JP2007035512A - 燃料電池の冷却装置 - Google Patents
燃料電池の冷却装置 Download PDFInfo
- Publication number
- JP2007035512A JP2007035512A JP2005219292A JP2005219292A JP2007035512A JP 2007035512 A JP2007035512 A JP 2007035512A JP 2005219292 A JP2005219292 A JP 2005219292A JP 2005219292 A JP2005219292 A JP 2005219292A JP 2007035512 A JP2007035512 A JP 2007035512A
- Authority
- JP
- Japan
- Prior art keywords
- cooling water
- circulation path
- path
- fuel cell
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
【課題】簡素な構成で、かつ燃料電池で発電された電力を使用することなく、冷却水温度を調節できるようにした燃料電池の冷却装置を提供する。
【解決手段】冷却水を冷却する熱交換器(18)とラジエータ(24)が配置された循環路(14)と、循環路(14)から分岐されて熱交換器(18)とラジエータ(24)をバイパスして循環路(14)に合流される第1のバイパス路(26)と、同様に循環路(14)から分岐されてラジエータ(24)をバイパスして循環路(14)に合流される第2のバイパス路(60)とを備えると共に、循環路(14)と各バイパス路(26,60)の分岐点(28,62)に、冷却水の温度に応じて冷却水の流路を循環路(14)と各バイパス路(26,60)の間で切り替えるサーモスタット(30,64)を配置する。
【選択図】図1
【解決手段】冷却水を冷却する熱交換器(18)とラジエータ(24)が配置された循環路(14)と、循環路(14)から分岐されて熱交換器(18)とラジエータ(24)をバイパスして循環路(14)に合流される第1のバイパス路(26)と、同様に循環路(14)から分岐されてラジエータ(24)をバイパスして循環路(14)に合流される第2のバイパス路(60)とを備えると共に、循環路(14)と各バイパス路(26,60)の分岐点(28,62)に、冷却水の温度に応じて冷却水の流路を循環路(14)と各バイパス路(26,60)の間で切り替えるサーモスタット(30,64)を配置する。
【選択図】図1
Description
この発明は、燃料電池の冷却装置に関する。
従来、燃料電池を冷却水で冷却することが広く行われている。この種の技術にあっては、燃料電池の熱を吸収して昇温された冷却水を循環路に流出させ、循環路の途中に配置された熱交換器などの冷却手段で冷却させた後、再度燃料電池に流入させるのが一般的である(例えば特許文献1参照)。
特開平5−29012号公報
また、冷却水の温度を調節するため、冷却手段をバイパスするバイパス路を循環路に接続した技術も知られている。この種の技術にあっては、バイパス路と循環路の接続部に三方電磁弁を配置すると共に、適宜位置に冷却水の温度を検出する温度センサを設け、検出された冷却水温度に応じて前記三方電磁弁の動作を制御することで、冷却水の流路を循環路とバイパス路の間で切り替えるようにしている。
循環路にバイパス路を接続した従来技術にあっては、流路を循環路とバイパス路の間で切り替えるために、三方電磁弁や温度センサ、さらには三方電磁弁の動作を制御する制御装置が必要となり、構成が複雑化する。また、三方電磁弁、温度センサおよび制御装置の動作に燃料電池で発電された電力が使用されるため、発電システム全体として見れば効率が低下するという不具合があった。
従ってこの発明の目的は上記した課題を解決し、簡素な構成で、かつ燃料電池で発電された電力を使用することなく、冷却水温度を調節できるようにした燃料電池の冷却装置を提供することにある。
上記の目的を解決するために、請求項1にあっては、燃料電池の冷却水が循環させられる循環路と、前記循環路に配置されて前記冷却水を冷却する冷却手段と、前記循環路から分岐されて前記冷却手段をバイパスして前記循環路に合流されるバイパス路とを備えた燃料電池の冷却装置において、前記循環路と前記バイパス路の分岐点および合流点のいずれかに配置され、前記冷却水の温度に応じて前記冷却水の流路を前記循環路と前記バイパス路の間で切り替える感温弁を備えるように構成した。
また、請求項2に係る燃料電池の冷却装置にあっては、前記循環路に配置された複数個の前記冷却手段と、前記循環路から分岐されて前記複数個の冷却手段をそれぞれバイパスして前記循環路に合流される複数本のバイパス路と、前記循環路と前記複数本のバイパス路の分岐点および合流点のいずれかにそれぞれ配置された複数個の前記感温弁とを備えると共に、前記複数個の感温弁の作動温度が相違させられるように構成した。
また、請求項3に係る燃料電池の冷却装置にあっては、前記冷却手段は、熱交換器およびラジエータの少なくともいずれかであるように構成した。
請求項1に係る燃料電池の冷却装置にあっては、冷却水を冷却する冷却手段が配置された循環路と、循環路から分岐されて冷却手段をバイパスして循環路に合流されるバイパス路とを備えると共に、循環路とバイパス路の分岐点および合流点のいずれかに、冷却水の温度に応じて冷却水の流路を循環路とバイパス路の間で切り替える感温弁を配置するように構成したので、冷却水温度の調節に温度センサや制御装置が不要であると共に、電力も必要としない。そのため、簡素な構成で、かつ燃料電池で発電された電力を使用することなく、冷却水温度を調節することができる。
また、請求項2に係る燃料電池の冷却装置にあっては、冷却手段とバイパス路と感温弁を複数組備えると共に、複数個の感温弁の作動温度を相違させるように構成したので、上記した効果に加え、冷却水温度を目標温度に精度良く調節することができる。
また、請求項3に係る燃料電池の冷却装置にあっては、冷却手段が熱交換器およびラジエータの少なくともいずれかであるように構成したので、上記した効果に加え、冷却水の冷却能力を最適に設定することができる。
以下、添付図面に即してこの発明に係る燃料電池の冷却装置の最良の実施の形態について説明する。
図1は、この発明の第1実施例に係る燃料電池の冷却装置を示す概略図である。
図1において符号10は、燃料電池(スタック)を示す。燃料電池10は、電解質膜(固体高分子膜)と、それを挟持する空気極と燃料極と、各電極の外側に配置されるセパレータとから構成される単電池(セル)を複数個積層して形成された公知の固体高分子型燃料電池である。
燃料電池10の内部には冷却水通路10aが形成され、冷却水通路10aには冷却水循環系12が接続される。冷却水循環系12は、冷却水通路10aに接続されて冷却水が循環させられる循環路14と、循環路14に配置された冷却水ポンプ16と、後述する各要素から構成される。
冷却水ポンプ16は、冷却水を紙面左回りに圧送する。以下の説明で「上流」、「下流」とは、冷却水の流れ方向における上流と下流を意味する。循環路14において燃料電池10の下流側には、熱交換器(冷却手段)18が配置される。熱交換器18には、温水流路20を介し、温水が貯留される貯湯タンク22が接続される。また、循環路14において熱交換器18の下流側にはラジエータ(冷却手段)24が配置され、ラジエータ24の下流側には前記した冷却水ポンプ16が配置される。冷却水ポンプ16の吐出口16aは、循環路14を介して燃料電池10の冷却水流入口10bに接続される。
さらに、循環路14において、熱交換器18の上流側とラジエータ24の下流側、より詳しくは、燃料電池10と熱交換器18の間とラジエータ24と冷却水ポンプ16の間は、第1のバイパス路26によって接続される。即ち、第1のバイパス路26は、循環路14から分岐されて熱交換器18とラジエータ24をバイパスし、循環路14に合流される。
循環路14と第1のバイパス路26の分岐点28には、第1のサーモスタット30が配置される。また、循環路14と第1のバイパス路26の合流点32には、三方継手34が配置される。即ち、第1のバイパス路26は、循環路14の熱交換器18よりも上流側に第1のサーモスタット30を介して接続されると共に、ラジエータ24よりも下流側に三方継手34を介して接続される。
ここで、図2および図3を参照し、第1のサーモスタット30の構造と動作について説明する。図2および図3は、第1のサーモスタット30の拡大断面図である。
図2に示すように、第1のサーモスタット30は、サーモスタット本体38とサーモスタット本体38を収容するケース40とを備える。サーモスタット本体38とケース40は、イオン溶出の少ない材料から形成される。
ケース40には、第1から第3の開口部42,44,46が形成される。第1の開口部42は、循環路14を介して燃料電池10の冷却水流出口10cに接続される。第2の開口部44は、第1のバイパス路26に接続される。また、第3の開口部46は、循環路14を介して熱交換器18に接続される。即ち、ケース40において、第1の開口部42が冷却水の流入口となり、第2の開口部44と第3の開口部46がそれぞれ流出口となる。
サーモスタット本体38は、感温部48に封入されたワックス50の熱膨張を利用した、公知のワックスペレット型のサーモスタットである。サーモスタット本体38の構造と動作について簡単に説明すると、感温部48には、第1の開口部42と第3の開口部46の間を封止するバルブ52と、第1の開口部42と第2の開口部44の間を封止するバイパスバルブ54とが一体的に設けられる。これら感温部48とバルブ52とバイパスバルブ54とから、直線変位自在な可動部56が構成される。可動部56が紙面上方に駆動されることにより、バルブ52が閉弁される一方、バイパスバルブ54が開弁される。逆に、可動部56が紙面下方に駆動されることにより、バルブ52が開弁される一方、バイパスバルブ54が閉弁される。可動部56は通常、バルブ52が閉弁されると共に、バイパスバルブ54が開弁される方向(紙面上方)に、バネ58によって付勢される。
第1の開口部42から流入される冷却水の温度が、第1のサーモスタット30の作動温度(以下「第1の作動温度」という)未満のときは、バネ56の付勢力によってバルブ52が閉弁される一方、バイパスバルブ54が開弁される。従って、第1の開口部42から流入された冷却水は、温度が第1の作動温度未満であれば第2の開口部44を介して第1のバイパス路26に流出される。
他方、第1の開口部42から流入される冷却水の温度が第1の作動温度以上になると、図3に示すようにワックス50が熱膨張し、バネ56の付勢力に抗して可動部56が紙面下方に駆動され、バルブ52が開弁されると共に、バイパスバルブ54が閉弁される。従って、第1の開口部42から流入された冷却水は、温度が第1の作動温度以上であれば第3の開口部46を介して循環路14(熱交換器18)へと流出される。このように、第1のサーモスタット30は、冷却水の温度に応じて冷却水の流路を循環路14と第1のバイパス路26の間で切り替える。尚、この実施例では、第1の作動温度は50℃から70℃に設定される。
図1の説明に戻ると、循環路14においてラジエータ24の上流側と下流側、より詳しくは、熱交換器18とラジエータ24の間とラジエータ24と冷却水ポンプ16の間は、第2のバイパス路60によって接続される。即ち、第2のバイパス路60は、循環路14から分岐されてラジエータ24をバイパスし、循環路14に合流される。
循環路14と第2のバイパス路60の分岐点62には、第2のサーモスタット64が配置される。また、循環路14と第2のバイパス路60の合流点66には、三方継手68が配置される。即ち、第2のバイパス路60は、循環路14のラジエータ24よりも上流側に第2のサーモスタット64を介して接続されると共に、ラジエータ24よりも下流側に三方継手68を介して接続される。
第2のサーモスタット64は、第1のサーモスタット30と同様な構成とされ、第1の開口部70を介して流入された冷却水は、温度が第2のサーモスタット64の作動温度(以下「第2の作動温度」という)未満のときは第2の開口部72を介して第2のバイパス路60に流出される一方、第2の作動温度以上のときは第3の開口部74を介して循環路14(ラジエータ24)へと流出される。このように、第2のサーモスタット64は、冷却水の温度に応じて冷却水の流路を循環路14と第2のバイパス路60の間で切り替える。尚、第2の作動温度は、第1の作動温度と相違させられる、具体的には、第1の作動温度よりも高い温度に設定される。この実施例にあっては、第2の作動温度は60℃から85℃に設定される。
循環路14において冷却水ポンプ16の上流側と下流側は、第3のバイパス路78によって接続される。即ち、第3のバイパス路78は、循環路14から分岐されて冷却水ポンプ16をバイパスし、循環路14に合流される。循環路14と第3のバイパス路78の分岐点80および合流点82には、それぞれ三方継手84,86が配置される。即ち、第3のバイパス路78は、循環路14の冷却水ポンプ16よりも上流側に三方継手84を介して接続されると共に、冷却水ポンプ16よりも下流側に三方継手86を介して接続される。また、第3のバイパス路78の途中には、イオンフィルタ88が配置される。
尚、図示は省略するが、燃料電池10には空気供給系と燃料供給系が接続され、それらから空気(酸素ガス)と燃料(水素ガス)を供給されて発電する。燃料電池10が発電した電力(直流電流)は、出力回路を介して電気機器に供給される。即ち、燃料電池10と、冷却水循環系12と、空気供給系と、燃料供給系とにより、発電システムが形成される。また、それに加え、熱交換器18と貯湯タンク22とから、燃料電池10の排熱を利用した給湯システムが形成される。従って全体としては、電力供給と給湯の両方を行うことのできる燃料電池コージェネレーションシステムが形成される。
図4は、冷却水循環系12における冷却水の流れを表す説明図である。以下、図1および図4を参照し、冷却水循環系12における冷却水の流れについて説明する。
冷却水は、冷却水ポンプ16の吐出口16aから圧送され(S10)、循環路14と三方継手84を通過し、冷却水流入口10bから燃料電池10の冷却水通路10aに流入される。冷却水通路10aに流入させられた冷却水は、燃料電池10の発電に伴って発生した熱を吸収して燃料電池10を冷却する(S12)。
燃料電池10を冷却することによって昇温させられた冷却水は、冷却水流出口10cから流出され、循環路14を通過し、第1のサーモスタット30の第1の開口部42から第1のサーモスタット30の内部(ケース40の内部)に流入される(S14)。第1のサーモスタット30に流入された冷却水の温度が第1の作動温度(50℃から75℃)以上であれば、冷却水は第3の開口部46から流出され、循環路14を通過して熱交換器18に流入される(S16)。熱交換器18では、流入された冷却水と温水の間で熱交換が行われる。具体的には、冷却水の熱が温水に伝達され、冷却水が冷却されると共に、温水が昇温させられる。尚、熱交換器18で昇温させられた温水は貯湯タンク22に貯留される共に、図示しない給湯先に供給される。
熱交換器18で冷却された冷却水は、循環路14を通過し、第2のサーモスタット64の第1の開口部70から第2のサーモスタット64の内部に流入される(S18)。第2のサーモスタット64に流入された冷却水の温度が第2の作動温度(60℃から85℃)以上であれば、冷却水は第3の開口部74から流出され、循環路14を通過してラジエータ24に流入される(S20)。
ラジエータ24に流入された冷却水は、図示しない冷却ファンからの送風を受けて冷却される。ラジエータ24で冷却された冷却水は、循環路14と三方継手68,34,86を通過し、冷却水ポンプ16の吸入口16bから吸入され(S22)、燃料電池10に再度圧送される。尚、冷却水ポンプ16から圧送された冷却水の一部は、三方継手84を介して第3のバイパス路78に流入される。第3のバイパス路78に流入された冷却水は、イオンフィルタ88で液中に存在するイオンが除去された後、三方継手86と還流路14を介して冷却水ポンプ16に吸入され、燃料電池10に圧送される。
一方、第1のサーモスタット30に流入された冷却水の温度が第1の作動温度未満であれば、冷却水は第2の開口部44から第1のバイパス路26に流出される(S24)。第1のバイパス路26に流入された冷却水は、三方継手34,86と還流路14を介して冷却水ポンプ16に吸入され、燃料電池10に圧送される。即ち、燃料電池10から流出された冷却水の温度、別言すれば、燃料電池10の温度が第1の作動温度未満であれば、冷却水は熱交換器18とラジエータ24をバイパスして循環させられる。
また、第2のサーモスタット64に流入された冷却水の温度が第2の作動温度未満であれば、冷却水は第2の開口部72から第2のバイパス路60に流出される(S26)。第2のバイパス路60に流入された冷却水は、三方継手68,34,86と還流路14を介して冷却水ポンプ16に吸入され、燃料電池10に圧送される。このように、熱交換器18から流出された冷却水の温度が第2の作動温度未満であれば、冷却水はラジエータ24をバイパスして循環させられる。
このように、この発明の第1実施例に係る燃料電池の冷却装置にあっては、冷却水を冷却する熱交換器18とラジエータ24が配置された循環路14と、循環路14から分岐されて熱交換器18とラジエータ24をバイパスして循環路14に合流される第1のバイパス路26と、同様に循環路14から分岐されてラジエータ24をバイパスして循環路14に合流される第2のバイパス路60とを備えると共に、循環路14と各バイパス路26,60の分岐点28,62に、冷却水の温度に応じて冷却水の流路を循環路14と各バイパス路26,60の間で切り替えるサーモスタット30,64を配置するように構成したので、冷却水温度の調節に温度センサや制御装置が不要であると共に、電力も必要とされない。そのため、簡素な構成で、かつ燃料電池で発電された電力を使用することなく、冷却水温度を調節することができる。
また、冷却水を冷却する複数個(2個)の冷却手段(熱交換器18とラジエータ24)と、それらをバイパスする複数本(2本)のバイパス路(第1のバイパス路26と第2のバイパス路60)と、冷却水を冷却手段に流入させるかバイパスさせるかを切り替える複数個(2個)のサーモスタット(第1のサーモスタット30と第2のサーモスタット64)を備えると共に、各サーモスタット30,64の作動温度(第1の作動温度と第2の作動温度)を相違させるように構成したので、冷却水温度を目標温度(具体的には一定の温度)に精度良く調節することができる。
また、冷却水を熱交換器18とラジエータ24の両方で冷却するように構成したので、冷却水の冷却能力を最適に設定することができる。
次いで、この発明の第2実施例に係る燃料電池の冷却装置について説明する。
図5は、第2実施例に係る燃料電池の冷却装置を示す概略図である。
図5に示すように、第2実施例にあっては、循環路14と第2のバイパス路60の分岐点62に三方継手90を配置する一方、循環路14と第2のバイパス路60の合流点66に第3のサーモスタット92を配置するようにした。尚、残余の構成は第1実施例と同じであるので、同一符号を付して説明を省略する。
図6および図7は、第3のサーモスタット92の拡大断面図である。
図6に示すように、第3のサーモスタット92は、サーモスタット本体94とサーモスタット本体94を収容するケース96とを備える。サーモスタット本体94とケース96は、イオン溶出の少ない材料から形成される。
ケース96には、第1から第3の開口部98,100,102が形成される。第1の開口部98は、第2のバイパス路60に接続される。第2の開口部100は、循環路14を介してラジエータ24に接続される。また、第3の開口部102は、循環路14を介して冷却水ポンプ16に接続される。即ち、ケース96において、第1の開口部98と第2の開口部100が冷却水の流入口となり、第3の開口部102が流出口となる。
サーモスタット本体94は、感温部104に封入されたワックス106の熱膨張を利用した、公知のワックスペレット型のサーモスタットである。サーモスタット本体94の構造と動作について簡単に説明すると、感温部104には、第2の開口部100と第3の開口部102の間を封止するバルブ108と、第1の開口部98と第3の開口部102の間を封止するバイパスバルブ110とが一体的に設けられる。これら感温部104とバルブ108とバイパスバルブ110とから、直線変位自在な可動部112が構成される。可動部112が紙面下方に駆動されることにより、バルブ108が閉弁される一方、バイパスバルブ110が開弁される。逆に、可動部112が紙面上方に駆動されることにより、バルブ108が開弁される一方、バイパスバルブ110が閉弁される。可動部112は通常、バルブ108が閉弁されると共に、バイパスバルブ110が開弁される方向(紙面下方)に、バネ114によって付勢される。
第1の開口部98から流入される冷却水の温度が、第3のサーモスタット92の作動温度(以下「第3の作動温度」という)未満のときは、バネ114の付勢力によってバルブ108が閉弁される一方、バイパスバルブ110が開弁される。従って、熱交換器18から流出された冷却水の温度が第3の作動温度未満であれば、冷却水は第2のバイパス路60を通過する(ラジエータ24をバイパスする)。
他方、第1の開口部98から流入される冷却水の温度が第3の作動温度以上になると、図7に示すようにワックス106が熱膨張し、バネ114の付勢力に抗して可動部112が紙面上方に駆動され、バルブ108が開弁されると共に、バイパスバルブ110が閉弁される。従って、熱交換器18から流出された冷却水の温度が第3の作動温度以上であれば、冷却水はラジエータ24に流入されて冷却される。このように、第3のサーモスタット92は、冷却水の温度に応じて冷却水の流路を循環路14と第2のバイパス路60の間で切り替える。尚、第3の作動温度は、第1実施例で述べた第2の作動温度と同様に、第1のサーモスタット30の作動温度(第1の作動温度)と相違させられる、具体的には、第1の作動温度よりも高い温度に設定される。この実施例にあっては、第3の作動温度は第2の作動温度と同じ60℃から85℃に設定される。
このように、この発明の第2実施例にあっては、冷却水を冷却するラジエータ24が配置された循環路14と、循環路14から分岐されてラジエータ24をバイパスして循環路14に合流されるバイパス路60とを備えると共に、循環路14とバイパス路60の合流点66に、冷却水の温度に応じて冷却水の流路を循環路14とバイパス路60の間で切り替えるサーモスタット92を配置するように構成したので、第1実施例で述べたのと同様の効果を得ることができる。
尚、第1実施例および第2実施例において、冷却水を冷却する冷却手段として熱交換器18とラジエータ24の両方を設けるようにしたが、いずれか一方でもよい。その場合、バイパス路とサーモスタットの組み合わせは1組でよいのはいうまでもない。また、熱交換器やラジエータ以外の冷却手段を用いてもよい。
また、サーモスタットを第1のバイパス路26の合流点34に配置するようにしてもよい。さらに、サーモスタット30,64,92の構造や還流路14とバイパス路26,60の接続位置も、上記の例に限られるものではない。
以上のように、この発明の第1および第2実施例にあっては、燃料電池(10)の冷却水が循環させられる循環路(14)と、前記循環路(14)に配置されて前記冷却水を冷却する冷却手段(熱交換器18、ラジエータ24)と、前記循環路(14)から分岐されて前記冷却手段(18,24)をバイパスして前記循環路(14)に合流されるバイパス路(第1のバイパス路26、第2のバイパス路60)とを備えた燃料電池の冷却装置において、前記循環路(14)と前記バイパス路(26,60)の分岐点(28,62)および合流点(32,66)のいずれかに配置され、前記冷却水の温度に応じて前記冷却水の流路を前記循環路(14)と前記バイパス路(26,60)の間で切り替える感温弁(第1のサーモスタット30、第2のサーモスタット64、第3のサーモスタット92)を備えるように構成した。
また、前記循環路(14)に配置された複数個(2個)の前記冷却手段(18,24)と、前記循環路(14)から分岐されて前記複数個の冷却手段(18,24)をそれぞれバイパスして前記循環路(14)に合流される複数本(2本)のバイパス路(26,60)と、前記循環路(14)と前記複数本のバイパス路(26,60)の分岐点(28,62)および合流点(32,66)のいずれかにそれぞれ配置された複数個(2個)の前記感温弁(第1のサーモスタット30と第2のサーモスタット64、あるいは第1のサーモスタット30と第3のサーモスタット92)とを備えると共に、前記複数個の感温弁の作動温度(第1の作動温度と第2の作動温度、あるいは第1の作動温度と第3の作動温度)が相違させられるように構成した。
また、前記冷却手段は、熱交換器(18)およびラジエータ(24)の少なくともいずれかであるように構成した。
10:燃料電池、14:循環路、18:熱交換器、24:ラジエータ、26:第1のバイパス路、28:分岐路、30:第1のサーモスタット(感温弁)、32:合流点、60:第2のバイパス路、62:分岐路、64:第2のサーモスタット(感温弁)、66:合流点、92:第3のサーモスタット(感温弁)
Claims (3)
- 燃料電池の冷却水が循環させられる循環路と、前記循環路に配置されて前記冷却水を冷却する冷却手段と、前記循環路から分岐されて前記冷却手段をバイパスして前記循環路に合流されるバイパス路とを備えた燃料電池の冷却装置において、
前記循環路と前記バイパス路の分岐点および合流点のいずれかに配置され、前記冷却水の温度に応じて前記冷却水の流路を前記循環路と前記バイパス路の間で切り替える感温弁を備えることを特徴とする燃料電池の冷却装置。 - 前記循環路に配置された複数個の前記冷却手段と、前記循環路から分岐されて前記複数個の冷却手段をそれぞれバイパスして前記循環路に合流される複数本のバイパス路と、前記循環路と前記複数本のバイパス路の分岐点および合流点のいずれかにそれぞれ配置された複数個の前記感温弁とを備えると共に、前記複数個の感温弁の作動温度が相違させられることを特徴とする請求項1記載の燃料電池の冷却装置。
- 前記冷却手段は、熱交換器およびラジエータの少なくともいずれかであることを特徴とする請求項1または2記載の燃料電池の冷却装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005219292A JP2007035512A (ja) | 2005-07-28 | 2005-07-28 | 燃料電池の冷却装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005219292A JP2007035512A (ja) | 2005-07-28 | 2005-07-28 | 燃料電池の冷却装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007035512A true JP2007035512A (ja) | 2007-02-08 |
Family
ID=37794503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005219292A Withdrawn JP2007035512A (ja) | 2005-07-28 | 2005-07-28 | 燃料電池の冷却装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007035512A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009146802A (ja) * | 2007-12-17 | 2009-07-02 | Honda Motor Co Ltd | 燃料電池システム |
WO2016002503A1 (ja) * | 2014-07-04 | 2016-01-07 | トヨタ自動車株式会社 | 燃料電池システム及び燃料電池システムの制御方法 |
-
2005
- 2005-07-28 JP JP2005219292A patent/JP2007035512A/ja not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009146802A (ja) * | 2007-12-17 | 2009-07-02 | Honda Motor Co Ltd | 燃料電池システム |
WO2016002503A1 (ja) * | 2014-07-04 | 2016-01-07 | トヨタ自動車株式会社 | 燃料電池システム及び燃料電池システムの制御方法 |
JP2016018607A (ja) * | 2014-07-04 | 2016-02-01 | トヨタ自動車株式会社 | 燃料電池システム及び燃料電池システムの制御方法 |
CN105874635A (zh) * | 2014-07-04 | 2016-08-17 | 丰田自动车株式会社 | 燃料电池系统及燃料电池系统的控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4243322B2 (ja) | 燃料電池及び燃料電池システム | |
JP4758741B2 (ja) | 燃料電池システム | |
JP2003017105A (ja) | 燃料電池の冷却装置 | |
JP2011189864A (ja) | 冷媒回路調整装置 | |
JP2007038950A (ja) | 燃料電池を搭載した車両の空調装置 | |
JP5996637B2 (ja) | 熱管理が改善された燃料電池 | |
JP2007149352A (ja) | 燃料電池システム | |
JP3966839B2 (ja) | 排熱利用熱源装置 | |
JP4854953B2 (ja) | 燃料電池システムと燃料電池システムの低温始動方法 | |
JP2007035512A (ja) | 燃料電池の冷却装置 | |
JP2002319425A (ja) | 燃料電池の状態検出装置 | |
JP3643069B2 (ja) | 燃料電池の冷却方法 | |
JP2003331886A (ja) | 燃料電池システム | |
JP3656596B2 (ja) | 燃料電池システム | |
JP2008226712A (ja) | 燃料電池システム及びその制御方法 | |
JP4552387B2 (ja) | 燃料電池コージェネレーション装置 | |
JP2019040757A (ja) | 燃料電池システム | |
WO2021166451A1 (ja) | 排熱回収システム | |
JP3990600B2 (ja) | 発電熱利用システム | |
JP4555601B2 (ja) | 燃料電池の冷却装置 | |
JP2007184111A (ja) | 燃料電池システム | |
JP2010140678A (ja) | 燃料電池の冷却システム | |
JP2010127585A (ja) | 熱回収装置、コージェネレーション装置およびコージェネレーションシステム | |
JPH0878033A (ja) | 固体高分子型燃料電池とその運転方法 | |
JP2005251416A (ja) | 燃料電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20081007 |