JP2007032316A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2007032316A
JP2007032316A JP2005213621A JP2005213621A JP2007032316A JP 2007032316 A JP2007032316 A JP 2007032316A JP 2005213621 A JP2005213621 A JP 2005213621A JP 2005213621 A JP2005213621 A JP 2005213621A JP 2007032316 A JP2007032316 A JP 2007032316A
Authority
JP
Japan
Prior art keywords
warm
engine
fuel injection
internal combustion
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005213621A
Other languages
English (en)
Other versions
JP4581887B2 (ja
Inventor
Koshi Araki
幸志 荒木
Tatsuya Tawara
竜也 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005213621A priority Critical patent/JP4581887B2/ja
Publication of JP2007032316A publication Critical patent/JP2007032316A/ja
Application granted granted Critical
Publication of JP4581887B2 publication Critical patent/JP4581887B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 点火時期の調整を伴う触媒暖機運転を行なう内燃機関において、内燃機関の出力低下に対して迅速に対処することにより、エンジンストール防止効果を高める。
【解決手段】 エンジンECUは、エンジンが始動され(S100にてYES)、触媒の急速暖機が必要であると(S120にてYES)、筒内噴射用インジェクタによる燃料分担比率を吸気通路噴射用インジェクタの分担比率と同等以上にして点火時期を大きく遅角する急速触媒暖機処理を実行する(S130)。急速触媒暖機処理により触媒が暖機されて活性化すると(S150にてYES)、正常時移行処理(S160)により通常運転処理を実行する(S170)。一方、急速触媒暖機処理中にエンジン出力(回転数)低下を検出したときには(S140にてYES)、触媒暖機が終了していなくても、点火時期の遅角化を終了させて(S180)、通常運転処理を実行する(S170)。
【選択図】 図2

Description

本発明は、筒内に向けて燃料を噴射する第1の燃料噴射手段(筒内噴射用インジェクタ)と吸気通路および/または吸気ポート内に向けて燃料を噴射する第2の燃料噴射手段(吸気通路噴射用インジェクタ)とを備えた内燃機関の制御装置に関し、特に、排気ガス浄化のための触媒を急速に暖機する場合の、内燃機関の制御装置に関する。
機関吸気通路内に燃料を噴射するための吸気通路噴射用インジェクタと、機関燃焼室内に燃料を噴射するための筒内噴射用インジェクタとを具備し、機関回転数と機関負荷とに基づいて吸気通路噴射用インジェクタと吸気通路噴射用インジェクタとの燃料噴射比率を決定する内燃機関が公知である。
このような内燃機関における、始動開始から排気ガスを浄化する触媒を早期に活性化する直噴火花点火式内燃機関の制御装置が、特開平11−324765号公報(特許文献1)に開示されている。この直噴火花点火式内燃機関の制御装置は、機関の燃焼室内に直接燃料を噴射供給する燃料噴射弁と、燃焼室内全体に均質な混合気を形成する燃料供給手段と、燃焼室内の混合気に火花点火する点火栓とを備え、所定の機関運転条件のとき、点火実行時に点火栓周りに偏在する混合気層の空燃比がほぼストイキとなるよう燃料噴射弁の圧縮行程中の燃料噴射量と燃料噴射時期および点火栓の点火時期を制御して成層燃焼を行なう直噴火花点火式内燃機関を制御する。この制御装置は、機関の排気通路に配設された排気浄化触媒を昇温すべき条件を判断する昇温条件判断手段と、排気浄化触媒を昇温すべき条件のとき、燃焼室内全体に形成される混合気の空燃比がストイキよりリーンかつ火炎伝播可能な空燃比となるよう燃料供給手段の燃料噴射量を制御するとともに、点火実行時に点火栓周りに偏在する混合気の空燃比がストイキよりリッチとなるよう燃料噴射弁の圧縮行程中の燃料噴射量と燃料噴射時期および点火栓の点火時期を制御して第2の成層燃焼を行なう制御手段とを備える。
この直噴火花点火式内燃機関の制御装置によると、点火栓周りの混合気層の空燃比をストイキよりリッチな空燃比としているので、主燃焼(火花点火による着火とその後の火炎伝播による燃焼)の際に不完全燃焼物(CO)が生成され、主燃焼後もこのCOが燃焼室内に残存する。また、リッチ混合気層の周囲にストイキよりリーンな混合気を形成しているので、この領域には主燃焼後も酸素が残存する。この残存COと残存酸素とが主燃焼以降の筒内ガス流動によって混合・再燃焼し、排気温度が上昇する。不完全燃焼物(CO)は、主燃焼の燃焼過程で生成されるものであるから、主燃焼の終了時点において既に高温状態となっており、燃焼室温度が低い状況下であっても、比較的良好に燃焼させることができる。すなわち、生成したCOを燃焼室内と触媒上流の排気通路内でほとんど再燃焼させることが可能となる。なお、主燃焼自体でのCO発生量が少ない均質燃焼時に比べると、触媒へのCOの流入量が増加する可能性はあるが、触媒のCO転化開始温度はHC転化開始温度よりも低いので、排気エミッションに対する影響は比較的小さい。また、リーン混合気層の空燃比を火炎伝播可能な空燃比としているので、リッチ混合気層とリーン混合気層との境目で未燃HCが発生することはない。また、燃焼室の隅々まで火炎が良好に伝播されるので、燃焼室内の低温領域(クエンチングエリア)を均質燃焼時と変わりのない小さな領域とすることができる。さらに、リーン混合気が燃焼する領域の過剰な酸素を主燃焼後も残存させる形とするので、主燃焼の終了時点における残存酸素の温度も比較的高温となっており、COの再燃焼がより速やかに進行する。
特開平11−324765号公報
触媒暖機のためには、点火タイミングを排気弁開放時期へ近づけるように点火時期を調整して、触媒へ導かれる排気温度を上昇させることが有効である。しかしながら、このような点火タイミング調整は、内燃機関の出力を低下させる方向に作用する。
また、吸気通路噴射用インジェクタと吸気通路噴射用インジェクタでは、触媒暖機時には、上記のような十分な点火時期調整を行なうのに適した両インジェクタ間の燃料噴射比率を設定することが望ましいが、このような燃料噴射比率は、一般的には、内燃機関の燃焼の安定化を最優先したときの燃料噴射比率とは異なる。
したがって、点火時期の調整を伴う触媒暖機運転を行なう場合には、内燃機関の出力(回転数)が低下してエンジンストールの発生に至らないように配慮する必要がある。
この発明はこのような問題点を解決するためになされたものであって、この発明の目的は、点火時期の調整を伴う触媒暖機運転を行なう内燃機関において、内燃機関の出力低下に対して迅速に対処することにより、エンジンストール防止効果を高めることである。
この発明による内燃機関の制御装置は、筒内に燃料を噴射するための第1の燃料噴射手段と吸気通路内に燃料を噴射するための第2の燃料噴射手段とを備えた内燃機関を制御する。この内燃機関の排気系には予め定められた温度以上で活性化する排気浄化用の触媒が設けられている。制御装置は、要求検知手段と、暖機制御手段と、終了検知手段と、点火遅角終了手段と、出力低下検知手段と、点火遅角強制終了手段とを備える。要求検知手段は、触媒の暖機要求を検知する。暖機制御手段は、要求検知手段により暖機要求が検知されたときに、第1および第2の燃料噴射手段によって燃料噴射が分担されるように第1および第2の燃料噴射手段を制御するとともに、点火時期を遅角するように点火装置を制御する。終了検知手段は、触媒の暖機終了を検知する。点火遅角終了手段は、終了検知手段により暖機終了が検知されたときに、暖機制御手段により遅角された点火時期を復帰させるように点火装置を制御する。出力低下検知手段は、暖機制御手段により点火時期が遅角されている期間中に、内燃機関の出力低下を検知する。点火遅角強制終了手段は、終了検知手段により暖機終了が検知される前に、出力低下検知手段により内燃機関の出力低下が検知されたときに、暖機制御手段により遅角された点火時期を復帰させるように点火装置を制御する。
上記内燃機関の制御装置によれば、触媒の暖機要求が検知された場合には、早期に触媒を活性化するために点火時期の遅角により排気温度を上昇させるとともに、点火時期の遅角化が内燃機関の出力を低下させる方向に作用する点を考慮して、内燃機関の出力低下が発生した場合には、点火遅角を強制的に終了させて点火時期を復帰させることができる。これにより、触媒暖機運転中の内燃機関の出力低下に対して迅速に対処して、エンジンストール防止効果を高めることができる。
好ましくは、この発明による内燃機関の制御装置では、内燃機関の出力低下が検知されてから点火遅角強制終了手段によって点火時期が復帰するまでの期間は、暖機終了が検知されてから点火遅角終了手段によって点火時期が復帰するまでの期間よりも短い。
上記内燃機関の制御装置によれば、暖機運転の正常終了時に点火遅角終了手段によって点火時期が復帰するのに要する期間は、内燃機関の出力低下検知時において点火遅角強制終了手段によって点火時期が復帰するのに要する期間よりも長く設定される。したがって、内燃機関の出力低下時にはエンジンストール防止効果を高めるために点火時期を速やかに復帰させる一方で、触媒運転の正常終了時には運転状態をスムーズに移行させることができる。
この発明の他の構成による内燃機関の制御装置は、筒内に燃料を噴射するための第1の燃料噴射手段と吸気通路内に燃料を噴射するための第2の燃料噴射手段とを備えた内燃機関を制御する。この内燃機関の排気系には予め定められた温度以上で活性化する排気浄化用の触媒が設けられている。制御装置は、要求検知手段と、暖機制御手段と、終了検知手段と、出力低下検知手段と、燃料噴射変更手段とを備える。要求検知手段は、触媒の暖機要求を検知する。暖機制御手段は、要求検知手段により暖機要求が検知されたときに、第1および第2の燃料噴射手段によって燃料噴射が分担されるように第1および第2の燃料噴射手段を制御するとともに、点火時期を遅角するように点火装置を制御する。終了検知手段は、触媒の暖機終了を検知する。出力低下検知手段は、暖機制御手段により第1および第2の燃料噴射手段が制御されている期間中に、内燃機関の出力低下を検知する。燃料噴射変更手段は終了検知手段により暖機終了が検知される前に、出力低下検知手段により内燃機関の出力低下が検知されたときに、主に第2の燃料噴射手段によって燃料噴射が行なわれるように第1および第2の燃料噴射手段を制御する。
上記内燃機関の制御装置によれば、触媒の暖機要求が検知された場合には、早期に触媒を活性化するために、第1の燃料噴射手段(たとえば筒内噴射用インジェクタ)および第2の燃料噴射手段(たとえば吸気通路噴射用インジェクタ)によって燃料噴射が分担されるように燃料噴射分担比率(DI比率)を設定するとともに、点火時期を遅角させて排気温度を上昇させる。さらに、このような触媒暖機に適した設定が内燃機関の出力を低下させる方向に作用する点を考慮して、内燃機関の出力低下が発生した場合には、主に第2の燃料噴射手段によって燃料噴射を行なう(好ましくは、第2の燃料噴射手段から全量を噴射)ことにより、燃焼室内での混合気の均質性を向上させて内燃機関の燃焼状態を安定化させることができる。これにより、触媒暖機運転中の内燃機関の出力低下に対して迅速に対処して、エンジンストール防止効果を高めることができる。
好ましくは、この発明による内燃機関の制御装置では、暖機制御手段は、暖機要求が検知されたときに、第1の燃料噴射手段の分担の割合を第2の燃料噴射手段の分担の割合と同等以上にするように、第1の燃料噴射手段と第2の燃料噴射手段とを制御するための手段を含む。
上記内燃機関の制御装置によれば、第1の燃料噴射手段(たとえば筒内噴射用インジェクタ)の分担の割合を第2の燃料噴射手段(たとえば吸気通路噴射用インジェクタ)の分担の割合と同等またはそれより多くなるようにして(たとえば65%を筒内噴射用インジェクタで分担)、筒内噴射用インジェクタを用いて圧縮行程で燃料を噴射する。このようにすると、吸気通路噴射用インジェクタによる均質混合気(全体として空燃比がリーンな混合気)と、筒内噴射用インジェクタによる成層混合気(点火プラグ周りの空燃比がリッチな混合気)とを燃焼室内に形成させることができる。このとき、特に、筒内噴射用インジェクタの比率の方が同等か高いので、点火プラグ周りの混合気の空燃比をよりリッチにできる。さらに、その成層混合気の周りは均質な混合気であるので、火炎の伝播が良好な状態にできる。すなわち、燃料噴霧状態において、点火プラグ周りの空燃比がリッチな混合気層と、均質混合気層との境目においても、燃料の拡散によって空燃比が希薄になる領域が部分的に発生しなくなり、このような領域がないので火炎が伝播しやすく、未燃燃料(HC)が発生しにくい。このような状態においては、点火時期を大きく遅角させることができ、排気温度を容易に上昇させることができる。これは、点火プラグ周りの混合気層の空燃比がストイキよりもリッチな空燃比としているので、主燃焼(点火プラグによる火花点火による着火とその後の火炎伝播による燃焼)の際に不完全燃焼物(CO)が生成され、主燃焼後もこのCOが燃焼室内に残存する。この空燃比がリッチ混合気層の周囲にある、空燃比がリーンな均質混合層には、この主燃焼後も酸素が残存する。この残存COと残存酸素とが主燃焼以降の筒内ガス流動によって混合して再燃焼することにより、排気温度が上昇すると考えられる。排気温度の上昇により、始動開始から触媒が活性化するまでの間における大気中へのHCの排出を抑制しながら、触媒を急速に暖機して、触媒を早期に活性化することができる。その結果、内燃機関の始動時における排気浄化触媒の急速暖機を、始動時におけるエミッションの悪化を生じさせることなく良好に実施できる。
また好ましくは、この発明による内燃機関の制御装置では、暖機制御手段は、圧縮行程において燃料を噴射するように、第1の燃料噴射手段を制御するための手段を含む。
上記内燃機関の制御装置によれば、圧縮行程において筒内噴射用インジェクタから噴射された燃料は、点火プラグ周りに空燃比が比較的リッチ(たとえば15.5程度)な混合気を形成できる。そのため、点火時期を大幅に遅角させることができ、排気温度を上昇させて、触媒を急速に暖機して、触媒を早期に活性化することができる。
あるいは好ましくは、この発明による内燃機関の制御装置では、出力低下検知手段は、内燃機関の回転数が所定値以下となったときに、内燃機関の出力低下を検知する。
上記内燃機関の制御装置によれば、内燃機関の回転数の監視により、効率的にエンジンストールの発生に至る可能性のある出力低下を検知できる。
さらに好ましくは、この発明による内燃機関の制御装置では、制御装置は、内燃機関の温度を検知するための検知手段をさらに含む。さらに、要求検知手段は、内燃機関の温度が予め定められた温度よりも低いときに、暖機要求があることを検知するための手段を含む。
上記内燃機関の制御装置によれば、内燃機関の温度(内燃機関の冷却水温度から推定してもよい)が低いときには、触媒も冷えて活性化していないと判断できるので、暖機要求があることを検知することができる。
あるいは、さらに好ましくは、この発明による内燃機関の制御装置では、第1の燃料噴射手段は、筒内噴射用インジェクタであって、第2の燃料噴射手段は、吸気通路用インジェクタである。
上記内燃機関の制御装置によれば、第1の燃料噴射手段である筒内噴射用インジェクタと第2の燃料噴射手段である吸気通路噴射用インジェクタとを別個に設けて噴射燃料を分担する内燃機関において、内燃機関の始動時における排気浄化触媒の急速暖機を良好に実施して始動時におけるエミッションの悪化を生じさせることのない、内燃機関の制御装置を提供することができる。
この発明による内燃機関の制御装置によれば、点火時期の調整を伴う触媒暖機運転を行なう内燃機関において、内燃機関の出力低下に対して迅速に対処することにより、エンジンストール防止効果を高めることである。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰り返さない。
図1に、本発明の実施の形態に係る内燃機関の制御装置であるエンジンECU(Electronic Control Unit)で制御されるエンジンシステムの概略構成図を示す。なお、図1に
は、エンジンとして直列4気筒ガソリンエンジンを示すが、本発明はこのようなエンジンに限定されるものではない。
図1に示すように、エンジン10は、4つの気筒112を備え、各気筒112はそれぞれ対応するインテークマニホールド20を介して共通のサージタンク30に接続されている。サージタンク30は、吸気ダクト40を介してエアクリーナ50に接続され、吸気ダクト40内にはエアフローメータ42が配置されるとともに、電動モータ60によって駆動されるスロットルバルブ70が配置されている。このスロットルバルブ70は、アクセルペダル100とは独立してエンジンECU300の出力信号に基づいてその開度が制御される。一方、各気筒112は共通のエキゾーストマニホールド80に連結され、このエキゾーストマニホールド80は三元触媒コンバータ90に連結されている。
各気筒112に対しては、筒内に向けて燃料を噴射するための筒内噴射用インジェクタ110と、吸気ポートまたは/および吸気通路内に向けて燃料を噴射するための吸気通路噴射用インジェクタ120とがそれぞれ設けられている。これらインジェクタ110、120はエンジンECU300の出力信号に基づいてそれぞれ制御される。また、各気筒内噴射用インジェクタ110は共通の燃料分配管130に接続されており、この燃料分配管130は燃料分配管130に向けて流通可能な逆止弁140を介して、機関駆動式の高圧燃料ポンプ150に接続されている。なお、本実施の形態においては、2つのインジェクタが別個に設けられた内燃機関について説明するが、本発明はこのような内燃機関に限定されない。たとえば、筒内噴射機能と吸気通路噴射機能とを併せ持つような1個のインジェクタを有する内燃機関であってもよい。
図1に示すように、高圧燃料ポンプ150の吐出側は電磁スピル弁152を介して高圧燃料ポンプ150の吸入側に連結されており、この電磁スピル弁152の開度が小さいときほど、高圧燃料ポンプ150から燃料分配管130内に供給される燃料量が増大され、電磁スピル弁152が全開にされると、高圧燃料ポンプ150から燃料分配管130への燃料供給が停止されるように構成されている。なお、電磁スピル弁152はエンジンECU300の出力信号に基づいて制御される。
一方、各吸気通路噴射用インジェクタ120は、共通する低圧側の燃料分配管160に接続されており、燃料分配管160および高圧燃料ポンプ150は共通の燃料圧レギュレータ170を介して、電動モータ駆動式の低圧燃料ポンプ180に接続されている。さらに、低圧燃料ポンプ180は燃料フィルタ190を介して燃料タンク200に接続されている。燃料圧レギュレータ170は低圧燃料ポンプ180から吐出された燃料の燃料圧が予め定められた設定燃料圧よりも高くなると、低圧燃料ポンプ180から吐出された燃料の一部を燃料タンク200に戻すように構成されており、したがって吸気通路噴射用インジェクタ120に供給されている燃料圧および高圧燃料ポンプ150に供給されている燃料圧が上記設定燃料圧よりも高くなるのを阻止している。
エンジンECU300は、デジタルコンピュータから構成され、双方向性バス310を介して相互に接続されたROM(Read Only Memory)320、RAM(Random Access Memory)330、CPU(Central Processing Unit)340、入力ポート350および出力ポート360を備えている。
エアフローメータ42は吸入空気量に比例した出力電圧を発生し、このエアフローメータ42の出力電圧はA/D変換器370を介して入力ポート350に入力される。エンジン10には機関冷却水温に比例した出力電圧を発生する水温センサ380が取付けられ、この水温センサ380の出力電圧は、A/D変換器390を介して入力ポート350に入力される。
燃料分配管130には燃料分配管130内の燃料圧に比例した出力電圧を発生する燃料圧センサ400が取付けられ、この燃料圧センサ400の出力電圧は、A/D変換器410を介して入力ポート350に入力される。三元触媒コンバータ90上流のエキゾーストマニホールド80には、排気ガス中の酸素濃度に比例した出力電圧を発生する空燃比センサ420が取付けられ、この空燃比センサ420の出力電圧は、A/D変換器430を介して入力ポート350に入力される。
本実施の形態に係るエンジンシステムにおける空燃比センサ420は、エンジン10で燃焼された混合気の空燃比に比例した出力電圧を発生する全域空燃比センサ(リニア空燃比センサ)である。なお、空燃比センサ420としては、エンジン10で燃焼された混合気の空燃比が理論空燃比に対してリッチであるかリーンであるかをオン−オフ的に検出するO2センサを用いてもよい。
アクセルペダル100は、アクセルペダル100の踏込み量に比例した出力電圧を発生するアクセル開度センサ440に接続され、アクセル開度センサ440の出力電圧は、A/D変換器450を介して入力ポート350に入力される。また、入力ポート350には、機関回転数を表わす出力パルスを発生する回転数センサ460が接続されている。エンジンECU300のROM320には、上述のアクセル開度センサ440および回転数センサ460により得られる機関負荷率および機関回転数に基づき、運転状態に対応させて設定されている燃料噴射量の値や機関冷却水温に基づく補正値などが予めマップ化されて記憶されている。
エンジンECU300は、所定プログラムの実行により各センサからの信号に基づいて、エンジンシステムの全体動作を制御するための各種制御信号を生成する。これらの制御信号は、出力ポート360および駆動回路470を介して、エンジンシステムを構成する機器・回路群へ送出される。
また、図1に例示するエンジン10は、筒内噴射用インジェクタ110と吸気通路噴射用インジェクタ120とで燃料を分担して噴射する。エンジンECU300のROM320に記憶される、筒内噴射用インジェクタ110と吸気通路噴射用インジェクタ120との噴き分け比率(以下、直噴比率、DI比率、DI比率r(または単にr)とも記載する。)を表わすマップについて説明する。このようなマップは、たとえば、エンジン回転数を横軸にして、負荷率を縦軸にして、筒内噴射用インジェクタ110の分担比率が直噴比率(DI比率r)として百分率で示されている。
エンジン回転数と負荷率とにより定まる運転領域ごとに、直噴比率(DI比率r)が設定されている。「直噴100%」とは、筒内噴射用インジェクタ110からのみ燃料噴射が行なわれる領域(r=1.0、r=100%)であることを意味し、「直噴0〜20%」とは、筒内噴射用インジェクタ110からの燃料噴射が、全噴射量の0〜20%である領域(r=0〜0.2)であることを意味している。たとえば、「直噴40%」とは、筒内噴射用インジェクタ110から全噴射量の40%が噴射され、吸気通路噴射用インジェクタ120から全噴射量の60%が噴射されることを示す。
概略的には、筒内噴射用インジェクタ110が出力性能の上昇に寄与し、吸気通路噴射用インジェクタ120は、混合気の均一性向上に寄与する。このような特性の異なる2種類のインジェクタを内燃機関の回転数および負荷率で使い分けることにより、内燃機関の通常運転状態(たとえば、アイドル時の触媒暖機時が通常運転状態以外の非運転状態の一例であると言える)場合には、主に均質燃焼運転が行なわれるようにしている。なお、DI比率の好ましい設定(マップ構成例)については後ほど詳細に説明する。
なお、三元触媒コンバータ90は、理論空燃比(A/F(空気重量/燃料重量)=14.7)近傍において排気中のCO、HCの酸化とNOxの還元を行なって排気を浄化することができる三元触媒である。この三元触媒コンバータ90における触媒(プラチナ、ロジウム、パラジウム等)は、ある程度の温度(高温)にならないと、活性化せず、浄化機能が作用しない。
本実施の形態に係る制御装置においては、筒内噴射用インジェクタ110と吸気通路噴射用インジェクタ120とを備えたエンジン10の始動後において、三元触媒コンバータ90を早期に昇温して触媒を活性化させて、排気浄化をエンジン10の始動直後できるだけ早く作用させるための急速触媒暖機運転を行なう。
なお、三元触媒コンバータ90が活性化したか否かは、三元触媒コンバータ90の排気下流側に、排気中の特定成分(たとえば、酸素)濃度を検知して、、判断することができる。たとえば、三元触媒コンバータ90の下流側に設けた酸素センサが活性化しているか否かを判断する。具体的には、三元触媒コンバータ90が活性化しているか否かを、下流側の酸素センサの検知値号の変化に基づいて判断することになる。これは、三元触媒コンバータ90の下流側に設けられる酸素センサが活性化したのは、三元触媒コンバータ90の活性化の出口側排気温度の上昇(酸化反応)によるものであるとして、三元触媒コンバータ90が活性化したと判断するものである。
また、エンジン冷却水の水温もしくはエンジンオイルの油温等を検知して三元触媒コンバータ90の温度を推定し、その結果に基づいて三元触媒コンバータ90の活性化を判断することができる。さらには、直接的に三元触媒コンバータ90の温度(出口温度)を検知することによっても三元触媒コンバータ90の活性化を判断することができる。
次に図2を用いて、本発明の実施の形態に係る制御装置であるエンジンECU300で実行されるプログラムの制御構造について説明する。
図2を参照して、ステップS(以下、ステップをSと略す。)100にて、エンジンECU300は、エンジン10が始動されたか否かを判断する。このとき、他のECUからエンジンECU300に入力されるエンジン始動要求信号や、エンジンECU300自体により処理された結果に基づいて判断される。エンジン10が始動されると(S100にてYES)、処理はS120へ移される。エンジン10が始動されていないときには(S100にてNO)、この処理は終了される。
S120にて、エンジンECU300は、急速触媒暖機必要条件の成立を判定することにより、急速触媒暖機が必要な状況であるか否かを判断する。このとき、上述したように、三元触媒コンバータ90の下流側に設けられた酸素センサの検知値号の変化に基づいて三元触媒コンバータ90が活性化していないと、急速触媒暖機は必要であると判断される。また、エンジン冷却水の水温もしくはエンジンオイルの油温等から急速触媒暖機が必要であるか否かを判断するようにしてもよい。
触媒急速暖機が必要であると(S120にてYES)、処理はS130へ移される。もしそうでないと(S120にてNO)、処理はS170へ移される。
S130にて、エンジンECU300は、急速触媒暖機処理を実行する。このとき、たとえば、図3に示すように、点火時期、筒内噴射用インジェクタ110の噴射時期、燃料噴射量、供給空気量、DI比率rが、エンジンECU300により制御される。
なお、図3におけるDI比率の値は一例であるが、50%以上(筒内噴射用インジェクタ110の分担の割合を吸気通路噴射用インジェクタ120の分担の割合と同等以上)であることが好ましい。また、燃料量減量については、一例として、排気における空燃比が15.5程度のリーンな状態にすればよい。このように減量することにより、未燃HCを減少させることにもなる。なお、エンジン10の始動直後は増量補正(エンジン10の始動時にトルクが要求されることに対応するための増量補正や壁面付着に対応するための増量補正)されるが、始動時を経過して始動時のトルクが要求されなくなったり、壁面付着燃料が飽和したりするため、燃料量が減量される。このように、筒内噴射用インジェクタ110からの圧縮行程における燃料噴射量を減量しても、着火に必要な燃料量だけが点火プラグ付近に存在し、リーン限界が高くなるので失火しない。そして、触媒暖機に寄与する後燃え用の燃料(吸気通路噴射用インジェクタ120から供給される分)が(増量補正によって)要求量だけ供給されている。この後燃え燃料があるので、触媒暖機を達成することができる。
S140にて、エンジンECU300は、急速触媒暖機処理による諸条件の設定(図3)がエンジン出力を低下させる方向に作用する点を考慮して、エンジン10の出力低下が発生しているか否かを判断する。具体的には、エンジン回転数を基準回転数と比較することによって、S140の判断が実行される。この基準回転数は、エンジンストールの発生を未然に防止できるように設定される。エンジンストールのおそれがあるような出力低下が生じていると判断されると(S140にてYES)、処理はS180へ移される。もしそうでないと(S140にてNO)、処理はS150へ移される。
S150にて、エンジンECU300は、急速触媒暖機終了条件の成立を判定することにより、急速触媒暖機を終了するか否かを判断する。このとき、上述したように、三元触媒コンバータ90の下流側に設けられた酸素センサの検知値号の変化に基づいて三元触媒コンバータ90が活性化していると、急速触媒暖機は終了すると判断される。また、エンジン冷却水の水温もしくはエンジンオイルの油温等から急速触媒暖機を終了するか否かを判断するようにしてもよい。さらに、エンジン冷却水の水温が始動時より予め定められた値以上上昇した否かに基づいて、急速触媒暖機を終了するか否かを判断するようにしてもよい。さらに、吸入空気量の積算値に基づいて、エンジン10が予め定められた時間以上運転していか否かを判断することにより、急速触媒暖機を終了するか否かを判断するようにしてもよい。
触媒急速暖機を終了すると判断されると(S150にてYES)、処理はS160へ移される。もしそうでないと(S150にてNO)、処理はS130へ戻される。
すなわち、触媒急速暖機処理中にエンジン出力が低下することなく(S140にてYES)、触媒急速暖機が正常に終了するときには、ステップS160を経てステップS170が実行される。
S170にて、エンジンECU300は、エンジン10に対して通常の運転処理を実行する。このとき、一時的に急速触媒暖機用に設定されていた、点火時期、筒内噴射用インジェクタ110の噴射時期、燃料噴射量、供給空気量、DI比率rが、エンジンECU300により通常運転用に戻される。ステップS160では、エンジンECU300は、急速触媒暖機処理による諸条件の設定(図3)をステップS170での通常運転処理へ戻す処理(正常時移行処理)を行なう。
一方、触媒急速暖機処理中にエンジン出力が低下したときには(S140でYES)、ステップS180を経てステップS170が実行される。すなわち、エンジンECU300は、触媒急速暖機終了条件の成立(S140)を待つことなく、ステップS180により点火時期遅角化を直ちに終了する処理を行なって、ステップS170での通常の運転処理を実行する。
なお、急速触媒暖機は、アイドル運転時に限定して実行される。このため、フローチャート中には図示しないが、急速触媒暖機運転中に運転者のアクセル操作やシフトポジション操作により非アイドル運転となった場合には、急速触媒暖機は強制的に終了されて、処理はS170へ移される。
以上のような構造およびフローチャートに基づく、本実施の形態に係る制御装置であるエンジンECU300により制御されるエンジン10の動作について説明する。なお、以下の説明においては、急速触媒暖機を必要とする場合のエンジン10の始動時の動作について説明する。
エンジン10の始動後(S100にてYES)、三元触媒コンバータ90の下流側に設けられた酸素センサの検知値号の変化に基づいて三元触媒コンバータ90が活性化していないと、急速触媒暖機は必要であると判断される(S120にてYES)。このような場合、図3に示すような値になるように、点火時期、筒内噴射用インジェクタ110の噴射時期、燃料噴射量、供給空気量、DI比率rが、エンジンECU300により制御される(S130)。
このように制御されたエンジンにおいては、筒内噴射用インジェクタ110の分担の割合を吸気通路噴射用インジェクタ120の分担の割合と同等またはそれより多い65%程度になるようにして、筒内噴射用インジェクタ110から圧縮行程で燃料を筒内に噴射する。吸気通路噴射用インジェクタ120から吸気行程で燃料を吸気管内に噴射することが好ましい。このとき、吸気通路噴射用インジェクタ120による全体として空燃比がリーンで均質状態の混合気と、筒内噴射用インジェクタ110による点火プラグ周りの空燃比がリッチな成層状態の混合気とが燃焼室内で形成される(このような燃焼状態は、「弱成層燃焼状態」とも称される)。点火プラグでの点火時期を大きく遅角(たとえば、ATDC15゜)しても、筒内噴射用インジェクタ110の比率の方が同等か高いので、点火プラグ周りの混合気の空燃比をよりリッチであり、さらに、その点火プラグ周りの混合気の周りは、吸気通路噴射用インジェクタ120により形成された均質な混合気であるので、火炎の伝播を良好にできる。このように火炎が伝播しやすく、未燃燃料(HC)が発生しにくい。点火時期を大きく遅角させることにより、排気温度は上昇する。さらに、このように点火時期を大きく遅角することによりエンジン10の出力(トルク)が低下するが、燃料量を減量して未燃HCを減少させたり、吸入空気量を増量してトルクダウンを回避させたりしている。排気温度の上昇により、始動開始から触媒が活性化するまでの間における大気中へのHCの排出を抑制しながら、触媒を急速に暖機して、触媒を急速に活性化できる。
三元触媒コンバータ90における触媒の温度が上昇して活性化すると、三元触媒コンバータ90の下流側に設けられた酸素センサの検知値号が変化する。この変化に基づいて三元触媒コンバータ90が活性化したと判断される(S150にてYES)。このとき、図3に示すような、点火時期、筒内噴射用インジェクタ110の噴射時期、燃料噴射量、供給空気量、DI比率rに従った急速触媒暖機は終了されて、後述するDI比率r等を用いた通常運転処理に従ってエンジン10が制御される。この際の設定の移行は、正常時移行処理(S160)に従って実行される。
一方、急速触媒暖機中にエンジン出力が低下したときには(S140でYES)、急速触媒暖機の終了判定(S150)を待つことなく、その時点で急速触媒暖機は一旦終了されて、通常運転処理に従ったエンジン運転が開始される。この際の設定の移行は、S180に従って実行される。
図4は、S160およびS180における点火遅角量設定を比較する図である。
図4を参照して、時刻t0は、急速触媒暖機運転が実行から非実行へ移行するタイミングである。S160の実行時には、時刻t1は急速触媒暖機終了条件の成立時(S150がYESとなったタイミング)に相当し、S180の実行時には、時刻t1はエンジン回転数の低下検出時(S140がYESとなったタイミング)に相当する。
急速触媒暖機運転の正常終了時に実行されるS160では、運転状態をスムーズに移行するために、点火遅角量は徐々に減少される。そして、時刻t1において点火遅角量=0とされて通常運転時(S170)の点火時期となる。
これに対して、エンジンストールに至る可能性のあるエンジン出力(回転数)低下検知時に実行されるS180では、エンジン出力を早急に回復するために、直ちに点火遅角量=0と設定される。好ましくは、次回の燃焼サイクルから通常運転時(S170)の点火時期とされる。
あるいは図5に示すように、S160では、時刻t0からディレイTd1経過後の時刻t2において、点火遅角量=0と設定して通常運転時の点火時期へ移行させる一方で、S180では、時刻t0からのディレイTd2をS160でのディレイTd1よりも短くする。好ましくは、Td2=0とすることにより、エンジン出力(回転数)低下検知時には、直ちに点火遅角量=0に設定して、次回の燃焼サイクルから通常運転時の点火時期とする。
なお、図4および図5では、S160およびS180の間で、点火時期の移行処理に差異を設ける制御構造例を説明したが、図3に示した点火時期以外の条件についても、S160およびS180によって点火時期と同様の移行処理の差異を設けてもよい。
以上のようにして、本実施の形態に係るエンジンECUを搭載した車両では、エンジン始動時に排気浄化触媒の急速暖機が必要な場合には、排気量の増大および排気温度の上昇に適した設定でエンジン10を運転させる。特に、このような急速触媒暖機処理による諸条件の設定(図3)がエンジン出力を低下させる方向に作用する点を考慮して、エンジン10の出力(回転数)低下が発生した場合には、直ちに点火時期遅角を中止して、点火時期を通常運転時復帰させることができる。これにより、急速触媒暖機運転中のエンジンの出力低下に対して迅速に対処して、エンジンストール防止効果を高めることができる。
さらに、図4および図5に示したように、急速触媒暖機終了条件の正常終了時(S160)における点火時期が復帰するまでの期間(点火遅角量=0に設定されるまでの期間)を、エンジン出力(回転数)低下に伴う強制終了時(S180)よりも長く設定することにより、エンジンの出力低下時にはエンジンストール防止効果を高めるために点火時期を速やかに復帰させる一方で、急速触媒暖機終了条件の正常終了時には運転状態をスムーズに移行させることができる。
また、急速触媒暖機処理における好ましいDI比率設定に従って、筒内噴射用インジェクタによる燃料噴射分担率が吸気通路噴射用インジェクタの燃料噴射分担率と同等かそれ以上になるように設定される。このようにすると、吸気通路噴射用インジェクタによる全体として空燃比がリーンで均質状態の混合気と、筒内噴射用インジェクタによる点火プラグ周りの空燃比がリッチな成層状態の混合気とを燃焼室内に形成させることができる。このとき、点火プラグ周りの混合気の空燃比をよりリッチにできる。その点火プラグの周りの混合気は均質(弱成層)であるので、火炎が伝播しやすく、未燃燃料(HC)が発生しにくい。このような状態において、点火時期を大きく遅角させることにより排気温度を上昇させることができ排気浄化触媒を従来技術よりも急速に暖機することができる。
<他の制御構造例>
図6には、本発明の実施の形態に係る制御装置であるエンジンECU300で実行されるプログラムの他の制御構造例について説明する。
図6を図2と比較して、図6に示されたフローチャートでは、図2に示したフローチャートと比較して、エンジン出力(回転数)の低下検出時(S140でのYES)における処理が異なる。図2および図6に示されたフローチャート間で、それ以外の制御構造については同様であるので、詳細な説明は繰り返さない。
エンジンECU300は、エンジン出力(回転数)の低下検出時(S140でのYES)には、S200により、DI比率を図3に示した急速触媒暖機に適した値から、吸気通路噴射用インジェクタ120からの燃料噴射が主に行なわれるような値(好ましくは、r=0%)に変更する。
これにより、エンジン出力(回転数)の低下検出時には、エンジンでの燃焼状態を安定化させることを優先させて、吸気通路噴射用インジェクタからの噴射燃料による理論空燃比に従った均質な混合気が燃焼室内に形成された状態で、アイドル運転が継続される。
なお、DI比率の変更に伴い、燃焼室での燃焼状態も上記のような弱成層燃焼から均質燃焼へ移行するので、点火時期についても遅角化は終了されて通常の点火時期とされる。
このような制御構造としても、図2に示した制御構造と同様に、エンジン始動時に排気浄化触媒の急速暖機が必要な場合には、排気量の増大および排気温度の上昇に適した設定でエンジン10を運転させるとともに、急速触媒暖機運転中のエンジンの出力低下に対して迅速に対処して、エンジンストール防止効果を高めることができる。
<この制御装置が適用されるに適したエンジン(その1)>
以下、本実施の形態に係る制御装置が適用されるに適したエンジン(その1)について説明する。
図7および図8を参照して、エンジン10の運転状態に対応させた情報である、筒内噴射用インジェクタ110と吸気通路噴射用インジェクタ120との噴き分け比率(以下、DI比率rまたは単にrと記載する。)を表わすマップについて説明する。これらのマップは、エンジンECU300のROM320に記憶される。図7は、エンジン10の温間用マップであって、図8は、エンジン10の冷間用マップである。
図7および図8に示すように、これらのマップは、エンジン10の回転数を横軸にして、負荷率を縦軸にして、筒内噴射用インジェクタ110の分担比率がDI比率rとして百分率で示されている。
図7および図8に示すように、エンジン10の回転数と負荷率とに定まる運転領域ごとに、DI比率rが設定されている。「DI比率r=100%」とは、筒内噴射用インジェクタ110からのみ燃料噴射が行なわれる領域であることを意味し、「DI比率r=0%」とは、吸気通路噴射用インジェクタ120からのみ燃料噴射が行なわれる領域であることを意味する。「DI比率r≠0%」、「DI比率r≠100%」および「0%<DI比率r<100%」とは、筒内噴射用インジェクタ110と吸気通路噴射用インジェクタ120とで燃料噴射が分担して行なわれる領域であることを意味する。なお、概略的には、筒内噴射用インジェクタ110は、出力性能の上昇に寄与し、吸気通路噴射用インジェクタ120は、混合気の均一性に寄与する。このような特性の異なる2種類のインジェクタを、エンジン10の回転数と負荷率とで使い分けることにより、エンジン10が通常運転状態(たとえば、アイドル時の触媒暖機時が、通常運転状態以外の非通常運転状態の一例であるといえる)である場合には、均質燃焼のみが行なわれるようにしている。
さらに、これらの図7および図8に示すように、温間時のマップと冷間時のマップとに分けて、筒内噴射用インジェクタ110と吸気通路噴射用インジェクタ120のDI分担率rを規定した。エンジン10の温度が異なると、筒内噴射用インジェクタ110および吸気通路噴射用インジェクタ120の制御領域が異なるように設定されたマップを用いて、エンジン10の温度を検知して、エンジン10の温度が予め定められた温度しきい値以上であると図7の温間時のマップを選択して、そうではないと図8に示す冷間時のマップを選択する。それぞれ選択されたマップに基づいて、エンジン10の回転数と負荷率とに基づいて、筒内噴射用インジェクタ110および/または吸気通路噴射用インジェクタ120を制御する。
図7および図8に設定されるエンジン10の回転数と負荷率について説明する。図7のNE(1)は2500〜2700rpmに設定され、KL(1)は30〜50%、KL(2)は60〜90%に設定されている。また、図8のNE(3)は2900〜3100rpmに設定されている。すなわち、NE(1)<NE(3)である。その他、図7のNE(2)や、図8のKL(3)、KL(4)も適宜設定されている。
図7および図8を比較すると、図7に示す温間用マップのNE(1)よりも図8に示す冷間用マップのNE(3)の方が高い。これは、エンジン10の温度が低いほど、吸気通路噴射用インジェクタ120の制御領域が高いエンジン回転数の領域まで拡大されるということを示す。すなわち、エンジン10が冷えている状態であるので、(たとえ、筒内噴射用インジェクタ110から燃料を噴射しなくても)筒内噴射用インジェクタ110の噴口にデポジットが堆積しにくい。このため、吸気通路噴射用インジェクタ120を使って燃料を噴射する領域を拡大するように設定され、均質性を向上させることができる。
図7および図8を比較すると、エンジン10の回転数が、温間用マップにおいてはNE(1)以上の領域において、冷間用マップにおいてはNE(3)以上の領域において、「DI比率r=100%」である。また、負荷率が、温間用マップにおいてはKL(2)以上の領域において、冷間用マップにおいてはKL(4)以上の領域において、「DI比率r=100%」である。これは、予め定められた高エンジン回転数領域では筒内噴射用インジェクタ110のみが使用されること、予め定められた高エンジン負荷領域では筒内噴射用インジェクタ110のみが使用されるということを示す。すなわち、高回転領域や高負荷領域においては、筒内噴射用インジェクタ110のみで燃料を噴射しても、エンジン10の回転数や負荷が高く吸気量が多いので筒内噴射用インジェクタ110のみでも混合気を均質化しやすいためである。このようにすると、筒内噴射用インジェクタ110から噴射された燃料は燃焼室内で気化潜熱を伴い(燃焼室から熱を奪い)気化される。これにより、圧縮端での混合気の温度が下がる。これにより対ノッキング性能が向上する。また、燃焼室の温度が下がるので、吸入効率が向上し高出力が見込める。
図7に示す温間マップでは、負荷率KL(1)以下では、筒内噴射用インジェクタ110のみが用いられる。これは、エンジン10の温度が高いときであって、予め定められた低負荷領域では筒内噴射用インジェクタ110のみが使用されるということを示す。これは、温間時においてはエンジン10が暖まった状態であるので、筒内噴射用インジェクタ110の噴口にデポジットが堆積しやすい。しかしながら、筒内噴射用インジェクタ110を使って燃料を噴射することにより噴口温度を低下させることができるので、デポジットの堆積を回避することも考えられ、また、筒内噴射用インジェクタの最小燃料噴射量を確保して、筒内噴射用インジェクタ110を閉塞させないことも考えられ、このために、筒内噴射用インジェクタ110を用いた領域としている。
図7および図8を比較すると、図8の冷間用マップにのみ「DI比率r=0%」の領域が存在する。これは、エンジン10の温度が低いときであって、予め定められた低負荷領域(KL(3)以下)では吸気通路噴射用インジェクタ120のみが使用されるということを示す。これはエンジン10が冷えていてエンジン10の負荷が低く吸気量も低いため燃料が霧化しにくい。このような領域においては筒内噴射用インジェクタ110による燃料噴射では良好な燃焼が困難であるため、また、特に低負荷および低回転数の領域では筒内噴射用インジェクタ110を用いた高出力を必要としないため、筒内噴射用インジェクタ110を用いないで、吸気通路噴射用インジェクタ120のみを用いる。
また、通常運転時以外の場合、エンジン10がアイドル時の触媒暖機時の場合(非通常運転状態であるとき)、上述のように、成層燃焼を行なうように筒内噴射用インジェクタ110が制御される。このような触媒暖機運転中にのみ成層燃焼させることで、触媒暖機を促進させ、排気エミッションの向上を図る。
<この制御装置が適用されるに適したエンジン(その2)>
以下、本実施の形態に係る制御装置が適用されるに適したエンジン(その2)について説明する。なお、以下のエンジン(その2)の説明において、エンジン(その1)と同じ説明については、ここでは繰り返さない。
図9および図10を参照して、エンジン10の運転状態に対応させた情報である、筒内噴射用インジェクタ110と吸気通路噴射用インジェクタ120との噴き分け比率を表わすマップについて説明する。これらのマップは、エンジンECU300のROM320に記憶される。図9は、エンジン10の温間用マップであって、図10は、エンジン10の冷間用マップである。
図9および図10を比較すると、以下の点で図7および図8と異なる。エンジン10の回転数が、温間用マップにおいてはNE(1)以上の領域において、冷間用マップにおいてはNE(3)以上の領域において、「DI比率r=100%」である。また、負荷率が、温間用マップにおいては低回転数領域を除くKL(2)以上の領域において、冷間用マップにおいては低回転数領域を除くKL(4)以上の領域において、「DI比率r=100%」である。これは、予め定められた高エンジン回転数領域では筒内噴射用インジェクタ110のみが使用されること、予め定められた高エンジン負荷領域では筒内噴射用インジェクタ110のみが使用される領域が多いことを示す。しかしながら、低回転数領域の高負荷領域においては、筒内噴射用インジェクタ110から噴射された燃料により形成される混合気のミキシングが良好ではなく、燃焼室内の混合気が不均質で燃焼が不安定になる傾向を有する。このため、このような問題が発生しない高回転数領域へ移行するに伴い筒内噴射用インジェクタの噴射比率を増大させるようにしている。また、このような問題が発生する高負荷領域へ移行するに伴い筒内噴射用インジェクタ110の噴射比率を減少させるようにしている。これらのDI比率rの変化を図9および図10に十字の矢印で示す。このようにすると、燃焼が不安定であることに起因するエンジンの出力トルクの変動を抑制することができる。なお、これらのことは、予め定められた低回転数領域へ移行するに伴い筒内噴射用インジェクタ110の噴射比率を減少させることや、予め定められた低負荷領域へ移行するに伴い筒内噴射用インジェクタ110の噴射比率を増大させることと、略等価であることを確認的に記載する。また、このような領域(図9および図10で十字の矢印が記載された領域)以外の領域であって筒内噴射用インジェクタ110のみで燃料を噴射している領域(高回転側、低負荷側)においては、筒内噴射用インジェクタ110のみでも混合気を均質化しやすい。このようにすると、筒内噴射用インジェクタ110から噴射された燃料は燃焼室内で気化潜熱を伴い(燃焼室から熱を奪い)気化される。これにより、圧縮端での混合気の温度が下がる。これにより対ノッキング性能が向上する。また、燃焼室の温度が下がるので、吸入効率が向上し高出力が見込める。
なお、図7〜図10を用いて説明したこのエンジン10においては、均質燃焼は筒内噴射用インジェクタ110の燃料噴射タイミングを吸気行程とすることにより、成層燃焼は筒内噴射用インジェクタ110の燃料噴射タイミングを圧縮行程とすることにより実現できる。すなわち、筒内噴射用インジェクタ110の燃料噴射タイミングを圧縮行程とすることで、点火プラグ周りにリッチ混合気が偏在させることにより燃焼室全体としてはリーンな混合気に着火する成層燃焼を実現することができる。また、筒内噴射用インジェクタ110の燃料噴射タイミングを吸気行程としても点火プラグ周りにリッチ混合気を偏在させることができれば、吸気行程噴射であっても成層燃焼を実現できる。
また、ここでいう成層燃焼には、成層燃焼と以下に示す弱成層燃焼の双方を含むものである。弱成層燃焼とは、吸気通路噴射用インジェクタ120を吸気行程で燃料噴射して燃焼室全体にリーンで均質な混合気を生成して、さらに筒内噴射用インジェクタ110を圧縮行程で燃料噴射して点火プラグ周りにリッチな混合気を生成して、燃焼状態の向上を図るものである。このような弱成層燃焼は触媒暖機時に好ましい。これは、以下の理由による。すなわち、触媒暖機時には高温の燃焼ガスを触媒に到達させるために点火時期を大幅に遅角させ、かつ良好な燃焼状態(アイドル状態)を維持する必要がある。また、ある程度の燃料量を供給する必要がある。これを成層燃焼で行なおうとしても燃料量が少ないという問題があり、これを均質燃焼で行なおうとしても良好な燃焼を維持するために遅角量が成層燃焼に比べて小さいという問題がある。このような観点から、上述した弱成層燃焼を触媒暖機時に用いることが好ましいが、成層燃焼および弱成層燃焼のいずれであっても構わない。
また、図7〜図10を用いて説明したエンジンにおいては、筒内噴射用インジェクタ110による燃料噴射のタイミングは、以下のような理由により、圧縮行程で行なうことが好ましい。ただし、上述したエンジン10は、基本的な大部分の領域には(触媒暖機時にのみに行なわれる、吸気通路噴射用インジェクタ120を吸気行程噴射させ、筒内噴射用インジェクタ110を圧縮行程噴射させる弱成層燃焼領域以外を基本的な領域という)、筒内噴射用インジェクタ110による燃料噴射のタイミングは、吸気行程である。しかしながら、以下に示す理由があるので、燃焼安定化を目的として一時的に筒内噴射用インジェクタ110の燃料噴射タイミングを圧縮行程噴射とするようにしてもよい。
筒内噴射用インジェクタ110からの燃料噴射時期を圧縮工程中とすることで、筒内温度がより高い時期において、燃料噴射により混合気が冷却される。冷却効果が高まるので、対ノック性を改善することができる。さらに、筒内噴射用インジェクタ110からの燃料噴射時期を圧縮工程中とすると、燃料噴射から点火時期までの時間が短いことから噴霧による気流の強化を実現でき、燃焼速度を上昇させることができる。これらの対ノック性の向上と燃焼速度の上昇とから、燃焼変動を回避して、燃焼安定性を向上させることができる。
さらに、エンジン10の温度によらず(すなわち、温間時および冷間時のいずれの場合であっても)、オフアイドル時(アイドルスイッチがオフの場合、アクセルペダルが踏まれている場合)には、図7または図9に示す温間マップを用いるようにしてもよい(冷間温間を問わず、低負荷領域において筒内噴射用インジェクタ110を用いる)。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明の実施の形態に係る制御装置で制御されるエンジンシステムの概略構成図である。 本発明の実施の形態に係る制御装置であるエンジンECUで実行されるプログラムの制御構造例を示すフローチャートである。 本発明の実施の形態における急速触媒暖機処理の条件を示す図である。 急速触媒暖機運転の正常終了時とエンジン回転数低下検出による終了時との間での点火遅角量設定の差異を説明する第1の図である。 急速触媒暖機運転の正常終了時とエンジン回転数低下検出による終了時との間での点火遅角量設定の差異を説明する第2の図である。 本発明の実施の形態に係る制御装置であるエンジンECUで実行されるプログラムの他の制御構造例を示すフローチャートである。 本発明の実施の形態に係る制御装置が適用されるに好適なエンジンの温間時のDI比率マップを表わす図(その1)である。 本発明の実施の形態に係る制御装置が適用されるに好適なエンジンの冷間時のDI比率マップを表わす図(その1)である。 本発明の実施の形態に係る制御装置が適用されるに好適なエンジンの温間時のDI比率マップを表わす図(その2)である。 本発明の実施の形態に係る制御装置が適用されるに好適なエンジンの冷間時のDI比率マップを表わす図(その2)である。
符号の説明
10 エンジン、20 インテークマニホールド、30 サージタンク、40 吸気ダクト、42 エアフローメータ、50 エアクリーナ、60 電動モータ、70 スロットルバルブ、80 エキゾーストマニホールド、90 三元触媒コンバータ、100 アクセルペダル、110 筒内噴射用インジェクタ、112 気筒、120 吸気通路噴射用インジェクタ、130,160 燃料分配管、140 逆止弁、150 高圧燃料ポンプ、152 電磁スピル弁、170 燃料圧レギュレータ、180 低圧燃料ポンプ、190 燃料フィルタ、200 燃料タンク、380 水温センサ、400 燃料圧センサ、420 空燃比センサ、440 アクセル開度センサ、460 エンジン回転数センサ、r DI比率、Td1,Td2 ディレイ。

Claims (8)

  1. 筒内に燃料を噴射するための第1の燃料噴射手段と吸気通路内に燃料を噴射するための第2の燃料噴射手段とを備えた内燃機関の制御装置であって、前記内燃機関の排気系には予め定められた温度以上で活性化する排気浄化用の触媒が設けられ、
    前記触媒の暖機要求を検知するための要求検知手段と、
    前記要求検知手段により暖機要求が検知されたときに、前記第1および第2の燃料噴射手段によって燃料噴射が分担されるように前記第1および第2の燃料噴射手段を制御するとともに、点火時期を遅角するように点火装置を制御するための暖機制御手段と、
    前記触媒の暖機終了を検知する終了検知手段と、
    前記終了検知手段により暖機終了が検知されたときに、前記暖機制御手段により遅角された点火時期を復帰させるように前記点火装置を制御するための点火遅角終了手段と、
    前記暖機制御手段により前記点火時期が遅角されている期間中に、前記内燃機関の出力低下を検知する出力低下検知手段と、
    前記終了検知手段により暖機終了が検知される前に、前記出力低下検知手段により前記内燃機関の出力低下が検知されたときに、前記暖機制御手段により遅角された点火時期を復帰させるように前記点火装置を制御するための点火遅角強制終了手段とを備える、内燃機関の制御装置。
  2. 前記内燃機関の出力低下が検知されてから前記点火遅角強制終了手段によって前記点火時期が復帰するまでの期間は、前記暖機終了が検知されてから前記点火遅角終了手段によって前記点火時期が復帰するまでの期間よりも短い、請求項1記載の内燃機関の制御装置。
  3. 筒内に燃料を噴射するための第1の燃料噴射手段と吸気通路内に燃料を噴射するための第2の燃料噴射手段とを備えた内燃機関の制御装置であって、前記内燃機関の排気系には予め定められた温度以上で活性化する排気浄化用の触媒が設けられ、
    前記触媒の暖機要求を検知するための要求検知手段と、
    前記要求検知手段により暖機要求が検知されたときに、前記第1および第2の燃料噴射手段によって燃料噴射が分担されるように前記第1および第2の燃料噴射手段を制御するとともに、点火時期を遅角するように点火装置を制御するための暖機制御手段と、
    前記触媒の暖機終了を検知する終了検知手段と、
    前記暖機制御手段により前記第1および第2の燃料噴射手段が制御されている期間中に、前記内燃機関の出力低下を検知する出力低下検知手段と、
    前記終了検知手段により暖機終了が検知される前に、前記出力低下検知手段により前記内燃機関の出力低下が検知されたときに、主に前記第2の燃料噴射手段によって燃料噴射が行なわれるように前記第1および第2の燃料噴射手段を制御するための燃料噴射変更手段とを備える、内燃機関の制御装置。
  4. 前記暖機制御手段は、前記暖機要求が検知されたときに、前記第1の燃料噴射手段の分担の割合を前記第2の燃料噴射手段の分担の割合と同等以上にするように、前記第1の燃料噴射手段と前記第2の燃料噴射手段とを制御するための手段を含む、請求項1または3記載の内燃機関の制御装置。
  5. 前記暖機制御手段は、圧縮行程において燃料を噴射するように、前記第1の燃料噴射手段を制御するための手段を含む、請求項1または3記載の内燃機関の制御装置。
  6. 前記出力低下検知手段は、前記内燃機関の回転数が所定値以下となったときに、前記内燃機関の出力低下を検知する、請求項1または3記載の内燃機関の制御装置。
  7. 前記制御装置は、前記内燃機関の温度を検知するための検知手段をさらに含み、
    前記要求検知手段は、前記内燃機関の温度が予め定められた温度よりも低いときに、前記暖機要求があることを検知するための手段を含む、請求項1〜6のいずれか1項に記載の内燃機関の制御装置。
  8. 前記第1の燃料噴射手段は、筒内噴射用インジェクタであって、
    前記第2の燃料噴射手段は、吸気通路用インジェクタである、請求項1〜7のいずれか1項に記載の内燃機関の制御装置。
JP2005213621A 2005-07-25 2005-07-25 内燃機関の制御装置 Expired - Fee Related JP4581887B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213621A JP4581887B2 (ja) 2005-07-25 2005-07-25 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213621A JP4581887B2 (ja) 2005-07-25 2005-07-25 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2007032316A true JP2007032316A (ja) 2007-02-08
JP4581887B2 JP4581887B2 (ja) 2010-11-17

Family

ID=37791870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213621A Expired - Fee Related JP4581887B2 (ja) 2005-07-25 2005-07-25 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP4581887B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264342A (ja) * 2008-04-28 2009-11-12 Toyota Motor Corp 燃料噴射制御装置および燃料噴射制御方法
US8631641B2 (en) 2008-12-24 2014-01-21 Toyota Jidosha Kabushiki Kaisha Control device for vehicle
DE102020103441A1 (de) * 2019-02-20 2020-08-20 Toyota Jidosha Kabushiki Kaisha Vorrichtung, System und Verfahren zum Überwachen eines Katalysator-Aufwärmprozesses für einen Verbrennungsmotor, Datenanalysevorrichtung, Steuervorrichtung für einen Verbrennungsmotor und Empfänger
US11773802B2 (en) * 2021-10-14 2023-10-03 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11324765A (ja) * 1998-03-17 1999-11-26 Nissan Motor Co Ltd 直噴火花点火式内燃機関の制御装置
JP2001020837A (ja) * 1999-07-07 2001-01-23 Nissan Motor Co Ltd エンジンの燃料噴射制御装置
JP2003065130A (ja) * 2001-08-30 2003-03-05 Hitachi Ltd 混合気供給装置の診断装置及びその診断方法
JP2003176772A (ja) * 2001-12-11 2003-06-27 Honda Motor Co Ltd 内燃機関の点火時期制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11324765A (ja) * 1998-03-17 1999-11-26 Nissan Motor Co Ltd 直噴火花点火式内燃機関の制御装置
JP2001020837A (ja) * 1999-07-07 2001-01-23 Nissan Motor Co Ltd エンジンの燃料噴射制御装置
JP2003065130A (ja) * 2001-08-30 2003-03-05 Hitachi Ltd 混合気供給装置の診断装置及びその診断方法
JP2003176772A (ja) * 2001-12-11 2003-06-27 Honda Motor Co Ltd 内燃機関の点火時期制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264342A (ja) * 2008-04-28 2009-11-12 Toyota Motor Corp 燃料噴射制御装置および燃料噴射制御方法
US8631641B2 (en) 2008-12-24 2014-01-21 Toyota Jidosha Kabushiki Kaisha Control device for vehicle
DE102020103441A1 (de) * 2019-02-20 2020-08-20 Toyota Jidosha Kabushiki Kaisha Vorrichtung, System und Verfahren zum Überwachen eines Katalysator-Aufwärmprozesses für einen Verbrennungsmotor, Datenanalysevorrichtung, Steuervorrichtung für einen Verbrennungsmotor und Empfänger
DE102020103441B4 (de) * 2019-02-20 2020-10-08 Toyota Jidosha Kabushiki Kaisha Vorrichtung, System und Verfahren zum Überwachen eines Katalysator-Aufwärmprozesses für einen Verbrennungsmotor, Datenanalysevorrichtung, Steuervorrichtung für einen Verbrennungsmotor und Empfänger
US11143083B2 (en) 2019-02-20 2021-10-12 Toyota Jidosha Kabushiki Kaisha Catalyst warm-up process monitoring device, system, and method for internal combustion engine, data analysis device, control device for internal combustion engine, and receiver
US11773802B2 (en) * 2021-10-14 2023-10-03 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Also Published As

Publication number Publication date
JP4581887B2 (ja) 2010-11-17

Similar Documents

Publication Publication Date Title
EP1859140B1 (en) Control apparatus for internal combustion engine
JP4487735B2 (ja) 内燃機関の制御装置
JP3613023B2 (ja) 筒内噴射式エンジンの制御装置
JP2006258007A (ja) 内燃機関の制御装置
KR100912844B1 (ko) 내연기관용 제어 장치
JP4453625B2 (ja) 内燃機関の制御装置
JP2006291877A (ja) 内燃機関の制御装置
JP2006258017A (ja) 内燃機関の制御装置
JP2000054882A (ja) 筒内噴射式エンジンの制御装置
JP4513613B2 (ja) 内燃機関の異常判定装置
JP4581887B2 (ja) 内燃機関の制御装置
JP4506595B2 (ja) 内燃機関の制御装置
JP2006258020A (ja) 内燃機関の制御装置
JP2007032326A (ja) 内燃機関の制御装置
JP2006258019A (ja) 内燃機関の制御装置
JP2007032317A (ja) 内燃機関の制御装置
JP4742633B2 (ja) 内燃機関の制御装置
JP4506525B2 (ja) 内燃機関の制御装置
JP4200963B2 (ja) 内燃機関の制御装置
JP2006258011A (ja) 内燃機関の制御装置
JP2021105338A (ja) 内燃機関の制御装置
JP2000054883A (ja) 筒内噴射式エンジンの制御装置
JP2004197674A (ja) 筒内噴射型内燃機関の触媒昇温装置
JP2006132400A (ja) 内燃機関の燃料噴射制御方法
JP2007127073A (ja) 内燃機関の点火制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R151 Written notification of patent or utility model registration

Ref document number: 4581887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees