JP2007027331A - 駆動装置及びこれを用いた露光装置並びにデバイス製造方法 - Google Patents

駆動装置及びこれを用いた露光装置並びにデバイス製造方法 Download PDF

Info

Publication number
JP2007027331A
JP2007027331A JP2005206126A JP2005206126A JP2007027331A JP 2007027331 A JP2007027331 A JP 2007027331A JP 2005206126 A JP2005206126 A JP 2005206126A JP 2005206126 A JP2005206126 A JP 2005206126A JP 2007027331 A JP2007027331 A JP 2007027331A
Authority
JP
Japan
Prior art keywords
coil
electromagnetic actuator
stage
unit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005206126A
Other languages
English (en)
Other versions
JP2007027331A5 (ja
Inventor
Yoshiyuki Okada
芳幸 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005206126A priority Critical patent/JP2007027331A/ja
Priority to US11/485,360 priority patent/US7602086B2/en
Publication of JP2007027331A publication Critical patent/JP2007027331A/ja
Publication of JP2007027331A5 publication Critical patent/JP2007027331A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator

Abstract

【課題】 電磁アクチュエータを用いて高速、高精度、高効率かつ低発熱でステージ制御又は除振制御を可能とし、高い生産性と超微細化露光を実現する露光装置を提供すること。
【解決手段】 駆動装置は、第1のコイル72と第1のコイル72により発生する磁束変化を検出する第2のコイル74とを有する電磁アクチュエータ70と、電磁アクチュエータ70をフィードバック制御する電磁アクチュエータ制御部20と、を備える。電磁アクチュエータ制御部20は、第1のコイル72に変調信号を与える変調部28と、第2のコイル74からの出力信号を復調する復調部52と、を有する。
【選択図】 図6

Description

本発明は、駆動装置及びこれを用いた露光装置並びにデバイス製造方法に関し、特に電磁アクチュエータを用いて高速、高精度、高効率かつ低発熱でステージ制御及び除振制御を行うことを可能とする露光装置に関する。
近年のICやLSI等の半導体集積回路は、高い生産性が要求され、これに伴い半導体露光装置では高速な露光処理を行う必要がある。一方、回路パターンの微細化により、回路パターンの原版であるレチクルと露光対象のウエハの位置決め精度はnmオーダー以下とする必要がある。
走査型露光装置では、レチクルを保持するレチクルステージとウエハを保持するウエハーステージが同期して走査され、レチクルステージとウエハーステージが反対方向に等速運動している際に露光が行われる。一般的には、レチクルとウエハの投影倍率は4:1であり、レチクルステージとウエハーステージの走査速度比も4:1である。各走査速度は、生産性向上のために、より高速な駆動が要求され、ウエハーステージの走査速度は数百mm/sに達している。
このように、レチクルステージ及びウエハーステージは、高速かつ高精度な駆動が要求されているため、高効率で低発熱かつ高精度にステージを駆動することができるアクチュエータが必要となっている。
ステージを高速に駆動するアクチュエータとしては、磁界中に電流を流すことによって発生するローレンツ力を利用したリニアモータがある。主な構成部品は磁界を発生させる磁石と電流を流すコイルで、コイル電流に対して得られるローレンツ力、すなわち推力との関係は、線形性がよく、制御性は良好である。しかし、その一方で、効率が悪く、大きな推力を得るためには大電力が必要となる。その結果、アクチュエータがレチクルやウエハの近くに配置される場合は、アクチュエータからの熱によりnmオーダーの位置決め精度を得ることは困難となる場合がある。
一方、高効率で低発熱、すなわち、小さな電力で大きな推力を得ることができるアクチュエータとして電磁石の原理を用いたものがある。一般に、電磁石は強磁性体を含む2つの部材とコイルにより構成され、2つの部材は僅かなギャップを有して対向するよう配置される。一方の部材にコイルを巻いて電流を流し、2つの部材内に閉磁束ループを発生させ、この磁束により対向しているギャップ間に吸引力を生じさせて推力が得られるよう構成される。通常、ギャップは数十μm〜数百μm程度の極めて狭い間隔に設定されるため、非常に高効率なアクチュエータとすることが可能となる。
また、露光装置の設置床からの振動やウエハーステージの駆動による外乱力を抑制して高精度な露光を実現するために、除振又は制振を目的とした除振装置が必要となる。露光装置は、ウエハーステージの高速駆動による外乱力が増加する一方で、更なる微細化が要求されている。除振装置による除振又は制振性能を向上させるため、アクチュエータにより外乱力をキャンセルするアクティブ制御が多用されている。アクチュエータはリニアモータや電磁石が用いられているが、低発熱で高精度に大きな推力が得られるアクチュエータが要求されている。
特開2002−033270号公報 特開2002−319535号公報
しかしながら、電磁石によるアクチュエータでは、以下の問題点がある。発生磁束はコイル電流に比例し、ギャップにほぼ反比例する。推力と磁束密度は、下記の式(1)〜(4)の関係がある。
F ∝ B …式(1)
√(F) ∝ B …式(2)
φ = B・S …式(3)
φ ∝ I …式(4)
ここで、F:推力、B:磁束密度、φ:磁束、I:コイル電流、S:電磁石の対向しているギャップ断面積である。これにより、高効率であるが、推力はコイル電流及びギャップに対して非線形な特性となる。また、僅かなコイル電流やギャップ変化に対しても、大きな推力変動の要因となってしまう。
特許文献1に記載の電磁石を用いたステージ装置では、電磁石におけるギャップ間隔をセンサにより計測し、ギャップ間隔に応じたコイル電流となるよう補正して使用するよう構成されている。しかしながら、この方法は、計測されたギャップ間隔に応じてコイル電流を補正し所定の推力に合わせるオープンループによる推力補正方法である。そのため、電磁石やコイルの特性ばらつき等により、高精度な制御を行うアクチュエータの制御方法としては不十分であった。
また、特許文献2に記載の電磁石を用いた位置決め装置では、電磁石内に発生している磁束変化を、新たに設けたコイルにより検出して、電気的な積分器により積分して磁束に比例した信号に変換している。この信号は、上記の式(2)、(3)により、所定の推力Fとなるようフィードバックループを構成してコイル電流を操作し、電磁石やコイルの特性ばらつきを抑制するよう構成されている。しかしながら、磁束変化を検出する信号増幅器や積分器を構成する電子部品のオフセット電流及びオフセット電圧により、磁束変化がゼロの場合でも積分器出力は時間とともに増加するランプ状のオフセットを発生する。最終的には、飽和電圧に至り制御不能となってしまう。この現象を抑制するため、上記フィードバックループには、ハイパスフィルタが挿入されている。しかしながら、直流的な推力や低周波数帯域の推力に対しては応答することができない。そのため、高精度な制御を行うアクチュエータの制御方法としては不十分であった。
本発明は、上記の問題点に鑑みてなされたものであり、電磁アクチュエータを用いて高速、高精度、高効率かつ低発熱で制御を行うことを目的とする。
本発明の第1の側面は、駆動装置に係り、第1のコイルと該第1のコイルにより発生する磁束変化を検出する第2のコイルとを有する電磁アクチュエータと、前記電磁アクチュエータをフィードバック制御する電磁アクチュエータ制御部と、を備える。前記電磁アクチュエータ制御部は、前記第1のコイルに変調信号を与える変調部と、前記第2のコイルからの出力信号を復調する復調部と、を有することを特徴とする。
本発明の第2の側面は、粗動ステージと微動ステージとを備えるステージ装置に係り、上記の駆動装置によって、前記粗動ステージに対して前記微動ステージが駆動されることを特徴とする。
本発明の第3の側面は、露光装置に係り、上記の駆動装置と、パターンを形成した原版に照射される露光光を基板に投影するための光学系と、前記基板または前記原版を保持し前記駆動装置により位置決めされるステージ装置と、を備えることを特徴とする。
本発明の第4の側面は、露光装置に係り、上記の駆動装置によって、投影光学系を支持するためのマウントを駆動することを特徴とする。
本発明の第5の側面は、デバイス製造方法に係り、上記の露光装置を用いて潜像パターンが形成された基板を用意する工程と、前記潜像パターンを現像する工程と、を含むことを特徴とする。
本発明によれば、電磁アクチュエータを用いて高速、高精度、高効率かつ低発熱で制御を行うことができる。
以下に本発明の好適な実施形態について、詳細に説明する。
(第1の実施形態)
図1は本発明の好適な第1の実施形態に係る露光装置の構成を示す図である。
不図示の露光光源より出射された露光光は、照明光学系200により、レチクルステージ100に設置されたレチクル101を照射される。レチクル101を透過した光は、投影光学系240を透過して、ウエハーステージ220に設置されたウエハ222に到達する。これにより、レチクル101上に描かれた微細なパターンがウエハ222上の各チップに焼き付けられる。露光光源としては、例えば、KrFレーザ光源や、更なる微細化のために波長の短いArFレーザ光源が用いることが望ましい。
スキャニングステッパー(走査型露光装置)では、レチクルステージ100とウエハーステージ220はステージ制御部10、230により同期して制御される。同期走査中に露光が行われ、露光が終了すると次のチップの露光のためにウエハーステージ220がステップ駆動される。走査型露光装置では、レチクルステージ100及びウエハーステージ220の各々は、より速い加速度により加速され、より速い速度で同期走査露光される。一般に、縮小露光が行われる。通常、レチクル101対ウエハ222の露光縮小率は4:1で、レチクルステージ100とウエハーステージ220の加速度及び速度の比率は、同様に4:1である。各ステージの加速度及び速度は益々増加している。ウエハーステージ220の加速度は1G〜1.5G、速度は300mm/s〜600mm/s程度まで引き上げられている。ウエハーステージ220は、床又はベースフレーム180上に設置される。投影光学系240は床からの振動やウエハーステージ220の駆動による振動の影響を除去するためマウント160に締結される。マウント160はマウント制御部150により、ベースフレーム180から伝わる振動をキャンセルするようアクチュエータによりアクティブに制御される。
レチクルステージ100及びウエハーステージ220は生産性向上のために極めて高速に駆動されかつ微細化露光のために極めて精密に位置又は速度が制御されなければならない。
一般にこれらのステージは、エアー又は磁力等により浮上する。そして、ローレンツ力の原理を用いたリニアモータや平面モータ等のアクチュエータにより同期走査又はステップ駆動が行われる。各ステージの位置は、微細化露光のためnmオーダで精密に制御する必要がある。一般的には、不図示のレーザ干渉計により各ステージの位置が正確に監視され、ステージ制御部10、230によりフィードバック制御されている。
図2にリニアモータによるレチクルステージ100の構成例を示す。同期走査方向をY軸、直交する他の平面軸をX軸とする。レチクルステージ100は粗動ステージ102と微動ステージ104により構成される。粗動ステージ102には可動子110、112が取り付けられている。可動子110、112には、上下方向に磁界が発生するよう上下に磁石が取り付けられている。固定子114、118には複数のコイル群116、120が取り付けられている。これらコイル群116、120のうち、上下方向の磁界中にあるコイルに電流を流すことによりコイル電流と磁界に対して直交方向にローレンツ力が発生する。このローレンツ力が推力となって粗動ステージを駆動する。一般に、このような構成によるアクチュエータはリニアモータと呼ばれる。リニアモータは、コイル電流に対して得られる推力の線形性がよい。リニアモータの主な発熱個所はコイル群116、120である。極めて高速な加減速により大きな発熱となる。従って、コイル群116、120は、微動ステージ104から離れて配置される。不図示の冷却機構により各発熱の熱回収が行われ、微動ステージ104上に保持されたレチクル101(不図示)への影響が無いよう設計される。また、nmオーダの精密な位置制御は微動ステージ104で行われる。従って、粗動ステージ102の位置制御は微動ステージ104の制御に比べて低精度の制御でよい。
図3に微動ステージ104を制御するためのアクチュエータ構成の一例を示す。
122、124は図2の粗動ステージに取り付けられているリニアモータと同様に不図示の磁石とコイルにより構成され、Y方向の推力を発生する。同様に126、128はX方向の推力を発生するリニアモータである。
電磁石70y1は、磁性体によるEコア76y1とIコア78y1で構成される。このような磁性体としては、例えば、例えば、鉄等の強磁性体を用いることがより望ましい。電磁石70y1は、後述する電磁石の動作原理によりEコアとIコアと間に吸引力が発生し、微動ステージ104に対し、図示した方向の推力を与える。
同様に、電磁石70y2はEコア76y2とIコア78y2により構成される。電磁石70y2は、微動ステージ104に対し、図示した方向の推力を与える。
EコアとIコアと間のギャップは数十〜数百μm程度で、僅かな電流により大推力が得られる。微動ステージ104は、電磁石70y1、70y2により極めて低発熱でY軸方向に大推力が印加される。
X、Y方向のnmオーダーの精密な位置制御はリニアモータ122、124、126、128により行われる。電磁石70y1、70y2により加減速に必要な推力は印加されている。そのため、リニアモータ122、124、126、128はnmオーダーの位置制御に必要な僅かなコイル電流により低発熱で精密な位置制御が可能となる。
図4にステージ制御部10の微動ステージ104の制御の一例を示す。
微動ステージ104はレーザ干渉計等の位置計測器11により位置情報が測定される。測定された位置情報は、加減算器12に印加されて、微動ステージ104の目標値である目標位置情報との偏差が取られる。この偏差信号は、制御部14に入力され、PID制御演算等が行われてリニアモータ122、124を駆動する。以上により、微動ステージ104の精密な制御を行う。一方、目標値は、演算部18に入力され、演算部18で微動ステージ104の駆動に必要な推力Fyが算出される。ここでFyは、
Fy = m・α … 式(5)
で表される。mは微動ステージ104の質量(kg)、αは加速度(m/s)である。推力Fyは、既知の質量と目標位置情報の2回微分との積により算出することができる。
演算部18の出力は後述する電磁石制御部20に入力され、電磁石制御部20により電磁石70y1、70y2が駆動される。これにより、低発熱かつ大推力で微動ステージ104が駆動される。
図5に電磁石70の構成の一例を示す。
駆動コイル72はEコア76に巻き付けられている。駆動コイル72に電流を流すことによりEコア76とIコア78に破線で示すような磁束が発生する。Eコア76とIコア78の対向する面にはそれぞれ磁極が発生し、磁力による吸引力が発生する。Eコア76には更に検出コイル74が巻き付けられている。この検出コイル74により駆動コイル72によって発生している磁束変化が検出される。
次に図6に電磁石制御部20による電磁石70の制御の構成の一例を示す。
制御部26は、比例ゲイン又はPID等の制御演算部であり、制御部26の出力信号をVaとする。信号増幅部30は信号Vaを増幅し、信号増幅部30のゲインをGxとする。発振部34は一定振幅で所定の周波数を有する信号(変調信号)を発生する。この信号は矩形波や正弦波であること望ましい。ここでは、説明を簡単にするため振幅=1、角周波数ωの正弦波とするが、これに限定されない。変調部としての乗算器28は、制御部26の出力信号Vaと発振部34からの信号とを掛け合わせる。加算器32は信号増幅部30からの信号と乗算器28からの信号を加算し、駆動部40に印加する。従って、
駆動部40の入力 = Va(Gx+sinωt) … 式(6)
となる。
検出コイル74は、駆動コイル72により発生するにおける磁束変化を検出するため、定常信号では出力はゼロになる。しかしながら、本実施形態では、制御部26の出力信号Vaと発振部34からの信号とを掛け合わせることによって、検出コイル72からの信号を得ることが出来る。検出コイル72は微分動作であるため、出力振幅は周波数が高いほど大きくなり、信号検出により好適である。
ここで図7により駆動部40の説明を行う。駆動コイル72には電力増幅部46からの信号によりコイル電流が流れる。このコイル電流を電流検出部38により検出する。電流検出部38は例えば抵抗と必要に応じて信号増幅器により構成され、コイル電流を電圧に変換して出力する。電流検出部38からの信号は加減算器42に入力され、加算器32からの出力信号との偏差が取られ、コイル制御部44に入力される。コイル制御部44では比例ゲイン又はPID等の制御演算が行われ、駆動コイル72を駆動するために必要な電圧及び電流を供給する電力増幅部46に入力される。このコイル電流のフィードバック制御によりコイル電流を加算器32の出力信号に相関した値に制御することが可能となる。コイル電流値をIcc、駆動部40における等価ゲインをGccとすると、
Icc = Va・Gcc(Gx+sinωt) … 式(7)
となる。式(4)より式(8)が得られる。
φ ∝ Icc = Va・Gcc(Gx+sinωt) … 式(8)
また、推力Fは式(9)で表される。
F ∝ S・φ … 式(9)
検出コイル74では電磁石70内で発生している磁束変化を検出する。検出コイル74の出力信号をVnとすると、式(8)を微分して、
Vn = ω・Va・Gcc・cosωt …式(10)
が得られる。例えば、発振部34の発振周波数fを20kHzとすると、
ω=2・π・f=2・π・20*103 …式(11)
となる。これにより、発振周波数fが高いほど、より大きな出力信号が得られることが分かる。
一方、式(8)において、信号増幅部30からの出力信号Va・Gxによって電磁石70内に発生している磁束成分φvaは、式(12)で表される。
φva ∝ Va・Gcc・Gx …式(12)
検出コイル74からの検出信号は、磁束変化が遅い場合は小さくなる。従って、出力信号Vaが直流の場合では、検出コイルの出力信号は式(10)によりVa・Gcc・Gxの成分がゼロとなる。
次に検出コイル74の出力及び信号増幅部50の入力に外乱としてオフセット電圧Vosが重畳していると仮定する。信号増幅部50のゲインをGaとすると、信号増幅部50の出力信号は、
Vn = Ga(ω・Va・Gcc・cosωt+Vos) …式(13)
で表される。検出コイル74からの信号は、発振信号に対し微分されているため位相が90度異なる。そのため、位相調整部36により、発振部34からの信号の位相を式(13)で表される信号増幅部50からの信号の位相と同期又は180度の位相差となるよう調整する。この位相調整された位相調整部36からの信号と信号増幅部50からの信号を復調部としての乗算器52で乗算する。乗算器52からの出力信号をVmとすると、以下の式(14)で表される。
Vm = Ga(ω・Va・Gcc・cosωt+Vos)・cosωt
=1/2・Ga・ω・Va・Gcc(1+cos2ωt)+Ga・Vos・cosωt …式(14)
フィルタ54により式(14)におけるcosωtやcos2ωtの周波数成分を十分減衰させるローパスフィルタを構成し、その出力をVfbとすると、式(15)となる。
Vfb =1/2・Ga・ω・Va・Gcc …式(15)
式(15)により得られた信号は、式(12)で表される信号増幅部30からの出力信号Va・Gcc・Gxによって電磁石70内に発生している磁束成分φvaに対し、以下の式(16)の関係が成り立つ。
φva ∝ Vfb …式(16)
このように、乗算器28による変調、検出コイル74の検出信号の微分効果による信号増幅、乗算器52による復調、フィルタ54による高周波数帯域の除去を行う。これによって、外乱Vosの影響を除去し、制御部26の出力信号Vaにより電磁石70内に発生している磁束の大きさに相関した信号を正確に検出することができる。
フィルタ54の出力信号は、加減算器24に入力され、スケール変換部22からの信号との偏差が取られる。この偏差信号は、制御部26に入力され、電磁石70内に発生する磁束がスケール変換部22の出力信号と等しくなるようにコイル電流が制御される。
式(16)により、フィルタ54からの出力信号は、磁束に比例した信号である。そのため、推力と磁束の式(2)より、必要な推力を得るための目標磁束は、推力値の平方根で表される。従って、スケール変換部22への入力を推力目標値とすると、スケール変換部22では平方根演算が施される。
EコアとIコアと間のギャップが変動すると、電磁石70内に発生する磁束の大きさが変化する。その結果、式(1)により磁束の自乗に比例して推力が大きく変動してしまう。しかしながら、上述の電磁石の制御を行うことにより、電磁石70内に発生している磁束成分が検出されてフィードバック制御が行われる。これにより、ギャップ変動によらずに目標とする磁束に制御されて、目標推力を得ることができる。
このように、本発明の好適な実施の形態では、外乱の影響を排除し、電磁石内に発生している磁束の大きさに相関した信号を正確に検出してフィードバック制御する。これにより、電磁石におけるギャップ変動の影響を抑制し、目標とする推力を得ることができ、高速、高精度、高効率かつ低発熱でステージ制御を行うことができる。
(第2の実施形態)
次に、図8に基づいて本発明の好適な第2の実施形態について説明する。尚、第1の実施形態と同様の動作を行う構成要素には同一符号を付し、動作に関する説明を省略する。図8は投影光学系240を支持し、床からの振動やウエハーステージ220の駆動による振動の影響を除去するマウント160の概略構成図である。電磁石70a、70b、70cは、Eコア76a、76b、76cとIコア78a、78b、78cをそれぞれ含む。マウント160にはEコア76a、76b、76cが取り付けられ、ベースフレームの柱180a、180b、180cには、Iコア78a、78b、78cが取り付けられている。3つの電磁石70a、70b、70cは図中の矢印の方向に吸引力を発生し、マウント160のXY方向の位置を制御する。
図9にマウント制御部150によるマウント160の制御の一例を示す。電磁石制御部20には、床からの振動による加速度又はウエハーステージ220の駆動により発生する振動による加速度を検出する不図示のX、Y方向の加速度センサからの出力が印加される。また、電磁石制御部20には、ウエハーステージ220の駆動により予め計算されるか又は予測されるマウント160のX、Y方向の加振力をキャンセルするために必要な推力が目標値として印加されてもよい。電磁石制御部20は、第1の実施形態と同様の動作によりマウント160とベースフレーム180の柱に取り付けられた電磁石70a、70b、70cを駆動する。電磁石制御部20は、マウント160に印加される床振動やウエハーステージ220の駆動により発生する振動による外乱力をキャンセルする推力を正確に発生し振動を抑制する。
本発明の好適な実施の形態によれば、外乱の影響を排除し、電磁石内に発生している磁束の大きさに相関した信号を正確に検出してフィードバック制御することにより電磁石におけるギャップ変動の影響を抑制し、目標とする推力を得ることができる。これにより、高速、高精度、高効率かつ低発熱で除振又は制振制御を行うことが可能となる。
(応用例)
次に、上述の露光装置を利用した半導体デバイスの製造プロセスを説明する。図10は半導体デバイスの全体的な製造プロセスのフローを示す図である。ステップ1(回路設計)では半導体デバイスの回路設計を行う。ステップ2(マスク作製)では設計した回路パターンに基づいてマスクを作製する。
一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、上記のマスクとウエハを用いて、上記の露光装置によりリソグラフィ技術を利用してウエハ上に実際の回路を形成する。次のステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の組み立て工程を含む。ステップ6(検査)ではステップ5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、ステップ7でこれを出荷する。
上記ステップ4のウエハプロセスは以下のステップを有する(図11)。まず、ウエハの表面を酸化させる酸化ステップが行われる。次いで、ウエハ表面に絶縁膜を成膜するCVDステップが行われる。次いで、ウエハ上に電極を蒸着によって形成する電極形成ステップが行われる。次いで、ウエハにイオンを打ち込むイオン打ち込みステップ、ウエハに感光剤を塗布するレジスト処理ステップを行う。次いで、上記の露光装置によってレジスト処理ステップ後のウエハに回路パターンの潜像パターンを形成する露光ステップを行う。次いで、露光ステップでウエハに形成された潜像パターンを現像する現像ステップを行う。次いで、現像ステップで現像したレジスト像以外の部分を削り取るエッチングステップを行う。次いで、エッチングが済んで不要となったレジストを取り除くレジスト剥離ステップを行う。以上のように、これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンを形成する。
本発明の好適な実施の形態に係る露光装置の構成を示す図である。 レチクルステージの構成の一例を示す図である。 本発明の好適な第1の実施形態におけるレチクルステージの構成の一例を示す図である。 本発明の好適な第1の実施形態におけるステージ制御部の構成の一例を示す図である。 本発明の好適な実施の形態に係る電磁石の構成の一例を示す図である。 本発明の好適な第1の実施形態における電磁石制御部20による電磁石70の制御の構成の一例を示す。 本発明の好適な実施の形態に係る駆動部の構成の一例を示す図である。 本発明の好適な第2の実施形態におけるマウントの構成の一例を示す図である。 本発明の好適な第2の実施形態におけるマウント制御部の構成の一例を示す図である。 デバイス製造方法を示す図である。 ウエハプロセスを示す図である。

Claims (12)

  1. 第1のコイルと該第1のコイルにより発生する磁束変化を検出する第2のコイルとを有する電磁アクチュエータと、
    前記電磁アクチュエータをフィードバック制御する電磁アクチュエータ制御部と、
    を備え、
    前記電磁アクチュエータ制御部は、
    前記第1のコイルに変調信号を与える変調部と、
    前記第2のコイルからの出力信号を復調する復調部と、
    を有することを特徴とする駆動装置。
  2. 前記変調信号は、前記フィードバック制御における目標値に基づいて生成されることを特徴とする請求項1に記載の駆動装置。
  3. 前記電磁アクチュエータ制御部は、前記目標値と前記復調部で復調された信号とに基づいて前記電磁アクチュエータをフィードバック制御することを特徴とする請求項2に記載の駆動装置。
  4. 前記電磁アクチュエータ制御部は、前記変調部及び前記復調部の少なくとも一方に位相調整部を有することを特徴とする請求項1乃至請求項3のいずれか1項に記載の駆動装置。
  5. 前記電磁アクチュエータ制御部は、前記復調部で復調された信号の高調波成分を除去するフィルタを有することを特徴とする請求項1乃至請求項4のいずれか1項に記載の駆動装置。
  6. 前記目標値は、前記電磁アクチュエータで発生する力に基づいて生成され、
    前記電磁アクチュエータ制御部は、前記目標値に平方根演算を施すスケール変換部を有し、該スケール変換部からの出力信号と前記復調部で復調された信号とに基づいて前記電磁アクチュエータをフィードバック制御することを特徴とする請求項2又は請求項3に記載の駆動装置。
  7. 前記第1のコイルを駆動する電力増幅部と、
    前記第1のコイルに流れる電流を検出する電流検出部と、
    前記第1のコイルに流れる電流をフィードバック制御するコイル制御部と、
    を備えることを特徴とする請求項1乃至請求項6のいずれか1項に記載の駆動装置。
  8. 前記電磁アクチュエータはEコア及びIコアを有し、
    前記第1、第2のコイルは、前記Eコアにそれぞれ取り付けられることを特徴とする請求項1乃至請求項7のいずれか1項に記載の駆動装置。
  9. 粗動ステージと微動ステージとを備えるステージ装置であって、
    請求項1乃至請求項8のいずれか1項に記載の駆動装置によって、前記粗動ステージに対して前記微動ステージが駆動されることを特徴とするステージ装置。
  10. 請求項1乃至請求項8のいずれか1項に記載の駆動装置と、
    パターンを形成した原版に照射される露光光を基板に投影するための光学系と、
    前記基板または前記原版を保持し前記駆動装置により位置決めされるステージ装置と、
    を備えることを特徴とする露光装置。
  11. 露光装置であって、
    請求項1乃至請求項8のいずれか1項に記載の駆動装置によって、投影光学系を支持するためのマウントを駆動することを特徴とする露光装置。
  12. デバイス製造方法であって、
    請求項10又は請求項11に記載の露光装置を用いて潜像パターンが形成された基板を用意する工程と、
    前記潜像パターンを現像する工程と、
    を含むことを特徴とするデバイス製造方法。
JP2005206126A 2005-07-14 2005-07-14 駆動装置及びこれを用いた露光装置並びにデバイス製造方法 Withdrawn JP2007027331A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005206126A JP2007027331A (ja) 2005-07-14 2005-07-14 駆動装置及びこれを用いた露光装置並びにデバイス製造方法
US11/485,360 US7602086B2 (en) 2005-07-14 2006-07-13 Driving device, exposure apparatus using the same, and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005206126A JP2007027331A (ja) 2005-07-14 2005-07-14 駆動装置及びこれを用いた露光装置並びにデバイス製造方法

Publications (2)

Publication Number Publication Date
JP2007027331A true JP2007027331A (ja) 2007-02-01
JP2007027331A5 JP2007027331A5 (ja) 2008-08-28

Family

ID=37661363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005206126A Withdrawn JP2007027331A (ja) 2005-07-14 2005-07-14 駆動装置及びこれを用いた露光装置並びにデバイス製造方法

Country Status (2)

Country Link
US (1) US7602086B2 (ja)
JP (1) JP2007027331A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019213A (ja) * 2010-07-09 2012-01-26 Asml Netherlands Bv 可変リラクタンスデバイス、ステージ装置、リソグラフィ装置及びデバイス製造方法
JP2012235026A (ja) * 2011-05-06 2012-11-29 Canon Inc 位置決め装置、露光装置およびデバイス製造方法
JP2014192254A (ja) * 2013-03-26 2014-10-06 Canon Inc ステージ装置、リソグラフィ装置及びデバイス製造方法
JP2016502124A (ja) * 2012-10-15 2016-01-21 エーエスエムエル ネザーランズ ビー.ブイ. 作動機構、光学装置、リソグラフィ装置及びデバイス製造方法
JPWO2018181912A1 (ja) * 2017-03-31 2020-02-13 株式会社ニコン 移動体装置、露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び移動体の駆動方法
US11349273B2 (en) 2018-01-17 2022-05-31 Cymer, Llc Apparatus for tuning discharge performance in a laser chamber

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4366386B2 (ja) 2006-09-07 2009-11-18 キヤノン株式会社 露光装置およびデバイス製造方法
US7579793B2 (en) * 2007-02-14 2009-08-25 Honeywell International Inc. System and method for efficient wide dynamic range coil drive
US20080285005A1 (en) * 2007-05-15 2008-11-20 Jean-Marc Gery System and method for measuring and mapping a sideforce for a mover
JP2009094163A (ja) * 2007-10-04 2009-04-30 Canon Inc 温度制御装置、露光装置およびデバイス製造方法
JP5180555B2 (ja) * 2007-10-04 2013-04-10 キヤノン株式会社 位置決め装置、露光装置及びデバイス製造方法
EP2492928A3 (en) * 2011-02-22 2017-08-30 ASML Netherlands BV Electromagnetic actuator, stage apparatus and lithographic apparatus
EP2515168B1 (en) * 2011-03-23 2021-01-20 ASML Netherlands B.V. Methods and apparatus for calculating electromagnetic scattering properties of a structure and for reconstruction of approximate structures
NL2011336A (en) * 2012-09-19 2014-03-20 Asml Netherlands Bv Method of calibrating a reluctance actuator assembly, reluctance actuator and lithographic apparatus comprising such reluctance actuator.
NL2010611C2 (en) * 2013-04-10 2014-10-13 Univ Delft Tech Magnetic actuator and method of controlling such a magnetic actuator.
WO2015163886A1 (en) * 2014-04-24 2015-10-29 Empire Technology Development, Llc Broadcasting a message using modulated power

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3689885A (en) * 1970-09-15 1972-09-05 Transitag Corp Inductively coupled passive responder and interrogator unit having multidimension electromagnetic field capabilities
US4463354A (en) * 1981-12-09 1984-07-31 Sears Lawrence M Apparatus for communicating utility usage related information from a utility usage location to a portable utility usage registering device
GB8627241D0 (en) * 1986-11-14 1986-12-17 Chubb Lips Nederland Bv Identification token
US4922200A (en) * 1989-08-25 1990-05-01 Ldj Electronics, Inc. Apparatus for measuring the hysteresis loop of magnetic film
US5008664A (en) * 1990-01-23 1991-04-16 Quantum Solutions, Inc. Apparatus for inductively coupling signals between a downhole sensor and the surface
NL9100407A (nl) 1991-03-07 1992-10-01 Philips Nv Optisch lithografische inrichting met een krachtgecompenseerd machinegestel.
JP2728018B2 (ja) * 1995-04-18 1998-03-18 日本電気株式会社 送信回路
US6486941B1 (en) 2000-04-24 2002-11-26 Nikon Corporation Guideless stage
JP2002280801A (ja) * 2001-03-16 2002-09-27 Mitsubishi Electric Corp アンテナ装置及び導波管回転結合器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019213A (ja) * 2010-07-09 2012-01-26 Asml Netherlands Bv 可変リラクタンスデバイス、ステージ装置、リソグラフィ装置及びデバイス製造方法
US9081307B2 (en) 2010-07-09 2015-07-14 Asml Netherlands B.V. Variable reluctance device, stage apparatus, lithographic apparatus and device manufacturing method
JP2012235026A (ja) * 2011-05-06 2012-11-29 Canon Inc 位置決め装置、露光装置およびデバイス製造方法
JP2016502124A (ja) * 2012-10-15 2016-01-21 エーエスエムエル ネザーランズ ビー.ブイ. 作動機構、光学装置、リソグラフィ装置及びデバイス製造方法
JP2014192254A (ja) * 2013-03-26 2014-10-06 Canon Inc ステージ装置、リソグラフィ装置及びデバイス製造方法
US10036965B2 (en) 2013-03-26 2018-07-31 Canon Kabushiki Kaisha Stage apparatus, lithography apparatus, and device manufacturing method
JPWO2018181912A1 (ja) * 2017-03-31 2020-02-13 株式会社ニコン 移動体装置、露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び移動体の駆動方法
JP2023029356A (ja) * 2017-03-31 2023-03-03 株式会社ニコン 移動体装置、露光装置、及びデバイス製造方法
US11349273B2 (en) 2018-01-17 2022-05-31 Cymer, Llc Apparatus for tuning discharge performance in a laser chamber

Also Published As

Publication number Publication date
US20070013895A1 (en) 2007-01-18
US7602086B2 (en) 2009-10-13

Similar Documents

Publication Publication Date Title
JP2007027331A (ja) 駆動装置及びこれを用いた露光装置並びにデバイス製造方法
JP5530983B2 (ja) 可変リラクタンスデバイス、ステージ装置、リソグラフィ装置及びデバイス製造方法
US7468589B2 (en) Lithographic apparatus having a controlled motor, and motor control system and method
US6720680B1 (en) Flat motor device and its driving method, stage device and its driving method, exposure apparatus and exposure method, and device and its manufacturing method
US7737419B2 (en) Alignment apparatus, exposure apparatus, and device manufacturing method
US10114296B2 (en) Driving system and driving method, and exposure apparatus and exposure method
JP2007103657A (ja) 光学素子保持装置、露光装置およびデバイス製造方法
JP4857505B2 (ja) 電気的制御系と空気圧制御系とを有する振動分離システムを動作させる方法及び装置
JP2005046941A (ja) ケーブル微動ユニット付きステージ装置
JPH11327657A (ja) アクティブ除振装置および露光装置
JP2005147281A (ja) 除振装置、露光装置、およびデバイス製造方法
JP2007120646A (ja) 制振装置およびそれを備えた露光装置
JP2008069890A (ja) 除振装置、露光装置及びデバイス製造方法
JP2003249439A (ja) ステージ位置決め装置及びその制御方法、露光装置、半導体デバイスの製造方法
US8970821B2 (en) Positioning apparatus, exposure apparatus and device manufacturing method
JP2005303196A (ja) 位置決め装置、露光装置、半導体デバイスの製造方法
JP2004134456A (ja) 移動装置及び露光装置並びにデバイスの製造方法
US20060103833A1 (en) Aligning apparatus and its control method, and exposure apparatus
JP2009087371A (ja) 位置決め装置、露光装置およびデバイス製造方法
US20120281194A1 (en) Positioning apparatus, exposure apparatus, and method of manufacturing device
JP2014192254A (ja) ステージ装置、リソグラフィ装置及びデバイス製造方法
JP2000068195A (ja) デバイス製造装置
JP4541849B2 (ja) 位置決め装置
JP2001217172A (ja) ステージ装置及び露光装置
JP2009168122A (ja) 除振装置、露光装置およびデバイス製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100607