JPH07302666A - Manufacture of anisotropic conductive resin film-like mold - Google Patents

Manufacture of anisotropic conductive resin film-like mold

Info

Publication number
JPH07302666A
JPH07302666A JP6096336A JP9633694A JPH07302666A JP H07302666 A JPH07302666 A JP H07302666A JP 6096336 A JP6096336 A JP 6096336A JP 9633694 A JP9633694 A JP 9633694A JP H07302666 A JPH07302666 A JP H07302666A
Authority
JP
Japan
Prior art keywords
film
conductive particles
conductive
resin
adhesive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6096336A
Other languages
Japanese (ja)
Other versions
JP3812682B2 (en
Inventor
Yasushi Goto
泰史 後藤
Isao Tsukagoshi
功 塚越
Tomohisa Ota
共久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP09633694A priority Critical patent/JP3812682B2/en
Priority to TW084104387A priority patent/TW277152B/zh
Priority to KR1019950011298A priority patent/KR100377603B1/en
Priority to EP95303147A priority patent/EP0691660B1/en
Priority to DE69535293T priority patent/DE69535293T2/en
Priority to CN95105708A priority patent/CN1118832C/en
Priority to CNB021593922A priority patent/CN1230834C/en
Publication of JPH07302666A publication Critical patent/JPH07302666A/en
Priority to US08/890,342 priority patent/US6042894A/en
Priority to KR1020020044740A priority patent/KR100377992B1/en
Application granted granted Critical
Publication of JP3812682B2 publication Critical patent/JP3812682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Abstract

PURPOSE:To electrically connect a highly fine electrode held between fine electrodes facing each other. CONSTITUTION:Conductive particles are uniformly dispersed in the surface direction of a film-like mold, thus an anisotropic conductive resin film-like mold having conductivity only in the thickness direction of the film-like mold via the conductive particles exposed at the obverse and reverse is manufactured. In this manufacturing method, the conductive particles 1 are adhesively bonded to the surface of an adhesive 2, and a film forming resin 10 insoluble with the adhesive 2 is filled between the conductive particles 1. Consequently, the film forming resin 10 is dried or hardened, followed by peeling the adhesive 2 from the film forming resin 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、樹脂フィルム状成形物
の表裏に露出した導電性粒子を介して、厚み方向にのみ
導電性を有する異方導電性の樹脂フィルム状成形物の製
造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an anisotropically conductive resin film-shaped molded product having conductivity only in the thickness direction through conductive particles exposed on the front and back of the resin film-shaped molded product. It is a thing.

【0002】[0002]

【従来の技術】電子部品の小形薄形化に伴い、これらに
用いる回路は高密度化、高精細化している。これら微細
回路の接続は従来の半田、ゴムコネクタ等では対応が困
難であることから、最近では異方導電性の接着材や膜状
物からなる接続部材が多用されるようになってきた。こ
の方法は、相対峙する回路間に導電性材料を所定量含有
した絶縁性樹脂よりなる電気的な接続部材層を設け、加
圧又は加熱加圧手段を講じることによって、上下回路間
の電気的接続と同時に隣接回路間には絶縁性を付与する
ものである。また、前記の絶縁性樹脂を接着材として、
相対峙する回路間の電気的な接続と同時に回路間の接着
固定をするものも用いられている。
2. Description of the Related Art As electronic parts have become smaller and thinner, circuits used therein have become higher in density and higher in definition. Since it is difficult to connect these fine circuits with conventional solder, rubber connectors, etc., recently, a connecting member made of an anisotropic conductive adhesive or a film-like material has been widely used. In this method, an electrical connection member layer made of an insulating resin containing a predetermined amount of a conductive material is provided between opposing circuits, and pressure or heating / pressurizing means is provided to electrically connect the upper and lower circuits. Simultaneously with the connection, insulation is provided between adjacent circuits. In addition, using the insulating resin as an adhesive,
There is also used a structure in which electrical connection between circuits facing each other and adhesive bonding between circuits are performed at the same time.

【0003】このような、厚み方向にのみ導電性を有す
る異方導電性の樹脂フィルム状成形物に関する先行技術
文献としては、例えば、特開昭51-21192号公報に開示さ
れているように、導電性粒子を非導電性ベースにより互
いに接触しない状態に保持した混合体を導電性粒子の大
きさにほぼ等しい厚さのシート状に成形し、導電性粒子
を介してシート状の厚み方向にのみ導電性を有する構造
としたものや、特公昭59-31190号公報に開示されている
ように、導電性粒子を20から0.05容量%含有した
柔軟な絶縁性結合剤との均質混合物からなるシート状の
ワンピース電気コネクタがある。
As prior art documents relating to such an anisotropically conductive resin film-shaped molded product having conductivity only in the thickness direction, for example, as disclosed in Japanese Patent Laid-Open No. 51-21192, A mixture in which conductive particles are held in a state where they are not in contact with each other by a non-conductive base is molded into a sheet having a thickness approximately equal to the size of the conductive particles, and only in the thickness direction of the sheet through the conductive particles. It has a conductive structure or a homogeneous mixture with a flexible insulating binder containing 20 to 0.05% by volume of conductive particles as disclosed in Japanese Patent Publication No. 59-31190. There is a sheet-shaped one-piece electrical connector.

【0004】これらの樹脂フィルム状成形物の成形方法
は、樹脂に導電性粒子を均一分散したものをロール等で
圧延して所望の厚さの成形物を得たり、液状の樹脂中
に、導電性粒子を均一分散したものをバーコーター等に
より一定厚さで流延した後、乾燥又は硬化し、所望の厚
さの成形物を得るものである。この厚み方向にのみ導電
性を有する異方導電性の樹脂フィルム状成形物を回路間
に挟持し、加圧による接触状態で回路間の接続を得ると
きには、接続抵抗を小さくするために個々の導電性粒子
をフィルムの両面に露出させることが有効である。フィ
ルムの両面に導電性粒子を露出させる方法としては、特
開昭61-23507号公報や特開昭61−188818号公報に開示さ
れているようにフィルムをロール等で圧延する方法や、
特開昭61−200616号公報に開示されているように圧延及
びスパッタエッチングを併用する方法がある。
These resin film-shaped molded products are molded by a method in which conductive particles are uniformly dispersed in a resin and rolled by a roll or the like to obtain a molded product having a desired thickness, or a conductive resin in a liquid resin. A uniform dispersion of the functional particles is cast by a bar coater or the like with a constant thickness, and then dried or cured to obtain a molded product having a desired thickness. When an anisotropic conductive resin film-shaped molded product having conductivity only in the thickness direction is sandwiched between circuits and the connection between circuits is obtained in a contact state by pressurization, individual conductive materials are used to reduce connection resistance. It is effective to expose the hydrophilic particles on both sides of the film. As a method of exposing the conductive particles on both sides of the film, a method of rolling the film with a roll or the like as disclosed in JP-A-61-23507 and JP-A-61-188818,
As disclosed in JP-A-61-200616, there is a method of using rolling and sputter etching together.

【0005】また、特開平5-74512号公報に開示されて
いるように透孔を設けたフィルムに導電性粒子を入れた
後にフィルムと導電性粒子とを固定する方法、特開平2
-239578号公報に開示されているように導電性粒子を2
枚の平板で挾んだ状態で液状の樹脂を平板間に充填して
フィルム化する方法、特開平2−117980号公報や特開平
5-67480号公報に開示されているように導電性粒子をフ
ィルム状の樹脂に埋め込む方法もある。他に、両面のフ
ィルム形成樹脂の表層を溶剤で溶解又は分解除去する
か、前記のスパッタエッチング、プラズマエッチング、
エキシマレーザー等を用いて物理的に分解除去する方法
が知られている。この厚み方向にのみ導電性を有する異
方導電性の樹脂フィルム状成形物において、フィルムの
単位面積当りの導電点を多くし、高分解能化を図るに
は、フィルム中の導電性粒子の配合量を増加する必要が
ある。
Further, as disclosed in Japanese Patent Application Laid-Open No. 5-74512, a method in which conductive particles are put into a film having through holes and then the film and the conductive particles are fixed,
-239578, the conductive particles as described in
A method of filling a liquid resin between flat plates in a state of being sandwiched by a single flat plate to form a film, and as described in JP-A-2-117980 and JP-A-5-67480, conductive particles are added. There is also a method of embedding it in a film-shaped resin. In addition, the surface layer of the film-forming resin on both sides is dissolved or decomposed and removed with a solvent, or the sputter etching, plasma etching,
A method of physically decomposing and removing using an excimer laser or the like is known. In this anisotropically conductive resin film-shaped molded product having conductivity only in the thickness direction, in order to increase the number of conductive points per unit area of the film and achieve high resolution, the amount of the conductive particles blended in the film Need to increase.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来技術の圧延による製造法では、高精細電極に対応する
ため導電性粒子の粒径を小さくし、例えば数十μm以下
にフィルム厚さを薄く均一に製造することが困難であ
り、導電性粒子の粒径にばらつきがあるとフィルム厚み
にもばらつきが生じてしまうという問題点があった。ま
た、上記の圧延法よりも、現在一般的に採用されている
液状の樹脂及び導電性粒子の均一混合物を流延してフィ
ルム化する方法では、高精細電極に対応するために導電
性粒子の配合量を増加しようとすると、導電性粒子を分
散した液状樹脂の粘度が上昇して流動性が損なわれるた
めに、バーコーター等により一定厚さで流延することが
困難になり、導電性粒子の配合量を少なくせざるを得な
い。
However, in the above-mentioned manufacturing method by rolling according to the prior art, the particle size of the conductive particles is reduced in order to correspond to the high-definition electrode, and the film thickness is thin and uniform, for example, to several tens of μm or less. However, there is a problem in that if the particle diameter of the conductive particles varies, the film thickness also varies. Further, rather than the above rolling method, in the method of casting a uniform mixture of a liquid resin and conductive particles which is currently generally adopted to form a film, in order to correspond to a high-definition electrode, When the blending amount is increased, the viscosity of the liquid resin in which the conductive particles are dispersed increases and the fluidity is impaired, so that it becomes difficult to cast the conductive resin with a constant thickness by a bar coater or the like. There is no choice but to reduce the blending amount of.

【0007】また、流延する厚さを大きくし、導電性粒
子の沈降により樹脂フィルム状成形物の下層の粒子充填
層を高める方法があるが、導電性粒子が多層構造となる
ことが避けられず、厚み方向の電気的導通に寄与しない
粒子が多くなる。また、この方法では後に除去しなけれ
ばならない樹脂層が厚く、フィルム表面に均一に粒子を
露出させることが困難になる。透孔を設けたフィルムに
導電性粒子を入れた後にフィルム及び導電性粒子を接着
固定する方法においては、フィルムに微小な孔を多数設
けることは生産性やコストの面で実施することが困難で
ある。導電性粒子を2枚の平板で挾んだ状態で液状の樹
脂を平板間に充填してフィルム化する方法では、微小な
平板間に液状樹脂を充填するには樹脂の粘度が極めて小
さくなければならず、導電性粒子の粒径にばらつきがあ
ると導電性粒子が流出する問題点がある。
There is also a method of increasing the casting thickness and increasing the particle filling layer of the lower layer of the resin film-shaped molded product by sedimentation of the conductive particles, but it is possible to avoid forming the conductive particles into a multi-layer structure. However, the number of particles that do not contribute to electrical conduction in the thickness direction increases. Further, in this method, the resin layer that must be removed later is thick, and it becomes difficult to uniformly expose the particles to the film surface. In the method of adhering and fixing the film and the conductive particles after the conductive particles are put into the film provided with the through holes, it is difficult to provide many fine holes in the film in terms of productivity and cost. is there. In the method of filling the liquid resin between the flat plates with the conductive particles sandwiched between the two flat plates to form a film, in order to fill the liquid resin between the minute flat plates, the viscosity of the resin must be extremely small. However, if the particle size of the conductive particles varies, the conductive particles may flow out.

【0008】導電性粒子をフィルム状の樹脂に埋め込む
方法では、樹脂の粘度が液状程度に十分に低くなければ
導電性粒子表面に樹脂が十分に濡れることが出来ず、導
電性粒子とフィルム状樹脂との接着性が劣り、導電性粒
子が脱落し易くなる。液状のフィルム状樹脂を用いたと
き、支持体上に保持した導電性粒子を液状の樹脂面に転
写する工程で支持体上に樹脂が付着することが避けられ
ず、フィルム化が困難になる。また、導電性粒子の充填
量を多くした場合に、導電性粒子間の空隙に過不足なく
樹脂を充填することが困難になり、導電性粒子の充填量
と導電性粒子を充填する前のフィルム状樹脂の厚さとの
関係を厳密に規定しなければならない。フィルム状樹脂
の厚みが厚いと前述の支持体への樹脂の付着は避けられ
ず、薄いとフィルムとしての強度が得られなかったり、
粒子が脱落したりする。本発明は、このような状況に鑑
みてなされたもので、微細な電極でも電気的な接続が得
られる異方導電性樹脂フィルム状成形物の新規な製造法
を提供しようとするものである。
In the method of embedding the conductive particles in the film-shaped resin, the resin cannot be sufficiently wetted on the surface of the conductive particles unless the viscosity of the resin is sufficiently low such that the resin is in a liquid state. Adhesiveness with is inferior, and conductive particles are likely to fall off. When a liquid film-shaped resin is used, it is inevitable that the resin adheres to the support in the step of transferring the conductive particles held on the support to the liquid resin surface, which makes it difficult to form a film. Also, when the filling amount of the conductive particles is increased, it becomes difficult to fill the resin in the voids between the conductive particles without excess or deficiency, and the filling amount of the conductive particles and the film before filling the conductive particles The relationship with the thickness of the foamed resin must be strictly specified. If the thickness of the film-shaped resin is thick, the adhesion of the resin to the above-mentioned support cannot be avoided, and if it is thin, the strength as a film cannot be obtained,
Particles fall out. The present invention has been made in view of such circumstances, and an object thereof is to provide a novel method for producing an anisotropically conductive resin film-shaped molded article, which enables electrical connection even with fine electrodes.

【0009】[0009]

【課題を解決するための手段】本発明は、導電性粒子を
フィルム状成形物の面方向に均一に分散させ、表裏に露
出した導電性粒子を介してフィルム状成形物の厚み方向
にのみ導電性を有する異方導電性の樹脂フィルム状成形
物を製造する方法において、導電性粒子を粘着材面に粘
着固定し、該粘着材と非相溶なフィルム形成樹脂を導電
性粒子間に充填し、該フィルム形成樹脂を乾燥又は硬化
後フィルム形成樹脂から粘着材を剥離する異方導電性樹
脂フィルム状成形物の製造法に関する。即ち、導電性粒
子を粘着材面に散布することにより、粘着材面に導電性
粒子を面方向に配列した状態で固定した後、フィルム形
成樹脂を塗布して導電性粒子間に充填する工程を有す
る。この後、フィルム形成樹脂を乾燥又は硬化し、必要
により粒子上のフィルム形成樹脂を除去することによ
り、フィルムの厚さ方向にのみ導電性を有する樹脂フィ
ルム状成形物とする。
The present invention is to uniformly disperse conductive particles in the surface direction of a film-shaped molded product, and to conduct the conductive film only in the thickness direction of the film-shaped molded product through the exposed conductive particles on the front and back. In the method for producing an anisotropically conductive resin film-shaped molded product, the conductive particles are adhesively fixed to the surface of the adhesive material, and a film-forming resin incompatible with the adhesive material is filled between the conductive particles. The present invention relates to a method for producing an anisotropically conductive resin film-shaped molded product, which comprises removing an adhesive from the film-forming resin after drying or curing the film-forming resin. That is, by spraying the conductive particles on the pressure-sensitive adhesive surface, after fixing the conductive particles on the pressure-sensitive adhesive surface in the state of being arranged in the plane direction, a step of applying a film-forming resin to fill the space between the conductive particles is performed. Have. Then, the film-forming resin is dried or cured, and if necessary, the film-forming resin on the particles is removed to obtain a resin film-shaped molded product having conductivity only in the thickness direction of the film.

【0010】本発明では、粘着材面上に透孔を有するフ
ィルム又は網(以下、本治具をマスクと呼ぶ)を載置
し、導電性粒子を散布すること(請求項2)により、透
孔内の粘着材面にのみ導電性粒子を付着させることが出
来て、フィルムの面方向の絶縁性を制御出来る。例え
ば、透孔を、導電性粒子が2個以上粘着材面に付着しな
い大きさにすれば、個々の粒子間で絶縁性が保持される
異方導電性樹脂フィルム状成形物が得られる。また、導
電性粒子を粘着材面に散布した後、ゴムロール等を用い
て導電性粒子を粘着材面に押圧し(請求項3)、導電性
粒子の面方向の配列密度を向上することや、フィルムの
厚さ方向の導電性を向上することが可能である。この押
圧時の加圧力を調節して導電性粒子を粘着材層に埋め込
ませること(請求項4)により、樹脂フィルム形成物表面
から導電性粒子が突出した構造にすることが出来、電気
的な接続性を向上出来る。
In the present invention, a film or a net having a through hole (hereinafter, this jig is referred to as a mask) is placed on the surface of the adhesive material, and the conductive particles are dispersed (claim 2) to obtain a transparent film. The conductive particles can be attached only to the surface of the adhesive material in the holes, and the insulating property in the plane direction of the film can be controlled. For example, if the size of the through holes is such that two or more conductive particles do not adhere to the surface of the pressure-sensitive adhesive material, an anisotropic conductive resin film-shaped molded product in which the insulating property is maintained between the individual particles can be obtained. Further, after spraying the conductive particles on the pressure-sensitive adhesive surface, the conductive particles are pressed against the pressure-sensitive adhesive surface using a rubber roll or the like (claim 3) to improve the array density of the conductive particles in the surface direction, and It is possible to improve the conductivity in the thickness direction of the film. By embedding the conductive particles in the pressure-sensitive adhesive layer by adjusting the pressure applied during this pressing (Claim 4), it is possible to form a structure in which the conductive particles are projected from the surface of the resin film-formed product, and the electrical The connectivity can be improved.

【0011】導電性粒子を粘着材面に固定する方法とし
て、導電性粒子をロール状等の帯電体上に静電気により
保持した後、この帯電体を粘着材面に押圧し、導電性粒
子を粘着材面に転写すること(請求項5)により、粘着
材層に付着しない余剰粒子の少ない一定量の導電性粒子
を連続的に配列することが可能となる。このとき、帯電
体上にマスクを載置し、導電性粒子を散布すること(請
求項6)により、透孔内の帯電体面にのみ導電性粒子を
付着させることが出来、フィルムの面方向の絶縁性を制
御出来る。また、導電性粒子及び粘着材面を異なる電荷
に帯電し、導電性粒子を粘着材面に吸着した後固定する
方法(請求項7)でも、余剰粒子の少ない一定量の導電
性粒子を連続的に配列することが可能となる。この場合
も、粘着材体上にマスクを載置し、導電性粒子を散布す
ることにより、透孔内の粘着材面にのみ導電性粒子を付
着させることが出来、フィルムの面方向の絶縁性を制御
出来る。
As a method of fixing the conductive particles to the surface of the adhesive material, the conductive particles are held on a charged body such as a roll by static electricity, and then the charged body is pressed against the surface of the adhesive material to adhere the conductive particles. By transferring to the material surface (Claim 5), it is possible to continuously arrange a certain amount of conductive particles having a small amount of surplus particles that do not adhere to the adhesive material layer. At this time, by placing a mask on the charged body and spraying the conductive particles (Claim 6), the conductive particles can be attached only to the surface of the charged body in the through-hole, and the surface direction of the film can be improved. Insulation can be controlled. Also, in a method in which the conductive particles and the adhesive material surface are charged with different charges, and the conductive particles are adsorbed on the adhesive material surface and then fixed (claim 7), a certain amount of conductive particles with few surplus particles are continuously added. It becomes possible to arrange in. Also in this case, by placing the mask on the adhesive material body and spraying the conductive particles, the conductive particles can be attached only to the adhesive material surface in the through hole, and the insulating property in the plane direction of the film can be obtained. Can be controlled.

【0012】上記の導電性粒子を静電気力により粘着材
面に固定する方法では、導電性粒子に代えて繊維状の導
電体とすること(請求項8)により、フィルム面に垂直
に繊維の長軸が配列した異方導電性樹脂フィルム状成形
物が出来、導電体が高密度に充填して導電性を向上する
ことが可能である。また、加熱又は加圧により除去し得
る熱可塑性樹脂等の電気絶縁層であらかじめ表面を被覆
した導電性粒子又は繊維状導電体を用いること(請求項
9)によって、これらがフィルムの面方向に細密に充填
した状態であっても、面方向の絶縁性を保つことが可能
になる。
In the method of fixing the conductive particles to the surface of the adhesive material by electrostatic force, a fibrous conductor is used in place of the conductive particles (claim 8), whereby the length of the fiber is perpendicular to the film surface. An anisotropic conductive resin film-shaped molded product in which the shafts are arranged can be formed, and the conductive material can be packed at a high density to improve the conductivity. In addition, by using conductive particles or fibrous conductors whose surface is previously coated with an electrically insulating layer such as a thermoplastic resin that can be removed by heating or pressing (claim 9), these are finely distributed in the plane direction of the film. Even in the state of being filled in, it becomes possible to maintain the insulating property in the surface direction.

【0013】この電気絶縁層であらかじめ表面を被覆し
た導電性粒子又は繊維状導電体を用いた異方導電性樹脂
フィルム状成形物において、フィルムの表面及び裏面の
一部を溶剤によるエッチングや研磨等の物理的方法を用
いて除去し、フィルムの厚さを導電性粒子の粒径又は繊
維状導電体の繊維長以下にすると共に、フィルムの表面
及び裏面に露出した導電性粒子又は繊維状導電体の電気
絶縁層を取り除き、フィルムの表裏面に電極を接触する
こと(請求項10)で、電極間に導電し得る異方導電性
樹脂フィルム状成形物とすることが可能である。フィル
ム形成樹脂を加熱加圧で溶融又は軟化する熱可塑性樹
脂、未硬化の熱硬化性樹脂又は紫外線、電子線等の光エ
ネルギーにより硬化する樹脂を用いること(請求項1
1)により、フィルム表面に突出した粒子で電気的接続
を得た後、加圧により電極間の導電性粒子を変形した
り、電極内に導電性粒子を埋め込んだ状態でフィルム形
成樹脂を接着剤として電極間の接続及び固定を行うこと
が可能である。
In an anisotropically conductive resin film-like molded product using conductive particles or fibrous conductors whose surface is previously coated with this electrically insulating layer, a part of the front surface and the back surface of the film is etched with a solvent or polished. The thickness of the film is made equal to or less than the particle diameter of the conductive particles or the fiber length of the fibrous conductor, and the conductive particles or fibrous conductor exposed on the front surface and the back surface of the film are removed. By removing the electrically insulating layer and contacting the electrodes with the front and back surfaces of the film (claim 10), it is possible to obtain an anisotropic conductive resin film-like molded product capable of conducting electricity between the electrodes. Use of a thermoplastic resin that melts or softens a film-forming resin by heat and pressure, an uncured thermosetting resin, or a resin that cures by light energy such as ultraviolet rays or electron beams (claim 1
According to 1), after electrical connection is obtained with particles protruding on the film surface, the conductive particles between the electrodes are deformed by pressurization, or the film-forming resin is bonded with the conductive particles embedded in the electrodes. As a result, it is possible to connect and fix the electrodes.

【0014】本発明で用いられる導電性粒子の種類は特
に限定されるものではなく、金属粒子やガラス、セラミ
ック、プラスチック等の粒子の表面に金属のめっき層を
形成した粒子を単独又は複合して用いることが出来る。
各々個々の導電性粒子が小粒径の導電性粒子の凝集体か
らなるものも用いることも出来る。また、粒径は接続す
る回路の細かさにより選択されるが、各粒子の粒径は出
来るだけ均一である必要がある。形状は微細電極の接続
のために粒子の大きさを均一にする上では真球状が好ま
しいが、フィルムへの接着性からは表面に凹凸がある方
が好ましい。一般的に非常に微細な電極を接続するとき
には、真球状のプラスチック粒子表面に金属めっき層を
形成した粒子を用い、耐熱性等で金属粒子を用いるとき
は、より真球状に近いガスアトマイズ法や回転電極アト
マイズ法で作製した粒子を用いる方が好ましい。但し、
水アトマイズ法で作製された金属粉のように不定形の粒
子でも、分級により粒径を揃えることで導電性粒子とし
て用いることが出来る。
The type of conductive particles used in the present invention is not particularly limited, and particles of metal particles or particles of glass, ceramics, plastics or the like having a metal plating layer formed on the surface thereof may be used alone or in combination. Can be used.
It is also possible to use one in which each individual conductive particle is composed of an aggregate of conductive particles having a small particle diameter. The particle size is selected according to the fineness of the circuit to be connected, but the particle size of each particle needs to be as uniform as possible. The shape is preferably a spherical shape in order to make the size of the particles uniform for connecting fine electrodes, but it is preferable that the surface has irregularities in terms of adhesiveness to the film. Generally, when connecting very fine electrodes, use particles with a metal plating layer formed on the surface of spherical plastic particles, and when using metal particles for heat resistance, etc., use a gas atomizing method that is closer to a spherical shape or rotation. It is preferable to use particles produced by the electrode atomizing method. However,
Even irregularly shaped particles such as metal powder produced by the water atomizing method can be used as conductive particles by making the particle sizes uniform by classification.

【0015】また、本発明で用いる繊維状導電体は長軸
を持った形状を有しており、製法に左右されない。即
ち、繊維状導電体は導電性粒子のうちの長軸を持つもの
ということができる。繊維状導電体の種類も特に限定さ
れるものではないが、一般に市販されている金属の短繊
維やガラス繊維表面に金属めっきをしたもの、又は炭素
繊維等を用いることが出来る。繊維の径や長さは接続す
る電極の細かさにより選択されるが、繊維の長さは揃っ
ている方が導電性が良く、繊維の径は小さく均一である
方がより微細な電極に用いることが出来る。また、導電
性粒子の固定位置を制御するマスクを用いない場合にお
いて、面方向の絶縁性を確保するためには導電性粒子や
繊維状導電体の粘着材面への散布量を適切にしなければ
ならない。導電性粒子や繊維状導電体同士は互いに接す
る部分が増えると共に、面方向の絶縁性が損なわれる。
よって、高密度の導電点を得るには個々の導電性粒子や
繊維状導電体の表面に電気絶縁層(絶縁層)を設けるこ
とで達成出来る。
Further, the fibrous conductor used in the present invention has a shape having a long axis and is not affected by the manufacturing method. That is, it can be said that the fibrous conductor has the major axis of the conductive particles. The type of the fibrous conductor is not particularly limited, but generally commercially available metal short fibers, glass fibers having the surface thereof plated with metal, carbon fibers, or the like can be used. The diameter and length of the fiber are selected according to the fineness of the electrodes to be connected, but the uniform fiber length provides better conductivity, and the smaller fiber diameter and uniform size are used for finer electrodes. You can Further, in the case where a mask for controlling the fixing position of the conductive particles is not used, in order to secure the insulative property in the surface direction, the amount of the conductive particles or the fibrous conductor to be spread on the adhesive material surface must be appropriate. I won't. The conductive particles and the fibrous conductors contact each other more and the insulating property in the plane direction is impaired.
Therefore, a high-density conductive point can be obtained by providing an electrically insulating layer (insulating layer) on the surface of each conductive particle or fibrous conductor.

【0016】絶縁層はフィルム形成樹脂に相溶しない樹
脂を含み、単一層構造や多層構造とすることが出来る。
ここで、相溶しないとは、相互の樹脂が親和性を有さず
均一化した混和物を形成しないことで、一般に用いられ
る相溶性の目安としてはSP値があり(溶解性パラメー
タ:日本接着協会編 接着ハンドブック第2版第46頁
に記載あり)、SP値が離れているほど相溶せず、概ね
1.0以上の差の樹脂は相互に親和し難い。また、相互
の樹脂の熱溶融温度又は熱軟化温度の離れた樹脂である
ことも、相互の樹脂が均一化したした混和物を形成しな
い一つの条件であり、概ね10℃以上の差の樹脂は相互
に均一化した混和物を形成し難い。これらの目安は各材
料で微妙に異なるので個々の検討が必要である。大事な
ことは、塗工によりフィルムを作成するときには、一般
にフィルム形成樹脂を適当な溶剤で溶解、希釈し、適当
な粘度の溶液を流延して作成するので、絶縁層は、この
フィルム作成時に使用する溶剤やフィルム形成樹脂中の
液状成分に溶解せず、即ちフィルム形成樹脂溶液に溶解
しない樹脂を用いることである。
The insulating layer contains a resin that is incompatible with the film-forming resin and can have a single-layer structure or a multi-layer structure.
Here, “not compatible” means that the mutual resins do not have an affinity and do not form a homogenized admixture, and there is an SP value as a commonly used measure of compatibility (solubility parameter: As described in Adhesion Handbook, 2nd Edition, page 46) edited by the association), the farther the SP value is, the less compatible the resins are, and resins having a difference of 1.0 or more are less likely to be compatible with each other. Further, the fact that the resins have different heat melting temperatures or heat softening temperatures from each other is also one condition that does not form a homogenized admixture of the resins. It is difficult to form a homogenized mixture. These criteria differ slightly for each material, so individual examination is necessary. It is important to note that when a film is made by coating, the film-forming resin is generally dissolved and diluted with a suitable solvent, and a solution with an appropriate viscosity is cast, so the insulating layer is used when making this film. It is to use a resin that does not dissolve in the solvent used or the liquid component in the film-forming resin, that is, does not dissolve in the film-forming resin solution.

【0017】互いに相溶しない樹脂であれば、適当な溶
剤を選択することにより、フィルム形成樹脂溶液に溶解
しない絶縁層を設けることが可能となる。具体的には熱
可塑性ポリウレタン、可溶性ナイロン、エポキシ樹脂、
フェノキシ樹脂、ポリエチレン、ポリエステル等が用い
られ、これらの中からフィルム形成樹脂溶液に溶解せ
ず、絶縁層の形成が容易な樹脂を選択して用いる。これ
らの目安は各材料で微妙に異なるので個々の検討が必要
である。この絶縁層の厚みは、樹脂のフィルム形成樹脂
溶液に対する耐溶解性と微小な導電性粒子に対する被覆
が充分であるかによって最適値が異なるが、0.01〜
10μmが適当である。絶縁層を形成する方法は、樹脂
を溶剤に溶解し、溶液状態で導電性粒子表面に塗布した
後乾燥する湿式法や、絶縁層を形成する樹脂の粉体と導
電性粒子とを高速で衝突させたり、混合してすり合わせ
たり、融解して付着させる等の乾式法により形成するこ
とが出来る。
If the resins are incompatible with each other, it is possible to provide an insulating layer which is insoluble in the film-forming resin solution by selecting an appropriate solvent. Specifically, thermoplastic polyurethane, soluble nylon, epoxy resin,
A phenoxy resin, polyethylene, polyester, or the like is used, and a resin that does not dissolve in the film-forming resin solution and that can easily form an insulating layer is selected from these. These criteria differ slightly for each material, so individual examination is necessary. The optimum thickness of the insulating layer varies depending on whether the resin is resistant to dissolution in a film-forming resin solution and whether the coating of fine conductive particles is sufficient.
10 μm is suitable. The method for forming the insulating layer includes a wet method in which a resin is dissolved in a solvent and applied on the surface of the conductive particles in a solution state, and then dried, or a resin powder for forming the insulating layer and the conductive particles are collided at high speed. It can be formed by a dry method such as mixing, mixing and rubbing, melting and adhering.

【0018】湿式法は樹脂が適当な溶剤に溶解しなけれ
ばならないが、絶縁層を所望の厚さに形成することが容
易であり、特に、1μm以下の薄い絶縁層を容易に形成
できる利点がある。乾式法は溶剤に溶解し難い樹脂でも
絶縁層を形成できる利点があり、1μm以上の厚い絶縁
層の形成に適している。これらの絶縁層内に微小な導電
性粒子を分散した凝集体とする方法は、例えば湿式法で
は絶縁層を形成する樹脂溶液中に微小な導電性粒子を分
散した状態で導電性粒子表面に塗布したり、乾式法では
絶縁層を形成する樹脂の粉体、微小な導電性粒子及び導
電性粒子を高速で衝突させたり、混合してすり合わせた
り、融解して付着させたりして、絶縁層中に微小な導電
性粒子を埋め込む方法等がある。また、あらかじめ湿式
法で絶縁層を形成した絶縁被覆導電性粒子と微小な導電
性粒子とを乾式法で処理し、絶縁層中に微小な導電性粒
子を埋め込む方法も採れる。
In the wet method, the resin must be dissolved in a suitable solvent, but it is easy to form the insulating layer to a desired thickness, and in particular, it has the advantage that a thin insulating layer of 1 μm or less can be easily formed. is there. The dry method has an advantage that an insulating layer can be formed even with a resin that is difficult to dissolve in a solvent, and is suitable for forming a thick insulating layer having a thickness of 1 μm or more. The method of forming an aggregate in which fine conductive particles are dispersed in these insulating layers is, for example, a wet method in which fine conductive particles are dispersed in a resin solution forming an insulating layer and applied to the surface of the conductive particles. In the dry method, the resin powder that forms the insulating layer, minute conductive particles and conductive particles are made to collide at high speed, mixed and rubbed, melted and adhered, There is a method of embedding fine conductive particles in the. Alternatively, a method of embedding the fine conductive particles in the insulating layer by treating the insulating coated conductive particles and the fine conductive particles having the insulating layer formed by the wet method in advance by the dry method can be adopted.

【0019】粘着材はその粘着性により粒子を散布した
後の取扱時やフィルム形成樹脂を塗工する際に、導電性
粒子が移動しないように保持していればよく、手触り時
の粘着感を必要とするものではない。一般的に、導電性
粒子表面と粘着材との接触面積が大きければ導電性粒子
の保持力が大きくなるので、導電性粒子の散布時に導電
性粒子表面の凹凸を埋められるような柔らかい物質であ
れば粘着材として用いることが可能である。即ち、導電
性粒子を散布した後の取扱時やフィルム形成樹脂を塗工
する際に、導電性粒子と粘着材との付着力により導電性
粒子が移動しないように保持する物質を、本発明におけ
る粘着材とすることが出来る。
Due to its adhesiveness, the adhesive material should be held so that the conductive particles do not move when it is handled after the particles are sprayed or when the film-forming resin is applied. Not what you need. Generally, if the contact area between the conductive particle surface and the adhesive material is large, the holding force of the conductive particle is large, so a soft substance that can fill the irregularities of the conductive particle surface at the time of spraying the conductive particle can be used. For example, it can be used as an adhesive material. That is, when handling after coating the conductive particles or when applying the film-forming resin, the substance that holds the conductive particles so that the conductive particles do not move due to the adhesive force between the conductive particles and the adhesive material, It can be an adhesive material.

【0020】具体的にはSBR、ポリイソブチレン、ポ
リブテン、天然ゴム、ネオプレン、ブチルゴム等のゴム
類やアクリル樹脂、シリコーン樹脂、弗素樹脂等からな
るガラス転移温度が室温以下の樹脂を粘着材として用い
ることが出来る。また、これらの樹脂や粘着性の無い樹
脂にテルペン樹脂やインデン樹脂のような粘着付与材を
混合して、粘着性を持たせたものも用いることが出来
る。また、これらの樹脂は、フィルム形成樹脂との相溶
性を小さくするため、架橋による網目構造を持たせても
よい。上記に示した粘着材は基材となるフィルムや板、
ロール等の上に塗工して複合構造として用いることで、
取扱いが容易となる。一般的にPET、ポリエチレン、
ポリプロピレン等のフィルムを基材として使用できる。
Specifically, SBR, polyisobutylene, polybutene, natural rubber, neoprene, butyl rubber, and other rubbers, and resins having a glass transition temperature of room temperature or lower, such as acrylic resins, silicone resins, and fluororesins, are used as the adhesive material. Can be done. Further, it is also possible to use a resin having tackiness by mixing a tackifier such as a terpene resin or an indene resin with these resins or a non-tacky resin. Further, these resins may have a network structure by cross-linking in order to reduce compatibility with the film-forming resin. The adhesive material shown above is a film or plate as a base material,
By applying it on a roll etc. as a composite structure,
Easy to handle. Generally PET, polyethylene,
A film such as polypropylene can be used as a substrate.

【0021】フィルム形成樹脂は、導電性粒子のバイン
ダーとして作用し、フィルム状に成形可能なものであ
る。また、フィルム形成樹脂の塗工時に導電性粒子を粘
着固定している粘着材を溶解して導電性粒子が移動して
しまうを防ぐために、フィルム形成樹脂は粘着材と非相
溶なものを選択する。具体的には、溶剤に可溶な各種合
成樹脂やエラストマーのほか、ポリエチレン、酢酸ビニ
ル、ポリプロピレン等の熱可塑性樹脂や高耐熱性を有す
るポリエーテルスルホン、ポリエーテルイミド、ポリイ
ミド等の樹脂やエポキシ樹脂、フェノール樹脂等の熱硬
化性樹脂、アクリロイル基を有するウレタンアクリレー
ト、エポキシアクリレート等の光硬化性樹脂を用いるこ
とが出来る。互いに非相溶なフィルム形成樹脂と粘着材
との組み合わせとしては、ポリイソブチレンのようなS
P値の小さな粘着材及びポリイミドの硬化前物質である
ポリアミック酸のようなSP値の大きな樹脂をフィルム
形成樹脂として用いることが出来る。
The film-forming resin acts as a binder for the conductive particles and can be formed into a film. Also, in order to prevent the conductive particles from migrating by dissolving the adhesive material that adheres and fixes the conductive particles when applying the film forming resin, the film forming resin that is incompatible with the adhesive material is selected. To do. Specifically, in addition to various solvent-soluble synthetic resins and elastomers, thermoplastic resins such as polyethylene, vinyl acetate, polypropylene, and resins with high heat resistance such as polyether sulfone, polyether imide, and polyimide, and epoxy resins. A thermosetting resin such as a phenol resin, a photocurable resin such as a urethane acrylate having an acryloyl group, or an epoxy acrylate can be used. As a combination of the film-forming resin and the adhesive material which are incompatible with each other, S such as polyisobutylene is used.
An adhesive material having a small P value and a resin having a large SP value such as polyamic acid which is a substance before curing of polyimide can be used as the film forming resin.

【0022】また、シリコーン樹脂や弗素樹脂はこれら
以外の多くの樹脂と非相溶であるので、これらの樹脂を
粘着材として選択すると、フィルム形成樹脂として多く
の樹脂を選択出来る。また、本発明の異方導電性樹脂フ
ィルム状成形物を電極間の電気的接続及び電極間の接着
の両方の目的に用いる場合にも、上記の各フィルム形成
樹脂を用い、電極間を圧接させながら加熱したり光照射
することで、電極間にフィルム形成樹脂を流動した後硬
化させることで達成出来る。このとき、これらのフィル
ム形成樹脂の中でも特に熱硬化性樹脂は回路接続時の熱
圧により網状構造を形成して硬化するので耐熱性に優れ
ており、高い接続信頼性が得られることから、フィルム
形成樹脂の一部として使用されることが望ましい。樹脂
フィルム状成形物の厚みは特に限定するものではない
が、前記の通り、厚くなると使用する導電性粒子の粒径
が大きくなり、分解能が低下するため微細な回路の接続
には不向きである。また、薄くなると取扱いが容易でな
く、しわの発生等により製造が困難になってくることか
ら、0.005〜1mmが適当である。
Further, since silicone resin and fluorine resin are incompatible with many other resins, many resins can be selected as the film-forming resin by selecting these resins as the adhesive material. Also, when the anisotropic conductive resin film-shaped molded product of the present invention is used for both the purpose of both electrical connection between electrodes and adhesion between electrodes, each of the above film-forming resins is used and pressure is applied between the electrodes. While heating or irradiating light while flowing, the film-forming resin is allowed to flow between the electrodes and then cured. At this time, among these film-forming resins, the thermosetting resin is excellent in heat resistance because it forms a network structure and is cured by the heat and pressure during circuit connection, and thus high connection reliability can be obtained. It is preferably used as part of the forming resin. The thickness of the resin film-shaped molded product is not particularly limited, but as described above, it becomes unsuitable for connection of fine circuits since the particle size of the conductive particles to be used becomes large and the resolution deteriorates as the thickness increases. Further, when the thickness becomes thinner, the handling is not easy, and the production becomes difficult due to the generation of wrinkles and the like, so 0.005 to 1 mm is suitable.

【0023】マスクは、シルク、ナイロン、ステンレス
等の繊維を織った網状のもの、ステンレスやニッケルの
薄板をエッチング等で所望の位置や大きさに透孔を開け
た通常メタルマスクと呼ばれるものなどが用いられる。
これらのマスクは、粘着材や帯電体の上に置いて用いら
れるが、静電気力により導電性粒子を散布する場合に
は、マスクの帯電性をマスク素材を選択したりアースを
とることにより制御し、マスクの透孔の部分にだけ導電
性粒子が配置されるようにすることが望ましい。しか
し、マスクの帯電電位がマスク面内で不均一であったり
して、マスク上に導電性粒子が付着した場合でもマスク
と導電性粒子との静電気による付着性を調節し、マスク
上の導電性粒子を樹脂製のブレード等により排除するこ
とが出来る。例えば、ナイロン等の非導電性の網でも、
篩等に使用される網は一般に帯電防止処理が施されてお
り、マスク上に粒子が付着してしまうのを防止するのに
有用である。マスクの透孔の大きさは、導電性粒子が通
過し得る大きさのものは勿論、導電性粒子が通過しない
大きさのものも使用出来る。
As the mask, there are a net-shaped one woven from fibers such as silk, nylon and stainless steel, and a so-called ordinary metal mask in which a thin plate of stainless steel or nickel is formed with a through hole at a desired position or size by etching or the like. Used.
These masks are used by placing them on an adhesive material or a charged body.However, when spraying conductive particles by electrostatic force, the chargeability of the mask is controlled by selecting the mask material or grounding. It is desirable that the conductive particles be arranged only in the through holes of the mask. However, even if the charging potential of the mask is non-uniform on the mask surface and conductive particles adhere to the mask, the electrostatic adhesion between the mask and the conductive particles can be adjusted to reduce the conductivity of the mask. The particles can be removed by a resin blade or the like. For example, even non-conductive mesh such as nylon,
The net used for a sieve or the like is generally subjected to antistatic treatment and is useful for preventing particles from adhering to the mask. The size of the through hole of the mask may be a size that allows the conductive particles to pass therethrough, or a size that does not allow the conductive particles to pass.

【0024】必要なことは、マスクの透孔の位置に導電
性粒子が配置され、このときに粘着材又は帯電体に導電
性粒子の一部が接触し、粘着力又は静電気力により固定
されることである。例えば、粘着材面にマスクを載置
し、導電性粒子を散布してマスクの透孔部に導電性粒子
を固定した後、マスクを取り外さずにフィルム形成樹脂
を塗布し、異方導電性樹脂フィルム状成形物を得ること
が出来る。得られた異方導電性樹脂フィルム状成形物の
フィルム形成樹脂面からマスクを剥離することでマスク
は繰返し使用出来る。このとき、導電性粒子がマスクの
透孔を通過する工程を経ないので、マスクの透孔よりも
導電性粒子の粒径が大きくてもよい。また帯電体上にマ
スクを載置し、静電気力により導電性粒子をマスクの透
孔の位置に配置した後に、粘着材面に押圧して転写する
場合においても、導電性粒子を配置した後にマスクを取
り外す必要はないので、マスクの透孔よりも導電性粒子
の粒径が大きくてもよい。
What is necessary is that the conductive particles are arranged at the positions of the through holes of the mask, and at this time, a part of the conductive particles come into contact with the adhesive material or the charged body and are fixed by the adhesive force or the electrostatic force. That is. For example, a mask is placed on the adhesive surface, conductive particles are sprayed to fix the conductive particles to the through holes of the mask, and then a film-forming resin is applied without removing the mask to form an anisotropic conductive resin. A film-shaped molded product can be obtained. The mask can be repeatedly used by peeling the mask from the film-forming resin surface of the obtained anisotropically conductive resin film-shaped molded product. At this time, since the conductive particles do not pass through the through holes of the mask, the particle size of the conductive particles may be larger than that of the through holes of the mask. Also, when the mask is placed on the charged body and the conductive particles are placed at the positions of the through holes of the mask by electrostatic force and then transferred by pressing on the adhesive surface, the mask is placed after the conductive particles are placed. Since it is not necessary to remove, the particle size of the conductive particles may be larger than that of the through hole of the mask.

【0025】静電気により帯電させる方法は、コロナ帯
電装置を用いる方法が一般的で、本発明の目的もこの装
置により達成される。この装置は非接触式で物体を帯電
させることが出来、帯電量もモニタリングしながら所望
の一定値に制御出来る。ほかに、導電性のローラーやブ
ラシに電圧をかけて物体に接触させる接触帯電法等によ
り帯電させることが可能である。帯電は導電性粒子が散
布される帯電体、粘着材、マスク等のうち必要な部材に
なされればよく、導電性粒子との電位差が導電性粒子を
移動、吸着するに足る値であれば良い。
As a method of charging by static electricity, a method of using a corona charging device is generally used, and the object of the present invention is also achieved by this device. This device can charge an object in a non-contact manner, and can control it to a desired constant value while monitoring the amount of charge. In addition, it is possible to charge by a contact charging method or the like in which a voltage is applied to a conductive roller or brush to bring it into contact with an object. The charging may be carried out on a necessary member such as a charging body, an adhesive material, a mask or the like on which the conductive particles are scattered, as long as the potential difference from the conductive particles is a value sufficient to move and adsorb the conductive particles. .

【0026】このとき、逆に導電性粒子を帯電させる方
法も考えられるが、導電性粒子間の静電気力による反発
で導電性粒子の飛散が発生したり、個々の導電性粒子で
帯電量のばらつきが大きくなり、付着量が面内でばらつ
く等の問題があり注意を要する。帯電量は通常数百ボル
ト以上で本発明の目的は達成出来る。帯電体は帯電装置
により導電性粒子と異なる電荷に帯電される物質であれ
ばよく、一般的にはポリエチレン、ナイロン、ポリエス
テル等の電気絶縁性の樹脂が広く使用出来る。また、た
とえ導電性の金属等でも直接電圧を印加したり、絶縁体
で電荷が洩れるのを防いだりすることで、帯電体として
使用することが出来る。
At this time, conversely, a method of charging the conductive particles may be considered, but the conductive particles may scatter due to the repulsion due to the electrostatic force between the conductive particles, or the charge amount may vary among the individual conductive particles. However, there is a problem that the amount becomes large and the adhered amount varies within the surface, so caution is required. The charge amount is usually several hundred volts or more, and the object of the present invention can be achieved. The charged body may be any substance that is charged to a different charge from the conductive particles by the charging device, and generally, electrically insulating resins such as polyethylene, nylon and polyester can be widely used. In addition, even a conductive metal or the like can be used as a charging body by directly applying a voltage or preventing leakage of charges by an insulator.

【0027】本発明の異方導電性樹脂フィルム状成形物
を、例えば回路の接続材料に使用する場合には、接続し
ようとする回路間に本発明の成形物を挿入し、加圧する
ことにより目的を達することが出来る。また、永続的な
接続材料として用いるには、加圧治具で電極間を加圧し
た状態で固定するか、加圧状態で液状の接着剤を充填し
て接着するか、加圧状態で加熱又は光照射でフィルム形
成樹脂を硬化し、フィルム形成樹脂を接着剤として用い
る等の方法が可能である。また、本発明の樹脂フィルム
状成形物は、上記した回路の接続材料だけでなく、スイ
ッチ部材、多層回路部材等への応用が可能である。
When the anisotropically conductive resin film-shaped molded product of the present invention is used as a connecting material for a circuit, for example, the molded product of the present invention is inserted between the circuits to be connected, and pressure is applied. Can be reached. To use it as a permanent connection material, fix the electrodes with pressure applied by a pressure jig, fill with a liquid adhesive under pressure to bond them, or heat under pressure. Alternatively, a method of curing the film-forming resin by light irradiation and using the film-forming resin as an adhesive is possible. Further, the resin film-shaped molded product of the present invention can be applied not only to the above-mentioned circuit connecting material but also to a switch member, a multilayer circuit member and the like.

【0028】図1は本発明の異方導電性樹脂フィルム状
成形物の製作順序を示したものである。始めに図1
(a)に示すように、樹脂フィルム等からなる支持体で
ある基材フィルム3の上に、溶液塗工等のコーティング
により粘着材2の層を設け、次に図1(b)に示すよう
に、この粘着材層上に導電性粒子1を散布し、導電性粒
子1を粘着材2の粘着力により保持する。その後図1
(c)に示すように、この導電性粒子間にフィルム形成
樹脂溶液14を塗工により充填する。このとき、導電性
粒子1は粘着材2の上に固定されているので、フィルム
形成樹脂溶液14の中で移動することがなく、塗工時の
粒子の凝集が起こらず、均一に面上に配列した状態を保
持する。次に、図1(d)に示すように、フィルム形成
樹脂10を乾燥又は硬化した後、導電性粒子1の上を覆
ったフィルム形成樹脂10の溶解又は物理的除去を行
い、図1(e)に示すようにフィルム3の表面に導電性
粒子1を露出させる。この後、フィルム形成樹脂10を
粘着材2との界面から剥離し、図1(f)に示すように
異方導電性樹脂フィルム状成形物を得るものである。
FIG. 1 shows the manufacturing sequence of the anisotropically conductive resin film-shaped molded product of the present invention. First Figure 1
As shown in (a), a layer of the pressure-sensitive adhesive material 2 is provided on the base film 3 which is a support made of a resin film or the like by coating such as solution coating, and then as shown in FIG. 1 (b). Then, the conductive particles 1 are scattered on the pressure-sensitive adhesive layer, and the conductive particles 1 are held by the adhesive force of the pressure-sensitive adhesive 2. Then Figure 1
As shown in (c), the film forming resin solution 14 is filled between the conductive particles by coating. At this time, since the conductive particles 1 are fixed on the adhesive material 2, they do not move in the film-forming resin solution 14, the particles do not aggregate during coating, and the particles are evenly distributed on the surface. Holds the arranged state. Next, as shown in FIG. 1D, after the film-forming resin 10 is dried or cured, the film-forming resin 10 covering the conductive particles 1 is dissolved or physically removed. ), The conductive particles 1 are exposed on the surface of the film 3. After that, the film-forming resin 10 is peeled from the interface with the adhesive material 2 to obtain an anisotropic conductive resin film-shaped molded product as shown in FIG.

【0029】フィルム形成樹脂10と粘着材2とは互い
に相溶しないので、界面から容易に剥離できる。また、
導電性粒子は粘着材層と接しているので、フィルム形成
樹脂10の剥離面に導電性粒子1を露出した状態にする
ことが出来、導電性粒子1を露出させるためのフィルム
形成樹脂10の部分的除去はフィルム3の片面(図1
(d)のフィルム形成樹脂塗工面)についてのみ行えば
よい。このとき、導電性粒子1は基材フィルム3及び粘
着材2により支持されているので、フィルム形成樹脂1
0の部分的除去工程におけるフィルム形成樹脂層の損
傷、伸び、導電性粒子の脱落等を防ぐことが出来る。ま
た、たとえ粘着材2と基材フィルム3との密着性が小さ
く、フィルム形成樹脂10に密着した構造で基材フィル
ムとの界面で剥離しても、フィルム形成樹脂と粘着材と
は非相溶なので、適当な溶剤を選択することにより、粘
着材のみを溶解除去することが出来、所望の異方導電性
樹脂フィルム状成形物を得ることが出来る。
Since the film forming resin 10 and the adhesive material 2 are incompatible with each other, they can be easily peeled from the interface. Also,
Since the conductive particles are in contact with the adhesive layer, the conductive particles 1 can be exposed on the release surface of the film forming resin 10, and the portion of the film forming resin 10 for exposing the conductive particles 1 Removal is performed on one side of the film 3 (Fig. 1
It may be performed only for the film-forming resin coated surface of (d). At this time, since the conductive particles 1 are supported by the base film 3 and the adhesive material 2, the film forming resin 1
It is possible to prevent the film-forming resin layer from being damaged, extended, and the conductive particles falling off in the partial removal step of 0. Further, even if the adhesive material 2 and the base material film 3 have a low adhesion and are peeled off at the interface with the base material film due to the structure in which they are adhered to the film forming resin 10, the film forming resin and the adhesive material are incompatible. Therefore, by selecting an appropriate solvent, only the adhesive material can be dissolved and removed, and a desired anisotropically conductive resin film-shaped molded product can be obtained.

【0030】図2(a)は、本発明の異方導電性樹脂フ
ィルム状成形物を回路11の間に挿入して加圧し、電気
的接続をした状態を示す。図2(b)は、従来の製造法
で得られた異方導電性樹脂フィルム状成形物を回路11
の間に挿入して加圧し、電気的接続をした状態を示す。
従来法では、フィルム10の厚さ方向の導電に寄与する
導電性粒子1の密度が小さく、回路が微細になると接続
が得られない状態になる。また、フィルム10の表面の
凹凸が大きくなり、回路11上の電極12との接触が得
られ難くなる。本発明の製法では上記の問題点が改良さ
れ、微細な回路の電気的接続が得られる。
FIG. 2 (a) shows a state in which the anisotropic conductive resin film-shaped molded product of the present invention is inserted between the circuits 11 and pressed to make electrical connection. FIG. 2B shows a circuit 11 of an anisotropically conductive resin film-shaped molded product obtained by a conventional manufacturing method.
It shows a state in which it is inserted between and pressurized to make an electrical connection.
In the conventional method, the density of the conductive particles 1 that contribute to the conductivity in the thickness direction of the film 10 is low, and if the circuit becomes fine, connection cannot be obtained. In addition, the unevenness of the surface of the film 10 becomes large, and it becomes difficult to obtain contact with the electrode 12 on the circuit 11. The manufacturing method of the present invention improves the above-mentioned problems and enables electrical connection of fine circuits.

【0031】図3(a)は、上記の本発明の異方導電性
樹脂フィルム状成形物の製造工程のうち、本発明の請求
項1にかかる部分であり、導電性粒子1を粘着材2の層
に散布した図であり、導電性粒子1は粘着材2の粘着力
により固定されている。図3(b)は、本発明の異方導
電性樹脂フィルム状成形物の製造工程のうち、本発明の
請求項2にかかる部分であり、導電性粒子1は粘着材層
上に置かれたマスク4の透孔5の内部で粘着材2と接し
固定されている図である。導電性粒子1はブラシ等でマ
スク4の上を転動し、マスク4の透孔5に入れることが
出来る。よって、導電性粒子がフィルム面の所望の配列
で存在する異方導電性樹脂フィルム状成形物が得られ
る。
FIG. 3 (a) is a portion according to claim 1 of the present invention in the process of producing the anisotropically conductive resin film-shaped molded product of the present invention, in which the conductive particles 1 are attached to the adhesive material 2. It is the figure scattered on the layer of, and the conductive particles 1 are fixed by the adhesive force of the adhesive material 2. FIG. 3B is a portion according to claim 2 of the present invention in the process of producing the anisotropic conductive resin film-shaped molded product of the present invention, in which the conductive particles 1 are placed on the adhesive layer. FIG. 6 is a diagram in which the mask 4 is in contact with and fixed to the adhesive material 2 inside a through hole 5. The conductive particles 1 can be rolled on the mask 4 with a brush or the like and put into the through holes 5 of the mask 4. Therefore, an anisotropic conductive resin film-shaped molded product in which the conductive particles are present in a desired arrangement on the film surface can be obtained.

【0032】図3の(c)及び(d)は、本発明の請求
項3にかかる部分であり、粘着材の面上に導電性粒子の
粒径以上の厚さに導電性粒子の層を設けた後、その導電
性粒子層を粘着材面に押圧する工程を示したものであ
る。図3(c)は粘着材2の面上に導電性粒子1の粒径
以上の厚さに導電性粒子層を設けたときの図であり、図
3(d)は導電性粒子層を粘着材面にゴムロール6で押
圧する工程を示したものである。この工程により、導電
性粒子と粘着材層との接触面積を大きくし、導電性粒子
の固定を均一で確実なものにすると共に、導電性粒子間
に挟持され、粘着材層に接していない導電性粒子を押圧
し、粘着材層に強制的に接触せることで、異方導電性樹
脂フィルム状成形物中の導電性粒子の密度を大きくする
ことが出来る。また、粘着材層に接していない導電性粒
子を少なくすることが出来るので、導電に寄与しない余
剰の導電性粒子を除去し易くなる。
3 (c) and 3 (d) are portions according to claim 3 of the present invention, in which a layer of conductive particles is formed on the surface of the adhesive material to a thickness not less than the particle diameter of the conductive particles. It shows the step of pressing the conductive particle layer against the pressure-sensitive adhesive material surface after it is provided. FIG. 3C is a diagram when a conductive particle layer is provided on the surface of the adhesive material 2 to a thickness equal to or larger than the particle diameter of the conductive particles 1, and FIG. The process of pressing the material surface with the rubber roll 6 is shown. By this step, the contact area between the conductive particles and the pressure-sensitive adhesive layer is increased to make the fixing of the conductive particles uniform and reliable, and the conductive particles are sandwiched between the conductive particles and are not in contact with the pressure-sensitive adhesive layer. By pressing the conductive particles and forcibly bringing them into contact with the pressure-sensitive adhesive layer, the density of the conductive particles in the anisotropic conductive resin film-shaped molded article can be increased. Moreover, since it is possible to reduce the conductive particles that are not in contact with the adhesive layer, it becomes easy to remove the surplus conductive particles that do not contribute to the conductivity.

【0033】図3(e)は、本発明の請求項4にかかる
部分であり、粘着材2の面上に導電性粒子1の層を設け
た後、導電性粒子層を粘着材面に押圧し、導電性粒子1
の粒径の1/2以下の深さまで導電性粒子層を粘着材層
に埋め込ませる工程を示したものである。導電性粒子層
を粘着材層に埋め込ませることで、作製した異方導電性
樹脂フィルム状成形物の粘着材と接していた面におい
て、導電性粒子がフィルム面から突出した構造とするこ
とが出来、図2(a)における電極12と導電性粒子1
との電気的接続を確実なものとすることが出来る。ま
た、押圧する圧力を変化させることで、導電性粒子の埋
め込み量を自由に設定出来るので、導電性粒子の突出量
を最適に設定することが容易に出来る。
FIG. 3 (e) is a portion according to claim 4 of the present invention, in which after the layer of the conductive particles 1 is provided on the surface of the adhesive material 2, the conductive particle layer is pressed against the surface of the adhesive material. And conductive particles 1
3 shows a step of embedding the conductive particle layer in the pressure-sensitive adhesive layer to a depth of ½ or less of the particle diameter of. By embedding the conductive particle layer in the adhesive material layer, it is possible to form a structure in which the conductive particles are projected from the film surface on the surface of the anisotropic conductive resin film-shaped molded product that was in contact with the adhesive material. The electrode 12 and the conductive particle 1 in FIG.
The electrical connection with can be secured. Further, since the embedding amount of the conductive particles can be freely set by changing the pressing pressure, the protrusion amount of the conductive particles can be easily set optimally.

【0034】図3の(f)及び(g)は、本発明の請求
項5にかかる部分であり、導電性粒子を帯電体上に静電
気力により保持し、この帯電体を粘着材面に押圧し、導
電性粒子を粘着材面に転写する工程を示したものであ
る。図3(f)は導電性粒子1を帯電体7の上に静電気
力により保持したときの図であり、図3(g)はこの帯
電体7を粘着材2の面に押圧し、導電性粒子1を粘着材
2の面に転写する工程を示したものである。導電性粒子
と異なる電荷に帯電させた帯電体を導電性粒子に近接さ
せると、静電気力により帯電体上に導電性粒子が保持さ
れる。このとき帯電体上の導電性粒子は各々同一の電荷
に帯電するので、導電性粒子は互いに反発しあい、凝集
のない単一層状態で帯電体上に配列する。よって、この
帯電体上の導電性粒子を粘着材表面に転写することによ
り、凝集のない単一層状態の導電性粒子の配列を粘着材
面に形成することが出来、導電性粒子がフィルム面に均
一に分散した異方導電性樹脂フィルム状成形物が得られ
る。
FIGS. 3 (f) and 3 (g) are portions according to claim 5 of the present invention, in which conductive particles are held on a charged body by an electrostatic force and the charged body is pressed against the surface of the adhesive material. Then, the step of transferring the conductive particles to the surface of the adhesive material is shown. FIG. 3 (f) is a diagram when the conductive particles 1 are held on the charging body 7 by electrostatic force, and FIG. 3 (g) presses the charging body 7 against the surface of the adhesive material 2 to make the conductive material 7 conductive. It shows a process of transferring the particles 1 to the surface of the adhesive material 2. When a charged body charged with a different charge from that of the conductive particles is brought close to the conductive particles, the conductive particles are held on the charged body by electrostatic force. At this time, since the conductive particles on the charged body are charged to the same electric charge, the conductive particles repel each other and are arranged on the charged body in a single layer state without aggregation. Therefore, by transferring the conductive particles on the charged body to the surface of the adhesive material, an array of conductive particles in a single layer state without aggregation can be formed on the adhesive surface, and the conductive particles are formed on the film surface. An anisotropically conductive resin film-shaped molded product uniformly dispersed is obtained.

【0035】図3の(h)及び(i)は、本発明の請求
項6にかかる部分であり、帯電体上にマスクを設け、マ
スクの透孔の部分の帯電体上に導電性粒子を静電気力に
より保持し、この帯電体を粘着材面に押圧し、導電性粒
子を粘着材面に転写する工程を示したものである。図3
(h)は帯電体7の上にマスク4を設け、マスク4の透
孔部分の帯電体上に導電性粒子を静電気力により保持し
たときの図であり、図3(i)はこの帯電体7を粘着材
2の面に押圧し、導電性粒子1を粘着材面に転写する工
程を示したものである。マスクは帯電体を粘着材面に押
圧する工程の前に取り外す構造としてもよいし、図3
(i)に示したようにマスクを付けたまま粘着材面に押
圧してもよい。
FIGS. 3 (h) and 3 (i) show a portion according to claim 6 of the present invention, in which a mask is provided on the charged body, and conductive particles are provided on the charged body in the through hole portion of the mask. The figure shows a process of holding by electrostatic force, pressing the charged body against the surface of the adhesive material, and transferring the conductive particles to the surface of the adhesive material. Figure 3
FIG. 3H is a diagram when the mask 4 is provided on the charged body 7 and the conductive particles are held on the charged body in the through-hole portion of the mask 4 by electrostatic force. FIG. 7 shows a step of pressing 7 onto the surface of the adhesive material 2 to transfer the conductive particles 1 to the surface of the adhesive material. The mask may be removed before the step of pressing the charged body against the adhesive material surface.
As shown in (i), the surface of the adhesive may be pressed with the mask attached.

【0036】導電性粒子と異なる電荷に帯電させた帯電
体を導電性粒子に近接させると、静電気力により帯電体
上に導電性粒子が保持される。このとき、マスク上の導
電性粒子は表面に露出したマスクの透孔部分の帯電体上
に静電気力により引かれ、マスクの透孔部分に導電性粒
子が吸着した配列を形成する。マスクの帯電量を小さく
することで、マスク上に付着する粒子量を少なくするこ
とが可能である。またマスクと帯電体との帯電量の差を
大きくすることにより、導電性粒子の吸着力に差を設
け、空気の吹き付けによりマスク上に吸着した導電性粒
子のみを除去することが可能である。よって、この帯電
体上の導電性粒子を粘着材表面に転写することにより、
導電性粒子がフィルム面に所望の配列で存在する異方導
電性樹脂フィルム状成形物が得られる。
When a charged body charged with a charge different from that of the conductive particles is brought close to the conductive particles, the conductive particles are held on the charged body by electrostatic force. At this time, the conductive particles on the mask are attracted by the electrostatic force on the charged body in the through-hole portion of the mask exposed on the surface to form an array in which the conductive particles are adsorbed in the through-hole portion of the mask. By reducing the charge amount of the mask, it is possible to reduce the amount of particles attached to the mask. Further, by increasing the difference in the amount of charge between the mask and the charged body, it is possible to provide a difference in the attraction force of the conductive particles and remove only the conductive particles adsorbed on the mask by blowing air. Therefore, by transferring the conductive particles on the charged body to the surface of the adhesive material,
An anisotropic conductive resin film-shaped molded product in which conductive particles are present in a desired arrangement on the film surface can be obtained.

【0037】図4(a)は、本発明の請求項7にかかる
部分であり、導電性粒子1と粘着材2とを異なる電荷に
帯電させ、静電気力により粘着材2の面に導電性粒子1
を散布して導電性粒子層を設ける工程を示したものであ
る。この工程は図3(f)の帯電体7を帯電した粘着材
層とすることで同様の効果が達成出来、導電性粒子を転
写する工程無しに導電性粒子がフィルム面に均一に分散
した異方導電性樹脂フィルム状成形物が得られる。ま
た、図4(b)に示すように、図3(h)に示した帯電
体7を帯電した粘着材層とすることで同様の効果が達成
出来、導電性粒子を転写する工程無しに導電性粒子がフ
ィルム面に均一に分散した異方導電性樹脂フィルム状成
形物が得られる。
FIG. 4A is a portion according to claim 7 of the present invention, in which the conductive particles 1 and the adhesive material 2 are charged with different charges, and the conductive particles are attached to the surface of the adhesive material 2 by an electrostatic force. 1
3 shows a step of spraying to provide a conductive particle layer. In this step, the same effect can be achieved by using the charged body 7 of FIG. 3 (f) as a charged adhesive layer, and the conductive particles are uniformly dispersed on the film surface without the step of transferring the conductive particles. A directional conductive resin film-shaped molded product is obtained. Further, as shown in FIG. 4 (b), the same effect can be achieved by using the charged body 7 shown in FIG. 3 (h) as a charged adhesive layer, and the conductive particles can be transferred without the step of transferring the conductive particles. An anisotropically conductive resin film-shaped molded product in which the conductive particles are uniformly dispersed on the film surface is obtained.

【0038】導電性粒子と異なる電荷に帯電させた粘着
材層を導電性粒子に近接させると、静電気力により粘着
材上に導電性粒子が保持される。このときマスク上の導
電性粒子は表面に露出したマスク上の透孔部分の粘着材
上に静電気力により引かれ、マスクの透孔部分にのみ導
電性粒子が粘着した配列を形成する。マスクの帯電量を
小さくすることでマスク上に付着する粒子量を少なくす
ることが可能であり、マスクと導電性粒子とは粘着して
いないので、空気の吹き付けやブラシを用いて容易に除
去出来る。よって、導電性粒子がフィルム面に所望の配
列で存在する異方導電性樹脂フィルム状成形物が得られ
る。
When the pressure-sensitive adhesive layer charged to a different charge from the conductive particles is brought close to the conductive particles, the conductive particles are held on the pressure-sensitive adhesive by electrostatic force. At this time, the conductive particles on the mask are attracted by the electrostatic force on the adhesive material of the through holes on the mask exposed on the surface, and an array in which the conductive particles adhere only on the through holes of the mask is formed. It is possible to reduce the amount of particles adhering to the mask by reducing the charge amount of the mask, and since the mask and conductive particles are not adhered, it can be easily removed by blowing air or using a brush. . Therefore, an anisotropic conductive resin film-shaped molded product in which conductive particles are present in a desired arrangement on the film surface can be obtained.

【0039】図4(c)は、本発明の請求項8にかかる
部分であり、導電性粒子に代えて繊維状導電体を用い、
繊維状導電体8と粘着材2とを異なる電荷に帯電させ、
静電気力により粘着材2の面に繊維状導電体8を散布
し、導電性粒子層を設ける工程を示したものである。繊
維状導電体は、静電気力により帯電体上に散布したとき
に繊維状導電体同士の静電気力による反発で帯電体面に
対し長軸が垂直になった状態で直立する。この繊維状導
電体を散布した帯電体を粘着材面に押圧するか、又は図
3(l)に示すように帯電体を粘着材2の面とすること
により、粘着材面に繊維状導電体が直立した状態で固定
することが出来る。よって、この方法により、フィルム
の厚さ方向に繊維状導電体が直立した状態の異方導電性
樹脂フィルム状成形物が得られる。このとき、繊維状導
電体の径を小さくすることで、導電体の面内の配列密度
を高くすることが出来、繊維状導電体の長軸の長さを長
くすることでフィルム厚さを厚くし、フィルム強度を向
上することが出来る。
FIG. 4 (c) is a portion according to claim 8 of the present invention, in which fibrous conductors are used in place of the conductive particles,
The fibrous conductor 8 and the adhesive material 2 are charged with different charges,
It shows a process of spreading the fibrous conductor 8 on the surface of the adhesive material 2 by an electrostatic force and providing a conductive particle layer. The fibrous conductor stands upright with its major axis perpendicular to the surface of the charged body due to repulsion by the electrostatic force between the fibrous conductors when sprayed on the charged body by electrostatic force. By pressing the charged body on which the fibrous conductors are dispersed onto the surface of the adhesive material, or by using the charged body as the surface of the adhesive material 2 as shown in FIG. Can be fixed in an upright position. Therefore, according to this method, an anisotropically conductive resin film-like molded product in which the fibrous conductor is upright in the film thickness direction can be obtained. At this time, by reducing the diameter of the fibrous conductor, it is possible to increase the array density in the plane of the conductor, and increase the length of the long axis of the fibrous conductor to increase the film thickness. However, the film strength can be improved.

【0040】図4の(d)、(e)及び(f)は、本発
明の請求項9にかかる部分であり、導電性粒子又は繊維
状導電体が、加熱又は加圧により除去し得る電気絶縁層
であらかじめ表面を被覆した導電性粒子、繊維状導電体
又はこれらの凝集体としたときの工程を示したものであ
る。図4(d)は電気絶縁層(絶縁層)9を形成した導
電性粒子1を粘着材2の面に散布した図であり、図4
(e)は得られた試料を回路11の間に挿入したときの
図である。図4(f)は加熱加圧により絶縁層9を流動
させ、回路11間の電気的接続がなされている状態を示
した図である。絶縁層はフィルム形成樹脂溶液に溶解し
ないので、絶縁層を保持した状態でフィルム形成樹脂溶
液内に存在し、且つ粒子が粘着材により固定されている
ので、粒子同士がフィルム形成樹脂溶液内で凝集するこ
ともなく、フィルム面内に均一に分散した状態になる。
よって、導電性粒子同士が接触する密な充填をしても、
粒子間の絶縁層により面方向の絶縁性が保持される。相
対峙する電極間の電気的接続は加圧又は加熱加圧下で行
い、粒子表面の絶縁層を流動除去して得られる。
4 (d), (e) and (f) are parts according to claim 9 of the present invention, in which the conductive particles or fibrous conductors can be removed by heating or pressurization. It shows the steps for forming conductive particles, fibrous conductors, or aggregates thereof whose surface is previously coated with an insulating layer. FIG. 4D is a diagram in which the conductive particles 1 on which the electric insulating layer (insulating layer) 9 is formed are scattered on the surface of the adhesive material 2.
(E) is a diagram when the obtained sample is inserted between the circuits 11. FIG. 4F is a diagram showing a state in which the insulating layer 9 is caused to flow by heating and pressurization, and the circuits 11 are electrically connected. Since the insulating layer does not dissolve in the film-forming resin solution, it exists in the film-forming resin solution while holding the insulating layer, and since the particles are fixed by the adhesive material, the particles agglomerate in the film-forming resin solution. Without doing so, the film is uniformly dispersed in the plane of the film.
Therefore, even if the conductive particles are densely packed in contact with each other,
Insulation in the plane direction is maintained by the insulating layer between the particles. Electrical connection between the electrodes facing each other is performed under pressure or under heat and pressure, and the insulating layer on the particle surface is fluidized and removed.

【0041】図4の(g)及び(h)は、本発明の請求
項10にかかる部分であり、導電性粒子又は繊維状導電
体があらかじめ電気絶縁層で表面を被覆した導電性粒
子、繊維状導電体又はこれらの凝集体であり、樹脂フィ
ルム状成形物の表面及び裏面を取り除いて、その厚さを
導電性粒子の粒径又は繊維状導電体の繊維長以下にする
と共に、樹脂フィルム状成形物の表面及び裏面に露出し
た導電性粒子又は繊維状導電体の絶縁層を取り除いたと
きの工程を示したものである。図4(g)は、絶縁層9
で表面を被覆した導電性粒子1を用いて得られたフィル
ム状成形物で、このフィルム表面に露出した絶縁層9を
取り除いた状態が図4(h)である。絶縁層はフィルム
形成樹脂溶液に溶解しないので、絶縁層を保持した状態
でフィルム形成樹脂溶液内に存在し、且つ粒子が粘着材
により固定されているので、粒子同士がフィルム形成樹
脂溶液内で凝集することもなく、フィルム面内に均一に
分散した状態になる。
4 (g) and 4 (h) are portions according to claim 10 of the present invention, in which conductive particles or fibrous conductors are coated with an electrically insulating layer in advance. A conductor or an aggregate thereof, by removing the front surface and the back surface of the resin film-shaped molded article to make the thickness equal to or smaller than the particle diameter of the conductive particles or the fiber length of the fibrous conductor, and the resin film shape. It shows the process when the insulating layer of the conductive particles or the fibrous conductor exposed on the front surface and the back surface of the molded product is removed. FIG. 4G shows the insulating layer 9
FIG. 4 (h) shows a film-shaped molded product obtained by using the conductive particles 1 whose surface is covered with 1. The insulating layer 9 exposed on the film surface is removed. Since the insulating layer does not dissolve in the film-forming resin solution, it exists in the film-forming resin solution while holding the insulating layer, and since the particles are fixed by the adhesive material, the particles agglomerate in the film-forming resin solution. Without doing so, the film is uniformly dispersed in the plane of the film.

【0042】よって、導電性粒子同士が接触する密な充
填をしても、粒子間の絶縁被覆層により面方向の絶縁性
が保持される。絶縁層はフィルム形成樹脂と相溶しない
樹脂を選択しているので、適当な溶剤を選択することで
フィルム表面に露出した絶縁層だけを溶解除去すること
が可能である。また、溶解性が高い溶剤やプラズマ処理
等の物理的方法で導電性粒子表面のフィルム形成樹脂及
び絶縁層を同時に除去することも可能である。この方法
によれば、電気的接続時に絶縁層を除去することが困難
な場合であっても、絶縁層で被覆した導電性粒子を用い
て導電点密度の高い異方導電性樹脂フィルム状成形物が
使用出来る。
Therefore, even if the conductive particles are densely packed so that they are in contact with each other, the insulating coating layer between the particles maintains the in-plane insulating property. Since a resin that is incompatible with the film-forming resin is selected for the insulating layer, it is possible to dissolve and remove only the insulating layer exposed on the film surface by selecting an appropriate solvent. It is also possible to simultaneously remove the film-forming resin and the insulating layer on the surface of the conductive particles by a physical method such as a solvent having high solubility or plasma treatment. According to this method, even if it is difficult to remove the insulating layer at the time of electrical connection, an anisotropic conductive resin film-like molded article having a high conductive point density is obtained by using the conductive particles coated with the insulating layer. Can be used.

【0043】図4(i)は、本発明の請求項11にかか
る部分であり、加熱加圧又は光照射により接着性を有す
るフィルム形成樹脂13を用いた異方導電性樹脂フィル
ム状成形物の断面構造を示した。フィルム形成樹脂に加
熱加圧又は光照射によって溶融、硬化する熱可塑性樹
脂、未硬化の熱硬化性樹脂、光硬化性樹脂等を用いるこ
とで、電極間の接着及び電気的接続を同時に達成するこ
とが可能である。具体的には、本発明の異方導電性樹脂
フィルム状成形物を電極間に挿入、加圧により挟持した
状態で、導電性粒子は電極間に挟持され、電気的接続が
得られる。このときの加圧により導電性粒子が変形する
か又は電極内に導電性粒子が埋め込まれ、電極とフィル
ム形成樹脂とが接触した状態にする。加圧しながら加熱
又は光照射によりフィルム形成樹脂を硬化して電極間を
接着した状態に保持する。加圧による電気的な接続工程
と加熱又は光照射による電極間の接着工程は同時に行っ
てもよく、この工程間に接続する電子部品の電気的機能
検査等を行う工程を設けることが出来る。
FIG. 4 (i) is a portion according to claim 11 of the present invention, which is an anisotropic conductive resin film-like molded article using a film-forming resin 13 having adhesiveness by heating and pressurizing or light irradiation. The cross-sectional structure is shown. Achieving adhesion and electrical connection between electrodes at the same time by using a thermoplastic resin that is melted and cured by heat and pressure or light irradiation for the film forming resin, uncured thermosetting resin, photocurable resin, etc. Is possible. Specifically, the conductive particles are sandwiched between the electrodes in a state where the anisotropically conductive resin film-shaped molded product of the present invention is inserted between the electrodes and sandwiched by pressure, and electrical connection is obtained. The conductive particles are deformed by the pressurization at this time, or the conductive particles are embedded in the electrode so that the electrode and the film-forming resin are in contact with each other. While applying pressure, the film-forming resin is cured by heating or light irradiation, and the state where the electrodes are bonded is maintained. The step of electrically connecting by pressure and the step of adhering the electrodes by heating or light irradiation may be performed at the same time, and a step of performing an electrical function inspection or the like of the electronic component connected between these steps can be provided.

【0044】[0044]

【実施例】以下、本発明の実施例を説明するが、本発明
はこれにより限定されない。先ず、この実施例及び比較
例で使用する材料及び条件を以下に示す。粘着材は厚さ
10μmのポリイソブチレン粘着材(ビスタネックス、
トーネックス(株))又は厚さ10μmのシリコーン系粘
着材(軽剥離タイプ、東芝シリコーン(株))を厚さ50
μmのPET製基材フィルム上に塗工して用いる。導電
性粒子は平均粒径40μmのガスアトマイズ法で作製さ
れたニッケル(Ni)粒子、平均繊維長40μmで繊維
径約20μmのニッケル繊維状導電体、又は平均粒径4
0μmのポリスチレン球状粒子の表面に0.2μmの金
の層を設けたプラスチック導電性粒子を用いた。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited thereto. First, the materials and conditions used in this example and comparative example are shown below. The adhesive material is a 10 μm thick polyisobutylene adhesive material (Vistanex,
Tonex Co., Ltd.) or a 10 μm thick silicone adhesive (light release type, Toshiba Silicone Co., Ltd.) with a thickness of 50
It is used by coating on a PET base film having a thickness of μm. The conductive particles are nickel (Ni) particles having an average particle diameter of 40 μm and produced by a gas atomizing method, a nickel fibrous conductor having an average fiber length of 40 μm and a fiber diameter of about 20 μm, or an average particle diameter of 4
Plastic conductive particles in which a 0.2 μm gold layer was provided on the surface of 0 μm polystyrene spherical particles were used.

【0045】Ni粒子の表面に絶縁層を設けた絶縁被覆
導電性粒子は、絶縁被覆材としてCM4000(メタノ
ール可溶性ナイロン、東レ(株))を使用し、メタノール
を溶剤としてコートマイザ(フロイント産業(株))によ
り湿式で厚さ約0.5μmの絶縁層を着けた。フィルム
形成樹脂はポリアミック酸のDMF溶液を塗工後、乾
燥、イミド化して得られたポリイミド樹脂、又はエピコ
ート1001/エピコート828/ニポール1032
(ニトリルゴム、日本ゼオン(株))/ヒタノール240
0(アルキルフェノール、日立化成工業(株))/キュア
ゾール2PZ(2−フェニルイミダゾール、四国化成工
業(株))=50/20/20/10/2の配合比のフィ
ルム形成樹脂トルエン溶液を塗工後、乾燥して得られた
熱硬化性エポキシ樹脂の何れかを用いた。
Insulating coating conductive particles having an insulating layer on the surface of Ni particles, CM4000 (methanol-soluble nylon, Toray Co., Ltd.) was used as an insulating coating material, and Coatmizer (Freund Industrial Co., Ltd.) was used with methanol as a solvent. )), A wet insulating layer having a thickness of about 0.5 μm was applied. The film-forming resin is a polyimide resin obtained by applying a DMF solution of polyamic acid, followed by drying and imidization, or Epicoat 1001 / Epicoat 828 / Nipol 1032
(Nitrile rubber, Nippon Zeon Co., Ltd.) / Hitanol 240
0 (alkylphenol, Hitachi Chemical Co., Ltd.) / Curezol 2PZ (2-phenylimidazole, Shikoku Chemical Co., Ltd.) = 50/20/20/10/2 Any of the thermosetting epoxy resins obtained by drying was used.

【0046】製作工程は各実施例に具体的に示すが、粘
着材及びフィルム形成樹脂の塗工はアプリケーター式塗
工機を使用した。ポリアミック酸乾燥条件は130℃で
10分、脱水イミド化条件は400℃10分とし、ポリ
アミック酸塗布面側の導電性粒子の表面を露出させるた
めのポリイミドの分解除去は水酸化ナトリウム水溶液へ
の浸漬により行った。また、熱硬化性エポキシ樹脂の塗
工後の乾燥条件は80℃10分とし、フィルム形成樹脂
塗布面側の導電性粒子表面を露出させる方法はトルエン
を含浸した不織布で拭き、溶解除去することにより行っ
た。得られた異方導電性樹脂フィルム状成形物の評価
は、ライン幅50μm、ピッチ100μm、厚さ35μ
mの銅回路を有する全回路幅50mmのフレキシブル回路
板(FPC)を使用し、この回路板同士の回路を対向し
て位置合わせを行った後、この回路間に得られた異方導
電性樹脂フィルム状成形物を挿入し、10kg/cm2の加
圧により回路を圧接した状態で接続抵抗及び絶縁抵抗を
測定した。
The manufacturing process is specifically shown in each example, but an applicator type coating machine was used for coating the adhesive material and the film-forming resin. The polyamic acid drying condition is 130 ° C. for 10 minutes, the dehydration imidization condition is 400 ° C. for 10 minutes, and the decomposition and removal of the polyimide for exposing the surface of the conductive particles on the polyamic acid application surface is performed by dipping in a sodium hydroxide aqueous solution. Went by. Further, the drying condition after coating the thermosetting epoxy resin is 80 ° C. for 10 minutes, and the method of exposing the conductive particle surface on the film forming resin coating surface side is to wipe with a non-woven fabric impregnated with toluene and remove by dissolving. went. The obtained anisotropic conductive resin film-shaped molded product was evaluated by a line width of 50 μm, a pitch of 100 μm, and a thickness of 35 μm.
An anisotropic conductive resin obtained by using a flexible circuit board (FPC) having a total circuit width of 50 mm having a copper circuit of m, and positioning the circuits of the circuit boards facing each other. The film-shaped molded product was inserted, and the connection resistance and the insulation resistance were measured in a state where the circuit was pressure-contacted with a pressure of 10 kg / cm 2 .

【0047】但し、加熱加圧により除去される絶縁被覆
導電性粒子を用いた実施例9では、試料を回路間に挿入
し加圧加熱状態(10kg/cm2、150℃)で30秒間
保持して絶縁被覆層を除去した後、加圧したまま室温に
冷却して測定した。また電気的な接続と同時に回路間の
接着による機械的接続を得る目的の実施例11では、試
料を評価用回路間に挿入し、加圧状態(10kg/cm2
で行ったときと、加圧加熱状態(10kg/cm2、170
℃)で30秒間保持して回路間を試料により接着後、常
圧で室温に冷却したときの二度測定した。測定条件は、
一対のFPC間の接続抵抗を測定電流1mAで測定し、
隣接した接続回路間の絶縁抵抗を測定電圧100Vで測
定した。この結果は、すべての実施例及び比較例につい
て表1に示した。
However, in Example 9 in which the insulating coated conductive particles removed by heating and pressing were used, the sample was inserted between the circuits and kept under pressure and heating (10 kg / cm 2 , 150 ° C.) for 30 seconds. After removing the insulating coating layer, measurement was performed by cooling to room temperature while applying pressure. Further, in Example 11 for the purpose of obtaining a mechanical connection by adhesion between circuits at the same time as electrical connection, the sample was inserted between the circuits for evaluation, and a pressure state (10 kg / cm 2 ) was applied.
And when heated at pressure (10 kg / cm 2 , 170
(° C) for 30 seconds, the circuits were adhered to each other by the sample, and the temperature was measured twice when cooled to room temperature under normal pressure. The measurement conditions are
The connection resistance between a pair of FPCs is measured with a measurement current of 1 mA,
The insulation resistance between adjacent connection circuits was measured at a measurement voltage of 100V. The results are shown in Table 1 for all the examples and comparative examples.

【0048】実施例1 目開き50μmの篩を通して粉体を散布する乾式の粒子
散布装置を用い、Ni粒子をPETフィルム上のポリイ
ソブチレン塗布面に散布した。この粒子散布面にポリア
ミック酸溶液を塗工し、乾燥後ポリイソブチレンとの界
面から剥離し、熱処理によりイミド化した。このフィル
ムはポリイミド部分で約25μmの厚さがあったが、ポ
リアミック酸溶液塗布面側は粒子表面にポリイミドの薄
膜が覆っていたので、水酸化ナトリウム水溶液に浸漬
し、表層のポリイミドを部分的に分解除去し、粒子表面
を露出させた。得られた試料の電気特性の評価は、評価
用回路間に挿入し、加圧状態(10kg/cm2)で行っ
た。
Example 1 Ni particles were sprayed on the polyisobutylene-coated surface of a PET film using a dry particle spraying device for spraying powder through a sieve having openings of 50 μm. A polyamic acid solution was applied to the particle-dispersed surface, dried, and then peeled from the interface with polyisobutylene and imidized by heat treatment. This film had a thickness of about 25 μm in the polyimide portion, but since the thin film of polyimide covered the particle surface on the polyamic acid solution coated surface side, it was immersed in an aqueous sodium hydroxide solution to partially cover the polyimide on the surface layer. It was decomposed and removed to expose the particle surface. The electrical characteristics of the obtained sample were evaluated by inserting it between evaluation circuits and applying pressure (10 kg / cm 2 ).

【0049】実施例2 PETフィルム上のポリイソブチレン塗布面にマスク
(目開き50μmの非帯電処理をしたナイロンメッシ
ュ)を密着させ、目開き50μmの篩を通して粉体を散
布する乾式の粒子散布装置を用いて、Ni粒子をマスク
面に散布した。散布後、除電ブラシを用いてマスク上の
粒子を転動させ、マスクの透孔内に多くの粒子が入るよ
うにした。次に、粘着材に保持されていない粒子を圧縮
エアーの吹き付けにより除去した後、粘着材面からマス
クを剥離した。この粒子散布面にポリアミック酸溶液を
塗工し、乾燥後ポリイソブチレンとの界面から剥離し、
熱処理によりイミド化した。このフィルムはポリイミド
部分で約25μmの厚さがあったが、ポリアミック酸溶
液塗布面側は粒子表面にポリイミドの薄膜が覆っていた
ので、水酸化ナトリウム水溶液に浸漬し、表層のポリイ
ミドを部分的に分解除去し、粒子表面を露出させた。得
られた試料の電気特性の評価は、評価用回路間に挿入
し、加圧状態(10kg/cm2)で行った。
Example 2 A dry particle-dispersing apparatus was used in which a mask (a non-charged nylon mesh having openings of 50 μm) was brought into close contact with the polyisobutylene-coated surface of a PET film, and the powder was sprayed through a sieve having openings of 50 μm. The Ni particles were used to spray the mask surface. After spraying, the particles on the mask were tumbled using a static elimination brush so that many particles would enter the through holes of the mask. Next, after removing particles not held by the adhesive material by blowing compressed air, the mask was peeled off from the surface of the adhesive material. A polyamic acid solution is applied to the particle-dispersed surface, peeled off from the interface with polyisobutylene after drying,
It was imidized by heat treatment. This film had a thickness of about 25 μm in the polyimide portion, but since the thin film of polyimide covered the particle surface on the polyamic acid solution coated surface side, it was immersed in an aqueous sodium hydroxide solution to partially cover the polyimide on the surface layer. It was decomposed and removed to expose the particle surface. The electrical characteristics of the obtained sample were evaluated by inserting it between evaluation circuits and applying pressure (10 kg / cm 2 ).

【0050】実施例3 目開き50μmの篩を通して粉体を散布する乾式の粒子
散布装置を用い、Ni粒子をPETフィルム上のポリイ
ソブチレン塗布面に散布した。このとき、散布されたN
i粒子同士が3個から10個程度凝集して局所的に層状
をなした部分が各所に存在していた。この粒子散布面上
に25μmのカバー用PETフィルムを被せて、ゴムロ
ール間に挿入し、1kg/cm2の圧力で押圧した。この
後、カバー用PETフィルムを剥離し、Ni粒子の散布
状態を観察したが、Ni粒子は粘着材面に押圧されて殆
ど1層になっていた。このNi粒子散布面にポリアミッ
ク酸のDMF溶液を塗工し、乾燥後ポリイソブチレンと
の界面から剥離し、熱処理によりイミド化した。このフ
ィルムはポリイミド部分で約25μmの厚さがあった
が、ポリアミック酸溶液塗布面側はNi粒子表面にポリ
イミドの薄膜が覆っていたので、水酸化ナトリウム水溶
液に浸漬し、表層のポリイミドを部分的に分解除去し、
粒子表面を露出させた。得られた試料の電気特性の評価
は、評価用回路間に挿入し、加圧状態(10kg/cm2
で行った。
Example 3 Ni particles were dispersed on the polyisobutylene-coated surface of the PET film by using a dry type particle-dispersing apparatus which sprays the powder through a sieve having openings of 50 μm. At this time, the scattered N
The i-particles were aggregated to each other in a number of 3 to 10 and locally formed layered portions in various places. Covered with a PET film for 25μm cover into the particles scatter plane, is inserted between rubber roll was pressed under a pressure of 1 kg / cm 2. Then, the PET film for a cover was peeled off, and the dispersion state of Ni particles was observed. The Ni particles were pressed by the surface of the adhesive material to form almost one layer. A DMF solution of polyamic acid was applied to the Ni particle-dispersed surface, dried, and then peeled off from the interface with polyisobutylene, followed by heat treatment for imidization. This film had a thickness of about 25 μm in the polyimide portion, but since the polyimide particle thin film covered the Ni particle surface on the polyamic acid solution coated surface side, it was immersed in an aqueous sodium hydroxide solution to partially remove the polyimide on the surface layer. Disassembled and removed into
The particle surface was exposed. The electrical characteristics of the obtained sample were evaluated by inserting it between the evaluation circuits and applying pressure (10 kg / cm 2 ).
I went there.

【0051】実施例4 目開き50μmの篩を通して粉体を散布する乾式の粒子
散布装置を用い、Ni粒子をPETフィルム上のポリイ
ソブチレン塗布面に散布した。このNi粒子散布面の上
に25μmのカバー用PETフィルムを被せてゴムロー
ル間に挿入し、5kg/cm2の圧力で押圧した。この後、
カバー用PETフィルムを剥離し、Ni粒子の散布状態
を観察したが、Ni粒子は殆ど1層で粘着材内に平均で
約5μm埋め込まれていた。この粒子散布面にポリアミ
ック酸のDMF溶液を塗工し、乾燥後ポリイソブチレン
面から剥離し、熱処理によりイミド化した。このフィル
ムはポリイミド部分で約25μmの厚さがあったが、ポ
リアミック酸溶液塗布面側は粒子表面にポリイミドの薄
膜が覆っていたので、水酸化ナトリウム水溶液に浸漬
し、表層のポリイミドを部分的に分解除去し、粒子表面
を露出させた。得られた試料の電気特性の評価は、評価
用回路間に挿入し、加圧状態(10kg/cm2)で行っ
た。
Example 4 Ni particles were sprayed on the polyisobutylene-coated surface of a PET film by using a dry particle spraying device which sprays powder through a sieve having openings of 50 μm. Inserted between a rubber roll is covered with a PET film for 25μm cover over the Ni particles spread side, pressed with a pressure of 5 kg / cm 2. After this,
The PET film for a cover was peeled off, and the dispersion state of Ni particles was observed. Almost one layer of Ni particles was embedded in the adhesive material on the average of about 5 μm. A DMF solution of polyamic acid was applied to the particle-dispersed surface, dried, and then peeled from the polyisobutylene surface, followed by heat treatment for imidization. This film had a thickness of about 25 μm in the polyimide portion, but since the thin film of polyimide covered the particle surface on the polyamic acid solution coated surface side, it was immersed in an aqueous sodium hydroxide solution to partially cover the polyimide on the surface layer. It was decomposed and removed to expose the particle surface. The electrical characteristics of the obtained sample were evaluated by inserting it between evaluation circuits and applying pressure (10 kg / cm 2 ).

【0052】実施例5 目開き50μmの篩を通して粉体を散布する乾式の粒子
散布装置を用い、Ni粒子をアルミニウム箔上に散布し
た。このNi粒子散布面の上方に、コロナ帯電装置を用
いて+3kVに帯電させたアクリル板を約1cmの距離を
置いてNi粒子散布面に対向するように設置した。この
とき、アルミニウム箔上のNi粒子は静電気力によりア
クリル板面に吸着した。また、アクリル板面に吸着した
Ni粒子はそれぞれ同電位に帯電するので、導電性粒子
間に静電気による反発力が生じ、粒子間の凝集がなく、
1層の粒子層を形成していた。この粒子面をポリイソブ
チレンの粘着材面に押圧してNi粒子を粘着材面に転写
した。この粒子転写面にポリアミック酸の溶液を塗工
し、乾燥後ポリイソブチレン面から剥離し、熱処理によ
りイミド化した。このフィルムはポリイミド部分で約2
5μmの厚さがあったが、ポリアミック酸溶液塗布面側
は粒子表面にポリイミドの薄膜が覆っていたので、水酸
化ナトリウム水溶液に浸漬し、表層のポリイミドを部分
的に分解除去して、粒子表面を露出させた。得られた試
料の電気特性の評価は、評価用回路間に挿入し、加圧状
態(10kg/cm2)で行った。
Example 5 Ni particles were sprayed on an aluminum foil using a dry particle spraying device for spraying powder through a sieve having openings of 50 μm. An acrylic plate charged to +3 kV using a corona charging device was placed above the Ni particle-dispersed surface so as to face the Ni particle-dispersed surface at a distance of about 1 cm. At this time, Ni particles on the aluminum foil were adsorbed on the acrylic plate surface by electrostatic force. Further, since the Ni particles adsorbed on the acrylic plate surface are charged to the same potential, repulsive force due to static electricity is generated between the conductive particles, and there is no agglomeration between particles,
One particle layer was formed. The particle surface was pressed against the pressure sensitive adhesive surface of polyisobutylene to transfer the Ni particles onto the pressure sensitive adhesive surface. A solution of polyamic acid was applied to the particle transfer surface, dried, and then peeled off from the polyisobutylene surface, followed by heat treatment for imidization. This film is about 2 in the polyimide part
Although it had a thickness of 5 μm, the surface of the polyamic acid solution coated surface was covered with a thin film of polyimide, so it was immersed in an aqueous sodium hydroxide solution to partially decompose and remove the surface polyimide, Exposed. The electrical characteristics of the obtained sample were evaluated by inserting it between evaluation circuits and applying pressure (10 kg / cm 2 ).

【0053】実施例6 目開き50μmの篩を通して粉体を散布する乾式の粒子
散布装置を用い、Ni粒子をアルミニウム箔上に散布し
た。次に、アクリル板とマスク(目開き50μmのステ
ンレス製メッシュ)とを張り合わせた板のマスク面側を
コロナ帯電装置を用いて+3kVに帯電させ、Ni粒子
散布面の上方に、マスク面が約1cmの距離を置いてNi
粒子散布面に対向するように設置した。このとき、アル
ミニウム箔上のNi粒子は静電気力によりマスクの透孔
部に吸着した。また、マスク面に吸着したNi粒子はそ
れぞれ同電位に帯電するので、Ni粒子間に静電気によ
る反発力が生じ、粒子間の凝集がなく、1層の粒子層を
形成していた。この粒子面をポリイソブチレンの粘着材
面に押圧してNi粒子を粘着材面に転写した。この粒子
転写面にポリアミック酸のDMF溶液を塗工し、乾燥後
ポリイソブチレン面から剥離し、熱処理によりイミド化
した。このフィルムは、ポリイミド部分で約25μmの
厚さがあったが、ポリアミック酸溶液塗布面側は粒子表
面にポリイミドの薄膜が覆っていたので、水酸化ナトリ
ウム水溶液に浸漬し、表層のポリイミドを部分的に分解
除去し、粒子表面を露出させた。得られた試料の電気特
性の評価は、評価用回路間に挿入し、加圧状態(10k
g/cm2)で行った。
Example 6 Ni particles were sprayed on an aluminum foil using a dry particle spraying device for spraying powder through a sieve having openings of 50 μm. Next, the mask surface side of the plate in which the acrylic plate and the mask (stainless steel mesh having a mesh size of 50 μm) are laminated is charged to +3 kV using a corona charging device, and the mask surface is about 1 cm above the Ni particle dispersion surface. At a distance of Ni
It was installed so as to face the particle-dispersed surface. At this time, the Ni particles on the aluminum foil were adsorbed to the through holes of the mask by electrostatic force. Further, since the Ni particles adsorbed on the mask surface are charged to the same potential, a repulsive force due to static electricity is generated between the Ni particles, and there is no agglomeration between particles to form one particle layer. The particle surface was pressed against the pressure sensitive adhesive surface of polyisobutylene to transfer the Ni particles onto the pressure sensitive adhesive surface. A DMF solution of polyamic acid was applied to the particle transfer surface, dried, and then peeled from the polyisobutylene surface and imidized by heat treatment. This film had a thickness of about 25 μm at the polyimide portion, but since the polyimide thin film covered the particle surface on the polyamic acid solution coated surface side, it was immersed in an aqueous sodium hydroxide solution to partially remove the polyimide on the surface layer. It was decomposed and removed to expose the particle surface. The electrical characteristics of the obtained sample were evaluated by inserting it between evaluation circuits and applying a pressure (10 k
g / cm 2 ).

【0054】実施例7 Ni粒子を目開き50μmの篩を通して粉体を散布する
乾式の粒子散布装置を用いて、アルミニウム箔上に散布
した。次に、PETフィルム上のポリイソブチレン塗布
面に密着させたマスク(ナイロン製、目開き50μm)
のマスク面側をコロナ帯電装置を用いて+3kVに帯電
させ、Ni粒子散布面の上方に、マスク面が約1cmの距
離を置いてNi粒子散布面に対向するように設置した。
このときアルミニウム箔上のNi粒子は静電気力により
マスクの孔内に入り、粘着材に粘着固定した。また、粘
着材面に固定したNi粒子はそれぞれ同電位に帯電する
ので、Ni粒子間に静電気による反発力が生じ、粒子間
の凝集がなく、1層の粒子層を形成していた。次に粘着
材面からマスクを剥離した。この粒子散布面にポリアミ
ック酸溶液を塗工し、乾燥後ポリイソブチレン面から剥
離し、熱処理によりイミド化した。このフィルムはポリ
イミド部分で約25μmの厚さがあったが、ポリアミッ
ク酸溶液塗布面側は粒子表面にポリイミドの薄膜が覆っ
ていたので、水酸化ナトリウム水溶液に浸漬し、表層の
ポリイミドを部分的に分解除去し、粒子表面を露出させ
た。得られた試料の電気特性の評価は評価用回路間に挿
入し、加圧状態(10kg/cm2)で行った。
Example 7 Ni particles were sprayed on an aluminum foil using a dry particle spraying device which sprays a powder through a sieve having openings of 50 μm. Next, a mask (made of nylon, opening 50 μm) closely attached to the polyisobutylene coated surface on the PET film.
The mask surface side of was charged to +3 kV using a corona charging device, and was placed above the Ni particle-dispersed surface such that the mask surface was spaced about 1 cm away from the Ni particle-dispersed surface.
At this time, the Ni particles on the aluminum foil entered into the holes of the mask by electrostatic force and were adhesively fixed to the adhesive material. Further, since the Ni particles fixed to the surface of the adhesive material are charged to the same potential, a repulsive force due to static electricity is generated between the Ni particles, and there is no agglomeration between particles to form one particle layer. Next, the mask was peeled off from the adhesive material surface. A polyamic acid solution was applied to the particle-dispersed surface, dried, peeled off from the polyisobutylene surface, and heat-treated to be imidized. This film had a thickness of about 25 μm in the polyimide portion, but since the thin film of polyimide covered the particle surface on the polyamic acid solution coated surface side, it was immersed in an aqueous sodium hydroxide solution to partially cover the polyimide on the surface layer. It was decomposed and removed to expose the particle surface. The electrical characteristics of the obtained sample were evaluated by inserting it between the evaluation circuits and applying pressure (10 kg / cm 2 ).

【0055】実施例8 目開き50μmの篩を通して粉体を散布する乾式の粒子
散布装置を用いて、繊維状導電体をアルミニウム箔上に
散布した。次に、PETフィルム上のポリイソブチレン
塗布面に密着させたマスク(目開き50μmのナイロン
製メッシュ)のマスク面側をコロナ帯電装置を用いて+
3kVに帯電させ、繊維状導電体の上方に、マスク面が
約1cmの距離を置いて繊維状導電体散布面に対向するよ
うに設置した。このとき、アルミニウム箔上の繊維状導
電体は静電気力によりマスクの孔内に入り、粘着材に粘
着固定した。このとき、繊維状導電体は粘着材面にほぼ
直立し、粘着材中に数μm埋まった状態で固定されてい
た。また、粘着材面に固定した繊維状導電体はそれぞれ
同電位に帯電するので、繊維状導電体間に静電気による
反発力が生じ、繊維状導電体間の凝集がなく1層の粒子
層を形成していた。次に、粘着材面からマスクを剥離し
た。この粒子散布面にポリアミック酸溶液を塗工し、乾
燥後ポリイソブチレン面から剥離し、熱処理によりイミ
ド化した。このフィルムはポリイミド部分で約25μm
の厚さがあったが、ポリアミック酸溶液塗布面側は粒子
表面にポリイミドの薄膜が覆っていたので、水酸化ナト
リウム水溶液に浸漬し、表層のポリイミドを部分的に分
解除去し、粒子表面を露出させた。得られた試料の電気
特性の評価は、評価用回路間に挿入し、加圧状態(10
kg/cm2)で行った。
Example 8 A fibrous conductor was sprayed on an aluminum foil by using a dry particle spraying device which sprays powder through a sieve having openings of 50 μm. Next, using a corona charging device, the mask surface side of a mask (nylon mesh with openings of 50 μm) closely attached to the polyisobutylene coated surface on the PET film was used +
It was charged to 3 kV, and was placed above the fibrous conductor so that the mask surface faced the fibrous conductor-dispersed surface at a distance of about 1 cm. At this time, the fibrous conductor on the aluminum foil entered into the hole of the mask by electrostatic force and was adhesively fixed to the adhesive material. At this time, the fibrous conductor was substantially upright on the surface of the adhesive material and fixed in a state of being embedded in the adhesive material by several μm. Further, since the fibrous conductors fixed to the adhesive surface are charged to the same potential, a repulsive force due to static electricity is generated between the fibrous conductors, and there is no aggregation between the fibrous conductors to form one particle layer. Was. Next, the mask was peeled off from the adhesive material surface. A polyamic acid solution was applied to the particle-dispersed surface, dried, peeled off from the polyisobutylene surface, and heat-treated to be imidized. This film is about 25μm in polyimide part
There was a thickness of, but since the thin film of polyimide was covering the surface of the particles on the polyamic acid solution coated surface, it was immersed in an aqueous solution of sodium hydroxide to partially decompose and remove the polyimide on the surface layer to expose the surface of the particles. Let The electrical characteristics of the obtained sample were evaluated by inserting the sample between evaluation circuits and applying a pressure (10
KG / cm 2 ).

【0056】実施例9 目開き50μmの篩を通して粉体を散布する乾式の粒子
散布装置を用いて、絶縁被覆導電性粒子をPETフィル
ム上のポリイソブチレン塗布面に散布した。この粒子散
布面にポリアミック酸溶液を塗工し、乾燥後ポリイソブ
チレン面から剥離し、熱処理によりイミド化した。この
フィルムはポリイミド部分で約25μmの厚さがあった
が、ポリアミック酸溶液塗布面側は粒子表面にポリイミ
ドの薄膜が覆っていたので、水酸化ナトリウム水溶液に
浸漬し、表層のポリイミドを部分的に分解除去し、粒子
表面を露出させた。得られた試料の電気特性の評価は評
価用回路間に挿入し、加圧加熱状態(10kg/cm2、1
50℃)で30秒間保持した後、加圧したまま室温に冷
却して行った。評価後回路面を観察したが、絶縁被覆層
の付着は認められなかった。
Example 9 Insulating conductive particles were sprayed onto the polyisobutylene-coated surface of a PET film using a dry particle spraying device in which powder was sprayed through a sieve having openings of 50 μm. A polyamic acid solution was applied to the particle-dispersed surface, dried, peeled off from the polyisobutylene surface, and heat-treated to be imidized. This film had a thickness of about 25 μm in the polyimide portion, but since the thin film of polyimide covered the particle surface on the polyamic acid solution coated surface side, it was immersed in an aqueous sodium hydroxide solution to partially cover the polyimide on the surface layer. It was decomposed and removed to expose the particle surface. The electrical characteristics of the obtained sample were evaluated by inserting it between the evaluation circuits and heating under pressure (10 kg / cm 2 , 1
It was held at 50 ° C. for 30 seconds and then cooled to room temperature while applying pressure. After the evaluation, the circuit surface was observed, but the adhesion of the insulating coating layer was not recognized.

【0057】実施例10 目開き50μmの篩を通して粉体を散布する乾式の粒子
散布装置を用いて、絶縁被覆導電性粒子をPETフィル
ム上のポリイソブチレン塗布面に散布した。この粒子散
布面にポリアミック酸溶液を塗工し、乾燥後ポリイソブ
チレン面から剥離し、熱処理によりイミド化した。この
フィルムはポリイミド部分で約25μmの厚さがあった
が、ポリアミック酸溶液塗布面側は粒子表面にポリイミ
ドの薄膜が覆っていたので、水酸化ナトリウム水溶液に
浸漬し、表層のポリイミドを部分的に分解除去し、粒子
表面を露出させた。次に、この試料をメタノール中に浸
漬し、表面に露出した粒子上の絶縁被覆層を溶解除去し
た。得られた試料の電気特性の評価は評価用回路間に挿
入し、加圧状態(10kg/cm2)で行った。
Example 10 Insulating conductive particles were sprayed onto the polyisobutylene-coated surface of a PET film using a dry particle spraying device in which powder was sprayed through a sieve having openings of 50 μm. A polyamic acid solution was applied to the particle-dispersed surface, dried, peeled off from the polyisobutylene surface, and heat-treated to be imidized. This film had a thickness of about 25 μm in the polyimide portion, but since the thin film of polyimide covered the particle surface on the polyamic acid solution coated surface side, it was immersed in an aqueous sodium hydroxide solution to partially cover the polyimide on the surface layer. It was decomposed and removed to expose the particle surface. Next, this sample was immersed in methanol to dissolve and remove the insulating coating layer on the particles exposed on the surface. The electrical characteristics of the obtained sample were evaluated by inserting it between the evaluation circuits and applying pressure (10 kg / cm 2 ).

【0058】実施例11 目開き50μmの篩を通して粉体を散布する乾式の粒子
散布装置を用いて、プラスチック導電性粒子をPETフ
ィルム上のシリコーン系粘着材塗布面に散布した。この
粒子散布面に熱硬化性エポキシ樹脂を塗工し、乾燥し
た。このフィルムはプラスチック導電性粒子のないフィ
ルム形成樹脂部分で約25μmの厚さがあったが、フィ
ルム形成樹脂塗布面側は粒子表面にフィルム形成樹脂の
薄膜が覆っていたので、トルエンを含浸した不織布で数
回拭き取った。このとき、フィルム面に対してプラスチ
ック導電性粒子が突出した構造になっているので、粒子
上のフィルム形成樹脂の薄膜が容易に除去された。次
に、フィルム形成樹脂を粘着材面から剥離し評価用試料
とした。電気特性の評価は評価用回路間に挿入して加圧
状態(10kg/cm2)で行ったとき、及び加圧加熱状態
(10kg/cm2、170℃)で30秒間保持して回路間
を試料により接着後、常圧で室温に冷却したときの二度
行った。接着後は導電性粒子が約15μmの厚さまで圧
縮変形し、フィルム形成樹脂は回路間に充填し、架橋に
より硬化しており、回路間は強固に接着されていた。
Example 11 Plastic conductive particles were sprayed onto a silicone adhesive-coated surface of a PET film by using a dry particle spraying device which sprays powder through a sieve having openings of 50 μm. A thermosetting epoxy resin was applied to the particle-dispersed surface and dried. This film had a thickness of about 25 μm in the film-forming resin portion without plastic conductive particles, but the film-forming resin coating surface side had a thin film of the film-forming resin covering the particle surface, so a non-woven fabric impregnated with toluene was used. I wiped it off several times. At this time, since the plastic conductive particles had a structure protruding from the film surface, the thin film of the film-forming resin on the particles was easily removed. Next, the film-forming resin was peeled from the pressure-sensitive adhesive surface to obtain a sample for evaluation. The electrical characteristics are evaluated by inserting them between the circuits for evaluation under pressure (10 kg / cm 2 ) and by heating for 30 seconds under pressure (10 kg / cm 2 , 170 ° C). After the sample was bonded, the test was performed twice when it was cooled to room temperature under normal pressure. After the bonding, the conductive particles were compressed and deformed to a thickness of about 15 μm, the film-forming resin was filled between the circuits, and the resin was cured by crosslinking, and the circuits were firmly bonded.

【0059】比較例 図5(a)に示すように、ポリアミック酸のDMF溶液
14中にNiの導電性粒子1を配合量30体積%分散
し、アプリケータ塗工装置を用いてPETの基材フィル
ム3上に流延した。図5(b)に示すように、流延後直
ちに導電性粒子1の沈降が起こった。これを乾燥後にP
ETフィルム3の面から剥離し、熱処理によりイミド化
した。図5(c)に示すように、このフィルム10は導
電性粒子1の凝集体が多く存在して表面の凹凸が大きか
ったが、平均的なフィルム厚さは約70μmであった。
このフィルム10の両面には粒子表面が露出していなか
ったので、このフィルムを水酸化ナトリウム水溶液に浸
漬してポリイミド表面を部分的に分解除去し、導電性粒
子の粒径以下までポリイミド部分の厚さを減少させ、粒
子表面を露出させた。
Comparative Example As shown in FIG. 5A, the conductive particles 1 of Ni were dispersed in a DMF solution 14 of polyamic acid in an amount of 30% by volume, and a PET substrate was prepared using an applicator coating device. Cast on Film 3. As shown in FIG. 5B, the conductive particles 1 settled immediately after casting. After drying this, P
It was peeled from the surface of the ET film 3 and imidized by heat treatment. As shown in FIG. 5C, the film 10 had a large amount of aggregates of the conductive particles 1 and had large surface irregularities, but the average film thickness was about 70 μm.
Since the particle surfaces were not exposed on both sides of this film 10, the polyimide surface was partially decomposed and removed by immersing this film in an aqueous sodium hydroxide solution, and the thickness of the polyimide portion was reduced to the particle diameter of the conductive particles or less. And the grain surface was exposed.

【0060】このとき、導電性粒子の沈降によりフィル
ム10中の導電性粒子1はPETフィルム3面側に多く
偏在していたので、図5の(d)及び(e)に示すよう
に、片面にポリイソブチレン粘着材15を塗布したPE
Tフィルム16をラミネートして水酸化ナトリウム水溶
液に浸漬し、浸漬時間で各面のポリイミド分解量を調節
した。また、塗工厚みを薄くして、除去するポリイミド
量を減少させることも試みたが、塗工時にアプリケータ
とPETフィルムとの間に粒子が凝集して多数の筋が発
生し、フィルムが出来なかった。図5(f)に示す得ら
れた試料の電気特性の評価は、図2(b)に示すように
評価用回路間に挿入し、加圧状態(10kg/cm2)で行
った。
At this time, the conductive particles 1 in the film 10 were mostly unevenly distributed on the side of the PET film 3 due to the sedimentation of the conductive particles. Therefore, as shown in (d) and (e) of FIG. PE coated with polyisobutylene adhesive 15
The T film 16 was laminated and immersed in an aqueous sodium hydroxide solution, and the amount of polyimide decomposition on each surface was adjusted by the immersion time. We also tried to reduce the coating thickness to reduce the amount of polyimide to be removed, but during coating, particles agglomerated between the applicator and PET film, causing numerous streaks and forming a film. There wasn't. The evaluation of the electrical characteristics of the obtained sample shown in FIG. 5 (f) was carried out under pressure (10 kg / cm 2 ) by inserting it between the evaluation circuits as shown in FIG. 2 (b).

【0061】[0061]

【表1】 注)Aは接続抵抗不良(10Ω以上)の発生率(%) Bは絶縁抵抗不良(106Ω以下)の発生率(%) 実施例の11aは加圧時、11bは加圧加熱後を示す。[Table 1] Note) A: Occurrence rate (%) of defective connection resistance (10Ω or more) B: Incidence rate (%) of defective insulation resistance (10 6 Ω or less) In Example 11a, when pressure was applied, and 11b was after pressure and heating. Show.

【0062】[0062]

【発明の効果】本発明によれば、異方導電性樹脂フィル
ム状成形物内の導電性粒子の充填量を多くできるので、
成形物の単位面積当りの導電点を多くすることが出来、
従来に比べて分解性能に優れた異方導電性樹脂フィルム
状成形物が得られ、高精細な電極間の電気的接続が可能
になる。
EFFECTS OF THE INVENTION According to the present invention, the filling amount of the conductive particles in the anisotropic conductive resin film-shaped molded article can be increased,
It is possible to increase the number of conductive points per unit area of the molded product,
An anisotropic conductive resin film-like molded product having better decomposition performance than that of the conventional one can be obtained, and high-definition electrical connection between electrodes becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の異方導電性樹脂フィルム状成形物の製
造法における製作順所を説明する断面図である。
FIG. 1 is a cross-sectional view illustrating the order of production in a method for producing an anisotropically conductive resin film-shaped molded product according to the present invention.

【図2】異方導電性樹脂フィルム状成形物により回路を
接続したときの断面図であり、(a)は本発明で得られ
た成形物を用いた場合、(b)は従来の製造法で得られ
た成形物を用いた場合である。
FIG. 2 is a cross-sectional view when a circuit is connected by an anisotropic conductive resin film-shaped molded product, (a) is a case where the molded product obtained by the present invention is used, and (b) is a conventional manufacturing method. This is the case of using the molded product obtained in.

【図3】本発明の異方導電性樹脂フィルム状成形物の製
造法における各種の製作例を説明する断面図である。
FIG. 3 is a cross-sectional view illustrating various production examples in the method for producing an anisotropically conductive resin film-shaped molded product of the present invention.

【図4】本発明の異方導電性樹脂フィルム状成形物の製
造法における各種の製作例を説明する断面図である。
FIG. 4 is a cross-sectional view illustrating various production examples in the method for producing an anisotropically conductive resin film-shaped molded product of the present invention.

【図5】従来の異方導電性樹脂フィルム状成形物の製作
順所を説明する断面図である。
FIG. 5 is a cross-sectional view illustrating the order of manufacturing a conventional anisotropically conductive resin film-shaped molded product.

【符号の説明】[Explanation of symbols]

1…導電性粒子、2…粘着材、3…基材フィルム、4…
マスク、5…透孔、6…ゴムロール、7…帯電体、8…
繊維状導電体、9…電気絶縁層、10…フィルム形成樹
脂、11…回路、12…電極、13…フィルム形成樹
脂、14…フィルム形成樹脂溶液、15…ポリイソブチ
レン粘着材、16…PETフィルム
1 ... Conductive particles, 2 ... Adhesive material, 3 ... Base film, 4 ...
Mask, 5 ... Through hole, 6 ... Rubber roll, 7 ... Charged body, 8 ...
Fibrous conductor, 9 ... Electrical insulating layer, 10 ... Film forming resin, 11 ... Circuit, 12 ... Electrode, 13 ... Film forming resin, 14 ... Film forming resin solution, 15 ... Polyisobutylene adhesive, 16 ... PET film

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 導電性粒子をフィルム状成形物の面方向
に均一に分散させ、表裏に露出した導電性粒子を介して
フィルム状成形物の厚み方向にのみ導電性を有する異方
導電性の樹脂フィルム状成形物を製造する方法におい
て、導電性粒子を粘着材面に粘着固定し、該粘着材と非
相溶なフィルム形成樹脂を導電性粒子間に充填し、該フ
ィルム形成樹脂を乾燥又は硬化後フィルム形成樹脂から
粘着材を剥離することを特徴とする異方導電性樹脂フィ
ルム状成形物の製造法。
1. An anisotropic conductive material in which conductive particles are uniformly dispersed in the plane direction of a film-shaped molded article, and which has conductivity only in the thickness direction of the film-shaped molded article through the conductive particles exposed on the front and back sides. In the method for producing a resin film-shaped molded article, conductive particles are adhesively fixed to the adhesive material surface, a film-forming resin that is incompatible with the adhesive material is filled between the conductive particles, and the film-forming resin is dried or A method for producing an anisotropically conductive resin film-shaped molded article, which comprises peeling an adhesive material from a film-forming resin after curing.
【請求項2】 粘着材面上に透孔を有するフィルム又は
網を設け、導電性粒子をフィルム又は網の透孔内の粘着
材面に粘着固定する請求項1記載の異方導電性樹脂フィ
ルム状成形物の製造法。
2. An anisotropic conductive resin film according to claim 1, wherein a film or net having through holes is provided on the adhesive material surface, and the conductive particles are adhesively fixed to the adhesive material surface in the through holes of the film or net. Manufacturing method of molded article.
【請求項3】 粘着材面上に導電性粒子の粒径以上の厚
さに導電性粒子層を設けた後、該導電性粒子層を粘着材
面に押圧する請求項1記載の異方導電性樹脂フィルム状
成形物の製造法。
3. The anisotropic conductive material according to claim 1, wherein the conductive particle layer is provided on the surface of the adhesive material to a thickness equal to or larger than the particle diameter of the conductive particles, and then the conductive particle layer is pressed against the surface of the adhesive material. Of producing a resinous resin film molding.
【請求項4】 粘着材面上に導電性粒子層を設けた後、
導電性粒子層を粘着材面に押圧し、導電性粒子の粒径の
1/2以下の深さまで導電性粒子層を粘着材層に埋め込
む請求項1、2又は3記載の異方導電性樹脂フィルム状
成形物の製造法。
4. After providing a conductive particle layer on the surface of the adhesive material,
The anisotropic conductive resin according to claim 1, 2 or 3, wherein the conductive particle layer is pressed against the pressure-sensitive adhesive material surface, and the conductive particle layer is embedded in the pressure-sensitive adhesive material layer to a depth of 1/2 or less of the particle diameter of the conductive particles. A method for producing a film-shaped molded product.
【請求項5】 導電性粒子を帯電体上に静電気力により
保持し、この帯電体を粘着材面に押圧し、導電性粒子を
粘着材面に転写する請求項1、3又は4記載の異方導電
性樹脂フィルム状成形物の製造法。
5. The method according to claim 1, 3 or 4, wherein the conductive particles are held on the charged body by an electrostatic force and the charged body is pressed against the adhesive material surface to transfer the conductive particles to the adhesive material surface. Method for producing a conductive resin film-shaped molded product.
【請求項6】 帯電体上に透孔を有するフィルム又は網
を設け、導電性粒子をフィルム又は網の透孔内の帯電体
上に静電気力により保持する請求項5記載の異方導電性
樹脂フィルム状成形物の製造法。
6. An anisotropic conductive resin according to claim 5, wherein a film or net having through holes is provided on the charged body, and the conductive particles are held on the charged body in the through holes of the film or net by electrostatic force. A method for producing a film-shaped molded product.
【請求項7】 導電性粒子及び粘着材を異なる電荷に帯
電させ、静電気力により粘着材面に導電性粒子を散布
し、導電性粒子層を設ける請求項1乃至4の何れかに記
載の異方導電性樹脂フィルム状成形物の製造法。
7. The electrically conductive particles and the adhesive material are charged to different electric charges, and the electrically conductive particles are dispersed on the surface of the adhesive material by electrostatic force to provide the electrically conductive particle layer, according to any one of claims 1 to 4. Method for producing a conductive resin film-shaped molded product.
【請求項8】 導電性粒子に代えて繊維状の導電体を用
いる請求項5、6又は7記載の異方導電性樹脂フィルム
状成形物の製造法。
8. The method for producing an anisotropically conductive resin film-shaped molded article according to claim 5, 6 or 7, wherein a fibrous conductor is used instead of the conductive particles.
【請求項9】 導電性粒子又は繊維状導電体を、加熱又
は加圧により除去し得る電気絶縁層であらかじめ表面を
被覆した請求項1乃至8の何れかに記載の異方導電性樹
脂フィルム状成形物の製造法。
9. The anisotropic conductive resin film according to claim 1, wherein the surface of the conductive particles or the fibrous conductor is previously coated with an electrically insulating layer which can be removed by heating or pressing. Molded product manufacturing method.
【請求項10】 導電性粒子又は繊維状導電体があらか
じめ電気絶縁層で表面を被覆したものであり、樹脂フィ
ルム状成形物の表面及び裏面の一部を取り除いて、その
厚さを導電性粒子の粒径以下又は繊維状導電体の繊維長
以下にすると共に、樹脂フィルム状成形物の表面及び裏
面に露出した電気絶縁層を取り除く請求項1乃至8の何
れかに記載の異方導電性樹脂フィルム状成形物の製造
法。
10. A conductive particle or a fibrous conductor whose surface is previously coated with an electrically insulating layer, wherein a part of the front surface and the back surface of the resin film-shaped molded product is removed to obtain the thickness of the conductive particle. 9. The anisotropic conductive resin according to any one of claims 1 to 8, wherein the particle size is less than or equal to the particle size of the resin or the fiber length of the fibrous conductor, and the electrically insulating layer exposed on the front surface and the back surface of the resin film-shaped molded product is removed. A method for producing a film-shaped molded product.
【請求項11】 加熱加圧又は光照射により接着性を有
するフィルム形成樹脂を用いた請求項1乃至10の何れ
かに記載の異方導電性樹脂フィルム状成形物の製造法。
11. The method for producing an anisotropically conductive resin film-shaped molded article according to claim 1, wherein a film-forming resin having an adhesive property by heating and pressing or light irradiation is used.
JP09633694A 1994-05-10 1994-05-10 Method for producing anisotropic conductive resin film-like molded product Expired - Fee Related JP3812682B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP09633694A JP3812682B2 (en) 1994-05-10 1994-05-10 Method for producing anisotropic conductive resin film-like molded product
TW084104387A TW277152B (en) 1994-05-10 1995-05-02
KR1019950011298A KR100377603B1 (en) 1994-05-10 1995-05-09 Anisotropic Conductive Resin Film
DE69535293T DE69535293T2 (en) 1994-05-10 1995-05-10 Anistropically conductive resin film
EP95303147A EP0691660B1 (en) 1994-05-10 1995-05-10 Anisotropically electroconductive resin film
CN95105708A CN1118832C (en) 1994-05-10 1995-05-10 Anisotropically electroconductive resin film
CNB021593922A CN1230834C (en) 1994-05-10 1995-05-10 Electrode member
US08/890,342 US6042894A (en) 1994-05-10 1997-07-09 Anisotropically electroconductive resin film
KR1020020044740A KR100377992B1 (en) 1994-05-10 2002-07-29 Anisotropically electroconductive resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09633694A JP3812682B2 (en) 1994-05-10 1994-05-10 Method for producing anisotropic conductive resin film-like molded product

Publications (2)

Publication Number Publication Date
JPH07302666A true JPH07302666A (en) 1995-11-14
JP3812682B2 JP3812682B2 (en) 2006-08-23

Family

ID=14162180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09633694A Expired - Fee Related JP3812682B2 (en) 1994-05-10 1994-05-10 Method for producing anisotropic conductive resin film-like molded product

Country Status (1)

Country Link
JP (1) JP3812682B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031030A (en) * 2001-07-12 2003-01-31 Sekisui Chem Co Ltd Microparticle alignment conductive connection film, manufacturing method of the microparticle alignment conductive connection film and conductive connection structural body
JP3800631B2 (en) * 1997-02-27 2006-07-26 セイコーエプソン株式会社 Method for manufacturing anisotropic conductive adhesive, method for manufacturing connection structure, and method for manufacturing liquid crystal device
JP2006299177A (en) * 2005-04-25 2006-11-02 Asahi Kasei Electronics Co Ltd Anisotropically conductive adhesive sheet and fine connection structure
JP2011034966A (en) * 2009-07-31 2011-02-17 Denshi Buhin Kenkyuin Anisotropy particle arrangement, and manufacturing method thereof
WO2012023724A2 (en) * 2010-08-20 2012-02-23 서강대학교산학협력단 Porous thin film having holes and a production method therefor
JP2012067311A (en) * 2011-10-24 2012-04-05 Asahi Kasei E-Materials Corp Anisotropically electroconductive adhesive sheet and connecting method
JP2014062257A (en) * 2013-11-05 2014-04-10 Dexerials Corp Anisotropic electroconductive adhesive sheet and connection method
JP2014515097A (en) * 2011-03-25 2014-06-26 ペラテック リミテッド Composite material
KR20170093170A (en) * 2015-01-13 2017-08-14 데쿠세리아루즈 가부시키가이샤 Bump-forming film, semiconductor device, manufacturing method thereof, and connection structure
WO2017191772A1 (en) * 2016-05-05 2017-11-09 デクセリアルズ株式会社 Filler alignment film
JP2017203156A (en) * 2016-05-05 2017-11-16 デクセリアルズ株式会社 Filler arrangement film

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800631B2 (en) * 1997-02-27 2006-07-26 セイコーエプソン株式会社 Method for manufacturing anisotropic conductive adhesive, method for manufacturing connection structure, and method for manufacturing liquid crystal device
JP4669635B2 (en) * 2001-07-12 2011-04-13 積水化学工業株式会社 Method for producing fine particle arrangement conductive connection film
JP2003031030A (en) * 2001-07-12 2003-01-31 Sekisui Chem Co Ltd Microparticle alignment conductive connection film, manufacturing method of the microparticle alignment conductive connection film and conductive connection structural body
JP2006299177A (en) * 2005-04-25 2006-11-02 Asahi Kasei Electronics Co Ltd Anisotropically conductive adhesive sheet and fine connection structure
JP2011034966A (en) * 2009-07-31 2011-02-17 Denshi Buhin Kenkyuin Anisotropy particle arrangement, and manufacturing method thereof
KR101420232B1 (en) * 2010-08-20 2014-07-21 서강대학교산학협력단 Porous thin film having holes and producing method of the same
WO2012023724A2 (en) * 2010-08-20 2012-02-23 서강대학교산학협력단 Porous thin film having holes and a production method therefor
WO2012023724A3 (en) * 2010-08-20 2012-05-24 서강대학교산학협력단 Porous thin film having holes and a production method therefor
US8753526B2 (en) 2010-08-20 2014-06-17 Industry-University Cooperation Foundation Sogang University Porous thin film having holes and a production method therefor
JP2014515097A (en) * 2011-03-25 2014-06-26 ペラテック リミテッド Composite material
JP2012067311A (en) * 2011-10-24 2012-04-05 Asahi Kasei E-Materials Corp Anisotropically electroconductive adhesive sheet and connecting method
JP2014062257A (en) * 2013-11-05 2014-04-10 Dexerials Corp Anisotropic electroconductive adhesive sheet and connection method
KR20170093170A (en) * 2015-01-13 2017-08-14 데쿠세리아루즈 가부시키가이샤 Bump-forming film, semiconductor device, manufacturing method thereof, and connection structure
KR20190099103A (en) * 2015-01-13 2019-08-23 데쿠세리아루즈 가부시키가이샤 Bump-forming film, semiconductor device, manufacturing method thereof, and connection structure
US10943879B2 (en) 2015-01-13 2021-03-09 Dexerials Corporation Bump-forming film, semiconductor device and manufacturing method thereof, and connection structure
WO2017191772A1 (en) * 2016-05-05 2017-11-09 デクセリアルズ株式会社 Filler alignment film
JP2017203156A (en) * 2016-05-05 2017-11-16 デクセリアルズ株式会社 Filler arrangement film
JP2022111114A (en) * 2016-05-05 2022-07-29 デクセリアルズ株式会社 Filler arrangement film
US11732105B2 (en) 2016-05-05 2023-08-22 Dexerials Corporation Filler disposition film

Also Published As

Publication number Publication date
JP3812682B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
US6042894A (en) Anisotropically electroconductive resin film
US7034403B2 (en) Durable electronic assembly with conductive adhesive
JP3812682B2 (en) Method for producing anisotropic conductive resin film-like molded product
JP3360772B2 (en) Connection structure of fine electrode and inspection method of electronic component having fine electrode
JPS61147593A (en) Flexible circuit board with conducting adhesive layer and manufacture thereof
JP3786214B2 (en) Method for producing anisotropic conductive resin film-like molded product
JP3783785B2 (en) Method for manufacturing anisotropic conductive resin film adhesive and method for connecting between fine circuits
JP3472987B2 (en) Manufacturing method of connecting member and manufacturing apparatus therefor
JP3280685B2 (en) Anisotropic conductive adhesive resin layer and method for producing the same
JPH02877B2 (en)
JP3582654B2 (en) Connection member
JP3578223B2 (en) Manufacturing method of anisotropic conductive sheet
KR100251675B1 (en) Connection sheet for interconnecting electrodes facing each other, and electrode connection structure and method using the connection sheet
JP2000348538A (en) Anisotropically conducting film and manufacture thereof
JP3608214B2 (en) Method for producing anisotropic conductive sheet
JP3608213B2 (en) Manufacturing method of anisotropic conductive sheet
JPH05217617A (en) Film form adhesive of anisotropically conductive resin
JP4020111B2 (en) Method for producing laminated particles with plating layer
JPH11121073A (en) Connecting member and its manufacture
JPH0696620A (en) Anisotropic conductive material, method for connecting circuit using same, and electric circuit substrate
JP2002208447A (en) Anisotropic conductive sheet and method of manufacturing the same
JP4135694B2 (en) Manufacturing method of anisotropic conductive sheet
JP2001093338A (en) Anisotropic conductive sheet and its manufacturing method
JPH04301383A (en) Manufacture of connecting member
JPH08241742A (en) Connecting structure of circuit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees