JP3608214B2 - Method for producing anisotropic conductive sheet - Google Patents

Method for producing anisotropic conductive sheet Download PDF

Info

Publication number
JP3608214B2
JP3608214B2 JP00755794A JP755794A JP3608214B2 JP 3608214 B2 JP3608214 B2 JP 3608214B2 JP 00755794 A JP00755794 A JP 00755794A JP 755794 A JP755794 A JP 755794A JP 3608214 B2 JP3608214 B2 JP 3608214B2
Authority
JP
Japan
Prior art keywords
sheet
conductive particles
plating
insulating coating
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00755794A
Other languages
Japanese (ja)
Other versions
JPH07220540A (en
Inventor
功 塚越
泰史 後藤
共久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP00755794A priority Critical patent/JP3608214B2/en
Publication of JPH07220540A publication Critical patent/JPH07220540A/en
Application granted granted Critical
Publication of JP3608214B2 publication Critical patent/JP3608214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、高密度電極の電気的接続や検査に有用な、導電性粒子が表裏又は一方の面に露出した異方導電性シートの製造方法に関する。
【0002】
【従来の技術】
ゴム又は合成樹脂からなるシートの厚さ方向にのみ導電性である異方導電性シートは、例えばプリント配線板等の回路板同士やこれらと半導体チップ等の電子部品との、高密度電極の電気的接続や検査に用いられている。これらは、加圧又は加熱加圧による接触により対向電極間に導電性を得るもので、導電体が表裏又は一方の面に露出又は突出するものが一般的である。このような異方導電性シートの導電体としては、導電性繊維や導電性金属粒子等の導電性粒子をシートの厚さ方向に埋め込んだものや、シートに貫通孔を設け、めっき等により導電体を形成したものが知られている。
【0003】
【発明が解決しようとする課題】
異方導電性シートの導電体が前者の導電性粒子の場合には、最近の電極の高密度化に対応出来ないことによる分解能の不足や、信頼性が不十分である欠点を持っている。この理由は、シート中に分散された導電性粒子が高濃度で存在するときは、面方向に接触して隣接電極間の絶縁性が無くなり、低濃度のときは接触点が減少するため、厚さ方向の導電性が不足するためである。また、シートからの導電性粒子の露出部の高さや面積が十分に制御出来ないために、導電性にばらつきを生じ、加えて、導電性粒子がシートから突出した構成品を繰り返し検査に使用すると、シートから導電性粒子が脱落してしまう等によって、やはり信頼性が不十分である。
【0004】
後者の場合、シートにレーザ光等で微細な貫通孔を設け、そこに例えばめっきにより導電体を形成するために、工程が複雑であり、大面積の製品が得難いことなどから、高分解品は得られるものの製造コストが高く、高価で実用化し難い欠点を持っている。
本発明は上記の課題を解決するためになされたもので、高密度電極の電気的接続や検査に有用な異方導電性シートの安価な製造法を提供するものである。
【0005】
【課題を解決するための手段】
本発明は、(a)均一粒径の導電性粒子の表面にめっき触媒を含有する絶縁性被覆を施す工程、(b)該絶縁性被覆を施した導電性粒子を絶縁材料中に分散させ、該絶縁材料の厚さが導電性粒子の粒径と同等以下のシート状物を形成する工程、(c)該シート状物を加熱加圧して絶縁性被覆をシート状物の表面から露出させる工程及び(d)該シート状物の露出部に無電解めっきする工程からなる異方導電性シートの製造方法に関する。本発明に用いる粒子は、図1〜2に示すように、均一粒径の導電性粒子1の表面にめっき触媒を含有する絶縁性の材料からなる絶縁性被覆2を施したものである。ここに、均一粒径とは中心粒径の±20%可能ならば±10%以下の粒径範囲を持つものがよい。この範囲の狭い方がシートからの突出高さを均一に出来、安定した接触抵抗が得られるので好ましい。
【0006】
中心粒径は2〜5000μm程度が好ましく、5〜100μmにすれば更に好ましく、10〜80μmにすれば特に好ましい。これらは所望の分解能に応じて選択する。即ち、導電性粒子の粒径を隣接する電極や配線パターン間距離の最小幅よりも小さくすることが、ショートを防止し、配線の細線化に対応する上で必要である。また、粒径が小さ過ぎるとシート厚みの減少により強度が不足し、取り扱いがやりにくくなる。
導電性粒子1は、導電性を有する各種の金属や合金、酸化物等が採用できる。導電性と耐腐食性を加味して好ましく用いられる材料としてはNi、Cu、Al、Sn、Zn、Au、Pd、Ag、Co、Pb等の粒子である。粒形はほぼ球状が好ましいが、表面に多数の突起を設ける等の任意の形でよい。
【0007】
また、導電性粒子1は、図2に示すような核材3の表面に金属薄層4を設けた構成のものが、均一粒径の球状品が容易に入手可能なことから好ましい。核材3が有機物の例としては、ポリスチレン、ナイロン、各種ゴム類等の高分子類があり、これらは架橋体であると耐溶剤性が向上するので、例えばシート原材料中に溶剤が含有される場合に溶出がなく、シートの特性に影響が少ないことから好ましい。核材3が高分子類のような変形可能な粒子であると、製造時の加熱加圧により、シートからの突出部を扁平化することや弾力性を付与することも可能であり、電極への接触面積の増大による信頼性の向上に有効である。
核材3はガラス、セラミック、シリカ等の無機物の粒子でも良く、この場合は高分子の核材に比べて更に耐熱性の向上が可能となる。
【0008】
金属薄層4は導電性を有する各種の金属や合金、酸化物等が採用できる。これらは前記した導電性粒子と同様な材質のものが適用可能であり、これらは単層又は複層の構成とすることも出来る。金属薄層4の形成手段としては、蒸着法、スパッタリング法、イオンプレーティング法、溶射法、めっき法等の一般的方法でよいが、無電解めっき法が均一厚みの被覆層が得られることから好ましい。
図1〜2に示すように、導電性粒子1の表面に、絶縁性材料にめっき触媒を混合した絶縁性被覆2を形成する。該絶縁性被覆2は、熱などによる硬化性材料でもよく、また加熱加圧下で熱軟化性を示す材料でもよいが、後者であるとシートから露出し易く好ましい。熱軟化性の目安として弾性率や硬度等の一般的な指標や、例えば融点やガラス転移温度及び軟化点等の熱的変態点を目安とすることができる。
【0009】
めっき触媒としては、パラジウム、白金、金又はこれらの塩類が適用出来る。これらの中で金属パラジウム、パラジウム塩類又は金属パラジウムとパラジウム塩類との混和物が析出性及び経済性の点から好ましい。めっき触媒の添加量としては、絶縁性材料に対し1〜20重量%が好ましく、3〜10重量%がより好ましい。添加量が少ないとめっきの析出性が低下し、多いと面方向の絶縁性が低下する。
絶縁性被覆2は、粒子状で存在しても良く、単層又は複層の構成とすることもできる。複層の構成の場合は強度保持性、耐溶剤性、接着性、柔軟性、耐熱性、耐めっき液性の機能を分担することも可能なため好適である。絶縁性被覆2の形成手段に制限はなく、例えば溶剤乾燥法、噴霧法、高速撹拌法、スプレードライヤー法等がある。
【0010】
次に図3に示すように、導電性粒子1の表面に絶縁性被覆2を施した粒子を絶縁材料5中に分散させ、絶縁材料5の厚さが導電性粒子1の粒径と同等以下の粒子が単層で存在するシート状物を形成する。分散方法としては、絶縁材料5と導電性粒子1との層を別途形成後に一体化することも出来る。
この場合の絶縁材料としては、ポリエチレン、ポリプロピレン等の熱可塑性樹脂でもよいが、エポキシ樹脂、ポリイミド等の熱、光、電子線等のエネルギーによる硬化性絶縁材料が、耐熱性、耐湿性及び機械的特性に優れることから好ましく適用できる。本発明は加熱加圧下での製造法であるため、エポキシ樹脂類と潜在性硬化剤の系や、アクリルやウレタン、エポキシ樹脂類と光活性化剤との組み合わせ系が比較的低温下で反応し易いことから、より好ましい。
【0011】
シート中に占める導電性粒子の割合は、2〜70体積%が好ましく用いられ、5〜50体積%が更に好ましく、10〜40体積%が特に好ましい。添加量が過多であっても、導電性粒子表面が絶縁性被覆を有するので隣接電極の絶縁性が低下し難く、添加量が少ないと、接続すべき電極上の導電性粒子数が減少するため信頼性が低下することから、添加量は、シートの機械的強度の許される限り比較的過多に設定できる。
シート状物とするに際しては、図3のように基材を用いずに例えばロール間で圧延したり、溶融押し出し等で形成できる。また、図4のように基材6上に形成することも出来る。基材6としては、セパレータのような剥離可能な基材でも、又は配線基板を基材としても良い。このように、基材6上に形成すると、シート化時に溶剤揮散による体積収縮が利用でき、絶縁材料の厚さが導電性粒子の粒径と同等以下の、例えば連続したシート状物が簡単に得られる。剥離可能な基材は後述する絶縁材料の凝集力が上昇した後、必要に応じて除去できる。
【0012】
また、基材6として例えば検査用回路を有する配線板を用い、その上にシートを形成すると当該シート付回路板が簡単に得られる。この場合、導電性粒子は回路上で接触が得られるので、シートの一方の面に露出又は突出させてもよい。
上記により得た絶縁材料の厚さが導電性粒子の粒径と同等以下のシート状物を加熱加圧し、絶縁性被覆をシートから露出させる。このとき、絶縁性被覆が熱軟化性であり、加熱加圧時にゴムロール等の可撓性材料間に前記シートを挾んで行うことが好ましい。
加熱加圧の条件は、前記絶縁性被覆の熱軟化点以上の温度とすることで、絶縁性被覆を軟化溶融させ、その後絶縁材料の硬化を進める。即ち、この工程でシート表面の絶縁性被覆2を露出し、絶縁材料5の硬化又は硬化反応の進行や冷却による固化等により、凝集力の向上した状態で導電性粒子をシート中に固定することが出来る。この際、硬化を伴う場合は最終的な硬化ではなく、一部反応を進めた状態であとから硬化してもよい。
【0013】
加熱加圧下において、可撓性材料との接触面においては樹脂層が溶融し、導電性粒子が露出するが、隣接方向は熱量が不十分なため樹脂層が溶融し難いので、絶縁性の低下が少なく、より高分解能が可能となる。
加熱加圧下において、可撓性材料との接触面においては絶縁材料が低粘度化して粒子頂部から排除され、絶縁性被覆が露出する。このとき、粒子頂部の絶縁性被覆2が流動排除され導電層が露出しても、例えば置換めっきによりめっきが可能である。隣接方向は熱量が不十分なため樹脂層が溶融し難いので絶縁性の低下が少なく、より高分解能が可能となる。
【0014】
その後、図5のように絶縁性被覆2の露出部7をめっきする。めっき方法としては、めっき触媒によりめっき液との接触部のみに金属の析出が可能な無電解めっき方法が好ましい。めっき金属としては前述の導電性粒子の種類と同様なものが適用可能であり、これらの多層構成とすることも可能である。例えば析出速度の速いCu、Ni等の下地層を得てから、Au等で置換めっきしても良い。
図6は露出部のめっき方法の他の例であり、めっき触媒を粒状で存在させ、この部分をめっき核8としてめっきを成長させて針上突起9としたものである。この場合、電極表面に酸化層が存在しても、これを突き破って導電性を得ることが出来る。
【0015】
【作用】
本発明によれば、めっき触媒を含有する絶縁性被覆を施した均一粒径の導電性粒子からなる粒子を絶縁材料中に分散させ、絶縁材料の厚さが導電性粒子の粒径と同等以下のシート状物を形成する工程により、導電性粒子が単層状に存在し、絶縁性被覆がシート面から露出した構成とする。次にこの絶縁性被覆にめっきすることにより、シートの厚さ方向にめっきされた導電性金属がシート面から突出し、シートの面方向にはめっき触媒の露出がないのでめっきされず、絶縁性の低下がないので、より高分解能が可能となる。
【0016】
【実施例】
次に実施例を説明するが、本発明はこれによって限定されるものではない。
実施例1
図2における核材3として平均粒径30μmの架橋ポリスチレン粒子(ガラス転移点160℃)を用い、表面を塩化パラジウム系の活性化処理を行った後、無電解Niめっき液を用いて90℃でNiめっきを行い、更にAuめっき液を用いて70℃で置換めっきを行って金属薄層4を被覆し、導電性粒子1を得た。このときNi/Auの厚さは0.2/0.02μm(導電性粒子1の中心粒径は30.4μm、変動範囲は±0.5μm以内)であった。次に、絶縁性被覆2の材料として、ゴム変性エポキシ樹脂中に塩化パラジウム混合エポキシ樹脂であるPEC−8(日立化成工業(株)製の商品名)10重量部を添加混合し、これをメチルエチルケトンに溶解(不揮発分15重量%)したものを用意した。この材料を前記導電性粒子1中で撹拌後、スプレードライヤーで70℃で乾燥して、めっき触媒を含有する絶縁性被覆を表面に被覆した均一粒径の導電性粒子を得た。
【0017】
絶縁材料として、ゴム変性可撓性エポキシ樹脂、マイクロカプセル型潜在性硬化剤(活性化温度120℃)及びトルエン溶剤を主成分(不揮発分50%)とする接着剤に、前記粒子を20体積%添加してロール間隔40μmで形成した後、100℃で10分乾燥し、厚さ20μmの接着剤(純水で100℃10時間抽出後の抽出水のNaイオン、Clイオンが各10ppm以下)を基材のテトラフルオロエチレンフイルム(セパレータ、厚さ50μm)の上に形成した。溶剤乾燥による体積収縮により、粒子径よりも薄いシートが作成可能であった。
上記シートを、150℃に加熱したシリコーンゴムロール(100mmφの鉄ロール上にゴム硬度70のゴムを厚さ2mmで形成したもの)間の圧力2kg/cmで速度0.1m/分で通過させ、シート面から絶縁性被覆を露出させた。マイクロカプセル型潜在性硬化剤の作用で速硬化が可能であり、エポキシ樹脂の有する可撓性によりシート状として取り扱いが容易であった。
【0018】
このシートを無電解銅めっき液CC−41(日立化成工業(株)製の商品名)に50℃で5分間浸漬し、異方導電性シートを得た。この場合の突出高さは5μmであった。
評価
FPC(フレキシブルプリント回路板、回路及び隣接回路間距離が各々50μm)の間に、上記の各実施例で得られた異方導電性シートを2mm幅で挾み、FPCの回路を位置合わせし、その部分を1kg/cmで加圧した状態で、接続抵抗をFPCの対向回路間で、また絶縁性を隣接回路間抵抗により測定した。測定に用いたFPCの幅は20mmであり、回路数は200本である。その結果、シートの接続抵抗は0.13Ω、また絶縁抵抗は10Ω以上であり、良好な異方導電性を示した。
【0019】
【発明の効果】
本発明によれば、高分解能で信頼性に優れ、工程が簡単な異方導電性シートの安価な製造方法を提供できる。
【図面の簡単な説明】
【図1】本発明の製造法における粒子の構造を示す断面模式図である。
【図2】本発明の製造法における粒子の構造を示す断面模式図である。
【図3】本発明の製造法におけるシート状物の形成方法を説明する図である。
【図4】本発明の製造法におけるシート状物の形成方法を説明する図である。
【図5】本発明の製造法における絶縁性被覆へのめっき状態を説明する図である。
【図6】本発明の製造法における絶縁性被覆へのめっき状態を説明する図である。
【符号の説明】
1…導電性粒子、2…絶縁性被覆、3…核材、4…金属薄層、5…絶縁材料、6…基材、7…露出部、8…めっき核、9…針状突起
[0001]
[Industrial application fields]
The present invention relates to a method for producing an anisotropic conductive sheet having conductive particles exposed on the front or back or one side, which is useful for electrical connection and inspection of high-density electrodes.
[0002]
[Prior art]
An anisotropic conductive sheet, which is conductive only in the thickness direction of a sheet made of rubber or synthetic resin, is a high-density electrode electrical circuit between circuit boards such as printed wiring boards and electronic components such as semiconductor chips. Used for connection and inspection. In these, conductivity is obtained between the counter electrodes by contact by pressurization or heating and pressurization, and the conductor is generally exposed or protruded on the front or back or one surface. As a conductor of such an anisotropic conductive sheet, conductive particles such as conductive fibers and conductive metal particles are embedded in the thickness direction of the sheet, or through holes are provided in the sheet, and conductive by plating or the like. What formed the body is known.
[0003]
[Problems to be solved by the invention]
In the case where the conductive material of the anisotropic conductive sheet is the former conductive particles, there are disadvantages in that the resolution is insufficient due to inability to cope with the recent increase in the density of electrodes and the reliability is insufficient. The reason for this is that when the conductive particles dispersed in the sheet are present at a high concentration, there is no insulation between adjacent electrodes due to contact in the surface direction, and the contact point decreases at a low concentration. This is because the lateral conductivity is insufficient. Moreover, since the height and area of the exposed portion of the conductive particles from the sheet cannot be sufficiently controlled, the conductivity varies, and in addition, when a component in which the conductive particles protrude from the sheet is used for repeated inspections. The reliability is still insufficient due to the conductive particles falling off the sheet.
[0004]
In the latter case, a fine through hole is provided in the sheet with a laser beam or the like, and a conductor is formed there by, for example, plating, so the process is complicated and it is difficult to obtain a large-area product. The resulting product is expensive to manufacture and has disadvantages that are expensive and difficult to put into practical use.
The present invention has been made to solve the above problems, and provides an inexpensive method for manufacturing an anisotropic conductive sheet useful for electrical connection and inspection of high-density electrodes.
[0005]
[Means for Solving the Problems]
The present invention includes (a) a step of applying an insulating coating containing a plating catalyst on the surface of conductive particles having a uniform particle diameter, (b) dispersing the conductive particles coated with the insulating coating in an insulating material, A step of forming a sheet-like material in which the thickness of the insulating material is equal to or less than the particle size of the conductive particles, and (c) a step of heating and pressing the sheet-like material to expose the insulating coating from the surface of the sheet-like material. And (d) relates to a method for producing an anisotropic conductive sheet comprising a step of electroless plating on an exposed portion of the sheet-like material. As shown in FIGS. 1 and 2, the particles used in the present invention are obtained by applying an insulating coating 2 made of an insulating material containing a plating catalyst on the surface of conductive particles 1 having a uniform particle diameter. Here, the uniform particle size preferably has a particle size range of ± 10% or less if it can be ± 20% of the center particle size. A narrower range is preferable because the height of protrusion from the sheet can be made uniform and stable contact resistance can be obtained.
[0006]
The center particle size is preferably about 2 to 5000 μm, more preferably 5 to 100 μm, and particularly preferably 10 to 80 μm. These are selected according to the desired resolution. In other words, it is necessary to make the particle size of the conductive particles smaller than the minimum width of the distance between adjacent electrodes and wiring patterns in order to prevent short-circuiting and cope with thinning of the wiring. On the other hand, if the particle size is too small, the sheet thickness is reduced, resulting in insufficient strength and difficult handling.
The conductive particles 1 can employ various metals, alloys, oxides, and the like having conductivity. Materials that are preferably used in consideration of conductivity and corrosion resistance are particles such as Ni, Cu, Al, Sn, Zn, Au, Pd, Ag, Co, and Pb. The particle shape is preferably approximately spherical, but may be any shape such as providing a large number of protrusions on the surface.
[0007]
Further, the conductive particles 1 having a structure in which the thin metal layer 4 is provided on the surface of the core material 3 as shown in FIG. 2 are preferable because spherical products having a uniform particle diameter can be easily obtained. Examples of the organic material of the core material 3 include polymers such as polystyrene, nylon, and various rubbers. Since these are cross-linked bodies, the solvent resistance is improved. For example, the sheet raw material contains a solvent. In this case, there is no elution, and the influence on the sheet characteristics is small. When the core material 3 is a deformable particle such as a polymer, it is possible to flatten the protruding portion from the sheet or to provide elasticity by heating and pressurization during production. This is effective in improving the reliability by increasing the contact area.
The core material 3 may be inorganic particles such as glass, ceramic, silica, and in this case, the heat resistance can be further improved as compared with the polymer core material.
[0008]
The metal thin layer 4 can employ various metals, alloys, oxides and the like having conductivity. These can be made of the same material as that of the conductive particles described above, and they can also have a single-layer or multi-layer structure. As a means for forming the metal thin layer 4, a general method such as a vapor deposition method, a sputtering method, an ion plating method, a thermal spraying method, or a plating method may be used, but the electroless plating method provides a coating layer having a uniform thickness. preferable.
As shown in FIGS. 1 and 2, an insulating coating 2 in which a plating catalyst is mixed with an insulating material is formed on the surface of the conductive particles 1. The insulating coating 2 may be a curable material by heat or the like, or may be a material that exhibits heat softening property under heat and pressure, but the latter is preferable because it is easily exposed from the sheet. As a measure of thermal softening properties, general indices such as elastic modulus and hardness, and thermal transformation points such as melting point, glass transition temperature and softening point can be used as a guide.
[0009]
As the plating catalyst, palladium, platinum, gold, or a salt thereof can be applied. Among these, metal palladium, palladium salts, or a mixture of metal palladium and palladium salts is preferable from the viewpoint of precipitation and economical efficiency. The addition amount of the plating catalyst is preferably 1 to 20% by weight and more preferably 3 to 10% by weight with respect to the insulating material. When the addition amount is small, the deposition property of the plating is lowered, and when it is large, the insulation in the surface direction is lowered.
The insulating coating 2 may be present in the form of particles, and may be a single layer or a multilayer. In the case of a multilayer structure, the functions of strength retention, solvent resistance, adhesiveness, flexibility, heat resistance, and plating solution resistance can be shared, which is preferable. There is no restriction | limiting in the formation means of the insulating coating 2, For example, there exist a solvent drying method, a spray method, a high-speed stirring method, a spray dryer method etc.
[0010]
Next, as shown in FIG. 3, particles having an insulating coating 2 on the surface of the conductive particles 1 are dispersed in the insulating material 5, and the thickness of the insulating material 5 is equal to or smaller than the particle size of the conductive particles 1. This forms a sheet-like material in which the particles are present in a single layer. As a dispersion method, the layers of the insulating material 5 and the conductive particles 1 can be integrated after being separately formed.
The insulating material in this case may be a thermoplastic resin such as polyethylene or polypropylene, but a curable insulating material by heat, light, electron beam or other energy such as epoxy resin or polyimide is heat resistant, moisture resistant and mechanical. It is preferably applicable because of its excellent characteristics. Since the present invention is a production method under heat and pressure, a system of epoxy resin and latent curing agent, a combination system of acrylic, urethane, epoxy resin and photoactivator reacts at a relatively low temperature. Since it is easy, it is more preferable.
[0011]
The proportion of the conductive particles in the sheet is preferably 2 to 70% by volume, more preferably 5 to 50% by volume, and particularly preferably 10 to 40% by volume. Even if the addition amount is excessive, the surface of the conductive particles has an insulating coating, so that the insulation of the adjacent electrode is difficult to decrease. If the addition amount is small, the number of conductive particles on the electrode to be connected decreases. Since the reliability is lowered, the addition amount can be set relatively excessively as long as the mechanical strength of the sheet is allowed.
When forming into a sheet-like material, it can be formed by rolling, for example, between rolls or by melt extrusion without using a substrate as shown in FIG. Moreover, it can also form on the base material 6 like FIG. The substrate 6 may be a peelable substrate such as a separator, or a wiring board as a substrate. Thus, when formed on the substrate 6, volume shrinkage due to solvent volatilization can be used at the time of forming a sheet, and for example, a continuous sheet-like material in which the thickness of the insulating material is equal to or less than the particle size of the conductive particles can be easily obtained can get. The peelable substrate can be removed if necessary after the cohesive strength of the insulating material described later has increased.
[0012]
For example, when a wiring board having an inspection circuit is used as the substrate 6 and a sheet is formed thereon, the circuit board with the sheet can be easily obtained. In this case, since the conductive particles can be contacted on the circuit, they may be exposed or protruded on one surface of the sheet.
A sheet-like material having a thickness of the insulating material obtained as described above equal to or smaller than the particle size of the conductive particles is heated and pressed to expose the insulating coating from the sheet. At this time, the insulating coating is heat-softening, and it is preferable to sandwich the sheet between flexible materials such as rubber rolls during heating and pressurization.
The heating and pressing conditions are such that the insulating coating is softened and melted at a temperature equal to or higher than the thermal softening point of the insulating coating, and then the insulating material is cured. That is, the insulating coating 2 on the surface of the sheet is exposed in this step, and the conductive particles are fixed in the sheet in a state where the cohesive force is improved by the curing of the insulating material 5 or the progress of the curing reaction or solidification by cooling. I can do it. At this time, in the case where curing is involved, the curing may be performed after the reaction is partially advanced, not the final curing.
[0013]
Under heat and pressure, the resin layer melts at the contact surface with the flexible material, and the conductive particles are exposed, but the resin layer is difficult to melt because the amount of heat is insufficient in the adjacent direction. Therefore, higher resolution is possible.
Under heat and pressure, the insulating material has a reduced viscosity at the contact surface with the flexible material and is removed from the particle top, exposing the insulating coating. At this time, even if the insulating coating 2 on the top of the particles is flow-excluded and the conductive layer is exposed, plating can be performed by displacement plating, for example. In the adjacent direction, since the amount of heat is insufficient, the resin layer is hardly melted, so that there is little decrease in insulation, and higher resolution is possible.
[0014]
Thereafter, the exposed portion 7 of the insulating coating 2 is plated as shown in FIG. As the plating method, an electroless plating method capable of depositing a metal only at a contact portion with a plating solution by a plating catalyst is preferable. As the plating metal, the same kind of conductive particles as described above can be applied, and a multilayer structure of these can also be used. For example, after obtaining a base layer such as Cu or Ni having a high deposition rate, substitution plating may be performed with Au or the like.
FIG. 6 shows another example of the plating method of the exposed portion, in which the plating catalyst is present in a granular form, and this portion is used as the plating nucleus 8 to grow the plating to form the needle protrusion 9. In this case, even if an oxide layer is present on the electrode surface, the conductivity can be obtained by breaking through the oxide layer.
[0015]
[Action]
According to the present invention, particles made of conductive particles having a uniform particle size coated with an insulating coating containing a plating catalyst are dispersed in an insulating material, and the thickness of the insulating material is equal to or smaller than the particle size of the conductive particles. In the step of forming the sheet-like material, the conductive particles are present as a single layer, and the insulating coating is exposed from the sheet surface. Next, by plating on this insulating coating, the conductive metal plated in the thickness direction of the sheet protrudes from the sheet surface, and since there is no exposure of the plating catalyst in the surface direction of the sheet, it is not plated. Since there is no reduction, higher resolution is possible.
[0016]
【Example】
Next, examples will be described, but the present invention is not limited thereto.
Example 1
As the core material 3 in FIG. 2, cross-linked polystyrene particles having an average particle size of 30 μm (glass transition point 160 ° C.) are used, and the surface is subjected to palladium chloride activation treatment, and then at 90 ° C. using an electroless Ni plating solution. Ni plating was performed, and further, substitution plating was performed at 70 ° C. using an Au plating solution to coat the metal thin layer 4, thereby obtaining conductive particles 1. At this time, the thickness of Ni / Au was 0.2 / 0.02 μm (the central particle diameter of the conductive particles 1 was 30.4 μm, and the fluctuation range was within ± 0.5 μm). Next, as a material for the insulating coating 2, 10 parts by weight of PEC-8 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a palladium chloride mixed epoxy resin, is added to and mixed with rubber-modified epoxy resin. Prepared in solution (non-volatile content: 15% by weight). This material was stirred in the conductive particles 1 and then dried at 70 ° C. with a spray dryer to obtain conductive particles having a uniform particle size with an insulating coating containing a plating catalyst coated on the surface.
[0017]
As an insulating material, a rubber-modified flexible epoxy resin, a microcapsule-type latent curing agent (activation temperature: 120 ° C.), and an adhesive mainly composed of a toluene solvent (nonvolatile content: 50%), and 20% by volume of the particles. After adding and forming at a roll interval of 40 μm, drying is performed at 100 ° C. for 10 minutes, and a 20 μm thick adhesive (Na ions and Cl ions in the extracted water after extraction with pure water at 100 ° C. for 10 hours is 10 ppm or less each) It was formed on a tetrafluoroethylene film (separator, thickness 50 μm) as a base material. A sheet thinner than the particle diameter could be created by volume shrinkage due to solvent drying.
The sheet was passed at a speed of 0.1 m / min at a pressure of 2 kg / cm 2 between a silicone rubber roll heated to 150 ° C. (a rubber having a rubber hardness of 70 mm formed on a 100 mmφ iron roll with a thickness of 2 mm), The insulating coating was exposed from the sheet surface. Fast curing is possible by the action of the microcapsule-type latent curing agent, and it was easy to handle as a sheet due to the flexibility of the epoxy resin.
[0018]
This sheet was immersed in an electroless copper plating solution CC-41 (trade name, manufactured by Hitachi Chemical Co., Ltd.) at 50 ° C. for 5 minutes to obtain an anisotropic conductive sheet. The protrusion height in this case was 5 μm.
Between the evaluation FPC (flexible printed circuit board, the distance between the circuit and adjacent circuit is 50 μm each), the anisotropic conductive sheet obtained in each of the above examples is sandwiched with a width of 2 mm, and the FPC circuit is aligned. In a state where the portion was pressurized at 1 kg / cm 2 , the connection resistance was measured between the opposing circuits of the FPC, and the insulation was measured by the resistance between adjacent circuits. The width of the FPC used for the measurement is 20 mm, and the number of circuits is 200. As a result, the connection resistance of the sheet was 0.13Ω, and the insulation resistance was 10 9 Ω or more, indicating good anisotropic conductivity.
[0019]
【The invention's effect】
According to the present invention, an inexpensive method for manufacturing an anisotropic conductive sheet with high resolution, excellent reliability, and simple processes can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing the structure of particles in the production method of the present invention.
FIG. 2 is a schematic cross-sectional view showing the structure of particles in the production method of the present invention.
FIG. 3 is a diagram for explaining a method for forming a sheet-like material in the production method of the present invention.
FIG. 4 is a diagram for explaining a method for forming a sheet-like material in the production method of the present invention.
FIG. 5 is a diagram for explaining a plating state on an insulating coating in the production method of the present invention.
FIG. 6 is a diagram for explaining a plating state on an insulating coating in the production method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Conductive particle, 2 ... Insulating coating, 3 ... Core material, 4 ... Metal thin layer, 5 ... Insulating material, 6 ... Base material, 7 ... Exposed part, 8 ... Plated nucleus, 9 ... Needle-like protrusion

Claims (1)

(a)均一粒径の導電性粒子の表面にめっき触媒を含有する絶縁性被覆を施す工程、(b)該絶縁性被覆を施した導電性粒子を絶縁材料中に分散させ、該絶縁材料の厚さが導電性粒子の粒径と同等以下のシート状物を形成する工程、(c)該シート状物を加熱加圧して絶縁性被覆をシート状物の表面から露出させる工程及び(d)該シート状物の露出部に無電解めっきする工程からなることを特徴とする異方導電性シートの製造方法。(A) a step of applying an insulating coating containing a plating catalyst to the surface of the conductive particles having a uniform particle size; (b) dispersing the conductive particles coated with the insulating coating in an insulating material; A step of forming a sheet-like material having a thickness equal to or smaller than the particle size of the conductive particles, (c) a step of heating and pressing the sheet-like material to expose the insulating coating from the surface of the sheet-like material, and (d) The manufacturing method of the anisotropically conductive sheet characterized by including the process of electroless- plating to the exposed part of this sheet-like material.
JP00755794A 1994-01-27 1994-01-27 Method for producing anisotropic conductive sheet Expired - Fee Related JP3608214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00755794A JP3608214B2 (en) 1994-01-27 1994-01-27 Method for producing anisotropic conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00755794A JP3608214B2 (en) 1994-01-27 1994-01-27 Method for producing anisotropic conductive sheet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004242883A Division JP4020111B2 (en) 2004-08-23 2004-08-23 Method for producing laminated particles with plating layer

Publications (2)

Publication Number Publication Date
JPH07220540A JPH07220540A (en) 1995-08-18
JP3608214B2 true JP3608214B2 (en) 2005-01-05

Family

ID=11669111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00755794A Expired - Fee Related JP3608214B2 (en) 1994-01-27 1994-01-27 Method for producing anisotropic conductive sheet

Country Status (1)

Country Link
JP (1) JP3608214B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018118880A1 (en) * 2016-12-21 2018-06-28 3M Innovative Properties Company Conductive particles, articles, and methods

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4387175B2 (en) * 2003-07-07 2009-12-16 積水化学工業株式会社 Coated conductive particles, anisotropic conductive material, and conductive connection structure
CN100437838C (en) * 2003-07-07 2008-11-26 积水化学工业株式会社 Coated conductive particle, anisotropic conductive material, and conductive connection structure
JP2006066729A (en) * 2004-08-27 2006-03-09 Toshiba Corp Circuit board module and manufacturing method thereof
JP4631889B2 (en) * 2007-09-03 2011-02-16 日立化成工業株式会社 Connection member, electrode connection structure and connection method using the connection member
TWI830643B (en) * 2022-08-26 2024-01-21 日商納美仕有限公司 Conductive paste, electrode, electronic component, and electronic instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018118880A1 (en) * 2016-12-21 2018-06-28 3M Innovative Properties Company Conductive particles, articles, and methods
US10964441B2 (en) 2016-12-21 2021-03-30 3M Innovative Properties Company Conductive particles, articles, and methods

Also Published As

Publication number Publication date
JPH07220540A (en) 1995-08-18

Similar Documents

Publication Publication Date Title
JP4860163B2 (en) Method for producing conductive fine particles
JP3678547B2 (en) Multilayer anisotropic conductive adhesive and method for producing the same
EP0242025B1 (en) Anisotropic-electroconductive adhesive composition, method for connecting circuits using the same, and connected circuit structure thus obtained
US7410698B2 (en) Conductive particle with protrusions and anisotropic conductive material therefrom
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
JP4991666B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP4718926B2 (en) Conductive fine particles and anisotropic conductive material
JP4936678B2 (en) Conductive particles and anisotropic conductive materials
CN101123852A (en) Circuit substrate and manufacturing method thereof
JP2546262B2 (en) Circuit connecting member and method of manufacturing the same
JP4612242B2 (en) Conductive adhesive and IC chip mounting method using the same
JP3608214B2 (en) Method for producing anisotropic conductive sheet
JP5091416B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP4020111B2 (en) Method for producing laminated particles with plating layer
JP3608213B2 (en) Manufacturing method of anisotropic conductive sheet
JPH06333965A (en) Anisotropic conductive adhesive sheet
KR20100127575A (en) Electroconductive particle and preparation method thereof
JP3578223B2 (en) Manufacturing method of anisotropic conductive sheet
JP5529901B2 (en) Conductive particles and anisotropic conductive materials
JP4135694B2 (en) Manufacturing method of anisotropic conductive sheet
JPH0773066B2 (en) Circuit connection member
JP3914206B2 (en) Conductive fine particles and anisotropic conductive materials
JP5323147B2 (en) Conductive fine particles and anisotropic conductive materials
JP4347974B2 (en) Method for producing conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JPH08249922A (en) Coated particle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees