JP3582654B2 - Connection member - Google Patents

Connection member Download PDF

Info

Publication number
JP3582654B2
JP3582654B2 JP2002292498A JP2002292498A JP3582654B2 JP 3582654 B2 JP3582654 B2 JP 3582654B2 JP 2002292498 A JP2002292498 A JP 2002292498A JP 2002292498 A JP2002292498 A JP 2002292498A JP 3582654 B2 JP3582654 B2 JP 3582654B2
Authority
JP
Japan
Prior art keywords
conductive particles
dense
connection member
connection
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002292498A
Other languages
Japanese (ja)
Other versions
JP2003208931A (en
Inventor
功 塚越
泰史 後藤
共久 太田
豊 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002292498A priority Critical patent/JP3582654B2/en
Publication of JP2003208931A publication Critical patent/JP2003208931A/en
Application granted granted Critical
Publication of JP3582654B2 publication Critical patent/JP3582654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)

Description

【0001】
【発明の属するの技術分野】
本発明は、電子部品と回路板や、回路板同士を接着固定すると共に、両者の電極同士を電気的に接続するために用いられる接続部材に関する。
【0002】
【従来の技術】
近年、電子部品の小型薄型化に伴い、これらに用いる回路は高密度、高精細化しており、このような電子部品と微細電極の接続は、従来のはんだやゴムコネクタ等では対応が困難であることから、最近では分解能に優れた異方導電性の接着剤や膜状物(以下接続部材という)が多用されている。この接続部材は、導電性粒子を所定量含有した接着剤からなるもので、この接続部材を電子部品の接続電極と回路基板の回路電極との間に設け、加圧または加熱加圧手段を構じることによって、両者の電極同士が電気的に接続されると共に、電極に隣接して形成されている電極同士には絶縁性を付与して電子部品と回路とが接着固定されるものである。上記接続部材を高分解能化するための基本的な考えは、導電性粒子の粒径を隣接する電極間の絶縁部分よりも小さくすることで隣接電極間における絶縁性が確保され、併せて導電性粒子の含有量をこの粒子同士が接触しない範囲とすることにより接続部分における導通性が確実に得られるということである。
【0003】
しかしながら、導電性粒子の粒径を小さくすると、粒子表面積の著しい増加により粒子が2次凝集を起こして隣接電極間の絶縁性が保持できなくなり、また導電性粒子の含有粒子を減少すると接続すべき回路上の導電性粒子の数も減少することから電極に対する接触点の数が不足し接続電極間での導通が得られなくなるため、長期接続信頼性を保ちながら接続部材を高分解能化することは極めて困難であった。
【0004】
【発明が解決しようとする課題】
このような微細電極や回路の接続を可能とし、且つ接続信頼性に優れた接続部材として、我々は先に必要部に導電性粒子の密集域を有する接続部材を提案した。これによれば、例えばピッチ200μm以下といった半導体チップのようなドット状の電極や、TABやFPC等の絶縁された多数の平行電極を有するライン状の微細電極の接続が可能となる。上記の方法はいずれも、必要部に貫通孔を有するメタルマスクを粘着性のある接着剤と平面的に接触させ、メタルマスクの上から導電性粒子をふりかけ余分な導電性粒子を取り除き、メタルマスクを除去して接続部材を作製している。また他の手段として、液晶スペーサ散布装置によりメタルマスクの上から導電性粒子を散布したりシルクスクリーン印刷法により作製が可能である。これらの方法は、簡単に小面積の高精度な接続部材を得る方法として優れているが、例えば連続したテープ状巻重体のような長尺品が得られず、工業的な大量生産を行い難い欠点があった。接続部材が長尺品であると接続の連続作業が可能となる。本発明は上記欠点に鑑みなされたもので、導電性粒子の密集域を所定の配列で有する長尺状の接続部材を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、導電性粒子を接着剤層で被覆固定してなり、導電性粒子が密集域を形成し、密集域における導電性粒子の数を3個以上で、導電性粒子の密集域が、隙間なく並べた正三角形の頂部に形成され、隣接する密集域の端部からの垂線の間隔dが、接続すべき電極間距離よりも小さい接続部材である。さらに、本発明は、導電性粒子が絶縁被覆粒子であると好ましい接続部材である。
【0006】
以下本発明について、図面を参照しながら説明する。図1は、本発明の接続部材の製造方法の一実施例を説明する断面模式図である。円筒状回転体1としては、例えばロール状が代表的である。材質は密集域形成の精度向上の点から剛性の金属が好ましい。表面2に所定の配列で導電性粒子の密集域3を形成する方法としては、例えばロールの表面2を凹版あるいは図示していないが凸版状に形成し、その部分に導電性粒子の密集域をドクターナイフ4等で一定量形成するグラビア印刷の手法がある。この場合導電性粒子は高分子バインダと溶媒よりなる液状物とすると形成作業が容易である。
【0007】
また本発明の接続部材の製造方法の実施に好適な手段として、後述する表面に貫通孔を有する円筒状回転体と、円筒状回転体の内部に設けた導電性粒子の供給量制御装置と加圧手段からなる装置によっても形成可能である。対面走行する接着フィルム5は、熱可塑性材料や熱や光により硬化性を示す材料が広く適用できる。接続後の耐熱性や耐湿性に優れることから、硬化性材料の適用が好ましい。なかでもエポキシ系接着剤は短時間硬化が可能で接続作業性が良く、分子構造上接着性に優れる等の特徴から好ましく適用できる。
【0008】
エポキシ系接着剤は、例えば高分子量エポキシ、固形エポキシと液状エポキシ、ウレタンやポリエステル、NBR等で変性したエポキシを主成分とし、硬化剤や触媒、カップリング剤、充填剤等を添加してなるものが一般的である。接着フィルム5の厚みは、導電性粒子の密集域形成の精度向上の点から接着性の得られる範囲で薄い方が好ましく、50μm以下、より好ましくは35μm以下である。接着フィルム5は、必要に応じてプラスチックフィルム等の可撓性の基材6で補強されていてもよい。
【0009】
着フィルム5への転写手段は、導電性粒子の密集域を加圧転写すれば良く、接着フィルム5が室温近辺で粘着性を示すと、導電性粒子の配置固定が容易なことから好ましい。導電性粒子を配置固定した接着フィルムは本発明でいう接続部材であり、連続した長尺品として巻重することできる。この時、導電性粒子の密集域を保持するため、必要に応じて更に別の接着フィルム5をラミネートしてサンドイッチ状としたり、熱ロールにより接着フィルム5中に埋め込むこともできる。また、接着特性の改良を目的に、液状物(接着剤、接着促進剤及び架橋剤等)を薄く形成することもできる。
【0010】
を用いて導電性粒子7の密集域3を説明する。導電性粒子7の密集域3は、図2のように隣接する平行電極同士を導通させることなく絶縁性を保ち、且つ接続する全ての平行電極間に少なくとも密集域の一部が必ず挟まれる程度に配置する。図においてdは、X軸方向における密集域同士の最近接距離であり、接続時に多数の平行電極を有するライン状の微細電極と交差する方向をX軸、平行する方向をY軸とする。
【0011】
密集域3中の導電性粒子7の数は、図の一部に例示したように原則的には1個あれば良いが、3個以上とする。より好ましくは5個以上とすることで接続信頼性が向上するので好ましい。導電性粒子7は、接着フィルム5の表面でも、図1のように接着剤に埋まっていても良い。導電性粒子7としては、Au、Ag、Ni、Cu、W、Sb、Sn、はんだ等の金属粒子やカーボン等があり、これら及び非導電性のガラス、セラミックス、プラスチック等の高分子核材等に、前記した導電層を被覆等により形成したものでも良い。さらに前記したような導電性粒子を絶縁層で被覆してなる絶縁被覆粒子も適用可能である。
【0012】
はんだ等の熱溶融金属や、プラスチック等の高分子核材に導電層を形成したものは、加熱加圧もしくは加圧により変形性を有し、積層時に回路との接触面積が増加し信頼性が向上するので好ましい。特に高分子類を核とした場合、はんだのように融点を示さないので軟化の状態を接続温度で広く制御でき、電極の厚みや平坦性のばらつきに対応し易い接続部材が得られるので好ましい。また例えばNiやW等の硬質金属粒子の場合、導電性粒子が電極や配線パターンに突き刺さるので、酸化膜や汚染層の存在する場合にも低い接続抵抗が得られ、加えて接続部の固定による膨張収縮の制御にも有効で信頼性が向上する。
【0013】
本発明の接続部材の実施に好適な製造装置を、図に用いて説明する。表面に貫通孔8を有する円筒状回転体1は、例えばメタルマスクを円筒状としたものであり、その内部に導電性粒子の供給制御装置9と、加圧手段10を設ける。供給制御装置9は、導電性粒子7の数や層数により量を制御するものであり、例えば円筒状回転体1とのギャップをコントロールできるドクターナイフやロール等がある。加圧手段10は、導電性粒子7を接着フィルム5へ転写配置するものであり、円筒状回転体1に合わせて回転するロール等を例示できる。この場合、加圧手段10が貫通孔8と一致した突状部を有すれば加圧転写がさらに有利となる。加圧手段10により貫通孔より排出された導電性粒子7は、接着フィルム5に貼着され、走行手段11により連続した長尺品として例えば巻重体12とすることができる。図の場合、円筒状回転体の厚みを薄くし導電性粒子7の粒径に近づけると密集域の微細配置の精度が向上し好適である。この方法は分散媒を用いず乾式下で行うことが可能なため、要部の導電性粒子濃度を密に形成でき、また清掃作業が容易である。
【0014】
本発明の接続部材は、円筒状回転体の表面要部に導電性粒子の密集域を形成し、対面走行する接着フィルムと接触させ、導電性粒子の密集域を接着フィルムに転写する接続部材の製造法とそれに好適な製造装置であると、連続したテープ状巻重体のような長尺品が容易に得られる。すなわち導電性粒子の密集域形成をエンドレスな円筒状として走行する接着フィルムに転写し、順次円筒状回転体に導電性粒子密集域を形成供給できるので、高精度な長尺状の接続部材の工業的な大量生産が容易となる。
【0015】
【実施例】
以下実施例でさらに詳細に説明するが、本発明はこれに限定されない。
【0016】
実施例1
に示したような正三角形の配列で、隙間無く並べその各頂点に中心を持つような円形の貫通孔を有するステンレス製メタルマスク(厚み10μm、孔の直径30μm、ピッチ80μm、d=10μm)を直径100mmの円筒状とし、側面の中心に回転軸とその上部に導電性粒子の供給口とを形成した。円筒状の表面は、接着フィルムと不必要な接触を避けるためテフロン(商標)系の剥離処理がされている。また円筒状の内部には図4の配置に従いドクターナイフと直径10mmの加圧ロールを設けてある。導電性粒子は、架橋ポリスチレンからなる核材の表面にNi/Auの複合導電層を有する粒径5μmのめっきプラスチック球を用いた。導電性粒子は、供給口より供給され円筒とのギャップを無くすようにコントロールしたドクターナイフを経て、供給口下部に形成された加圧手段である回転するゴムロールの自重により、導電性粒子を接着フィルムへ転写配置する。接着フィルムとしては、ポリエステルフィルムを剥離剤処理したセパレータよりなる基材上に、高分子量エポキシを主成分とする厚み20μmの室温で粘着性を有する接着剤を用い、1m/分の速度で走行させ、周速度を同期した円筒状の表面と接触させ転写した。この後、前記セパレータをロールラミネータにより貼り合わせた。そのため導電性粒子は接着フィルム中に埋没した形で精度良く配置された。以上により連続したテープ状巻重体の製造が可能であった。
【0017】
実施例2
実施例1と同様であるが、貫通孔を有するメタルマスクの代わりに密集域を同配置に凹状形成したグラビアロールを用い、導電性粒子は可溶性ナイロンの5%メタノール液に分散し液状物とした。導電性粒子はナイロンの20体積%とした。接着フィルムはメタノールに不溶なため転写配置が可能であり、巻重前に50℃で送風乾燥しメタノールを除去した。また導電性粒子の表面が融点130℃のナイロン絶縁層で被覆してなる絶縁被覆粒子であることから、密集域の配置形成が容易であった。本例によれば、グラビアロール法でも連続したテープ状巻重体の製造が可能であった。
【0018】
【発明の効果】
以上のように本発明の接続部材は、高精度な長尺状の接続部材の工業的な大量生産が可能となり、接続信頼性が向上し、導電性粒子の密集域が、隙間なく並べた正三角形の頂部に形成されると、電子部品と微細電極の接続の位置合わせが不要になり、導電性粒子が絶縁被覆粒子であると密集域の配置形成が容易であり、隣接電極間の絶縁性に優れ、接続信頼性が向上する。
【図面の簡単な説明】
【図1】本発明の接続部材の製造法の一実施例を示す断面図である。
【図】本発明の接続部材の導電性粒子の密集配置を示す平面模式図である。
【図】本発明の接続部材の実施に好適な製造装置を示す断面模式図である。
【符号の説明】
1 円筒状回転体 2 表面要部
3 密集域 4 ドクターナイフ
5 接着フィルム 6 基材
7 導電性粒子 8 貫通孔
9 供給制御装置 10 加圧手段
11 走行手段 12 巻重体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a connection member used for bonding and fixing an electronic component and a circuit board, and bonding and fixing the circuit boards to each other and electrically connecting both electrodes.
[0002]
[Prior art]
In recent years, as electronic components have become smaller and thinner, circuits used for them have become higher density and higher definition, and it is difficult to connect such electronic components and fine electrodes with conventional solders or rubber connectors. For this reason, recently, anisotropic conductive adhesives and film-like materials (hereinafter, referred to as connection members) having excellent resolution are frequently used. The connection member is made of an adhesive containing a predetermined amount of conductive particles. The connection member is provided between the connection electrode of the electronic component and the circuit electrode of the circuit board, and includes a pressurizing or heating pressurizing unit. As a result, the electrodes are electrically connected to each other, and the electrodes formed adjacent to the electrodes are provided with insulating properties so that the electronic component and the circuit are bonded and fixed. . The basic idea for increasing the resolution of the connection member is to make the particle size of the conductive particles smaller than the insulating portion between the adjacent electrodes, thereby ensuring insulation between the adjacent electrodes, and at the same time, By setting the content of the particles in a range in which the particles do not come into contact with each other, conductivity at the connection portion can be reliably obtained.
[0003]
However, if the particle size of the conductive particles is reduced, the particles will undergo secondary aggregation due to a remarkable increase in the particle surface area, making it impossible to maintain insulation between adjacent electrodes. Since the number of conductive particles on the circuit also decreases, the number of contact points with the electrodes becomes insufficient, and conduction between the connection electrodes cannot be obtained, so it is not possible to improve the resolution of the connection member while maintaining long-term connection reliability It was extremely difficult.
[0004]
[Problems to be solved by the invention]
As a connection member which enables connection of such fine electrodes and circuits and has excellent connection reliability, we have previously proposed a connection member having a dense area of conductive particles in a necessary part. According to this, it is possible to connect a dot-shaped electrode such as a semiconductor chip having a pitch of 200 μm or less, or a line-shaped fine electrode having a large number of insulated parallel electrodes such as TAB and FPC. In any of the above methods, a metal mask having a through-hole at a necessary portion is brought into planar contact with a sticky adhesive, and conductive particles are sprinkled from the top of the metal mask to remove excess conductive particles. Is removed to produce a connection member. As another means, it is possible to spray conductive particles from above the metal mask by using a liquid crystal spacer spraying device, or to fabricate the device by a silk screen printing method. These methods are excellent as a method for easily obtaining a small-area, high-precision connection member, but for example, a long product such as a continuous tape-shaped wound body cannot be obtained, and it is difficult to perform industrial mass production. There were drawbacks. When the connection member is a long product, continuous connection work becomes possible. The present invention has been made in view of the above drawbacks, and has as its object to provide a long connecting member having a dense array of conductive particles in a predetermined arrangement.
[0005]
[Means for Solving the Problems]
The present invention, conductive particles child becomes covered fixed by the adhesive layer, conductive particles children form a dense region, the number of conductive particles in the dense zone three or more, dense area of the conductive particles Is a connection member formed at the top of an equilateral triangle arranged without gaps and having a distance d between perpendiculars from ends of adjacent dense areas smaller than the distance between electrodes to be connected . Et al of the present invention, the conductive particles are preferably connected member If it is insulating coating particles.
[0006]
Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view illustrating one embodiment of a method for manufacturing a connection member according to the present invention. A typical example of the cylindrical rotating body 1 is a roll shape. The material is preferably a rigid metal from the viewpoint of improving the accuracy of forming a dense area. As a method of forming the dense area 3 of the conductive particles on the surface 2 in a predetermined arrangement, for example, the surface 2 of the roll is formed in an intaglio or in a relief form (not shown), and the dense area of the conductive particles is formed in that portion. There is a method of gravure printing in which a fixed amount is formed with a doctor knife 4 or the like. In this case, when the conductive particles are a liquid material composed of a polymer binder and a solvent, the forming operation is easy.
[0007]
Further, as means suitable for carrying out the method for manufacturing a connection member of the present invention, a cylindrical rotating body having a through hole on a surface described later, and a supply amount control device for conductive particles provided inside the cylindrical rotating body, which will be described later, are provided. It can also be formed by a device comprising pressure means. The contact Chakufu Irumu 5 facing traveling material showing curability by thermoplastic material and heat or light can be widely applied. It is preferable to use a curable material because of its excellent heat resistance and moisture resistance after connection. Among them, the epoxy adhesive can be preferably applied because it can be cured in a short time, has good connection workability, and has excellent adhesiveness due to its molecular structure.
[0008]
Epoxy adhesives are, for example, high-molecular-weight epoxies, solid epoxies, liquid epoxies, and epoxies modified with urethane, polyester, NBR, etc. as the main components, and added with curing agents, catalysts, coupling agents, fillers, etc. Is common. The thickness of the contact Chakufu Irumu 5, thinner is preferably in a range capable of obtaining adhesion in terms of accuracy dense region formed of conductive particles, 50 [mu] m or less, more preferably 35μm or less. The adhesive film 5 may be reinforced with a flexible base material 6 such as a plastic film as needed.
[0009]
Transfer means for contacting Chakufu Irumu 5, a dense zone of the conductive particles may be pressure transfer, the contact Chakufu Irumu 5 exhibits tack at around room temperature, arranged and fixed in the conductive particles can easily Is preferred. The adhesive film on which the conductive particles are arranged and fixed is the connecting member according to the present invention, and can be wound as a continuous long product. At this time, to hold the dense region of the conductive particles, it is also possible to embed different contact Chakufu Irumu 5 further optionally or as sandwiched by lamination by hot roll in contact Chakufu Irumu 5. Further, for the purpose of improving the adhesive properties, a liquid material (adhesive, adhesion promoter, cross-linking agent, etc.) can be formed thin.
[0010]
The dense region 3 of the conductive particles 7 is described with reference to FIG. As shown in FIG. 2, the dense area 3 of the conductive particles 7 maintains insulation without conducting the adjacent parallel electrodes, and at least a part of the dense area is always sandwiched between all the connected parallel electrodes. To place. In FIG. 2 , d is the closest distance between the dense areas in the X-axis direction. The direction intersecting the line-shaped fine electrode having many parallel electrodes at the time of connection is defined as the X-axis, and the direction parallel thereto is defined as the Y-axis.
[0011]
The number of dense zone 3 in the conductive particles 7, may if one is to the principle as illustrated in part in FIG. 2, and 3 or more. More preferably, it is preferable that the number be five or more because connection reliability is improved. The conductive particles 7 may be buried in the surface of the adhesive film 5 or in an adhesive as shown in FIG. Examples of the conductive particles 7 include metal particles such as Au, Ag, Ni, Cu, W, Sb, Sn, and solder, and carbon, and polymer core materials such as non-conductive glass, ceramics, and plastic. Alternatively, the conductive layer described above may be formed by coating or the like. Further conductive particles such as described above formed by coating with an insulating layer insulating coating particles children can also be applied.
[0012]
A conductive layer formed on a hot-melt metal such as solder or a polymer nucleus material such as plastic has deformability due to heating and pressing or pressurizing, and the contact area with the circuit increases during lamination and reliability is improved. It is preferable because it improves. In particular, when a polymer is used as a core, a softened state can be widely controlled by a connection temperature since a melting point is not exhibited unlike solder, and a connection member which can easily cope with variations in electrode thickness and flatness is preferable, which is preferable. In the case of hard metal particles such as Ni and W, for example, conductive particles penetrate electrodes and wiring patterns, so that a low connection resistance can be obtained even when an oxide film or a contaminant layer is present. It is effective for controlling expansion and contraction, and reliability is improved.
[0013]
The production apparatus suitable for the practice of the connecting member of the present invention will be described with reference to FIG. The cylindrical rotator 1 having a through hole 8 on its surface is, for example, a metal mask having a cylindrical shape, and a conductive particle supply control device 9 and a pressurizing means 10 are provided therein. The supply control device 9 controls the amount according to the number and the number of layers of the conductive particles 7, and includes, for example, a doctor knife and a roll that can control a gap with the cylindrical rotary member 1. Pressurizing means 10 is for transferring placing conductive particles 7 into contact Chakufu Irumu 5 can be exemplified by roll or the like that rotates in accordance with the cylindrical rotating body 1. In this case, if the pressing means 10 has a protruding portion that coincides with the through hole 8, the pressure transfer is more advantageous. Conductive particles 7 discharged from the through hole by pressing means 10, against Chakufu Irumu 5 is adhered can be a continuous example the rolled 12 as long article by the traveling means 11. In the case of FIG. 3 , it is preferable to reduce the thickness of the cylindrical rotating body so as to approach the particle diameter of the conductive particles 7 because the precision of fine arrangement of the dense area is improved. Since this method can be performed in a dry system without using a dispersion medium, the concentration of the conductive particles in the main part can be formed densely, and the cleaning operation is easy.
[0014]
The connecting member of the present invention forms a dense area of the conductive particles on the main surface of the cylindrical rotating body, is brought into contact with the facing adhesive film, and transfers the dense area of the conductive particles to the adhesive film. According to the manufacturing method and the manufacturing apparatus suitable for the manufacturing method, a long product such as a continuous tape-shaped wound body can be easily obtained. That is, since the formation of the dense area of the conductive particles is transferred to the adhesive film running as an endless cylindrical shape, and the conductive particle dense area can be sequentially formed and supplied to the cylindrical rotating body, the industrial production of high-precision long connection members is possible. Mass production becomes easy.
[0015]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
[0016]
Example 1
An array of equilateral triangles as shown in FIG. 2, without gaps arranged that stainless metal mask (thickness 10 [mu] m having a circular through-hole, such as centered at each vertex, pore diameter 30 [mu] m, pitch 80 [mu] m, d = 10 [mu] m ) Was formed into a cylindrical shape having a diameter of 100 mm, and a rotating shaft was formed at the center of the side surface and a supply port for conductive particles was formed above the rotating shaft. The cylindrical surface has been subjected to a Teflon (trademark) -based release treatment to avoid unnecessary contact with the adhesive film. Further, a doctor knife and a pressure roll having a diameter of 10 mm are provided inside the cylindrical shape according to the arrangement shown in FIG. As the conductive particles, plated plastic spheres having a particle diameter of 5 μm and having a Ni / Au composite conductive layer on the surface of a core material made of cross-linked polystyrene were used. The conductive particles are supplied from the supply port and pass through a doctor knife controlled to eliminate the gap with the cylinder, and the conductive particles are bonded to the adhesive film by the weight of the rotating rubber roll which is a pressing means formed at the lower part of the supply port. And transfer it to The contact Chakufu Irumu, on a substrate made of a separator treated release agent the polyester film, using an adhesive having a room temperature tacky thickness 20μm consisting mainly of high molecular weight epoxy, 1 m / min speed The sheet was allowed to run, and was brought into contact with a cylindrical surface whose peripheral speed was synchronized to transfer the image. Thereafter, the separator was bonded by a roll laminator. Therefore, the conductive particles were precisely arranged in a form buried in the adhesive film. Thus, a continuous tape-shaped wound body could be manufactured.
[0017]
Example 2
Same as Example 1, except that instead of a metal mask having through holes, a gravure roll in which a dense area is concavely formed in the same arrangement was used, and the conductive particles were dispersed in a 5% methanol solution of soluble nylon to form a liquid material. . The conductive particles were 20% by volume of nylon. Since the adhesive film was insoluble in methanol, it could be transferred and arranged, and was blow-dried at 50 ° C. before winding to remove methanol. In addition, since the surface of the conductive particles was an insulating coated particle obtained by coating the surface with a nylon insulating layer having a melting point of 130 ° C., it was easy to arrange and form a dense area. According to the present example, it was possible to produce a continuous tape-shaped wound body even by the gravure roll method.
[0018]
【The invention's effect】
As described above, the connection member of the present invention enables industrial mass production of high-precision long connection members, improves connection reliability, and ensures that dense areas of conductive particles are arranged without gaps. When formed at the top of the triangle, the alignment of the connection between the electronic component and the fine electrode becomes unnecessary, and if the conductive particles are insulating coating particles, the dense area can be easily formed and formed, and the insulating property between adjacent electrodes can be improved. And connection reliability is improved.
[Brief description of the drawings]
FIG. 1 is a sectional view showing one embodiment of a method for manufacturing a connection member of the present invention.
FIG. 2 is a schematic plan view showing a dense arrangement of conductive particles of a connection member of the present invention.
FIG. 3 is a schematic sectional view showing a manufacturing apparatus suitable for implementing the connecting member of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylindrical rotating body 2 Main surface part 3 Dense area 4 Doctor knife 5 Adhesive film 6 Base material 7 Conductive particles 8 Through hole 9 Supply control device 10 Pressurizing means 11 Running means 12 Winding body

Claims (2)

導電性粒子を接着剤層で被覆固定してなり、導電性粒子が密集域を形成し、密集域における導電性粒子の数は3個以上で、導電性粒子の密集域が、隙間なく並べた正三角形の頂部に形成され、隣接する密集域の端部からの垂線の間隔dが、接続すべき電極間距離よりも小さい接続部材。 The conductive particles child becomes covered fixed by the adhesive layer, conductive particles child forms a dense area, the number of conductive particles in the dense zone three or more, dense area of the conductive particles, without a gap A connection member formed at the top of the arranged equilateral triangles and having a distance d between perpendiculars from ends of adjacent dense areas smaller than a distance between electrodes to be connected. 導電性粒子が絶縁被覆粒子である請求項1に記載の接続部材。The connecting member according to claim 1, wherein the conductive particles are insulating coating particles.
JP2002292498A 2002-10-04 2002-10-04 Connection member Expired - Fee Related JP3582654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292498A JP3582654B2 (en) 2002-10-04 2002-10-04 Connection member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292498A JP3582654B2 (en) 2002-10-04 2002-10-04 Connection member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP01371493A Division JP3472987B2 (en) 1993-01-29 1993-01-29 Manufacturing method of connecting member and manufacturing apparatus therefor

Publications (2)

Publication Number Publication Date
JP2003208931A JP2003208931A (en) 2003-07-25
JP3582654B2 true JP3582654B2 (en) 2004-10-27

Family

ID=27655716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292498A Expired - Fee Related JP3582654B2 (en) 2002-10-04 2002-10-04 Connection member

Country Status (1)

Country Link
JP (1) JP3582654B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5698080B2 (en) * 2011-06-28 2015-04-08 デクセリアルズ株式会社 Anisotropic conductive film, connection method, and joined body
JP6331776B2 (en) * 2014-06-30 2018-05-30 デクセリアルズ株式会社 Anisotropic conductive film and connection structure
KR101956221B1 (en) * 2014-10-28 2019-03-08 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film, manufacturing method for same, and connection structure
US10943879B2 (en) 2015-01-13 2021-03-09 Dexerials Corporation Bump-forming film, semiconductor device and manufacturing method thereof, and connection structure
WO2016190424A1 (en) * 2015-05-27 2016-12-01 デクセリアルズ株式会社 Anisotropic conductive film and connection structure
CN107534231B (en) * 2015-05-27 2020-04-14 迪睿合株式会社 Anisotropic conductive film and connection structure
WO2017191772A1 (en) * 2016-05-05 2017-11-09 デクセリアルズ株式会社 Filler alignment film

Also Published As

Publication number Publication date
JP2003208931A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
JP5057594B2 (en) Conductive particle adhesion film
JPH03131089A (en) Connecting method for circuit board
JPH02117980A (en) Conductive adhesive tape
JP3472987B2 (en) Manufacturing method of connecting member and manufacturing apparatus therefor
JP3582654B2 (en) Connection member
JP5152815B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP4993877B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP3994335B2 (en) Manufacturing method of connecting member
JPH06333965A (en) Anisotropic conductive adhesive sheet
JP4282097B2 (en) Circuit board connection method, connection structure, and adhesive film used therefor
JP3783785B2 (en) Method for manufacturing anisotropic conductive resin film adhesive and method for connecting between fine circuits
JP2008124029A (en) Connecting member
JP4045471B2 (en) Electronic component mounting method
JP5445558B2 (en) Anisotropic conductive adhesive sheet and connection method
JP3578223B2 (en) Manufacturing method of anisotropic conductive sheet
JPH09147928A (en) Connecting member
JPH11121073A (en) Connecting member and its manufacture
KR100624155B1 (en) Conductive silicon powder and Method for making the same and Anisotropic conductive film and Conductive paste using the same
JP4155470B2 (en) Electrode connection method using connecting members
KR101345084B1 (en) ACF and conductive particle and its manufacturing
JP4572929B2 (en) Connection member and electrode connection structure using the same
JPH0429504Y2 (en)
JP2008112732A (en) Connecting method of electrode
JPH0696620A (en) Anisotropic conductive material, method for connecting circuit using same, and electric circuit substrate
JP2003168097A (en) Conductive connection portion

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees