JPH03108210A - Manufacture of anisotropic conductive resin film mold - Google Patents

Manufacture of anisotropic conductive resin film mold

Info

Publication number
JPH03108210A
JPH03108210A JP24556489A JP24556489A JPH03108210A JP H03108210 A JPH03108210 A JP H03108210A JP 24556489 A JP24556489 A JP 24556489A JP 24556489 A JP24556489 A JP 24556489A JP H03108210 A JPH03108210 A JP H03108210A
Authority
JP
Japan
Prior art keywords
film
conductive particles
resin
particles
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24556489A
Other languages
Japanese (ja)
Inventor
Yasushi Goto
泰史 後藤
Atsuo Nakajima
中島 敦夫
Isao Tsukagoshi
功 塚越
Yutaka Yamaguchi
豊 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP24556489A priority Critical patent/JPH03108210A/en
Publication of JPH03108210A publication Critical patent/JPH03108210A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PURPOSE:To obtain an anisotropic conductive resin film mold excellent in resolution and connection reliability by forming into a film a resin compound of binder resin in which conductive particles are dispersed and mixed, and by rolling the film. CONSTITUTION:When a resin compound mixed with conductive particles 1 whose surfaces are coated with an electric insulating layer 3 flows and spreads into a film, the particles 1 cohere individually or mutually into dispersed resin matrices 2, which become uneven in thickness because of the cohered particles after drying. After rolling the matrices 2, insulator layers 3 on the protrudent parts of the particle 1 is removed from the film surface, the particles 1 are disposed in the film surface directions evenly in thickness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は樹脂フィルム状成形物の表裏に露出した導電性
粒子を介して、厚み方向にのみ導電性を有する異方導電
性の樹脂フィルム成形物の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is an anisotropically conductive resin film molding that has conductivity only in the thickness direction through conductive particles exposed on the front and back sides of a resin film molded product. Concerning methods of manufacturing things.

〔従来の技術] 電子部品の小型薄型化に伴ない、これらに用いる回路は
高密度、高精細化している。これら微細回路の接続は従
来の半田やゴムコネクタなどでは対応が困難であること
から、最近では異方導電性の接着剤や膜状物(以下接続
部材と称す)が多用されるようになってきた。
[Prior Art] As electronic components become smaller and thinner, the circuits used in these components become denser and more precise. Since it is difficult to connect these microcircuits with conventional solder or rubber connectors, anisotropically conductive adhesives and film-like materials (hereinafter referred to as connection members) have recently come into widespread use. Ta.

この方法は、相対峙する回路間に導電性材料を所定量含
有した接着剤や膜状物よりなる接続部材層を設け、加圧
もしくは加熱加圧手段を講じることによって、上下回路
間の電気的接続と同時に隣接回路間には絶縁性を付与す
るものである。
In this method, a connecting member layer made of an adhesive or film material containing a predetermined amount of conductive material is provided between opposing circuits, and by applying pressure or heating pressure means, the electrical connection between the upper and lower circuits is established. It provides insulation between adjacent circuits at the same time as connection.

厚み方向にのみ導電性を存する異方導電性の樹脂フィル
ム成形物に関する先行技術文献としては、例えば特開昭
51−21192号公報に開示されているように、導電
性粒子を非導電性ベースにより互いに接触しない状態に
保持した混合体を導電性粒子の大きさにほぼ等しい厚さ
のシート状に成形し、導電性粒子を介してシート状の厚
み方向にのみ導電性を有する構造としたものがある。
Prior art documents regarding anisotropically conductive resin film moldings that exhibit conductivity only in the thickness direction include, for example, as disclosed in JP-A-51-21192, conductive particles are formed with a non-conductive base. A structure in which the mixture held in a state where they do not touch each other is formed into a sheet with a thickness approximately equal to the size of the conductive particles, and has conductivity only in the thickness direction of the sheet through the conductive particles. be.

これらの樹脂フィルム成形物の成形方法は、般に液状の
樹脂中に、導電性粒子を均一分散したものをバーコータ
ー等により一定厚さで流延したのち、乾燥あるいは硬化
し所望の厚さの成形物を得るものである。
The general method for forming these resin film moldings is to cast conductive particles uniformly dispersed in a liquid resin to a constant thickness using a bar coater, etc., and then dry or harden it to a desired thickness. This is to obtain a molded product.

[発明が解決しようとする課題〕 しかしながら、前記の方法では、導電性粒子を分散した
樹脂を流延する際の塗工厚みは、フィルム成形物の厚さ
よりも厚くなければならない。特に、溶液状の樹脂を使
用する場合には、塗工厚さはフィルム厚さの数倍になる
こともあり、乾燥の過程においてフィルム成形物中の導
電性粒子の凝集が起こる。
[Problems to be Solved by the Invention] However, in the above method, the coating thickness when casting the resin in which conductive particles are dispersed must be thicker than the thickness of the film molded product. In particular, when a solution resin is used, the coating thickness may be several times the film thickness, and agglomeration of the conductive particles in the film molding occurs during the drying process.

また、フィルムの単位面積当りの導電点を多(し、高分
解能化を図るには、フィルム中の導電性粒子の配合量を
増加する必要があるが、これにより、導電性粒子の凝集
はさらに多くなる。この導電性粒子の凝集により分解性
能が低下するという問題があった。
In addition, in order to increase the number of conductive points per unit area of the film and achieve high resolution, it is necessary to increase the amount of conductive particles in the film. This agglomeration of conductive particles causes a problem in that the decomposition performance deteriorates.

本発明はかかる状況に鑑みてなされたもので、分解性能
並びに接続信頼性に優れた異方導電性樹脂フィルム成形
物の新規な製造法を提供せんとするものである。
The present invention has been made in view of this situation, and aims to provide a novel method for producing an anisotropically conductive resin film molded product that has excellent decomposition performance and connection reliability.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明は、導電性粒子を分散混合してなる樹脂
組成物をフィルム状に成形し、ついでこれをプレスやロ
ール等により圧延することにより前記導電性粒子を面方
向に配列させ、フィルムの厚み方向にのみ導電性を有す
る樹脂フィルム成形物とすることを特徴とする。
That is, in the present invention, a resin composition formed by dispersing and mixing conductive particles is formed into a film, and then this is rolled using a press or roll to arrange the conductive particles in the plane direction, and the thickness of the film is adjusted. The present invention is characterized in that it is a molded resin film having conductivity only in one direction.

本発明で用いられる導電性粒子の種類は特に限定される
ものではなく、金属粒子やガラス、セラミック、プラス
チック粒子の表面にメツキ層を形成した粒子を単独また
は複合して用いることができる。
The type of conductive particles used in the present invention is not particularly limited, and metal particles, glass, ceramic, or plastic particles with a plating layer formed on their surfaces can be used alone or in combination.

また、より微細な回路の接続信頼性を向上するために、
導電性粒子の配合量を増量する場合には、面方向の絶縁
性を確保するために、あらかじめ導電性の表面を熱や溶
剤により除去可能な電気絶縁層で被覆したものを用いる
ことも可能である。
In addition, to improve the connection reliability of finer circuits,
When increasing the amount of conductive particles mixed, it is also possible to use one whose conductive surface is coated with an electrically insulating layer that can be removed by heat or solvent in order to ensure insulating properties in the plane direction. be.

またさらに、熱や圧力により変形可能なプラスチック粒
子を核とした導電性粒子を用いれば、樹脂フィルム成形
物の圧延後の厚さをプラスチック粒子の粒径よりも小さ
くすることによりフィルムの表面に露出する導電部の面
積を大きくできるので接続信頼性が増大する。
Furthermore, if conductive particles are used with plastic particles as cores that can be deformed by heat or pressure, the thickness of the resin film molded product after rolling can be made smaller than the particle size of the plastic particles, allowing the particles to be exposed on the surface of the film. Since the area of the conductive portion can be increased, connection reliability is increased.

導電性粒子の粒径は接続する回路の細かさにより選択さ
れるが、各粒子の粒径はできるだけ均一である必要があ
る。
The particle size of the conductive particles is selected depending on the fineness of the circuit to be connected, but the particle size of each particle needs to be as uniform as possible.

次に、導電性粒子のバインダとして用いられる樹脂とし
ては、溶剤に可溶な各種合成樹脂やエラストマーの外、
ポリエチレン、酢酸ビニル、ポリプロピレン等の熱可塑
性樹脂や、高耐熱性を有したポリエニーチルスルホン、
ポリエーテルイミド、ポリイミド等の樹脂も用いること
ができる。樹脂フィルム成形物の厚みは特に限定するも
のではないが、厚くなると使用する導電性粒子の粒径が
大きくなり分解能が低下するため微細な回路の接続に不
向きである。また、薄くなると取り扱いが容易ではなく
、皺の発生等により製造が困難になってくることから0
.005m−〜0.1mmで適当である。
Next, resins used as binders for conductive particles include various synthetic resins and elastomers that are soluble in solvents,
Thermoplastic resins such as polyethylene, vinyl acetate, polypropylene, polyethylene tylsulfone with high heat resistance,
Resins such as polyetherimide and polyimide can also be used. The thickness of the resin film molded product is not particularly limited, but as it becomes thicker, the particle size of the conductive particles used increases and the resolution decreases, making it unsuitable for connecting fine circuits. In addition, if it becomes thinner, it is not easy to handle and manufacturing becomes difficult due to wrinkles, etc.
.. 0.005 m - 0.1 mm is appropriate.

導電性粒子を分散した液状樹脂を塗工後に乾燥あるいは
硬化する条件は、プレスやロール等により圧延しうる条
件であれば良く、例えば熱可塑性樹脂であれば、塗工に
適するようにあらかじめ配合された溶媒等を圧延しうる
程度に乾燥するか、あるいは完全に乾燥した後に圧延し
うる温度にまで加熱して行なうこともできる。熱硬化性
樹脂であれば溶媒等を乾燥した半硬イ仁状態で圧延すれ
ばよい。
The conditions for drying or curing the liquid resin in which conductive particles are dispersed after coating may be such that it can be rolled using a press or roll. It can also be carried out by drying the solvent, etc., to the extent that it can be rolled, or by completely drying it and then heating it to a temperature that can be rolled. If it is a thermosetting resin, it may be rolled in a semi-hard core state after drying the solvent and the like.

なお、導電性粒子の配合量は導電性粒子の種類や樹脂フ
ィルムの厚みなどによって異なるが概ね20〜80体積
%である。
The amount of the conductive particles mixed varies depending on the type of the conductive particles, the thickness of the resin film, etc., but is approximately 20 to 80% by volume.

上記導電性粒子を配合してなる樹脂組成物は流延法など
により成膜後、熱プレスやロールなどで目的とする樹脂
フィルム成形物とほぼ等しい厚さに圧延する。
The resin composition containing the conductive particles described above is formed into a film by a casting method or the like, and then rolled to a thickness approximately equal to that of the desired resin film molded product using a hot press, rolls, or the like.

導電性粒子として表面を電気絶縁性の皮膜で覆ったもの
を用いた場合に、樹脂フィルム成形物の表面に導電性粒
子の導電部分を露出させる方法としては、成形物の樹脂
表面及び導電性粒子表面にあらかじめ形成した絶縁層を
、可溶性の溶剤等で湿式エツチングする方法やプラズマ
エツチング、スパッタエツチング等の乾式エツチングす
る方法及び、研磨等により機械的に除去する方法がある
When conductive particles whose surfaces are covered with an electrically insulating film are used, a method for exposing the conductive part of the conductive particles on the surface of a resin film molded article is as follows: There are a method of wet etching the insulating layer previously formed on the surface using a soluble solvent, a dry etching method such as plasma etching or sputter etching, and a method of mechanically removing it by polishing or the like.

絶縁層として熱可塑性樹脂を被覆したものであれば加熱
しながら圧延することにより絶縁層が融解し樹脂フィル
ムの表面に導電性粒子の表面が露出するので特に処理は
要しない。
If the insulating layer is coated with a thermoplastic resin, no special treatment is required since the insulating layer is melted by rolling while heating and the surface of the conductive particles is exposed on the surface of the resin film.

本発明の異方導電性樹脂フィルム成形物を、回路の接続
材料に使用する場合には、接続せんとする回路間に本発
明の成形物を挿入し、しかるのち両回路を押圧保持する
。または押圧した状態で、液体接着剤を回路間の空隙に
注入し、しかるのち硬化固定化するなどの方法により目
的を達することができる。また、本発明の樹脂フィルム
成形物は、上記した回路の接続材料だけでなく、スイッ
チ部材、多層回路部材或いは回路の導通テスト用部材等
への応用が可能である。
When the anisotropically conductive resin film molded product of the present invention is used as a connection material for circuits, the molded product of the present invention is inserted between the circuits to be connected, and then both circuits are held under pressure. Alternatively, the objective can be achieved by a method such as injecting a liquid adhesive into the gap between the circuits under pressure and then hardening and fixing the adhesive. Furthermore, the resin film molded product of the present invention can be applied not only to the above-mentioned circuit connection material, but also to switch members, multilayer circuit members, circuit continuity test members, and the like.

〔作用〕[Effect]

本発明の作用を導電性粒子としてその表面を絶縁層で被
覆したものを用いた場合を例にとり図面を参照しながら
説明すれば、第1図(a)は電気絶縁層3で表面を被覆
してなる導電性粒子lを配合してなる樹脂組成物を流延
した状態を示すもので、導電性粒子1は単独であるいは
互いに凝集して樹脂マトリックス2に分散している。第
1図(b)はこれを乾燥した状態の樹脂フィルムの断面
を示したもので、凝集した粒子のために厚さが不揃いの
状態を示す。第1図(c)はこれをさらに圧延後フィル
ム表面に露出させた部分の導電性粒子表面の絶縁層を除
去した状態を示したもので、導電性粒子はフィルムの面
方向に配列するとともに厚みが均一になるため、本発明
の課題である高分解能ならびに接続信鎖性に優れた異方
導電性樹脂フィルム成形物が得られる。
The effect of the present invention will be explained with reference to the drawings, taking as an example the case where conductive particles whose surfaces are covered with an insulating layer 3 are used. This figure shows a state in which a resin composition containing conductive particles 1 is cast, and the conductive particles 1 are dispersed in a resin matrix 2 either alone or in aggregates with each other. FIG. 1(b) shows a cross section of the dried resin film, showing that the thickness is uneven due to the agglomerated particles. Figure 1(c) shows a state in which the insulating layer on the surface of the conductive particles exposed on the film surface has been removed after further rolling.The conductive particles are arranged in the plane direction of the film and have a thickness. Since this becomes uniform, it is possible to obtain an anisotropically conductive resin film molded product with excellent high resolution and connection chain properties, which are the objectives of the present invention.

〔実施例〕〔Example〕

以下、本発明の実施例に基づいて詳細を説明するが、本
発明はこれに限定されるものではない。
The details of the present invention will be described below based on examples, but the present invention is not limited thereto.

実施例1 粒径が30tna前後の架橋型ポリスチレン粒子(耐熱
温度300°C)の表面にニッケルー金めっきをした導
電性粒子をエチレン酢酸ビニル共重合体のトルエン溶液
中に混合し、十分に撹拌したのち、セパレータであるポ
リエチレンテレフタレートフィルム上に流延し、乾燥後
の厚さが90nのフィルムを得た。この時の乾燥条件は
120°C3、分である。
Example 1 Conductive particles with nickel-gold plating on the surface of cross-linked polystyrene particles with a particle size of around 30 tna (heat resistant temperature 300°C) were mixed into a toluene solution of ethylene vinyl acetate copolymer and thoroughly stirred. Thereafter, it was cast onto a polyethylene terephthalate film as a separator to obtain a film having a thickness of 90 nm after drying. The drying conditions at this time were 120°C and 3 minutes.

このフィルムをセパレータの2枚のポリエチレンテレフ
タレートフィルム間に挟み、さらに表面が平滑な2枚の
ステンレス製の鏡板で挟み20psのステンレス製のス
ペーサを利用して、150″C20kgf/alの条件
で30秒間プレスを行ない、圧延し厚さ約22−の異方
導電性フィルムを得た。
This film was sandwiched between two polyethylene terephthalate films of a separator, and further sandwiched between two stainless steel end plates with smooth surfaces, and a 20 ps stainless steel spacer was used for 30 seconds at 150"C and 20 kgf/al. It was pressed and rolled to obtain an anisotropically conductive film with a thickness of about 22 mm.

また、同様の試料を170°Cでギャップ2Onの2本
のステンレス製のロール間に挿入して圧延し、厚さ約2
5−の異方導電性フィルムを得た。実施例2 粒径が30Jrm前後の架橋型ポリスチレン粒子(耐熱
温度300℃)の表面にニッケルー金めっきをした導電
粒子の表面に、可溶性ナイロン(融解温度約110°C
)をコーテングした粒子を使用し、前記実施例1と同じ
方法で異方O電性フィルムを得た。この時使用した可溶
性ナイロンはトルエンに不溶で、コーテングは3%のメ
タノール溶液を使用して行った。
In addition, a similar sample was inserted between two stainless steel rolls with a gap of 2 On at 170°C and rolled to a thickness of about 2
An anisotropically conductive film of No. 5- was obtained. Example 2 Soluble nylon (melting temperature: about 110°C) was applied to the surface of conductive particles made of nickel-gold plating on the surface of cross-linked polystyrene particles (heat resistant temperature: 300°C) with a particle size of around 30 Jrm.
) was used to obtain an anisotropic O conductive film in the same manner as in Example 1. The soluble nylon used at this time was insoluble in toluene, and coating was performed using a 3% methanol solution.

実施例3 粒径が35−前後のNi粒子を、エチレン酢酸ビニル共
重合体のトルエン溶液中に混合し、十分に撹拌したのち
、セパレータであるポリエチレンテレフタレートフィル
ム上に流延し、乾燥後の厚みが80〜100nのフィル
ムを得た。この時の乾燥条件は120℃3分である。
Example 3 Ni particles with a particle size of around 35 mm were mixed into a toluene solution of ethylene vinyl acetate copolymer, thoroughly stirred, and then cast onto a polyethylene terephthalate film as a separator to determine the thickness after drying. A film having a diameter of 80 to 100 nm was obtained. The drying conditions at this time were 120°C for 3 minutes.

このフィルムを離型剤を塗布した表面が平滑な2枚のス
テンレス製の鏡板の間に挟み、150°C20kgf/
cdの条件で30秒間プレスを行い圧延し、厚さ約38
−の異方導電性フィルムを得た。
This film was sandwiched between two stainless steel end plates with smooth surfaces coated with a release agent, and
Press and roll for 30 seconds under CD conditions to a thickness of approximately 38 cm.
- An anisotropic conductive film was obtained.

また、同様の試料を170°Cでギャップ30−の2本
のステンレス製ロール間に挿入して圧延し、厚さ約37
−の異方導電性フィルムを得た。
In addition, a similar sample was inserted between two stainless steel rolls with a gap of 30° at 170°C and rolled to a thickness of approximately 37°C.
- An anisotropic conductive film was obtained.

実施例4 粒径が351111前後のNi粒子の表面に可溶性ナイ
ロン(融解温度的110°C)を実施例2と同じ方法で
コーティングしたものを用い、実施例3と同じ方法で異
方導電性フィルムを得た。
Example 4 An anisotropic conductive film was prepared in the same manner as in Example 3 using Ni particles with a particle size of around 351,111 coated with soluble nylon (melting temperature: 110°C) in the same manner as in Example 2. I got it.

実施例5 粒径が35−前後のNi粒子をジメチルホルムアミドを
溶媒としたポリアミド酸フェスに混合し十分に撹拌した
のち、ガラス板上に流延して100°Cでワニス中の溶
媒が30重量%になるまで乾燥した。これをガラス板か
ら剥離し約11001tの厚さにフィルム化したものを
、ステンレス製の表面が平滑な2枚の鏡板の間に挟み1
00℃20kgf/cdの条件で30秒間プレスを行い
厚さ約5Onのフィルムを得た。
Example 5 Ni particles with a particle size of around 35 mm were mixed with a polyamic acid fest using dimethylformamide as a solvent, thoroughly stirred, and then cast onto a glass plate at 100°C until the solvent in the varnish was 30% by weight. %. This was peeled off from the glass plate and made into a film with a thickness of approximately 11,001 tons, which was sandwiched between two stainless steel mirror plates with smooth surfaces.
Pressing was performed for 30 seconds at 00° C. and 20 kgf/cd to obtain a film with a thickness of about 5 On.

また同様の試料を100℃でギャップ55nの2本のス
テンレス製ロール間に挿入して圧延し、厚さ約6Onの
フィルムを得た。
Further, a similar sample was inserted between two stainless steel rolls with a gap of 55 nm at 100° C. and rolled to obtain a film with a thickness of about 6 On.

その後、これらの試料は400℃で熱処理しイミド化を
行い、導電性粒子の含有量が30体積%のポリイミドフ
ィルム成形物を得た。これらのフィルムの両面をサンド
ペーパ(#1000〜#2000)で粗研磨したのち、
0.3nのパフ研磨剤で仕上げ研磨を行い、厚さが約3
Onの異方導電性ポリイミドフィルムを得、光学顕微鏡
と電子顕微鏡でフィルムの表面に導電性粒子が露出して
いることを確認した。
Thereafter, these samples were heat-treated at 400° C. to imidize them to obtain molded polyimide films containing 30% by volume of conductive particles. After rough polishing both sides of these films with sandpaper (#1000 to #2000),
Final polishing is done with 0.3n puff polishing agent, and the thickness is approx.
An anisotropically conductive polyimide film was obtained, and it was confirmed with an optical microscope and an electron microscope that conductive particles were exposed on the surface of the film.

実施例6 粒径が357I11前後のNi粒子を700°C,1時
間加熱処理し、約3−の電気絶縁性のNi0層を表面に
もつ導電性粒子を用い、前記実施例1と同じ方法で異方
導電性ポリイミドフィルムを得た。
Example 6 Ni particles with a particle size of around 357I11 were heat-treated at 700°C for 1 hour, and the same method as in Example 1 was carried out using conductive particles having an approximately 3-electrically insulating Ni0 layer on the surface. An anisotropically conductive polyimide film was obtained.

比較例1〜4 前記実施例1〜4でプレスやロールによる圧延を行なわ
ず、乾燥後のフィルムの表面及び裏面を研磨し導電性粒
子を露出させ、他の製造工程や材料を同一としたものを
それぞれの実施例に対応して比較例1〜4とした。乾燥
後のフィルムの研磨法は#1000〜#2000のサン
ドペーパーで粗研磨し、0.3−のパフ研磨剤で仕上げ
研磨を行なった。
Comparative Examples 1 to 4 Examples 1 to 4, except that rolling with a press or roll was not performed, the front and back surfaces of the dried film were polished to expose the conductive particles, and other manufacturing processes and materials were the same. were designated as Comparative Examples 1 to 4 corresponding to each Example. After drying, the film was roughly polished with #1000 to #2000 sandpaper, and finished with a 0.3-sized puff abrasive.

これらのフィルムについて、第2図に示すような方法に
より導通抵抗を測定した。第2図において4は樹脂フィ
ルム成形物、5は2m−の厚みを有する銅板で、表面に
金を蒸着している。6は、先端がφ100−の直径を有
する金めつきプローブ(プローブA)であり、このプロ
ーブ6を樹脂フィルム成形物4に軽く押しあて、フィル
ム厚み方向の導通抵抗(3Ω以下を導通と判断)を測定
した。また、プローブ(プローブB)を第3図の7に示
す形状のものとし、フィルム面方向の抵抗を測定し、絶
縁分解能の尺度を求めた。第3図のプローブ7の構造は
ポリイミドフィルム8の表面に銅箔電極9を形成してあ
り、銅箔電極間隔及び銅箔電極の巾は約100nで、長
さは10+iaである。測定は、絶縁板10の上に樹脂
フィルム状成形物4を置き、プローブ7を上から押しあ
て、絶縁抵抗(10”Ω以上を絶縁と判断)を測定した
The conduction resistance of these films was measured by the method shown in FIG. In FIG. 2, 4 is a resin film molded product, and 5 is a copper plate having a thickness of 2 m, the surface of which is vapor-deposited with gold. 6 is a gold-plated probe (probe A) whose tip has a diameter of φ100-. Lightly press this probe 6 against the resin film molded product 4 to measure the conduction resistance in the film thickness direction (3Ω or less is considered conductive). was measured. In addition, a probe (probe B) having the shape shown in 7 in FIG. 3 was used, and the resistance in the film surface direction was measured to obtain a measure of insulation resolution. The probe 7 shown in FIG. 3 has a structure in which copper foil electrodes 9 are formed on the surface of a polyimide film 8, and the spacing between the copper foil electrodes and the width of the copper foil electrodes are about 100n, and the length is 10+ia. The measurement was carried out by placing the resin film molded product 4 on the insulating plate 10, pressing the probe 7 from above, and measuring the insulation resistance (10''Ω or more was considered insulation).

第2図及び、第3図の測定法とも測定点を1試料につい
て100点とし、表1に導通率と絶縁率の結果を示した
In both the measurement methods shown in FIG. 2 and FIG. 3, 100 measurement points were used for each sample, and Table 1 shows the results of conductivity and insulation rate.

以下余白 表 1Margin below table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の樹脂フィルム成形物の製造過程におけ
る状態を示す断面図、第2図は厚さ方向の抵抗を測定す
る方法の概念図、第3図は面方向の抵抗を測定する方法
の概念図である。 符号の説明 1 導電性粒子   2 樹脂バインダー3 絶縁被覆
    4 樹脂フィルム成形物5 銅板      
6 プローブ(A)710−ブ(B) 8 絶縁フィル
ム 9 電極     10  絶縁板
Figure 1 is a cross-sectional view showing the state of the resin film molded product of the present invention during the manufacturing process, Figure 2 is a conceptual diagram of a method for measuring resistance in the thickness direction, and Figure 3 is a method for measuring resistance in the plane direction. It is a conceptual diagram. Explanation of symbols 1 Conductive particles 2 Resin binder 3 Insulating coating 4 Resin film molded product 5 Copper plate
6 Probe (A) 710-B (B) 8 Insulating film 9 Electrode 10 Insulating plate

Claims (1)

【特許請求の範囲】 1、導電性粒子をバインダ樹脂に分散混合してなる樹脂
組成物をフィルム状に成形し、ついで圧延することによ
り前記導電性粒子を面方向に配列させ、フィルムの厚み
方向にのみ導電性を付与することを特徴とする異方導電
性樹脂フィルム成形物の製造方法。 2、請求項1において、導電性粒子を含有する樹脂組成
物を圧延することにより導電性粒子を面方向に配列させ
るとともに、フィルム表面の表面層を除去することを特
徴とする異方導電性樹脂フィルム成形物の製造方法。 3、導電性粒子がその表面を電気絶縁物であらかじめ被
覆したものである請求項2記載の異方導電性樹脂フィル
ム成形物の製造方法。
[Claims] 1. A resin composition prepared by dispersing and mixing conductive particles in a binder resin is formed into a film, and then rolled to arrange the conductive particles in the plane direction, and to form a resin composition in the thickness direction of the film. A method for producing an anisotropically conductive resin film molded article, characterized in that conductivity is imparted only to. 2. An anisotropic conductive resin according to claim 1, characterized in that the conductive particles are arranged in the plane direction by rolling the resin composition containing the conductive particles, and the surface layer on the surface of the film is removed. A method for producing a film molded product. 3. The method for producing an anisotropically conductive resin film molded article according to claim 2, wherein the surface of the conductive particles is coated in advance with an electrical insulator.
JP24556489A 1989-09-21 1989-09-21 Manufacture of anisotropic conductive resin film mold Pending JPH03108210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24556489A JPH03108210A (en) 1989-09-21 1989-09-21 Manufacture of anisotropic conductive resin film mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24556489A JPH03108210A (en) 1989-09-21 1989-09-21 Manufacture of anisotropic conductive resin film mold

Publications (1)

Publication Number Publication Date
JPH03108210A true JPH03108210A (en) 1991-05-08

Family

ID=17135585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24556489A Pending JPH03108210A (en) 1989-09-21 1989-09-21 Manufacture of anisotropic conductive resin film mold

Country Status (1)

Country Link
JP (1) JPH03108210A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512684A (en) * 2000-10-17 2004-04-22 スリーエム イノベイティブ プロパティズ カンパニー Solvent burnishing of pre-underfilled solder bump wafers for flip chip bonding
JP2005311039A (en) * 2004-04-21 2005-11-04 Komatsu Seiren Co Ltd Electromagnetic shielding material and method for manufacturing the same
JP2006299177A (en) * 2005-04-25 2006-11-02 Asahi Kasei Electronics Co Ltd Anisotropically conductive adhesive sheet and fine connection structure
WO2007125993A1 (en) * 2006-04-27 2007-11-08 Asahi Kasei Emd Corporation Electroconductive particle placement sheet and anisotropic elctroconductive film
JP2010153307A (en) * 2008-12-26 2010-07-08 Nhk Spring Co Ltd Conductive resin film and method of manufacturing the same
JP2010232184A (en) * 2010-05-31 2010-10-14 Sony Chemical & Information Device Corp Anisotropic conductive film, and method of manufacturing the same
JP2012067311A (en) * 2011-10-24 2012-04-05 Asahi Kasei E-Materials Corp Anisotropically electroconductive adhesive sheet and connecting method
US8567641B2 (en) 2010-07-07 2013-10-29 Katoh Electrical Machinery Co., Ltd. Business card case
US8646649B2 (en) 2011-03-14 2014-02-11 Katoh Electrical Machinery Co., Ltd. Business card case
JP2014062257A (en) * 2013-11-05 2014-04-10 Dexerials Corp Anisotropic electroconductive adhesive sheet and connection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261204A (en) * 1985-09-12 1987-03-17 株式会社フジクラ Anisotropically conductive adhesive sheet
JPS6321712A (en) * 1986-07-15 1988-01-29 富士電機株式会社 Manufacture of anisotropic conducting rubber sheet
JPS63102110A (en) * 1986-10-17 1988-05-07 富士ゼロックス株式会社 Anisotropic conductor and making thereof
JPS63218103A (en) * 1987-03-05 1988-09-12 富士電機株式会社 Anisotropic conducting rubber sheet
JPS6459705A (en) * 1987-08-31 1989-03-07 Hitachi Chemical Co Ltd Polyimide film-like moldings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261204A (en) * 1985-09-12 1987-03-17 株式会社フジクラ Anisotropically conductive adhesive sheet
JPS6321712A (en) * 1986-07-15 1988-01-29 富士電機株式会社 Manufacture of anisotropic conducting rubber sheet
JPS63102110A (en) * 1986-10-17 1988-05-07 富士ゼロックス株式会社 Anisotropic conductor and making thereof
JPS63218103A (en) * 1987-03-05 1988-09-12 富士電機株式会社 Anisotropic conducting rubber sheet
JPS6459705A (en) * 1987-08-31 1989-03-07 Hitachi Chemical Co Ltd Polyimide film-like moldings

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512684A (en) * 2000-10-17 2004-04-22 スリーエム イノベイティブ プロパティズ カンパニー Solvent burnishing of pre-underfilled solder bump wafers for flip chip bonding
JP4673573B2 (en) * 2004-04-21 2011-04-20 小松精練株式会社 Method for manufacturing electromagnetic shielding material
JP2005311039A (en) * 2004-04-21 2005-11-04 Komatsu Seiren Co Ltd Electromagnetic shielding material and method for manufacturing the same
JP2006299177A (en) * 2005-04-25 2006-11-02 Asahi Kasei Electronics Co Ltd Anisotropically conductive adhesive sheet and fine connection structure
WO2007125993A1 (en) * 2006-04-27 2007-11-08 Asahi Kasei Emd Corporation Electroconductive particle placement sheet and anisotropic elctroconductive film
US8247701B2 (en) 2006-04-27 2012-08-21 Asahi Kasei Emd Corporation Electroconductive particle placement sheet and anisotropic electroconductive film
JP2010153307A (en) * 2008-12-26 2010-07-08 Nhk Spring Co Ltd Conductive resin film and method of manufacturing the same
JP2010232184A (en) * 2010-05-31 2010-10-14 Sony Chemical & Information Device Corp Anisotropic conductive film, and method of manufacturing the same
WO2011152421A1 (en) * 2010-05-31 2011-12-08 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive film and method of manufacturing same
US8567641B2 (en) 2010-07-07 2013-10-29 Katoh Electrical Machinery Co., Ltd. Business card case
US8646649B2 (en) 2011-03-14 2014-02-11 Katoh Electrical Machinery Co., Ltd. Business card case
JP2012067311A (en) * 2011-10-24 2012-04-05 Asahi Kasei E-Materials Corp Anisotropically electroconductive adhesive sheet and connecting method
JP2014062257A (en) * 2013-11-05 2014-04-10 Dexerials Corp Anisotropic electroconductive adhesive sheet and connection method

Similar Documents

Publication Publication Date Title
KR101042869B1 (en) Methods of producing anisotropic conductive adhesive film and connection
JP3087294B2 (en) Method for producing anisotropic conductive sheet
KR100539060B1 (en) Anisotropic conductive adhesive and adhesive film
JPH0482292A (en) Manufacture of three-dimensional circuit board
JPH03108210A (en) Manufacture of anisotropic conductive resin film mold
CN107079611A (en) Electromagnetic shielding film
JPH01185380A (en) Anisotropically conductive adhesive
US2509652A (en) Method of manufacturing abrasive articles
EP1098361B1 (en) Particle material, anisotropic conductive connection and anisotropic conductive connection material, method of manufacturing the same, and use of the same
JP4085330B2 (en) Thick film heater integrated with low temperature component and manufacturing method thereof
JP2001351445A (en) Manufacturing method of compound sheet and compound sheet
JPH07302666A (en) Manufacture of anisotropic conductive resin film-like mold
EP0253892B1 (en) Transfer material for printed circuit board and printed circuit board prepared using said transfer material and process for preparation thereof
KR20100127575A (en) Electroconductive particle and preparation method thereof
JPH07302668A (en) Manufacture of anisotropic conductive resin film mould
KR100595979B1 (en) Insulated Conductive Particle Composition with Anisotropic Conduction and Anisotropic Conductive Film Using the Same
JP2836337B2 (en) Anisotropic conductive resin film adhesive
JPH02204917A (en) Anisotropic conductive film-shaped resin molding
JPH01108799A (en) Thermoplastic resin molding and manufacture thereof
JPS6031043B2 (en) Anisotropic conductive sheet
JP2006107881A (en) Conductive fine particle and anisotropic conductive material
JP3608213B2 (en) Manufacturing method of anisotropic conductive sheet
JPH0696620A (en) Anisotropic conductive material, method for connecting circuit using same, and electric circuit substrate
JPH03291807A (en) Anisotropic conductive paste
JPH07302667A (en) Manufacture of anisotropic conductive resin film of bond and connection method between fine circuits