JP2005251416A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2005251416A
JP2005251416A JP2004056259A JP2004056259A JP2005251416A JP 2005251416 A JP2005251416 A JP 2005251416A JP 2004056259 A JP2004056259 A JP 2004056259A JP 2004056259 A JP2004056259 A JP 2004056259A JP 2005251416 A JP2005251416 A JP 2005251416A
Authority
JP
Japan
Prior art keywords
cooling water
fuel cell
cooling
air
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004056259A
Other languages
English (en)
Inventor
Keiichi Yoshii
桂一 吉井
Tetsuo Kikuchi
哲郎 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2004056259A priority Critical patent/JP2005251416A/ja
Publication of JP2005251416A publication Critical patent/JP2005251416A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract


【課題】 燃料電池における冷却水入口部と冷却水出口部で温度差を大きく取ることにより、酸化ガスの入口側の相対湿度を高めるとともに酸化ガスの出口側の相対湿度を下げるようにした燃料電池システムにおいて、ラジエータの小型化を図る。
【解決手段】 燃料電池1を冷却する冷却システム2は、温度の異なる複数種類の冷却水を燃料電池1に供給するように構成され、セル内における酸化ガスの入口側を、相対的に温度が低い冷却水によって冷却するとともに、セル内における酸化ガスの出口側を、相対的に温度が高い冷却水によって冷却する。
【選択図】 図1

Description

本発明は、水素と酸素との化学反応により電気エネルギを発生させる燃料電池を備える燃料電池システムに関するもので、特に車両用の燃料電池システムのような、搭載性と高出力が必要とされる場合に好適である。
特許文献1に示された従来の燃料電池システムでは、燃料電池における冷却水入口部と冷却水出口部で温度差を大きく取り、これにより、燃料電池における空気入口側の温度を下げて相対湿度を高め電解質膜の乾燥を防ぎ、また、燃料電池における空気出口側の温度を上げて相対湿度を下げて乾燥させ、空気通路に水が詰まることを防止し、さらに、前述の効果により冷却水の循環量を減らし省動力化を図るようにしている。
特開2003−17105号公報
ところで、車両に搭載される燃料電池システムは、限られた搭載スペースで、高い出力密度を発生しなくてはならない。特に車両用の燃料電池システムは、最大出力で運転する場合に大量の熱を発生する。したがって、発電時に燃料電池を適正温度に保つために、燃料電池は冷却水で冷却されるが、この運転適正温度が比較的低いために、冷却水を冷却する外気と冷却水との温度差が大きく取れない。このように温度差が小さいため、熱交換媒体である冷却風と冷却水の量を増やす必要がある。
つまり、特許文献1に示された従来の燃料電池システムのように冷却水流量を減らしてしまうと、前述の最大出力運転が冷却不足により出来ないという問題が生じる。そこで、冷却水流量を減らしても最大出力運転時の冷却不足が発生しないようにするには、冷却水の温度をより低温にしなければならず、この場合、外気と冷却水との温度差がさらに小さくなり、外気と冷却水とを熱交換させて冷却水を冷却するラジエータが極めて大型化してしまうという問題が発生する。
本発明は上記点に鑑みて、燃料電池における冷却水入口部と冷却水出口部で温度差を大きく取ることにより、酸化ガスの入口側の相対湿度を高めるとともに酸化ガスの出口側の相対湿度を下げるようにした燃料電池システムにおいて、ラジエータの小型化を図ることを目的とする。
上記目的を達成するため、請求項1に記載の発明では、水素を主成分とする燃料ガスと酸素を主成分とする酸化ガスとの電気化学反応により電気エネルギを発生させるセルを有する燃料電池(1)と、燃料電池(1)に冷却水を循環させて燃料電池(1)を冷却する冷却手段(2)とを備える燃料電池システムにおいて、冷却手段(2)は、冷却水を燃料電池(1)に循環させる冷却水通路(21、25、26)を複数備えるとともに、複数の冷却水通路(21、25、26)を流れる冷却水の温度および流量をそれぞれの冷却水通路(21、25、26)毎に制御することを特徴とする。
これによると、複数の冷却水通路を流れる冷却水のうち一部の冷却水のみを相対的に低温にするため、全ての冷却水を低温にする場合よりもラジエータを小型にすることができる。
請求項2に記載の発明では、水素を主成分とする燃料ガスと酸素を主成分とする酸化ガスとの電気化学反応により電気エネルギを発生させるセルを有する燃料電池(1)と、燃料電池(1)に冷却水を循環させて燃料電池(1)を冷却する冷却手段(2)とを備える燃料電池システムにおいて、冷却手段(2)は、温度の異なる複数種類の冷却水を燃料電池(1)に供給するように構成され、セル内における酸化ガスの入口側(121a)が、相対的に温度が低い冷却水によって冷却されるとともに、セル内における酸化ガスの出口側(121b)が、相対的に温度が高い冷却水によって冷却されることを特徴とする。
これによると、酸化ガスの入口側を冷却する冷却水のみを相対的に低温にするため、全ての冷却水を低温にする場合よりもラジエータを小型にすることができる。
請求項3に記載の発明のように、冷却手段(2)は、冷却水と空気とを熱交換させて冷却水を冷却するラジエータ(24、27)を複数個備え、複数個のラジエータ(24、27)が冷却水流れに沿って直列に配置され、複数個のラジエータ(24、27)を通過させて相対的に温度が低い冷却水を得、複数個のラジエータ(24、27)の一部のみを通過させて相対的に温度が高い冷却水を得ることができる。
請求項4に記載の発明のように、冷却手段(2)は、冷却水と空気とを熱交換させて冷却水を冷却するラジエータ(24、27)を複数個備え、複数個のラジエータ(24、27)を冷却水流れに対して並列に配置することができる。
請求項5に記載の発明のように、複数個のラジエータ(24、27)を一体化することができる。
請求項6に記載の発明のように、セルは、電解質膜の両側に一対の電極が配置されたMEA(11)と、燃料ガスまたは酸化ガスが流れるガス流路(121、131)および冷却水が流れる冷却水流路(122、123、132、133、222、223、232、233)が形成されるとともに、MEA(11)の外側に配置されたセパレータ(12、13)とを備え、各セパレータ(12、13)毎に冷却水流路の入口(122a、123a、132a、133a、222a、223a、232a、233a)が複数設けられているものを用いることができる。
請求項7に記載の発明では、冷却水流路の複数の入口(122a、123a、132a、133a)から供給された冷却水が各セパレータ(12、13)内で合流することを特徴とする。
これによると、各セパレータ毎に冷却水流路の出口が1つになるため、燃料電池の構成が簡素になり、ひいては燃料電池を小型にすることができる。
請求項8に記載の発明では、冷却水流路(222、223、232、233)は、各セパレータ(12、13)毎に複数設けられるとともに、各セパレータ(12、13)毎の複数の冷却水流路は、各冷却水流路の入口から出口まで分離されていることを特徴とする。
これによると、各冷却水流路を流れる冷却水の温度および流量を独立して制御することができるため、その制御が容易である。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(第1実施形態)
本発明の第1実施形態について説明する。図1は第1実施形態に係る燃料電池システムの全体構成を示す図、図2は図1の燃料電池1を構成するセルの分解斜視図である。
本実施形態の燃料電池システムは、燃料電池を電源として走行する電気自動車(燃料電池車両)に適用したものである。
図1に示すように、本実施形態の燃料電池システムは、水素と酸素との電気化学反応を利用して電力を発生する固体高分子電解質型の燃料電池(FCスタック)1を備えている。燃料電池1は、基本単位となるセルが複数個積層された積層体として構成されている。燃料電池1では、図示しない水素供給装置から水素が供給され、図示しない空気供給装置から空気(酸素)が供給される。なお、水素は本発明の燃料ガスに相当し、空気は本発明の酸化ガスに相当する。
燃料電池1では発電の際の化学反応により熱が発生するため、発電効率が高くなる温度に燃料電池1の温度を制御する冷却システム2が設けられている。冷却システム2は、不凍液冷却水等の冷却水を燃料電池1に循環させて燃料電池1におけるセルの温度を制御するもので、本発明の冷却手段に相当する。
冷却システム2は、燃料電池1の冷却水出口側に接続されたメイン冷却水通路21を有する。このメイン冷却水通路21には、冷却水流を発生させるウォータポンプ22が最上流部に配置され、冷却水の流路を切り替えるロータリーバルブ23がウォータポンプ22の下流側に配置され、冷却水と空気とを熱交換させて冷却水を冷却するメインラジエータ24がロータリーバルブ23の下流側に配置されている。
メイン冷却水通路21は、メインラジエータ24の下流側にて第1冷却水通路25と第2冷却水通路26に分岐され、第1冷却水通路25および第2冷却水通路26は、燃料電池1の冷却水入口側に接続されている。
第2冷却水通路26には、メインラジエータ24にて冷却された冷却水の一部を空気と熱交換させてさらに冷却するサブラジエータ27が配置され、第2冷却水通路26を流れる冷却水の流量を調整する流量調整弁28がサブラジエータ27の下流側に配置されている。因みに、メインラジエータ24とサブラジエータ27は、冷却水流れに沿って直列に配置されている。
メイン冷却水通路21は、ロータリーバルブ23の部位からバイパス冷却水通路29が分岐され、バイパス冷却水通路29はさらに第1バイパス冷却水通路29aと第2バイパス冷却水通路29bとに分岐されている。第1バイパス冷却水通路29aは第1冷却水通路25に接続されている。第2バイパス冷却水通路29bは、流量調整弁28よりも下流側で第2冷却水通路26に接続されている。
メインラジエータ24およびサブラジエータ27の後方位置には、メインラジエータ24およびサブラジエータ27に冷却風を供給するラジエータファン30が配置されている。
図2に示すように、各セルは、電解質膜の両側面に電極が配置された膜電極接合体(Membrane Electrode Assembly。以下、MEAという)11と、このMEA11を挟持する空気側セパレータ12および水素側セパレータ13で構成されている。
空気側セパレータ12は、MEA11と対向する面に、空気供給装置からの空気を流す空気流路121が形成されている。空気流路121は、空気側セパレータ12に溝を掘って形成されている。そして、空気流路121の空気入口部121aから空気出口部121bに向かって空気が流れるようになっている。なお、空気流路121は本発明のガス流路に相当する。
空気側セパレータ12の他方の面には、冷却水が流れる2つの空気側冷却水流路122、133が形成されている。これらの空気側冷却水流路122、133は、空気側セパレータ12に溝を掘って形成されている。空気側第1冷却水流路122は第1冷却水通路25に接続され、空気側第2冷却水流路123は第2冷却水通路26に接続されている。
空気側第1冷却水流路122は、空気入口部121a側に空気側第1冷却水入口部122aが設けられ、空気出口部121b側に空気側第1冷却水出口部122bが設けられている。そして、空気側第1冷却水流路122は、空気入口部121a近傍の領域、すなわち空気側第1冷却水入口部122aから途中までの領域は直線状になっており、途中から空気側第1冷却水出口部122bまでは蛇行した形状になっている。
空気側第2冷却水流路123は、空気入口部121a側に空気側第2冷却水入口部123aが設けられている。空気側第2冷却水流路123は、蛇行した形状になっていて、空気入口部121a近傍の領域のみに設けられている。そして、空気側第2冷却水流路123は、空気側第1冷却水流路122における蛇行部の始まり位置の部位にて、空気側第1冷却水流路122に合流している。
水素側セパレータ13は、MEA11と対向する面に、水素供給装置からの水素を流す水素流路131が形成されている。水素流路131は、水素側セパレータ13に溝を掘って形成されている。なお、水素流路131は本発明のガス流路に相当する。
水素流路131の水素入口部131aから水素出口部131bに向かって水素が流れるようになっている。水素流路131内での水素流れ向きと空気流路121内での空気流れ向きは対向しており、したがって、水素入口部131aと空気出口部121bが同じ側に位置し、水素出口部131bと空気入口部121aが同じ側に位置している。
水素側セパレータ13の他方の面には、冷却水が流れる2つの水素側冷却水流路132、133が形成されている。これらの水素側冷却水流路132、133は、水素側セパレータ13に溝を掘って形成されている。水素側第1冷却水流路132は第1冷却水通路25に接続され、水素側第2冷却水流路133は第2冷却水通路26に接続されている。
水素側第1冷却水流路132は、水素出口部131b側(すなわち、空気入口部121a側)に水素側第1冷却水入口部132aが設けられ、水素入口部131a側(すなわち、空気出口部121b側)に水素側第1冷却水出口部132bが設けられている。そして、水素側第1冷却水流路132は、水素出口部131b近傍の領域、すなわち水素側第1冷却水入口部132aから途中までの領域は直線状になっており、途中から水素側第1冷却水出口部132bまでは蛇行した形状になっている。
水素側第2冷却水流路133は、水素出口部131b側(すなわち、空気入口部121a側)に水素側第2冷却水入口部133aが設けられている。水素側第2冷却水流路133は、蛇行した形状になっていて、水素出口部131b近傍の領域のみに設けられている。そして、水素側第2冷却水流路133は、水素側第1冷却水流路132における蛇行部の始まり位置の部位にて、水素側第1冷却水流路132に合流している。
次に、本実施形態の燃料電池システムの作動を説明する。
燃料電池1の電解質膜は温度特性を持っており、運転温度が高い場合は触媒活性が上がって発電効率が上がるが、温度が高すぎると耐久性を失う。したがって、適正な運転温度を保つ必要があり、このためにロータリーバルブ23が適用される。
すなわち、起動直後等、燃料電池1が冷えている場合は、冷却水がバイパス冷却水通路29に流れるようにロータリーバルブ23を作動させ、メインラジエータ24およびサブラジエータ27をバイパスさせて冷却水を流して、メインラジエータ24およびサブラジエータ27による余計な放熱を防止する。
一方、燃料電池1の冷却が必要な温度の場合には、冷却水がメイン冷却水通路21に流れるようにロータリーバルブ23を作動させ、メインラジエータ24およびサブラジエータ27にて外気に放熱する。
以下、燃料電池1が冷却を必要とする場合について説明する。この際、ロータリーバルブ23はバイパス冷却水通路29を閉じて、メイン冷却水通路21を開いている。
第1冷却水通路25を流れる冷却水は、メインラジエータ24単独で冷却される。一方、第2冷却水通路26を流れる冷却水は、メインラジエータ24およびサブラジエータ27で2段階に冷却される。したがって、第2冷却水通路26を流れる冷却水の温度は、第1冷却水通路25を流れる冷却水の温度よりも低くなる。
流量調整弁28は、この第1冷却水通路25と第2冷却水通路26への冷却水分配量を調節する。そして、第2冷却水通路26の冷却水流量を低減することで、サブラジエータ27の温度効率が向上し、第2冷却水通路26の冷却水温度が下がる。この原理で、第1冷却水通路25の冷却水に対して、第2冷却水通路26の冷却水が適度な温度差を保つように制御する。具体的には、温度差が不足する場合は第2冷却水通路26の冷却水流量を減らし、また、温度差が大き過ぎる場合は第2冷却水通路26の冷却水流量を増やすように、流量調整弁28の弁開度を制御する。
第1冷却水通路25を流れる冷却水は、空気側セパレータ12の空気側第1冷却水流路122および水素側セパレータ13の水素側第1冷却水流路132を流れて、セル内を冷却する。また、第2冷却水通路26を流れる冷却水は、空気側セパレータ12の空気側第2冷却水流路123および水素側セパレータ13の水素側第2冷却水流路133を流れて、セル内を冷却する。
この際、空気側第2冷却水流路123および水素側第2冷却水流路133を流れる低温の冷却水は、空気入口部121a近傍を流れた後、空気側第1冷却水流路122および水素側第1冷却水流路132と合流する。合流後は、冷却水全流量が空気側第1冷却水出口部122bおよび水素側第1冷却水出口部132bに向かって流れる。これにより、空気入口部121a近傍が局所的に低い温度に制御される。
この局所的な低温冷却により、空気入口部121a近傍の空気温度が下がり、相対湿度が上昇する。これにより、この近傍の電解質膜が乾燥しにくくなるので、燃料電池1外部における空気に対する加湿をなくす、もしくは、その加湿量を低減することができる。
以下に、この原理を説明する。固体高分子型燃料電池は、水素イオンが電解質膜に含まれる水と配位結合して水素側電極から空気側電極へ移動することで、電力を生み出す。よって、電解質膜の水分保持は発電の必要条件である。また、この燃料電池1は、電解質膜を水素と空気中の酸素の化学反応により電力と熱を発生するが、その際、空気側に水を生成する。この生成水が空気の湿度を高める。従って、空気流路121において発電できる部位の後流は、電解質膜が乾きにくいため、ほとんど加湿する必要がない。
以上より、空気入口部121a近傍のみ低温化することでその部位の相対湿度を高めて電解質膜の乾燥を防止するため、空気入口部121a近傍より発電できる。従って、電解質膜全体が十分に発電するので、発電効率が高まる。
また、空気入口部121a近傍の乾燥防止のために加湿量を増やすと、空気流路121の後流部位では、各発電部位で生成される水が加わることで空気流路121が水で詰まる問題が生じる。これが、発電負荷の高い運転が出来ない理由の1つとなっている。故に、燃料電池1外部における空気に対する加湿量の低減は、燃料電池1の出力向上に大きく寄与する。
また、空気入口部121a近傍を冷却する冷却水のみを相対的に低温にするため、全ての冷却水を低温にする場合よりもラジエータ24、27を小型にすることができる。
また、各セパレータ12、13毎に冷却水流路の出口122b、132bが1つになるため、燃料電池1の構成が簡素になり、ひいては燃料電池1を小型にすることができる。
(第2実施形態)
本発明の第2実施形態について説明する。図3は第2実施形態に係る燃料電池システムの全体構成を示す図である。第1実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
図3に示すように、本実施形態は、メインラジエータ24が第1冷却水通路25に配置されている。換言すると、メインラジエータ24とサブラジエータ27は、冷却水流れに対して並列に配置されている。
本実施形態においては、メインラジエータ24とサブラジエータ27は熱交換性能が同等のものを用い、流量調整弁28によって、第2冷却水通路26を流れる冷却水の流量を第1冷却水通路25を流れる冷却水の流量よりも少なくすることにより、第2冷却水通路26を流れる冷却水の温度を、第1冷却水通路25を流れる冷却水の温度よりも低く制御する。したがって、第1実施形態と同様の効果を得ることができる。
(第3実施形態)
本発明の第3実施形態について説明する。図4は第3実施形態に係る燃料電池システムにおけるセルの分解斜視図である。本実施形態は、空気側セパレータ12の冷却水流路および水素側セパレータ13の冷却水流路の構成を変更したものである。なお、第1実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
図4に示すように、空気側セパレータ12に形成された空気側第2冷却水流路223は、空気入口部121a側に空気側第2冷却水入口部223aおよび空気側第2冷却水出口部223bが設けられている。空気側第2冷却水流路223は、蛇行した形状になっていて、空気入口部221a近傍の領域のみに設けられている。
空気側セパレータ12に形成された空気側第1冷却水流路222は、空気出口部121b側に空気側第1冷却水入口部222aおよび空気側第1冷却水出口部222bが設けられている。空気側第1冷却水流路222は、蛇行した形状になっていて、空気側第2冷却水流路223の領域外の部位に設けられている。
水素側セパレータ13に形成された水素側第2冷却水流路233は、水素出口部131b側(すなわち、空気入口部121a側)に水素側第2冷却水入口部233aおよび水素側第2冷却水出口部233bが設けられている。水素側第2冷却水流路233は、蛇行した形状になっていて、水素出口部131b近傍の領域のみに設けられている。
水素側セパレータ13に形成された水素側第1冷却水流路232は、水素入口部131a側(すなわち、空気出口部121b側)に水素側第1冷却水入口部232aおよび水素側第1冷却水出口部232bが設けられている。水素側第1冷却水流路232は、蛇行した形状になっていて、水素側第2冷却水流路233の領域外の部位に設けられている。
このように、本実施形態では、空気側第1冷却水流路222と空気側第2冷却水流路223は、各冷却水流路222、223の入口から出口まで分離されて、独立した流路になっている。同様に、水素側第1冷却水流路232と水素側第2冷却水流路233も、各冷却水流路232、233の入口から出口まで分離されて、独立した流路になっている。
本実施形態においては、第1実施形態と同様の効果を得ることができる。また、空気側第1冷却水流路222および水素側第1冷却水流路232を流れる冷却水の温度や流量と、空気側第2冷却水流路223および水素側第2冷却水流路233を流れる冷却水の温度や流量を、独立して制御することができるため、その制御が容易である。
(他の実施形態)
上記各実施形態では、メインラジエータ24とサブラジエータ27を別体にして図示したが、それらを一体化してもよい。
本発明の第1実施形態に係る燃料電池システムの全体構成を示す図である。 図1の燃料電池1を構成するセルの分解斜視図である。 本発明の第2実施形態に係る燃料電池システムの全体構成を示す図である。 本発明の第3実施形態に係る燃料電池システムにおけるセルの分解斜視図である。
符号の説明
1…燃料電池、2…冷却システム(冷却手段)、21、25、26…冷却水通路。

Claims (8)

  1. 水素を主成分とする燃料ガスと酸素を主成分とする酸化ガスとの電気化学反応により電気エネルギを発生させるセルを有する燃料電池(1)と、前記燃料電池(1)に冷却水を循環させて前記燃料電池(1)を冷却する冷却手段(2)とを備える燃料電池システムにおいて、
    前記冷却手段(2)は、冷却水を前記燃料電池(1)に循環させる冷却水通路(21、25、26)を複数備えるとともに、前記複数の冷却水通路(21、25、26)を流れる冷却水の温度および流量をそれぞれの冷却水通路(21、25、26)毎に制御することを特徴とする燃料電池システム。
  2. 水素を主成分とする燃料ガスと酸素を主成分とする酸化ガスとの電気化学反応により電気エネルギを発生させるセルを有する燃料電池(1)と、前記燃料電池(1)に冷却水を循環させて前記燃料電池(1)を冷却する冷却手段(2)とを備える燃料電池システムにおいて、
    前記冷却手段(2)は、温度の異なる複数種類の冷却水を前記燃料電池(1)に供給するように構成され、
    前記セル内における酸化ガスの入口側(121a)が、相対的に温度が低い冷却水によって冷却されるとともに、前記セル内における酸化ガスの出口側(121b)が、相対的に温度が高い冷却水によって冷却されることを特徴とする燃料電池システム。
  3. 前記冷却手段(2)は、冷却水と空気とを熱交換させて冷却水を冷却するラジエータ(24、27)を複数個備え、前記複数個のラジエータ(24、27)が冷却水流れに沿って直列に配置され、前記複数個のラジエータ(24、27)を通過させて相対的に温度が低い冷却水を得、前記複数個のラジエータ(24、27)の一部のみを通過させて相対的に温度が高い冷却水を得ることを特徴とする請求項1または2に記載の燃料電池システム。
  4. 前記冷却手段(2)は、冷却水と空気とを熱交換させて冷却水を冷却するラジエータ(24、27)を複数個備え、前記複数個のラジエータ(24、27)が冷却水流れに対して並列に配置されていることを特徴とする請求項1または2に記載の燃料電池システム。
  5. 前記複数個のラジエータ(24、27)は一体化されていることを特徴とする請求項3または4に記載の燃料電池システム。
  6. 前記セルは、電解質膜の両側に一対の電極が配置されたMEA(11)と、燃料ガスまたは酸化ガスが流れるガス流路(121、131)および冷却水が流れる冷却水流路(122、123、132、133、222、223、232、233)が形成されるとともに、前記MEA(11)の外側に配置されたセパレータ(12、13)とを備え、
    前記各セパレータ(12、13)毎に前記冷却水流路の入口(122a、123a、132a、133a、222a、223a、232a、233a)が複数設けられていることを特徴とする請求項1ないし5のいずれか1つに記載の燃料電池システム。
  7. 前記冷却水流路の複数の入口(122a、123a、132a、133a)から供給された冷却水が前記各セパレータ(12、13)内で合流することを特徴とする請求項6に記載の燃料電池システム。
  8. 前記冷却水流路(222、223、232、233)は、前記各セパレータ(12、13)毎に複数設けられるとともに、前記各セパレータ(12、13)毎の複数の冷却水流路は、各冷却水流路の入口から出口まで分離されていることを特徴とする請求項6に記載の燃料電池システム。
JP2004056259A 2004-03-01 2004-03-01 燃料電池システム Withdrawn JP2005251416A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056259A JP2005251416A (ja) 2004-03-01 2004-03-01 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056259A JP2005251416A (ja) 2004-03-01 2004-03-01 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2005251416A true JP2005251416A (ja) 2005-09-15

Family

ID=35031703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056259A Withdrawn JP2005251416A (ja) 2004-03-01 2004-03-01 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2005251416A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141551A (ja) * 2005-11-16 2007-06-07 Honda Motor Co Ltd 燃料電池スタック
JP2011503812A (ja) * 2007-11-14 2011-01-27 ダイムラー・アクチェンゲゼルシャフト 自動車の燃料電池駆動部
WO2011023261A1 (de) * 2009-08-29 2011-03-03 Daimler Ag Fahrzeug mit wenigstens einem kühlkreislauf zum kühlen eines brennstoffzellensystems
DE112009000942T5 (de) 2008-03-31 2011-05-26 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Brennstoffzelle und Brennstoffzellensystem
DE102015016241B4 (de) 2015-12-16 2023-05-17 Cellcentric Gmbh & Co. Kg Elektrisch angetriebenes Fahrzeug mit einem Kühlsystem

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141551A (ja) * 2005-11-16 2007-06-07 Honda Motor Co Ltd 燃料電池スタック
JP4675757B2 (ja) * 2005-11-16 2011-04-27 本田技研工業株式会社 燃料電池スタック
JP2011503812A (ja) * 2007-11-14 2011-01-27 ダイムラー・アクチェンゲゼルシャフト 自動車の燃料電池駆動部
DE112009000942T5 (de) 2008-03-31 2011-05-26 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Brennstoffzelle und Brennstoffzellensystem
US9281528B2 (en) 2008-03-31 2016-03-08 Toyota Jidosha Kabushiki Kaisha Fuel cell and fuel cell system
DE112009000942B4 (de) 2008-03-31 2022-06-09 Toyota Jidosha Kabushiki Kaisha Brennstoffzelle und Brennstoffzellensystem
WO2011023261A1 (de) * 2009-08-29 2011-03-03 Daimler Ag Fahrzeug mit wenigstens einem kühlkreislauf zum kühlen eines brennstoffzellensystems
US8616317B2 (en) 2009-08-29 2013-12-31 Daimler Ag Vehicle having at least one cooling circuit for cooling a fuel cell system
DE102015016241B4 (de) 2015-12-16 2023-05-17 Cellcentric Gmbh & Co. Kg Elektrisch angetriebenes Fahrzeug mit einem Kühlsystem

Similar Documents

Publication Publication Date Title
US7749632B2 (en) Flow shifting coolant during freeze start-up to promote stack durability and fast start-up
JP3699063B2 (ja) 燃料電池およびその制御方法
US8771885B2 (en) Circulation of biphase fuel cell coolant
JP2002100383A (ja) 燃料電池用冷却装置
JP2002367641A (ja) 燃料電池およびその運転方法
JP2008181783A (ja) 燃料電池
JP5093249B2 (ja) 燃料電池
JP4629961B2 (ja) 燃料電池および温度制御システム
JP2837625B2 (ja) 燃料電池
JP4034804B2 (ja) 高分子電解質型燃料電池発電システム
JP2005251416A (ja) 燃料電池システム
JP2010129482A (ja) 燃料電池用セパレータ、燃料電池スタック及び燃料電池システム
JP5028854B2 (ja) 燃料電池システム
JP2006210334A5 (ja)
KR20100132956A (ko) 향상된 작동 효율을 가진 연료전지 발전기
JP2002110205A (ja) 燃料電池用冷却装置
JP2007179973A (ja) 高分子電解質型燃料電池
JP2003249243A (ja) 燃料電池
JP2004119044A (ja) 移動体用燃料電池システム
US7063907B2 (en) Passive water management system for a fuel cell power plant
JP4601406B2 (ja) 燃料電池システム
JP2006032094A (ja) 燃料電池システム
JP2013157315A (ja) 燃料電池
JP2009266632A (ja) 燃料電池
JP2006032092A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090108