JP2007026591A - 薄膜磁気ヘッド - Google Patents

薄膜磁気ヘッド Download PDF

Info

Publication number
JP2007026591A
JP2007026591A JP2005210073A JP2005210073A JP2007026591A JP 2007026591 A JP2007026591 A JP 2007026591A JP 2005210073 A JP2005210073 A JP 2005210073A JP 2005210073 A JP2005210073 A JP 2005210073A JP 2007026591 A JP2007026591 A JP 2007026591A
Authority
JP
Japan
Prior art keywords
layer
heating element
nicu
conductor layer
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005210073A
Other languages
English (en)
Inventor
Yoshiaki Shimizu
善明 清水
Akira Takahashi
高橋  彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2005210073A priority Critical patent/JP2007026591A/ja
Priority to US11/486,797 priority patent/US7595960B2/en
Publication of JP2007026591A publication Critical patent/JP2007026591A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6011Control of flying height
    • G11B5/6064Control of flying height using air pressure

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract


【課題】特に、発熱体のエレクトロマイグレーションの発生を抑制し、さらに、前記発熱体の温度依存性を小さくすることが可能な薄膜磁気ヘッドを提供することを目的としている。
【解決手段】発熱体20を発熱導体層21と、高融点材料層22,23との積層構造にする。これにより前記発熱導体層21のエレクトロマイグレーションを抑制できる。また発熱導体層21を例えばCuNiで形成し、高融点材料層22,23をRuで形成すると、CuNiとRuは、抵抗変化率の温度依存性が逆の傾向であるため、前記発熱体20全体の抵抗変化率の温度依存性を適切に小さくすることができる。
【選択図】図5

Description

本発明は熱膨張により再生ヘッド素子および記録用ヘッド素子の記録媒体との対向面を記録媒体側に突出させ、浮上量を制御する薄膜磁気ヘッドに関する。
下記の特許文献1〜3には、薄膜磁気ヘッドの内部に発熱体を設け、前記発熱体を通電することで発生する熱により、前記薄膜磁気ヘッドの磁気ギャップ付近を熱膨張させ、記録媒体との対向面を記録媒体側へ突出させ、前記薄膜磁気ヘッドの浮上量を小さくしようとするものが提案されている。
発熱体からの熱量を適切に制御するには、前記発熱体がエレクトロマイグレーションを起こすのを抑制すること、及び前記発熱体の抵抗変化率の温度依存性を小さくすることが重要である。なお温度変化に対する抵抗値の変化から抵抗温度係数(TCR Temperature Coefficient of Resistance)を求めることができ、「抵抗変化率の温度依存性を小さくする」ということは、別の言い方をすれば、前記抵抗温度係数(TCR)の絶対値を小さくするということを意味している。
特開2005−11413号公報 特開2005−11414号公報 特開2003−168274号公報 特開平10−261248号公報
しかしながら上記した特許文献では、エレクトロマイグレーションや抵抗温度係数(TCR)に対する対策は特になされていない。
前記エレクトロマイグレーションは、前記発熱体を長時間、通電し続けると、発生しやすく、前記エレクトロマイグレーションの発生により前記発熱体の抵抗値が大きく変動してしまう。また抵抗変化率の温度依存性が大きいと、環境温度が変化したときに前記発熱体の抵抗値が大きく変化してしまう。
このように通電時間や環境温度等で発熱体の抵抗値が大きく変化すると、前記発熱体から発生する熱量が大きく変動するため、前記磁気ギャップやコア層等の熱膨張量が大きく変動し、前記対向面の突出量のばらつきが大きくなる。そして、このような突出量のばらつきによって、前記薄膜磁気ヘッドの記録効率や再生効率のばらつきが大きくなるといった問題があった。また最悪の場合、前記対向面の突出量が大きくなりすぎると前記薄膜磁気ヘッドが前記記録媒体に衝突するといった問題があった。
そこで本発明は、上記従来の課題を解決するためのものであり、特に、発熱体のエレクトロマイグレーションの発生を抑制し、さらに、前記発熱体の温度依存性を小さくすることが可能な薄膜磁気ヘッドを提供することを目的としている。
本発明における薄膜磁気ヘッドは、
再生ヘッド素子および記録用ヘッド素子の少なくとも一方と、前記素子の記録媒体との対向面を記録媒体側へ突出させるための発熱体と、を有し、
前記発熱体は、発熱導体層と、前記発熱導体層の少なくとも一部に重ねて形成された前記発熱導体層よりも高融点である高融点材料層と、を有して形成されていることを特徴とするものである。
これにより前記発熱導体層が従来に比べてエレクトロマイグレーションを起こしにくくなる。よって前記エレクトロマイグレーションの発生による抵抗値の上昇を適切に抑制できる。
また本発明では、前記高融点材料層は、前記発熱導体層の下面及び/又は上面に設けられることが好ましい。これにより簡単に前記高融点材料層と前記発熱導体層とを積層形成することが出来る。
また本発明では、前記高融点材料層は、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)、Ta、Ti、Cr、Nb、Moのうち少なくとも1種以上の元素から形成されることが好ましい。また、前記発熱導体層は、NiCu、CuMn、NiFe、W、NiCr、CrCuのいずれかにより形成されることが好ましい。前記高融点材料層の元素を上記した中から選択することで、適切に前記発熱体のエレクトロマイグレーションを抑制でき、また前記発熱体を構成する高融点材料層及び発熱導体層の材料を上記した中から選択することで、前記発熱体の抵抗変化率の温度依存性を小さくできる。
また前記高融点材料層は、抵抗変化率の温度依存性が、前記発熱導体層の前記抵抗変化率の温度依存性に対して逆の傾向を示す材料で形成されることが好ましい。すなわち、前記発熱導体層の抵抗変化率が、温度が上昇するにつれて大きくなる場合、高融点材料層を、前記抵抗変化率が、温度が上昇するにつれて小さくなる材質で形成し、前記発熱導体層の抵抗変化率が、温度が上昇するにつれて小さくなる場合、高融点材料層を、前記抵抗変化率が、温度が上昇するにつれて大きくなる材質で形成する。これにより、前記発熱体の抵抗変化率の温度依存性を適切に小さくできる。よって、環境温度が変化したことによる抵抗値の変化を適切に小さくできる。例えば、前記高融点材料層は、白金族元素で形成され、前記発熱導体層は、CuNi、CuMn、NiFe、W、NiCr、CrCuのいずれかにより形成されることが好ましい。これにより前記発熱体の抵抗変化率の温度依存性をより適切に小さくできる。
発熱体のエレクトロマイグレーションの発生を抑制でき、さらには、抵抗変化率の温度依存性を小さくできる。
これにより前記エレクトロマイグレーションの発生による前記発熱体の抵抗値の上昇を抑制でき、また環境温度が変化したことによる前記発熱体の抵抗値の変化を小さくできる。
このように、前記発熱体の抵抗値の変化を小さくできることで、前記発熱体から発生する熱量の変化を小さくできるから、熱膨張による記録媒体との対向面の突出量のばらつきを従来に比べて小さくできる。
図1は、本実施形態における薄膜磁気ヘッドを記録媒体との対向面からハイト方向(図示Y方向)と平行な方向であって且つ膜厚方向(図示Z方向)と平行な方向から切断した部分断面図、図2は、図1に示す矢印A方向から前記薄膜磁気ヘッドを見たときの部分透視図、図3は図1の薄膜磁気ヘッドに内臓された発熱体を通電したときに、記録媒体との対向面が突き出す状態を説明するための部分断面図、図4は発熱体の形状のパターンの一例を示す斜視図、図5は図4に示す一点鎖線に沿って発熱体を膜厚方向に切断したときの部分断面図、図6〜図8は、図5とは異なる断面形状を示す前記発熱体の部分拡大断面図、図9及び図10は図1とは別の実施形態における薄膜磁気ヘッドを記録媒体との対向面からハイト方向(図示Y方向)と平行な方向であって且つ膜厚方向(図示Z方向)と平行な方向から切断した部分断面図、である。
図1,図9及び図10に示す各実施形態の薄膜磁気ヘッドは、再生用ヘッド素子Rと記録用ヘッド素子Wが積層形成された、いわゆる複合型薄膜磁気ヘッドである。
図1は、本発明の第1実施形態による薄膜磁気ヘッド100の積層構造を示す部分断面図である。
図1に示されるように基板(スライダ)1上には、積層方向に沿って順に、アルミナアンダーコート膜2、下部シールド層3、下部ギャップ層4および磁気抵抗効果素子Mが備えられている。基板1は、例えばアルミナチタンカーバイドなどのセラミック材料により形成されている。下部シールド層3は、例えばパーマロイなどの軟磁性材料により形成され、下部ギャップ層4は、例えばアルミナなどの非磁性非導電材料により形成されている。
磁気抵抗効果素子Mは、記録媒体との対向面(以下、ABS面と呼ぶ)に露出していて、トラック幅方向の両側に接続された電極層5を介して電流が与えられた状態では記録媒体からの漏れ磁界に応じて抵抗値が変化する。薄膜磁気ヘッド100は、磁気抵抗効果素子Mの抵抗値変化に基づき、記録媒体に記録された磁気信号を再生する。磁気抵抗効果素子Mには、GMR(giant magnetoresistive)素子(CIP−GMR,CPP−GMR)やAMR(anisotropic magnetoresistive)素子、TuMR(Tunnel magnetoresistive)素子を用いることができる。
前記電極層5は、図2に示されるように、トラック幅方向(図示X方向)の両側で磁気抵抗効果素子Mに接し、ABS面からハイト方向(図示Y方向)に向かって長く延びていて、基板端面1a上で、電極パッド層E1、E2に電気的に接続されている。前記電極層5及び電極パッド層E1、E2は、電気抵抗の小さいCuやAu等の導電材料により形成されている。
前記磁気抵抗効果素子M及び電極層5上には、上部ギャップ層6を介して、上部シールド層7が形成されている。上部シールド層7は例えばパーマロイなどの軟磁性材料により形成され、上部ギャップ層6は例えばアルミナなどの非磁性材料により形成されている。不図示であるが、上部シールド層7の周囲には絶縁層が形成されている。
上述した下部シールド層3から上部シールド層7までの構造が再生用ヘッド素子Rである。本薄膜磁気ヘッド100では、再生用ヘッド素子Rの上部シールド層7が記録用ヘッド素子Wの下部コア層を兼ねている。
下部コア層7上には、ABS面に露出する磁気ギャップ層8が備えられていて、この磁気ギャップ層8のハイト方向(図示Y方向)の寸法により、薄膜磁気ヘッド100のギャップデプスGdが規定される。磁気ギャップ層8は、非磁性材料により形成されている。
また下部コア層7上には、前記磁気ギャップ層8よりもハイト方向奥側に位置させて、下部コア層7と上部コア層9を磁気的に接続する磁気接続部10と、この磁気接続部10を囲んで螺旋状に巻かれた第1コイル層11と、第1コイル層11の各導体部のピッチ間を埋めると共に第1コイル層11の上面を覆う第1非磁性絶縁層12とが形成されている。磁気接続部10及び第1非磁性絶縁層12の上面は、上記磁気ギャップ層8の上面と同一面を構成している。
前記第1非磁性絶縁層12の上には、第1コイル層11の巻き方向とは逆向きで螺旋状に巻かれた第2コイル層13と、この第2コイル層13の各導体部のピッチ間を埋めると共に第2コイル層13の上面を覆う第2非磁性絶縁層14とが形成されている。第1コイル層11と第2コイル層13は、第1非磁性絶縁層12を貫通するコンタクト部15を介して導通接続されており、また図2に示されるように、第1コイルリード層16及び第2コイルリード層17を介して、基板端面1a上に位置する電極パッド層E3、E4にそれぞれ電気的に接続されている。第1コイルリード層16及び第2コイルリード層17は、例えば、第1コイル層11と同じ形成面に、第1コイル層11のメッキ形成工程時に同時にメッキにより形成されている。第2コイルリード層17は、第1非磁性絶縁層12を貫通する不図示のコンタクト部を介して第2コイル層13に導通接続されている。
磁気接続部10は、例えばパーマロイ等の軟磁性材料により形成され、第1非磁性絶縁層12および第2非磁性絶縁層14は、例えばアルミナにより形成されている。第1コイル層11、第2コイル層13、コンタクト部15、第1コイルリード層16、第2コイルリード層17及び電極パッド層E3、E4は、電気抵抗の小さいCuなどの導電材料により形成されている。
第2非磁性絶縁層15の上には、ABS面に露出する先端部9aで磁気ギャップ層8に接し、ABS面よりもハイト方向奥側の基端部9bで磁気接続部10に接続する上部コア層9が形成されている。不図示であるが、上部コア層9の先端部9aは、記録媒体のトラック幅に合わせて幅狭になっている。上部コア層9は、例えばパーマロイ等の軟磁性材料により形成されている。
上述した下部コア層7から上部コア層9までの構造が記録用ヘッド素子Wである。上部コア層9及び第2非磁性絶縁層14の上面は、絶縁性保護層18によって覆われている。
前記記録用ヘッド素子Wの形態は図1に示す形態のものに限らない。例えば垂直磁気記録ヘッド等であってもよい。
以上の薄膜磁気ヘッド100は、さらに、記録用ヘッド素子Wのハイト方向奥側に位置する発熱体20を備えている。以下、前記発熱体20について詳述する。
前記発熱体20は、上述した磁気ギャップ層8と同一平面上(下部コア層7上)にハイト方向に長く延びて形成されており、図2に示される電極パッド層E5、E6及び発熱体用リード層19を介して通電されたときに発熱する。電極パッド層E5、E6及び発熱体用リード層19は、電気抵抗の小さいCu等の導電材料により形成されている。
前記発熱体20から発生された熱は、その大部分が前記発熱体20から記録用ヘッド素子W、再生ヘッド素子Rの内部をABS面に向かって伝わり、記録媒体側に突出させたい磁気ギャップ層8とその周辺(下部コア層7及び上部コア層9)等を集中的に温める。この結果、絶縁性保護層18よりも熱膨張係数の大きい下部コア層7、磁気ギャップ層8及び上部コア層9等が熱膨張する。すなわち、図3に点線で示されるように、記録用ヘッド素子W、再生ヘッド素子RのABS面が記録媒体側に突出する。このように前記記録用ヘッド素子W、再生ヘッド素子RのABS面が記録媒体側に突出すことで、磁気ギャップ層8と記録媒体との距離が小さくなり、書込み時の出力を向上させることができ、さらには再生時の感度を向上させることができる。
前記発熱体20の平面形状は、例えば、図2,図4に示すように、図示X方向に所定の間隔を空けて図示Y方向に延びる複数本の発熱片20aが、一本の蛇行する導線となるように、各発熱片20aの端部間が連結されたミアンダーパターンで形成される。
図5に示すように前記発熱体20は、積層構造で形成される。前記発熱体20は発熱導体層21と、前記発熱導体層21の下面21aに設けられた下側高融点材料層22と、前記発熱導体層21の上面21bに設けられた上側高融点材料層23との積層構造で形成される。
前記下側高融点材料層22及び上側高融点材料層23は、前記発熱導体層21よりも高融点材料で形成されている。
前記発熱導体層21は、NiFe、CuNi、CuMn、W、NiCr、CrCu等により形成される。なお温度変化に対する抵抗値の変化から抵抗温度係数(TCR Temperature Coefficient of Resistance)を求めることができ、「抵抗変化率の温度依存性を小さくできる」ということは、別の言い方をすれば、前記抵抗温度係数(TCR)の絶対値を小さくできるということを意味している。前記抵抗温度係数(TCR)の単位はppm/℃である。
前記下側高融点材料層22及び上側高融点材料層23は、白金族元素(Ru、Rh、Pd、Os、Ir、Pt),Ta、Ti、Cr、Nb、Moのうち少なくとも1種以上の元素が選択されて形成される。これらの元素は、NiFe、CuNi、CuMnのいずれかにより形成された発熱導体層21の融点よりも高い。
このように前記発熱導体層21の下面21a及び上面21bに前記下側高融点材料層22及び上側高融点材料層23を積層することで、前記発熱導体層21のエレクトロマイグレーションを抑制することが可能になる。
図6に示すように、前記発熱体20は、前記発熱導体層21と上側高融点材料層23との積層構造で形成されてもよい。当然、前記発熱導体層21と下側高融点材料層22との積層構造で形成されてもよい。なお前記発熱導体層21の上面21b/又は下面21aに前記高融点材料層22,23を設ける構造は、簡単に形成できるため、好ましい。
また図7に示すように、前記発熱導体層21の上面21b、及び側面21c,21cを覆う高融点材料層24を設けることで、より適切に前記発熱導体層21のエレクトロマイグレーションを抑制できる。
また図8に示すように、前記発熱導体層21の下面21aに下側高融点材料層22を設け、前記発熱導体層21の側面21cから上面21bにかけて前記高融点材料層24を設ければ、前記発熱導体層21の周囲を全て前記高融点材料層22,24によって囲むことが出来るため、より効果的に前記発熱導体層21のエレクトロマイグレーションを抑制することが出来る。
また図5に示す実施形態では、前記発熱導体層21と前記高融点材料層22,23とが積層された部分は、前記発熱体20の全体に及ぶが、前記発熱体20の少なくとも一部に、前記発熱導体層21と前記高融点材料層とが積層された箇所があれば、前記高融点材料層を設けなかった従来に比べて、前記発熱導体層21のエレクトロマイグレーションを抑制することが出来る。ただし前記発熱体20の全体が、前記発熱導体層21と前記高融点材料層との積層構造で形成されることが、効果的に前記エレクトロマイグレーションを抑制することができてより好ましい。
前記高融点材料層22〜24は、抵抗変化率の温度依存性が、前記発熱導体層21の前記抵抗変化率の温度依存性に対して逆の傾向を示す材料で形成されることが好ましい。すなわち、前記発熱導体層21の抵抗変化率が、温度が上昇するにつれて大きくなる場合、高融点材料層22〜24の前記抵抗変化率は、温度が上昇するにつれて小さくなり、一方、前記発熱導体層21の抵抗変化率が、温度が上昇するにつれて小さくなる場合、高融点材料層22〜24の前記抵抗変化率は、温度が上昇するにつれて大きくなることが好ましい。
前記発熱導体層21がCuNiで形成される場合、前記発熱導体層21の抵抗変化率は、温度が上昇するにつれて、徐々に小さくなっていく。このため前記高融点材料層22〜24を、温度が上昇するにつれて、抵抗変化率が徐々に大きくなる材料で形成する。これにより前記発熱体20全体で見たときの抵抗変化率の温度依存性は、前記発熱導体層21を単体で形成した場合に比べて小さくなる。
前記発熱導体層21がCuNi、CuMn、NiFe、W、NiCr、CrCuのいずれかにより形成されるとき、前記高融点材料層22〜24は、白金族元素(Ru、Rh、Pd、Os、Ir、Ptのいずれか1種又は2種以上)で形成されることが好ましい。これにより前記抵抗変化率の温度依存性を、前記発熱導体層21と前記高融点材料層22〜24とで逆の傾向にすることが出来る。
また、前記発熱導体層21の抵抗変化率の温度依存性に比べて、高融点材料層22〜24の抵抗変化率の温度依存性のほうが大きい。すなわち、温度上昇に対する抵抗変化率の変動が、発熱導体層21に比べて高融点材料層22〜24のほうが大きく、前記高融点材料層22〜24のほうが、前記発熱導体層21に比べて温度変化に対して、敏感に、抵抗が変化するから、例えば前記高融点材料層22〜24を、前記発熱導体層21と同じような膜厚で形成すると、前記高融点材料層22〜24の影響力が強くなりすぎて、逆に、前記発熱導体層21を単体で形成していた従来より、抵抗変化率の温度依存性が大きくなる可能性がある。そこで、前記高融点材料層22〜24の前記抵抗変化率の温度依存性に対する影響力を弱めるために、図5に示すように、前記発熱導体層21の膜厚H1を、前記高融点材料層22,23の合計膜厚(H2+H3)より大きくすることが好ましい。また、図7や図8に示すように、前記発熱導体層21の側面21c,21cにも前記高融点材料層が形成されている場合は、前記側面21cに形成された前記高融点材料層24の膜厚も合わせて、すなわち前記高融点材料層24の合計膜厚を、H4+H5+H6として、前記発熱導体層21の膜厚H1と比較し、前記発熱導体層21の膜厚のほうが前記高融点材料層24の合計膜厚より大きくなるように調整することが好ましい。
例えば前記発熱導体層21をCuNiで形成し、高融点材料層22〜24をRuで形成したとき、前記高融点材料層22〜24の合計膜厚が、100Å〜400Åの間で、前記発熱導体層21の膜厚が、2700Å〜1800Åの範囲内であり、前記高融点材料層22〜24の合計膜厚が大きくなるにつれて、前記発熱導体層21の膜厚が徐々に(一次関数的に)小さくなるように調整されることが温度変化に対する抵抗値をほぼ一定にでき好ましい。なお、発熱導体層21が2層以上の層であるときは、それらの合計膜厚が比較対象とされる。
図9に示す薄膜磁気ヘッド200には、図1に示す発熱体20の替わりに、上部コア層9と同一平面上(第1非磁性絶縁層12上)に、ハイト方向(図示Y方向)に長く延びて形成された発熱体30が備えられている。発熱体30は図1で説明した発熱体20と同様の平面形状及び同様の積層構造で形成される。
図9に示すように、発熱体30は、第1非磁性絶縁層12を貫通する導電性のコンタクト部201を介して図2に示される発熱体用リード層19に電気的に接続され、この発熱体用リード層19及び電極パッド層E5、E6を介して通電されたときに発熱する。発熱体30が発熱すると、発生された熱の大部分が発熱体30から記録用ヘッド素子W及び再生ヘッド素子RのABS面側に向かって伝わり、前記発熱体30と同一平面上に位置する上部コア層9とその周辺(磁気ギャップ層8及び下部コア層7)等を集中的に温める。この結果、絶縁性保護層18よりも熱膨張係数の大きい上部コア層9、磁気ギャップ層8及び下部コア層7等が熱膨張し、前記記録用ヘッド素子Wおよび再生ヘッド素子RのABS面が記録媒体側に突出する。
図10に示す薄膜磁気ヘッド300では、絶縁保護層18の表面18aが平坦化されていて、図1,図9に示す発熱体20,30に替えて、絶縁性保護層18の表面18a上にハイト方向(図示Y方向)に長く延びて形成された発熱体40が備えられている。前記発熱体40は図1で説明した発熱体20と同様の平面形状及び同様の積層構造で形成される。
前記発熱体40は、絶縁性保護層18から第1非磁性絶縁層12を貫通する導電性のコンタクト部301を介して図2に示される発熱体用リード層19に電気的に接続され、この発熱体用リード層19及び電極パッド層E5、E6を介して通電されたときに発熱する。発熱体40から発生された熱は、前記発熱体40から記録用ヘッド素子Wおよび再生ヘッド素子RのABS面側に向かって伝わり、この結果、絶縁性保護層18に覆われた上部コア層9とその周辺(磁気ギャップ層8及び下部コア層7)等が集中的に温められる。すると、絶縁性保護層18よりも熱膨張係数の大きい上部コア層9、磁気ギャップ層8及び下部コア層7等が熱膨張し、前記記録用ヘッド素子Wおよび再生ヘッド素子RのABS面が記録媒体側に突出する。
前記発熱体20,30,40の形成位置は、図1,図9,図10に示された形成位置以外であってもよい。
本実施形態の薄膜磁気ヘッドによれば、前記発熱体を、発熱導体層と前記発熱導体層よりも高融点を有する高融点材料層の積層構造で形成したため、従来に比べて前記発熱導体層のエレクトロマイグレーションの発生を適切に抑制することが可能である。さらに前記高融点材料層を、抵抗変化率の温度依存性が、前記発熱導体層の前記抵抗変化率の温度依存性と逆の傾向になる材料で形成することで、前記発熱体20,30,40の前記抵抗変化率の温度依存性を従来に比べて小さくすることが可能になる。
したがって、前記エレクトロマイグレーションの発生による前記発熱体20,30,40の抵抗値の上昇や、あるいは環境温度が変化したことによる前記発熱体20,30,40の抵抗値の変化を抑制できる。このように、前記発熱体20,30,40の抵抗値の変化を小さくできることで、前記発熱体20,30,40から発生する熱量の変化を小さくできるから、前記上部コア層9、磁気ギャップ層8及び下部コア層7の熱膨張量の変動を小さく抑えることができ、ABS面の記録媒体側への突出量のばらつきを、従来に比べて、小さくすることが出来る。
図4に示す発熱体20を形成し、前記発熱体20を図1に示す薄膜磁気ヘッド内に組み込んだ状態で、前記発熱体20に対する通電時間と前記発熱体20の抵抗変化率との関係を調べた。なお図11ないし図14に示すどの実験でも環境温度を20度に、電流値を40mAに設定した。
なお、ここで言う「抵抗変化率」は、通電時間が0のときにおける前記発熱体20の抵抗値を基準抵抗値とし、前記基準抵抗値からの抵抗変化量を、前記基準抵抗値に対する比率で求めたものである。すなわち、通電時間xのときの発熱体20の抵抗値を、抵抗値(x)としたとき、通電時間xのときの前記抵抗変化率(%)は、[(抵抗値(x)−基準抵抗値)/基準抵抗値]×100で示される。
図11は、前記発熱体20をRu(200Å)/NiCu(2000Å)/Ru(200Å)の積層構造で形成したときの実験結果である。図11に示すように、通電時間を長くしても、抵抗変化率の絶対値はさほど大きくならないことがわかった。
図12は、前記発熱体20をTa(100Å)/NiCu(2800Å)/Ta(100Å)の積層構造で形成したときの実験結果である。図13は、前記発熱体20をNiCu(2800Å)/Ta(500Å)の積層構造で形成したときの実験結果である。図12,図13でも図11と同様に、通電時間を長くしてしても、抵抗変化率の絶対値はさほど大きくならないことがわかった。図11〜図13に示す実験結果では、通電時間を400時間程度まで長くしても、抵抗変化率の絶対値は概ね2%以内に収まることがわかった。
一方、図14は、前記発熱体をNiCu(3000Å)の単体で形成したときの実験結果である。図14に示すように通電時間が50時間を越えると、基準抵抗値に対して減少傾向にあった発熱体の抵抗値が徐々に高くなり始め、通電時間が200時間を越えると、前記発熱体の抵抗値が前記基準抵抗値を超えて抵抗変化率がプラス値になるとともに急激に大きな変化率になることがわかった。
これは、図14の場合、前記発熱体がエレクトロマイグレーションを起こしたことが原因であると考えられる。一方、前記発熱体20を、NiCuの単体でなく、NiCuよりも高融点のRuやTaを積層することで、前記発熱体20がエレクトロマイグレーションを起こすのを抑制でき、この結果、図11〜図13に示すように通電時間を長くしても前記抵抗変化率の絶対値を小さく抑えることが可能になったものと考えられる。
次に、NiCu(膜厚は3000Å)、Ru(膜厚は50Å)/NiCu(膜厚は2700Å)/Ru(膜厚は50Å)、Ru(膜厚は100Å)/NiCu(膜厚は2500Å)/Ru(膜厚は100Å)、Ru(膜厚は200Å)/NiCu(膜厚は2000Å)/Ru(膜厚は200Å)、Ru(膜厚は1000Å)を夫々、形成し、各薄膜に対し、環境温度を徐々に大きくしていったときの抵抗変化率を測定した。なお各薄膜に流す電流値を、10mAに設定するとともに、通電時間が1時間のときの前記抵抗変化率を求めた。また抵抗変化率の基準抵抗値を、25℃の温度のときの抵抗値に設定し、環境温度がy℃のときの前記抵抗変化率を、(抵抗値(y)/基準抵抗値)×100(%)で求めた。その実験結果を図15に示す。
図15に示すように、NiCuの抵抗変化率は温度が高くなると、徐々に小さくなっていくことがわかった。一方、Ruの抵抗変化率は温度が高くなっていくと、徐々に大きくなっていくことがわかった。このようにNiCuの抵抗変化率の温度依存性とRuの抵抗変化率の温度依存性は逆の傾向を示すことがわかった。また、抵抗変化率の温度依存性は、NiCuのほうが、Ruよりも小さいことがわかった。例えば、環境温度が100℃のとき、Ruの抵抗変化率は概ね112%であり、変動値は12%程度であるのに対し、NiCuの抵抗変化率は概ね96%であり、変動値は4%程度であり、このように、NiCuのほうが、Ruよりも温度変化に対し、抵抗が変化しにくいことがわかった。
したがって、NiCuとRuとを積層して形成する場合、NiCuの膜厚をRuの膜厚よりも厚く形成し、温度が上昇することで抵抗変化率を上げる傾向にあるRuの影響力を積層膜全体の中で小さくすることで、温度が上昇することで抵抗変化率を下げる傾向にあるNiCuの積層膜全体に占める影響力と、それとは逆の傾向にあるRuの積層膜全体に占める影響力とを同等に近づけることができ、これによりNiCuとRuの積層膜全体での抵抗変化率の温度依存性をより適切に小さくできることがわかった。
図15に示すように、Ru(膜厚は50Å)/NiCu(膜厚は2700Å)/Ru(膜厚は50Å)の積層構造では、Ruの合計膜厚が100Åで、NiCuの膜厚は2700Åで、Ru(膜厚は100Å)/NiCu(膜厚は2500Å)/Ru(膜厚は100Å)の積層構造では、Ruの合計膜厚が200Åで、NiCuの膜厚は2500Åで、Ru(膜厚は200Å)/NiCu(膜厚は2000Å)/Ru(膜厚は200Å)の積層構造では、Ruの合計膜厚が400Åで、NiCuの膜厚は2000Åであり、各積層膜において、Ruの合計膜厚よりNiCuの膜厚が厚く形成されている。そして図15に示すように、各積層膜の抵抗変化率の温度上昇に対する傾きが、NiCuやRuの抵抗変化率の前記傾きに比べて小さく、よって、各積層膜の抵抗変化率の温度依存性は、NiCuやRuの抵抗変化率の温度依存性に比べて小さくなることがわかった。
次に、NiCu(膜厚は3000Å)、Ta(膜厚は100Å)/NiCu(膜厚は2800Å)/Ta(膜厚は100Å)、Ru(膜厚は100Å)/NiCu(膜厚は2800Å)/Ru(膜厚は100Å)、Ru(膜厚は1500Å)を夫々、形成し、各薄膜に対し、環境温度を徐々に大きくしていったときの抵抗変化率を測定した。なお各薄膜に流す電流値を、10mAに設定するとともに、通電時間が1時間のときの前記抵抗変化率を求めた。また抵抗変化率の基準抵抗値を、25℃の温度のときの抵抗値に設定し、環境温度がy℃のときの前記抵抗変化率を、(抵抗値(y)/基準抵抗値)×100(%)で求めた。その実験結果を図16に示す。
図16に示すように、Ta(膜厚は100Å)/NiCu(膜厚は2800Å)/Ta(膜厚は100Å)の積層膜の抵抗変化率の温度依存性は、NiCu(膜厚は3000Å)の単層構造の前記抵抗変化率の温度依存性に比べて大きいことがわかった。またTa/NiCu/Taの抵抗変化率は、NiCuと同様に、温度が高くなると100%を下回るため、Taの抵抗変化率の温度依存性は、NiCuの抵抗変化率の温度依存性と同じ傾向(すなわち温度が上昇すると抵抗変化率が小さくなる傾向)にあることがわかった。
以上により、発熱体の抵抗変化率の温度依存性を小さくするには、抵抗変化率の温度依存性が逆の傾向を示す各材質にて、前記発熱導体層と高融点材料層を形成し、温度依存性の大きいほうの層の膜厚を薄く形成することが必要であることがわかった。
次に図17に示す実験では、発熱体をRu/NiCu/Ruの3層構造で形成し、ちょうど25℃のときに前記発熱体の抵抗値が1.8Ω/sqとなるように、Ruの合計膜厚を大きくしていくとともに、NiCuの膜厚を小さくしていき、そして各膜厚時において、環境温度が25度から高くなることで、どのように抵抗値が変化するかを測定した。
図17に示すように、Ruの総合膜厚を200Åにし、NiCuの膜厚を概ね2500Åとしたとき、温度が25℃〜175℃に変化しても、Ru/NiCu/Ruの抵抗値は概ね1.8Ω/sqでほぼ一定であることがわかった。図17に示すように、Ruの総合膜厚が徐々に厚くなっていき、一方、NiCuの膜厚が徐々に小さくなっていくと、環境温度が高くなることで抵抗値の変化が大きくなることがわかった。これは、Ruの抵抗変化率の温度依存性が、NiCuのそれよりも大きいので、Ruの膜厚が厚く、しかも環境温度が高くなると発熱体の抵抗値に対するRuの影響力が大きくなっていくためである。
なお図17に示すように、Ruの総合膜厚を100Å〜400Åの範囲内に設定し、このとき前記NiCuの膜厚を2700Å〜1800Åの範囲内に設定し、Ruの総合膜厚が大きくなるにつれてNiCuの膜厚が徐々に(一関数的に)小さくなるように、Ru及びNiCuの膜厚を夫々、調整することで、温度が変化しても抵抗値の変化が小さい積層膜を形成できることがわかった。
本実施形態における薄膜磁気ヘッドを記録媒体との対向面からハイト方向(図示Y方向)と平行な方向であって且つ膜厚方向(図示Z方向)と平行な方向から切断した部分断面図、 図1に示す矢印A方向から前記薄膜磁気ヘッドを見たときの部分透視図、 図1の薄膜磁気ヘッドに内臓された発熱体を通電したときに、記録媒体との対向面が突き出す状態を説明するための部分断面図、 発熱体の形状のパターンの一例を示す斜視図、 図4に示す一点鎖線に沿って発熱体を膜厚方向に切断したときの部分断面図、 図5とは異なる断面形状を示す前記発熱体の部分拡大断面図、 図5とは異なる断面形状を示す前記発熱体の部分拡大断面図、 図5とは異なる断面形状を示す前記発熱体の部分拡大断面図、 図1とは別の実施形態における薄膜磁気ヘッドを記録媒体との対向面からハイト方向(図示Y方向)と平行な方向であって且つ膜厚方向(図示Z方向)と平行な方向から切断した部分断面図、 図1とは別の実施形態における薄膜磁気ヘッドを記録媒体との対向面からハイト方向(図示Y方向)と平行な方向であって且つ膜厚方向(図示Z方向)と平行な方向から切断した部分断面図、 発熱体をRu(200Å)/NiCu(2000Å)/Ru(200Å)の積層構造で形成したきの、通電時間と抵抗変化率との関係を示すグラフ、 発熱体をTa(100Å)/NiCu(2800Å)/Ta(100Å)の積層構造で形成したときの、通電時間と抵抗変化率との関係を示すグラフ、 発熱体をNiCu(2800Å)/Ta(500Å)の積層構造で形成したときの、通電時間と抵抗変化率との関係を示すグラフ、 発熱体をNiCu(3000Å)の単体で形成したときの、通電時間と抵抗変化率との関係を示すグラフ、 NiCu(膜厚は3000Å)、Ru(膜厚は50Å)/NiCu(膜厚は2700Å)/Ru(膜厚は50Å)、Ru(膜厚は100Å)/NiCu(膜厚は2500Å)/Ru(膜厚は100Å)、Ru(膜厚は200Å)/NiCu(膜厚は2000Å)/Ru(膜厚は200Å)、Ru(膜厚は1000Å)の各薄膜の温度と抵抗変化率との関係を示すグラフ、 NiCu(膜厚は3000Å)、Ta(膜厚は100Å)/NiCu(膜厚は2800Å)/Ta(膜厚は100Å)、Ru(膜厚は100Å)/NiCu(膜厚は2800Å)/Ru(膜厚は100Å)、Ru(膜厚は1500Å)の各薄膜の温度と抵抗変化率との関係を示すグラフ、 Ru/NiCu/Ruの3層構造を形成し、Ruの合計膜厚を変化させるとともに、NiCuの膜厚を変化させたときに、環境温度との関係で、どのように抵抗値が変化するかを測定したグラフ、
符号の説明
1 基板
7 下部コア層
8 磁気ギャップ層
9 上部コア層
11 第1コイル層
13 第2コイル層
20 発熱体
21 発熱導体層
22〜24 高融点材料層
E1〜E6 電極パッド層

Claims (6)

  1. 再生ヘッド素子および記録用ヘッド素子の少なくとも一方と、前記素子の記録媒体との
    対向面を記録媒体側へ突出させるための発熱体と、を有し、
    前記発熱体は、発熱導体層と、前記発熱導体層の少なくとも一部に重ねて形成された前記発熱導体層よりも高融点である高融点材料層と、を有して形成されていることを特徴とする薄膜磁気ヘッド。
  2. 前記高融点材料層は、前記発熱導体層の下面及び/又は上面に設けられる請求項1記載の薄膜磁気ヘッド。
  3. 前記高融点材料層は、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)、Ta、Ti、Cr、Nb、Moのうち少なくとも1種以上の元素から形成される請求項1または2に記載の薄膜磁気ヘッド。
  4. 前記発熱導体層は、NiCu、CuMn、NiFe、W、NiCr、CrCuのいずれかにより形成される請求項1ないし3のいずれかに記載の薄膜磁気ヘッド。
  5. 前記高融点材料層は、抵抗変化率の温度依存性が、前記発熱導体層の前記抵抗変化率の温度依存性に対して逆の傾向を示す材料で形成される請求項1または2に記載の薄膜磁気ヘッド。
  6. 前記高融点材料層は、白金族元素で形成され、前記発熱導体層は、CuNi、CuMn、NiFe、W、NiCr、CrCuのいずれかにより形成される請求項5記載の薄膜磁気ヘッド。
JP2005210073A 2005-07-20 2005-07-20 薄膜磁気ヘッド Pending JP2007026591A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005210073A JP2007026591A (ja) 2005-07-20 2005-07-20 薄膜磁気ヘッド
US11/486,797 US7595960B2 (en) 2005-07-20 2006-07-14 Thin film magnetic head having heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210073A JP2007026591A (ja) 2005-07-20 2005-07-20 薄膜磁気ヘッド

Publications (1)

Publication Number Publication Date
JP2007026591A true JP2007026591A (ja) 2007-02-01

Family

ID=37678817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210073A Pending JP2007026591A (ja) 2005-07-20 2005-07-20 薄膜磁気ヘッド

Country Status (2)

Country Link
US (1) US7595960B2 (ja)
JP (1) JP2007026591A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196714A (ja) * 2010-03-17 2011-10-06 Yamatake Corp 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法
JP2011203050A (ja) * 2010-03-25 2011-10-13 Yamatake Corp 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056509A (ja) * 2003-08-05 2005-03-03 Tdk Corp 薄膜磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
JP2007335062A (ja) * 2006-05-19 2007-12-27 Alps Electric Co Ltd 薄膜磁気ヘッド
JP2008276837A (ja) * 2007-04-26 2008-11-13 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッドスライダ
US8054583B2 (en) * 2008-06-30 2011-11-08 Headway Technologies, Inc. Ta/W film as heating device for dynamic fly height adjustment
US7969685B2 (en) * 2008-08-13 2011-06-28 Sae Magnetics (Hk) Ltd. ABS design for dynamic flying height (DFH) applications
US8523312B2 (en) 2010-11-08 2013-09-03 Seagate Technology Llc Detection system using heating element temperature oscillations
CN103155037B (zh) 2010-11-17 2016-06-08 希捷科技有限公司 使用电阻传感器的多级温度系数的凹凸体和磁头-介质接触检测
US8681590B2 (en) * 2010-11-24 2014-03-25 Seagate Technology Llc Apparatus for increasing data rates in a magnetic head
US8634167B2 (en) 2011-05-27 2014-01-21 HGST Netherlands B.V. Magnetic head with self compensating dual thermal fly height control
US8749920B1 (en) * 2011-12-16 2014-06-10 Western Digital (Fremont), Llc Magnetic recording head with dynamic fly height heating and having thermally controlled pole tip protrusion to control and protect reader element
US8670214B1 (en) 2011-12-20 2014-03-11 Western Digital (Fremont), Llc Method and system for providing enhanced thermal expansion for hard disk drives
US9664572B2 (en) * 2012-11-28 2017-05-30 Seagate Technology Llc Thin films having large temperature coefficient of resistance and methods of fabricating same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261248A (ja) 1997-03-18 1998-09-29 Canon Inc 記録媒体、及び記録再生装置
JP3636133B2 (ja) 2001-11-29 2005-04-06 Tdk株式会社 薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置
JP3681376B2 (ja) * 2003-01-31 2005-08-10 Tdk株式会社 ヘッドジンバルアセンブリ及びハードディスク装置
JP3632025B2 (ja) * 2003-02-26 2005-03-23 Tdk株式会社 薄膜磁気ヘッド、ヘッドジンバルアセンブリ、及び、ハードディスク装置
JP3626954B2 (ja) * 2003-03-12 2005-03-09 Tdk株式会社 薄膜磁気ヘッドの製造方法、薄膜磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
US7133254B2 (en) * 2003-05-30 2006-11-07 Hitachi Global Storage Technologies Netherlands B.V. Magnetic recording head with heating device
JP4030927B2 (ja) 2003-06-18 2008-01-09 アルプス電気株式会社 薄膜磁気ヘッド
JP2005011414A (ja) 2003-06-18 2005-01-13 Alps Electric Co Ltd 薄膜磁気ヘッド
US6956716B2 (en) 2003-07-30 2005-10-18 Hitachi Global Storage Technologies Netherlands, B.V. Magnetic head having multilayer heater for thermally assisted write head and method of fabrication thereof
JP2005056509A (ja) 2003-08-05 2005-03-03 Tdk Corp 薄膜磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
US7187520B2 (en) * 2004-03-01 2007-03-06 Hitachi Global Storage Technologies Netherlands, B.V. Magnetic head having thermally assisted recording device, and method of fabrication thereof
JP4291754B2 (ja) * 2004-08-10 2009-07-08 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ 磁気ヘッド・スライダおよび磁気ディスク装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196714A (ja) * 2010-03-17 2011-10-06 Yamatake Corp 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法
JP2011203050A (ja) * 2010-03-25 2011-10-13 Yamatake Corp 発熱量算出式作成システム、発熱量算出式の作成方法、発熱量測定システム、及び発熱量の測定方法

Also Published As

Publication number Publication date
US20070019325A1 (en) 2007-01-25
US7595960B2 (en) 2009-09-29

Similar Documents

Publication Publication Date Title
JP2007026591A (ja) 薄膜磁気ヘッド
US7420776B2 (en) Thin-film magnetic head, head gimbal assembly, and hard disk drive
US7583479B2 (en) Thin-film magnetic head with heater in overcoat multilayer, head gimbal assembly with thin-film magnetic head, and magnetic disk drive apparatus with head gimbal assembly
JP2004335069A (ja) 薄膜磁気ヘッド、ヘッドジンバルアセンブリ、及び、ハードディスク装置
JP2008041115A (ja) 垂直磁気記録ヘッド
JP2006024289A (ja) 発熱体を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置
JP2008047241A (ja) 浮上量測定方法及び浮上量の調整が可能な磁気ディスク装置
US7929256B2 (en) Thin film magnetic head with protrusion heater and temperature correcting resistor
JP4207951B2 (ja) β相Ta薄膜抵抗体及び該薄膜抵抗体を備えた薄膜磁気ヘッド
US7554763B2 (en) Magnetic head having an insulating layer comprised of an organic layer on an inorganic layer
US7224553B2 (en) Thin-film magnetic head, head gimbal assembly, and hard disk drive incorporating a heater
US7184246B2 (en) Thin-film magnetic head having heater member and bump for electrical connection of heater member
JP2006351115A (ja) 抵抗発熱体を備えた薄膜磁気ヘッド
JP2005056508A (ja) 薄膜磁気ヘッドの製造方法
US8837089B1 (en) Magnetic head for perpendicular magnetic recording including a heater
US8837083B1 (en) Magnetic head for perpendicular magnetic recording including a heater
JP2001143222A (ja) 薄膜磁気ヘッド及びその製造方法
JP4102371B2 (ja) 薄膜磁気ヘッド
JP2007323761A (ja) 熱膨張率及びヤング率が規定されたコイル絶縁層を備えた薄膜磁気ヘッド
US7561362B2 (en) Magnetic head having track width expansion mechanism, magnetic storage device and control circuit
JP2008165852A (ja) 薄膜磁気ヘッド
JP2004110976A (ja) 薄膜磁気ヘッドおよび磁気ディスク装置
JP2008059669A (ja) ヒータを備えた薄膜磁気ヘッド
JP2004288352A (ja) 薄膜磁気ヘッドにおける媒体対向面のラッピング方法
JP2004005775A (ja) 記録再生分離型ヘッド

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318