そのうち磁気記録領域は2.4μmとなる。この電気信号を同様にオーディオカセットテープに入力した。  Using a device similar to that in Example 1, a square wave having a frequency of 3 kHz, a duty (ratio of the pulse width to the entire waveform) of 15%, and an amplitude of 25 mV is generated, and from the microphone terminal of the tape recorder MD-F350 (manufactured by Sharp Corporation). An electrical signal was input. One cycle of the square wave under this condition is 16 μm, of which the magnetic recording area is 2.4 μm. This electric signal was similarly input to the audio cassette tape.

上記オーディオカセットテープを、同様に導電粒子を分散させたエタノール溶液に浸漬したところ、オーディオカセットテープの幅方向に対して半分の領域に導電粒子で構成された約700μmの帯が走行方向に対して垂直方向に2列並び、それぞれの列において走行方向と平行方向に16μmの間隔で導電粒子が整列している様子が観察された。約700μmの帯状において、導電粒子はほぼ連続しており、帯の幅は、1〜3個の導電粒子で構成されていた。一方、磁気記録していないオーディオカセットテープの領域では、ランダムに付着している導電粒子が観察された。   Similarly, when the audio cassette tape is immersed in an ethanol solution in which conductive particles are dispersed, a band of about 700 μm composed of conductive particles is formed in the half direction with respect to the width direction of the audio cassette tape. Two rows were arranged in the vertical direction, and in each row, it was observed that the conductive particles were aligned at intervals of 16 μm in the direction parallel to the running direction. In the band shape of about 700 μm, the conductive particles were almost continuous, and the width of the band was composed of 1 to 3 conductive particles. On the other hand, randomly attached conductive particles were observed in the area of the audio cassette tape that was not magnetically recorded.

以下、実施例1と同様の方法で導電粒子を固定化し、得られた異方導電フィルムの評価を行った結果、隣接端子間の接続抵抗値は全端子2Ω以下と良好であった。
Hereinafter, as a result of fixing the conductive particles by the same method as in Example 1 and evaluating the obtained anisotropic conductive film, the connection resistance value between adjacent terminals was as good as 2Ω or less for all terminals.

従来の異方導電フィルムとその接続方法の一例を示す断面図Sectional drawing which shows an example of the conventional anisotropic conductive film and its connection method 本発明の一実施例である製造方法を示す図The figure which shows the manufacturing method which is one Example of this invention 本発明の特定の領域にのみ磁気記録を行った磁性媒体を示す図The figure which shows the magnetic medium which magnetic-recorded only to the specific area | region of this invention 本発明の磁気記録領域に導電粒子を補足した様子を示す断面図Sectional drawing which shows a mode that the electroconductive particle was supplemented to the magnetic-recording area | region of this invention 本発明の異方導電フィルムとその接続方法の一例を示す断面図Sectional drawing which shows an example of the anisotropic conductive film of this invention, and its connection method

符号の説明Explanation of symbols

1 基材
2 導電粒子
3 絶縁性接着剤
4 LCDパネル
5 TCP
6 端子
11 磁性媒体
11a 磁気記録領域
11b 無記録領域
12 導電粒子
13 粘着層
14 基材
20 絶縁性接着剤
DESCRIPTION OF SYMBOLS 1 Base material 2 Conductive particle 3 Insulating adhesive 4 LCD panel 5 TCP
6 Terminal 11 Magnetic medium 11a Magnetic recording area 11b Non-recording area 12 Conductive particle 13 Adhesive layer 14 Base material 20 Insulating adhesive

Claims (3)

導電粒子が特定の領域に規則的に配置されている異方導電フィルムの製造方法であって、予め磁性媒体の特定の領域に磁気記録を行い、次いで磁性体である導電粒子をこの特定領域に捕捉させる工程を有することを特徴とする異方導電フィルムの製造方法。 A method for producing an anisotropic conductive film in which conductive particles are regularly arranged in a specific region, wherein magnetic recording is performed in advance on a specific region of a magnetic medium, and then the conductive particles as a magnetic material are placed in the specific region. A method for producing an anisotropic conductive film, comprising a step of capturing. 捕捉後に特定の領域に規則的に配置した導電粒子が移動しないよう固定化する工程を有する請求項1記載の異方導電フィルムの製造方法。 The manufacturing method of the anisotropic conductive film of Claim 1 which has the process of fixing so that the electrically-conductive particle regularly arrange | positioned to a specific area | region may not move after capture | acquisition. 捕捉後に絶縁性接着剤で導電粒子を被覆し、固定化する工程を有する請求項1又は2記載の異方導電フィルムの製造方法。
The method for producing an anisotropic conductive film according to claim 1, further comprising a step of covering and fixing the conductive particles with an insulating adhesive after capturing.
JP2005085103A 2004-06-11 2005-03-24 Method of manufacturing anisotropic conductive film Pending JP2006024551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085103A JP2006024551A (en) 2004-06-11 2005-03-24 Method of manufacturing anisotropic conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004173743 2004-06-11
JP2005085103A JP2006024551A (en) 2004-06-11 2005-03-24 Method of manufacturing anisotropic conductive film

Publications (1)

Publication Number Publication Date
JP2006024551A true JP2006024551A (en) 2006-01-26

Family

ID=35797659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085103A Pending JP2006024551A (en) 2004-06-11 2005-03-24 Method of manufacturing anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP2006024551A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170038916A (en) * 2014-11-17 2017-04-07 데쿠세리아루즈 가부시키가이샤 Anisotropic conductor film
KR20210138137A (en) * 2014-10-28 2021-11-18 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film, manufacturing method for same, and connection structure
KR20210138965A (en) * 2020-05-13 2021-11-22 한국과학기술원 Method of multilayer polymer films including magnetically dispersed and vertically stacked conductive particles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210138137A (en) * 2014-10-28 2021-11-18 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film, manufacturing method for same, and connection structure
KR102489187B1 (en) 2014-10-28 2023-01-17 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film, manufacturing method for same, and connection structure
KR20170038916A (en) * 2014-11-17 2017-04-07 데쿠세리아루즈 가부시키가이샤 Anisotropic conductor film
KR101996737B1 (en) * 2014-11-17 2019-07-04 데쿠세리아루즈 가부시키가이샤 Anisotropic conductor film
US11923333B2 (en) 2014-11-17 2024-03-05 Dexerials Corporation Anisotropic electrically conductive film
KR20210138965A (en) * 2020-05-13 2021-11-22 한국과학기술원 Method of multilayer polymer films including magnetically dispersed and vertically stacked conductive particles
KR102336112B1 (en) * 2020-05-13 2021-12-07 한국과학기술원 Method of multilayer polymer films including magnetically dispersed and vertically stacked conductive particles

Similar Documents

Publication Publication Date Title
KR100882735B1 (en) Anisotropic Conductive Film and Adhesion Method Thereof
KR101193757B1 (en) Anisotropic conductive film, method for producing the same, and joined structure using the same
JP4513024B2 (en) Multilayer anisotropic conductive film
KR101843297B1 (en) Method for manufacturing electroconductive adhesive film, electroconductive adhesive film, and method for manufacturing connection body
JP2007080522A (en) Anisotropic conductive film, and electronic/electric apparatus
TWI323901B (en) Anisotropic conductive material
KR101986470B1 (en) Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
JP2010199087A (en) Anisotropic conductive film and manufacturing method therefor, and junction body and manufacturing method therefor
JP2010251337A (en) Anisotropic conductive film, method for manufacturing the same and connection structure
JP2007115560A (en) Anisotropic conductive film and its manufacturing method
JP3847693B2 (en) Manufacturing method of semiconductor device
JP2006024551A (en) Method of manufacturing anisotropic conductive film
JPH04292803A (en) Anisotropic conductive film
JP5032961B2 (en) Anisotropic conductive film and bonded body using the same
JP2005209454A (en) Manufacturing method of anisotropic conductive film
JP2004335663A (en) Method for manufacturing different direction electric conduction film
JP5543267B2 (en) Anisotropic conductive film and manufacturing method thereof, and mounting body and manufacturing method thereof
JP5209778B2 (en) Anisotropic conductive film and bonded body using the same
JP2006269269A (en) Manufacturing method of anisotropic conductive film
JP2005019274A (en) Manufacturing method of anisotropic conductive film
JP2006001284A (en) Method for producing anisotropic conducting adhesive film
KR20070079219A (en) Anisotropic conductive film with different conductive ball density, manufacturing method thereof, connecting structure of pcb using anisotropic conductive film and manufacturing method thereof
JP2002075488A (en) Anisotropic electroconductive film and its manufacturing method
JP2005216611A (en) Manufacturing method of anisotropic conductive film
JP2011211245A (en) Method of manufacturing connection structure, connection structure, and connection method