JP2007006317A - Σδ型ノイズシェーパ - Google Patents

Σδ型ノイズシェーパ Download PDF

Info

Publication number
JP2007006317A
JP2007006317A JP2005186248A JP2005186248A JP2007006317A JP 2007006317 A JP2007006317 A JP 2007006317A JP 2005186248 A JP2005186248 A JP 2005186248A JP 2005186248 A JP2005186248 A JP 2005186248A JP 2007006317 A JP2007006317 A JP 2007006317A
Authority
JP
Japan
Prior art keywords
noise
signal
noise shaping
filter
signal level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005186248A
Other languages
English (en)
Inventor
Makoto Nureki
眞 濡木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2005186248A priority Critical patent/JP2007006317A/ja
Publication of JP2007006317A publication Critical patent/JP2007006317A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

【課題】 変調率を向上させ、かつ量子化雑音を効果的に抑制するΣΔ型ノイズシェーパを提供する。
【解決手段】 ディジタル入力信号X(z)を、サンプリング周期毎に信号レベル検出手段12でレベル検出し、フィルタ制御手段13は、そのレベル検出結果に対応して可変にノイズシェーピングフィルタ17の伝達特性を制御し、前記ノイズシェーピングフィルタ17は、加算器16で信号W(z)と符号反転した信号Y(z)との加算結果として取り出される量子化雑音Q(z)の炉波動作をおこない信号S(z)を得、加算器15で入力信号X(z)と加算され信号W(z)となり量子化器14で再量子化され、出力信号Y(z)となる。
【選択図】図4

Description

本発明は、ΣΔ型ノイズシェーパに関する。
ΣΔ型ノイズシェーパは、ディジタル信号処理過程で生じる量子化雑音の周波数分布を偏らせ、信号帯域(通常はオーディオ帯域)での量子化雑音を減らす技術である。
例えば、ディジタル・オーディオ機器において、スイッチング動作で増幅作用を行うD級アンプが用いられることがあるが、このときCD等のディジタル記録媒体からのPCM信号を、このD級アンプの駆動入力に適したPWM信号に変換する信号処理過程で、ΣΔ型ノイズシェーパがD/D変換(再量子化)に使用され、その際発生する量子化雑音の低減に重要な役割を果たしている。
図1は、従来のΣΔ型ノイズシェーパの原理的な構成図である。量子化器、加算器1,加算器2、ノイズシェーピングのためにフィードバック回路に挿入されたノイズシェーピングフィルタ(伝達関数H(z))から成り、入力信号X(z)を処理して、出力信号Y(z)を出力する。
このΣΔ型ノイズシェーパの基本特性は、信号X(z)、Y(z)及び量子化器で生じる量子化雑音Q(z)の間の関係として次式で表される。
Figure 2007006317
上記式(1)は、ΣΔ型ノイズシェーパの出力信号Y(z)が、入力信号X(z)自身と量子化雑音Q(z)を伝達関数(1−H(z))で整形した整形後の雑音との和であることを示している。この伝達関数(1−H(z))は、ΣΔ型ノイズシェーパの量子化雑音に対する伝達特性を示しており、ノイズシェーピング特性NS(z)と呼ばれる。すなわち、これらの関係は次式(2)で表される。
Figure 2007006317
このノイズシェーピング特性NS(z)あるいはノイズシェーピングフィルタの伝達関数H(z)の構成を工夫して、入力信号X(z)の信号帯域での整形後の雑音を減らすことがΣΔ型ノイズシェーパ技術の主要目的の一つであった。
このため、ノイズシェーピングフィルタH(z)として、まずFIR(Finite Impulse Response)フィルタを使用しその次数の高次化がはかられた(文献1を参照)。図2は,この場合のノイズシェーピング特性NS(z)の周波数特性であり、次数が上がるほど信号帯域でのノイズレベルは減少する一方、高域でのノイズレベルは増大している(縦軸は量子化雑音レベルであって、ΣΔ型ノイズシェーパのない場合を0デシベルとし、横軸はオーバーサンプリング周波数での正規化周波数を示す。)
図3(a)は、このような周波数特性を持つΣΔ型ノイズシェーパの出力信号Y(z)波形の一例である。ΣΔ型ノイズシェーパのない量子化雑音(同図(b))と比較すると、雑音波形は鋭いスパイク状になっている。この高域成分が強調された雑音は、信号帯域とは分離されており、ローパスフィルタでカットできるので問題はないということで高次化が進められた。
本田潤編著:「D級/ディジタル・アンプの設計と製作」、第9章、183p〜218p、CQ出版社
しかし、従来技術での高域で増大した量子化雑音は、量子化器の許容(最大)振幅レベルを超えると、発振を起こすなど正常動作を妨げる。また、これを避るためには、雑音余裕をとって信号成分を小さくせざるを得ず、いわゆる量子化器の変調率(量子化器の公称信号レンジに対する実際に扱える信号レンジの比)を低下させ、後段のD級増幅器などの効率低下やS/Nを悪化させてしまうという問題を抱えていた。
上記問題に対して、極シフト型のΣΔ型ノイズシェーパが考案された。従来のΣΔ型ノイズシェーパの伝達特性の極が原点に固定されていたのに対し、極をz平面の原点から実軸上を右へシフトさせることによって、高域での量子化雑音を抑制し、信号振幅が大きいときの量子化器の発振など異常動作をなくし、変調率を上げることが可能になる。しかし、これは信号帯域での雑音を増大させるという犠牲を伴うものであり、ΣΔ型ノイズシェーパ本来の目的である信号帯域での量子化雑音の抑制を達成できないという欠点を有している。
本発明は、こうした従来の問題に鑑みなされたもので、簡易な構成で、ノイズシェーピング特性を可変制御することによって、変調率・安定性が高く、かつ量子化雑音抑制効果も高いΣΔ型ノイズシェーパを提供することを目的とする。
上記課題を解決するために、請求項1に記載の発明は、ノイズシェーピングフィルタを備えたΣΔ型ノイズシェーパであって、入力されるディジタル信号の各サンプリング周期での信号レベルを検出する信号レベル検出手段と、上記ノイズシェーピングフィルタの特性を、上記信号レベル検出手段の検出結果に対応して可変に制御するフィルタ特性制御手段とを備え、前記フィルタ特性制御手段は、サンプリング周期毎に、前記信号レベル検出手段のレベル検出結果に応じて、前記信号レベルが高い場合ほどノイズシェーピング特性の高域での伝達特性が抑制されるよう前記ノイズシェーピングフィルタ特性を制御することを特徴とする。
本発明の第1の実施形態について図を参照して説明する。
図4は、本実施形態に係るΣΔ型ノイズシェーパの基本構成図である。
図4において、本ΣΔ型ノイズシェーパ10は、信号レベル検出手段12、フィルタ特性制御手段13、量子化器14、加算器15、16、ノイズシェーピングフィルタ17を備えて構成されている。入力信号X(z)は処理対象であるディジタル信号であり、出力信号Y(z)は再量子化されたディジタル信号である。これら信号の表示は、例えば入力信号X(z)は、サンプリング時点での入力信号X(nT)に対するz変換表示である。他の信号についても同様である。
先ずΣΔ型ノイズシェーパとしての構成、及び動作について説明する。
信号レベル検出手段は、入力信号X(z)の信号レベル(振幅の絶対値)が、所定の信号レベルのどのレベルにあるかを、サンプリング時点毎に検出し、そのレベル検出結果をフィルタ制御手段13に伝える。
以下説明の便宜のため、信号レベル検出手段12のレベル検出結果は「ロー」と「ハイ」の2種類である場合について説明する。
フィルタ特性制御手段13は、ノイズシェーピングフィルタ17の伝達特性H(z)を、上記レベル検出結果の「ロー」「ハイ」に対応して可変に制御する。
量子化器14は、信号W(z)を再量子化し、出力信号Y(z)ととして出力する。このとき発生する量子化雑音を低減するのがΣΔ型ノイズシェーパの役割である。
加算器15は、入力信号X(z)とノイズシェーピングフィルタ17からの信号S(z)との加算をして信号W(z)を出力する。
加算器16は、量子化器14の前後の信号W(z)、Y(z)の差分をとる。この差分信号は、量子化器14で発生する再量子化に伴う量子化雑音Q(z)そのものである。
ノイズシェーピングフィルタ17は、量子化雑音Q(z)をその伝達特性H(z)で処理して入力側に帰還する。伝達特性H(z)はフィルタ制御手段13によって可変制御される。
次に、かかる構成を備えるΣΔ型ノイズシェーパ10の動作について説明する。
動作をフィルタ制御段階と信号処理段階の2段階に分けて説明する。
フィルタ制御段階では、入力信号X(z)が供給されると、信号レベル検出手段12で信号レベルが検出され、レベル検出結果「ロー」又は「ハイ」が、フィルタ制御手段13へ出力され、このレベル検出結果に対応して,フィルタ制御手段13は、このサンプリング時点で用いるノイズシェーピングフィルタ17の特性H(z)を制御する。
信号処理段階では、まず、ノイズシェーピングフィルタ17が、フィルタ制御手段13で制御された特性をもって動作し、シェーピング出力信号S(z)を加算器15に供給する。
次に入力信号X(z)が、前記シェーピング出力信号S(z)と加算器15で加算され、信号W(z)となり、信号W(z)は量子化器14で再量子化され、出力信号Y(z)となる。
次にノイズシェーピングのために、出力信号Y(z)は符号反転され、信号W(z)と加算器16で加算され、量子化器14で生じた量子化雑音Q(z)が取り出され、ノイズシェーピングフィルタ17に入力され、次のサンプリング周期に備え待機して、このサンプリング周期の動作を終える。
次に、本ΣΔ型ノイズシェーパが具備する特性及び効果について図5及び図6を参照して説明する。
図5は、本実施形態において、信号レベルに対応して使用する2つのノイズシェーピング特性CL、CHの例を示している。ノイズシェーピング特性NS(z)は、式(2)の通り、ノイズシェーピングフィルタ17の伝達特性H(z)から一意に決まる。詳細は後記の実施例で述べる。
特性CLは、信号レベルが「ロー」のときに使用される特性であって、信号帯域における量子化雑音の低減を主目的にしている。特性CHは、信号レベルが「ハイ」のときに使用される特性であって、特性CLに比して高域での量子化雑音を抑圧する性質をもつ。
フィルタ制御手段13の制御論理は次のようになっている。
信号レベルが「ロー」のとき −−−> 特性CLで動作
信号レベルが[ハイ]のとき −−−> 特性CHで動作
図6は、上記の制御論理で動作する本ΣΔ型ノイズシェーパの出力信号Y(z)の波形例を示している。入力信号X(z)が正弦波の例であるが、入力信号レベルが「ハイ」の時は、量子化雑音の振幅が顕著に減少している。
この信号レベルが大きいところでの量子化雑音の減少によって、従来技術が抱えていた量子化器の最大量子化レベルを超える雑音による量子化器の発振動作等の問題、さらには変調率の低下の問題が解決されることが容易に分かる(本図6と図3を参照)。
信号レベルが「ロー」のところで目立つ振幅の大きな量子化雑音は、特性CLに対応していて、信号帯域とは離れた高域で強調されたノイズであるため、容易にフィルタでカットできるので問題はない。
しかし、信号レベルが「ハイ」の時の振幅が減少した量子化雑音は、特性CHに対応しているので、見かけの振幅はともかく実際には信号帯域における雑音は、特性CLで動作するときに比べ増えている。
図6において、信号レベルが高いときの量子化雑音の振幅が小さくなって、もちろん特性CHを常時使う場合に比べれば、信号帯域での雑音は減少する。しかし、特性CLを常時使う場合に比べれば雑音は増大していることは確かであり、これは上述の量子化器の発振動作等の問題、さらには変調率の低下の問題が解決されることの対価と云える。
ところが、本ΣΔ型ノイズシェーパにあっては、オーディオ帯域信号を対象とする場合には、前記の特性CHでの信号帯域での量子化雑音の増大は、人の聴覚にはほとんど検知されず、結果的には信号帯域では特性CLで常に動作しているように見えるという特性が備わっている。
これは人間の聴覚が、信号レベルが低いときには感じる雑音を、信号レベルが高いときには感じないという特性を持っているためである。
ちなみに、この聴覚特性は古くから知られており、この特性を利用して、例えば非線形PCM符号器においては、信号レベルが高いほど量子化器の量子化ステップ幅を粗くして、符号化ビット数の削減等に利用している。当然、信号レベルが高いところで量子化雑音は増大するが、聴覚には検知され難いため問題が生じないためである。
このように本実施形態のΣΔ型ノイズシェーパは、ノイズシェーピング特性のアクティブな制御によって信号帯域での雑音増大を抑えながら、安定動作や変調率の向上を成し遂げている。さらには、本実施形態の信号処理が人の聴覚特性に適合しているため、オーディオ帯域の信号に使用する場合には、量子化雑音の実質的低減が可能である。
以上、信号の絶対値のレベルを「ロー」「ハイ」の2レベルに区分して、そのレベルに応じてノイズシェーピングフィルタの特性を制御する実施形態について説明してきた。これは説明の便宜のためであって、本実施形態は、以下で述べるように多値レベルに容易に拡張可能である。
信号レベルを多値レベル(mレベルと記す)に検出するmレベル検出手段と、mレベルの検出結果に対応して予め設定されたm個の異なったノイズシェーピング特性NS(z)(j=1,2,…,m)を実現するように,フィルタ制御手段でノイズシェーピングフィルタ特性H(z)を制御する。すなわち、サンプリング周期毎に、信号レベル検出結果がk番目であれば、ノイズシェーピングフィルタを制御して、その特性H(z)=1−NS(z)を備えるようにして実現できることは明白である。多値レベルの制御によって、より精細に量子化雑音を制御することが可能であり、ΣΔ型ノイズシェーパ特性の一層の向上が期待できる。
次に本発明に係るΣΔ型ノイズシェーパの実施例について説明する。
図7は、本実施形態のΣΔ型ノイズシェーパの構成を示したブロック図である。
図7において、本ΣΔ型ノイズシェーパ10は、信号レベル検出器12a,乗数係数選択器13a、量子化器14、加算器15、16及びノイズシェーピングフィルタ17を有して構成されている。実施形態と対応するブロックには同符号を付している。また、入力信号X(z)は高精度(例えば16ビット)のPCM信号であり、出力信号Y(z)は低ビット(例えば5ビット)のPCM信号である。これら信号の表示、例えば入力信号X(z)は、サンプリング時点での入力信号X(nT)に対するz変換表示である。他の信号についても同様である。
先ずΣΔ型ノイズシェーパとしての構成及び動作について説明する。
ノイズシェーピングフィルタ17は、n次の伝達関数H(z)を備えるディジタルフィルタであって、遅延器D、フォワード係数器A、バックワード係数器B、フォワード加算器KF、バックワード加算器KB及び加算器Kを備えて構成されている。ここで符号のサフィックスiは,1からnまで変化する。遅延器Dとフォワード係数器AがFIRフィルタを形成し、また、遅延器Dとバックワード係数器BがIIRフィルタを形成するが、これらが一体となって量子化雑音のシェーピングをおこなう。
このノイズシェーピングフィルタ17の伝達関数H(z)は、フォワード係数器Aの乗数係数をa、バックワード係数器の乗数係数をbとすると、次式で表される。
Figure 2007006317
ただし、記号Σは、サフィックスiに対する1からnまでの総和を表すものである。
また,n個の乗数係数a、及びbをまとめて指示するときにはベクトル表示α、β(α=(a,a,…,a)、β=(b,b,…,b))を使用する。
信号レベル検出器12aは、サンプル時点毎に、入力信号X(z)の信号レベル(振幅の絶対値)が所定の信号レベルのどのレベルにあるかを検出し、そのレベル検出結果を乗数係数選択器13aに伝える。以下説明の便宜のため、信号レベル検出器12のレベル検出結果は「ロー」と「ハイ」の2種類である場合について説明する。
乗数係数選択器13aは、ノイズシェーピングフィルタ17のフォワード乗数係数器A、及びバックワード乗数係数器Bの2つの乗数係数の組,(α、β)=((al,al,…,al),(bl,bl,…,bl))と、(α、β)=((ah,ah,…,ah,),(bh,bh,…,bh))(それぞれ略記するときは、(α、β)、(α、β)と表示する)を記憶している。乗数係数の組(α、β)は信号レベルが「ロー」のときに対応し、乗数係数の組(α、β)は信号レベルが「ハイ」のときに対応し、信号レベルの「ロー」「ハイ」に応じてどちらか一方が選択されて、ノイズシェーピングフィルタ17を可変に制御する乗数係数として使用される。
量子化器14は、精度の高い入力信号W(z)を精度の低い(低ビットの)信号Y(z)に再量子化する。このとき発生する量子化雑音を低減するのがΣΔ型ノイズシェーパの役割である。
加算器15は、入力信号X(z)とノイズシェーピングフィルタ17からの信号S(z)との加算をして信号W(z)を出力する。
加算器16は、量子化器14の前後の信号W(z)、Y(z)の差分をとるが、この差分信号は、量子化器14で発生する再量子化に伴う量子化雑音Q(z)そのものである。
次に、かかる構成を有するΣΔ型ノイズシェーパ10の動作について説明する。
入力信号X(z)が供給されると、信号レベル検出器12aで信号レベルが検出され、「ロー」「ハイ」に対応するレベル検出結果が、乗数係数選択器13aへ出力される。このレベル検出結果により,乗数係数選択器13aでは、このサンプリング時点で用いるノイズシェーピングフィルタ17の乗数係数の組(α、β)として、「ロー」の場合には乗数係数の組(α、β)を、「ハイ」の場合は乗数係数の組(α、β)を選択し、ノイズシェーピングフィルタ17の乗数係数を設定する。
ノイズシェーピングフィルタ17は、設定された乗数係数の組(α、β)又は(α、β)で定まるノイズシェーピング動作をおこなう。すなわちノイズシェーピングフィルタ17は、各遅延器Dに記憶されている信号と乗数係数の組(α、β)(実際には(α、β)又は(α、β)のどちらか)との乗算を各係数器A、Bで実行し、結果を加算器KA,KBでそれぞれ加算する。これによって、シェーピング出力信号S(z)とバックワード信号B(z)が計算され、このサンプリング周期におけるノイズシェッピング動作は完了するので、次の入力信号X(z)の処理過程に進む。
この入力信号X(z)の処理過程では、まず入力信号X(z)が、加算器15でノイズシェーピングフィルタ17からのシェーピング出力信号S(z)と加算されて信号W(z)となり、この信号W(z)は量子化器14で再量子化され、ΣΔ型ノイズシェーパからの出力信号Y(z)となる。
次に加算器16で、符号反転した出力信号Y(z)と信号W(z)との加算がなされ、量子化器14で生じた量子化雑音Q(z)が取り出され、加算器Kでバックワード信号B(z)と加算され、遅延器D1への入力信号N(z)となる。この時点で次のサンプリング周期での動作に備え、遅延器Dが左シフト動作を行い、各遅延器Dに記憶された信号N(z)z−iを一つづつ左の遅延器に移し、このサンプリング周期におけるΣΔ型ノイズシェーパ動作は完了し、次のサンプリング周期の動作に移る。
このように、本実施例のΣΔ型ノイズシェーパは、入力信号レベルの違いに対応して、ノイズシェーピングフィルタ特性を制御することによって、ノイズシェーピング特性の最適化を図るものである。
次に、乗数係数の組(α、β)及び(α、β)の具体的な決定法を説明する。
ノイズシェーピングフィルタ17の特性H(z)は、乗数係数の組(α、β)=((a,a,…,a),(b,b,…,b))を用いて式(2)で決まるが、これら乗数係数とノイズシェーピング特性NS(z)との関係は,次式で表される。
Figure 2007006317
ただし、記号Σは、サフィックスiに対する1からnまでの総和を表す。
上記式(4)の関係を利用して、ノイズシェーピング特性とそれを実現する乗数係数の組α(αおよびα)の具体例を挙げる。
「極シフト型ΣΔ型ノイズシェーパ」
本実施例は、信号レベル「ロー」のときに動作するノイズシェーピング特性(NS(z)と記す)が、上記式(4)の零点が全てz平面の(1,0)点にある、すなわち上記式(2)の分子が(z−1)の形を有し、多重極はz平面の原点にあるとして特徴付けられる。
また、信号レベル「ハイ」のときに動作するノイズシェーピング特性(NS(z)と記す)は、上記式(2)の零点は全てz平面の(1,0)点にあり、多重極がz平面の原点から実軸に沿って右にp(0<p<1)だけシフトした点にある、すなわち上記式(2)の分母が(z−p)の形を備えているとして特徴付けられる(図8(a)参照)。
以上の特徴付けで、n次のノイズシェーピングフィルタの乗数係数の組(α、β)=((al,al,…,al),(bl,bl,…,bl))及び(α、β)=((ah,ah,…,ah),(bh,bh,…,bh))は決まる。
一例としてノイズシェピングフィルタの次数が4次の場合(n=4)を示すと、NS(z)に対応するノイズシェーピングフィルタの乗数係数の組(α、β)は、al=4、al=−6、al=4、al=−1であり、bl(i=1,2,…,4)はすべて零である。
一方、NS(z)に対応するノイズシェーピングフィルタの乗数係数の組(α、β)は、bh=4p、bh=−6p、bh=4p、bh=−p、また、ah=4−4p、ah=−6+6p、ah=4−4p、ah=−1+pである。
ここでp(0<p<1)の具体的な値の決定は、この極が右にシフトするほど(pが大きくなるほど)、高域のノイズは抑制されるが、反対に信号帯域の量子化雑音は増加するので、実際の利用環境を考慮して行う必要がある。
例えばp=0.5と云うように決定すれば,具体的なノイズシェーピングフィルタの乗数係数の組αが決まるので、ノイズシェーピングフィルタの乗数係数の組α及びαを、予め乗数係数選択器13(図5参照)に記憶させることによって、本実施例に係るΣΔ型ノイズシェーパの実現が可能である。
この実施例の変形として、信号レベル「ロー」のときに選択・利用するノイズシェーピング特性NS(z)の極の位置が、z平面の原点ではなく原点付近にシフトした場合がある。この場合は、上述のノイズシェーピング特性NS(z)で、異なった2つのpの値で決まる2つの特性を切り替えることに相当する。
「零点・極シフト型ΣΔ型ノイズシェーパ」
実施例2では全て零点は点(1,0)にあるとしていたが、本実施例では、ノイズシェーピング特性として、図8(b)に示すように,零点対がz平面上の点(1,0)から単位円上をシフトした位置にあり(nが奇数の場合には、単独の零点が点(1,0)の位置にある)、極の位置等は実施例1と同じように極シフトで切り替える構成のものである。零点シフトを用いることで、信号帯域端での雑音抑制特性を、実施例1より高めたい場合に有効である。
「フィルタ次数切替型ΣΔ型ノイズシェーパ」
本実施例では、2つの次数の異なるノイズシェーピングフィルタの切替によって実現する。例えば、信号レベル「ロー」のときに選択・利用するノイズシェーピング特性(NS(z)と記す)を4次のFIR型ノイズシェーピングフィルタに対応させ、信号レベル「ハイ」のときに選択・利用するノイズシェーピング特性(NS(z)と記す)を,例えば2次のFIR型ノイズシェーピングフィルタに対応させるというように次数nの違いを利用して、必要な2つのノイズシェーピング特性を作るものである。
具体例として、式(2)で多重極の位置がz平面の原点にあり(分母の係数bを全て0とすることと同じ)、零点の位置は全てz平面の(1,0)点にある場合、すなわち式(2)の分子が(z−1)の形を備える場合において、次数4と次数2を選択し切り替えるものである。
この場合には、信号レベル「ロー」のときに選択・利用するノイズシェーピング特性(NS(z)と記す)は、(z−1)であり,NS(z)に対応するノイズシェーピングフィルタの乗数係数の組(α、β)=(al,al,…,al),(bl,bl,…,bl))は、al=4、al=−6、al=4、al=−1であり、blはすべて零である。また、信号レベル「ハイ」のときに選択・利用するノイズシェーピング特性(NS(z)と記す)は、(z−1)であり,ノイズシェーピングフィルタの乗数係数の組(α、β)=((ah,ah),(bh,bh))は、al=2、al=−1、であり、bhも全て零である。これら乗数係数の組α及びαを、予め乗数係数選択器13(図5参照)に記憶させることによって、本実施例に係るΣΔ型ノイズシェーパの実現が可能である。
以上、信号レベルの絶対値を「ロー」「ハイ」の2レベルに区分して、そのレベルに応じてノイズシェーピングフィルタの特性を切り替える実施形態について説明してきた。しかし、これは説明を簡潔にするためであり、本実施形態の入力信号を2レベルに限定するものではない。
信号レベルを多レベル(mレベルと記す)に検出するmレベル検出器と、mレベルの検出結果に対応して予め設定されたm種の異なったノイズシェーピングフィルタ特性H(z)(j=1,2,…,m)に対応するm種の乗数係数の組(α、β)=((aj,aj,…,aj),(bj,bj,…,bj))(j=1,2,…,m)を乗数係数選択器に記憶させておき、サンプリング周期毎に入力信号のレベル検出結果に応じた乗数係数の組を選択してノイズシェーピングフィルタ17の動作をおこなわせることによって実現できることは明白である。多レベルの切替によって、より精細に量子化雑音を制御することができ、ノイズシェーピング特性の向上が期待できる。
次に第5の実施例として、第1の実施形態に係るΣΔ型ノイズシェーパを実装したディジタル・オーディオ機器について図9を参照して説明する。
図9におけるディジタル・オーディオ機器では、第1の実施形態に係るΣΔ型ノイズシェーパを適用した信号処理によって、CD、DVD等のディジタル記録媒体から再生されたPCM(Pulse Code Modulation)信号を、最終的にON,OFFスイッチング動作で増幅作用をするD級アンプに適した信号に変換している。
先ずCD、DVD等のディジタル記録媒体からの高精度(16〜24ビット)PCM信号が、オーバーサンプラ、インターポーレータを介してオーディオ帯域の何倍も高いサンプリング周波数をもつハイレートPCM信号に変えられる。
次に第1の実施形態に係るΣΔ型ノイズシェーパが、この高精度ハイレートPCM信号を入力信号として、D/D変換(再量子化)によって低精度(5ビット程度)のPCM信号に変換する。同時にこの時発生する量子化雑音の周波数スペクトルを高域に偏らせ、オーディオ帯域でのノイズを低減するという重要な役割も果たす。
ΣΔ型ノイズシェーパの出力信号である低精度PCM信号は、PWM(Pulse Width Modulation)変換器でPWM信号に変換され、ON,OFFスイッチング動作で増幅作用をするD級アンプを駆動し、電力増幅された信号はローパスフィルタを介してスピーカを駆動する。
第1の実施形態の説明で既述した通り、本ΣΔ型ノイズシェーパは、この実施例に示すように、オーディオ帯域の信号に適用するとき、変調率の向上、動作の安定化、量子化雑音の抑制に加えて、人の聴覚特性に適合してさらに量子化雑音の実質的低減効果が得られる。
従来技術のΣΔ型ノイズシェーパの原理的な構成図である。 ノイズシェーピングフィルタに次数nのFIRフィルタを用いた場合における、従来技術のΣΔ型ノイズシェーパの量子化雑音整形特性(横軸周波数)の説明図である。 従来技術のΣΔ型ノイズシェーパによる処理を行った量子化雑音を含んだ出力波形図である。 本実施形態に係るΣΔ型ノイズシェーパの基本的な構成図である。 本実施形態に係るΣΔ型ノイズシェーパにおいて、2つのノイズシェーピング特性が切り替えて用いられる様子を示した説明図である。 本実施形態に係るΣΔ型ノイズシェーパの動作特性を示す量子化雑音を含んだ出力波形図である。 本実施例に係るΣΔ型ノイズシェーパのブロック図である。 ノイズシェーピング特性を特徴付けるz平面上の零点、極を示した図である。 実施形態1に係るΣΔ型ノイズシェーパを組み込んだディジタル・オーディオ機器の構成図である。
符号の説明
10…ΣΔ型ノイズシェーパ
12…信号レベル検出手段
12a…信号レベル検出器
13…フィルタ特性制御手段
13a…乗数係数選択器
14…量子化器
15…加算器
16…加算器
17…ノイズシェーピングフィルタ

Claims (8)

  1. ノイズシェーピングフィルタを備えたΣΔ型ノイズシェーパであって、
    入力されるディジタル信号の各サンプリング周期での信号レベルを検出する信号レベル検出手段と、
    上記ノイズシェーピングフィルタの特性を、上記信号レベル検出手段の検出結果に対応して可変に制御するフィルタ特性制御手段とを備え、
    前記フィルタ特性制御手段は、サンプリング周期毎に、前記信号レベル検出手段のレベル検出結果に応じて、前記信号レベルが高い場合ほどノイズシェーピング特性の高域での伝達特性が抑制されるよう前記ノイズシェーピングフィルタ特性を制御することを特徴とするΣΔ型ノイズシェーパ。
  2. 前記ノイズシェーピングフィルタは次数nのディジタルフィルタであり、
    前記信号レベル検出手段は、前記信号レベルをm段階に区分して検出する信号レベル検出器であり、
    前記フィルタ特性制御手段は、予め記憶しておいたm個のノイズシェーピング特性に対応するm個のディジタルフィルタ乗数係数の組を用いて前記次数nのディジタルフィルタを制御することを特徴とする請求項1に記載のΣΔ型ノイズシェーパ。
  3. 前記m個のノイズシェーピング特性NS(jは1からmまでの整数)は、前記ノイズシェーピング特性NSの伝達関数のn重極の位置が、j(jは1からmまでの整数)に対応して、z平面の原点からm段階に実軸上を右側にシフトした位置にそれぞれ位置することで特徴付けられる請求項2に記載のΣΔ型ノイズシェーパ。
  4. 前記m個のノイズシェーピング特性NS(jは1からmまでの整数)は、該ノイズシェーピング特性NSの伝達関数のn重零点がz平面の(1,0)位置にあり、多重極の位置が、j(jは1からmまでの整数)に対応して、z平面の原点からm段階に実軸上を右側にシフトした位置にそれぞれ位置することで特徴付けられる請求項3に記載のΣΔ型ノイズシェーパ。
  5. 前記m個のノイズシェーピング特性NS(jは1からmまでの整数)は、該ノイズシェーピング特性NSの伝達関数の零点対がいわゆる零点シフトによってz平面の(1,0)から単位円上にシフトした位置にあり、次数nが奇数で単独零点がある場合にはその位置はz平面の(1,0)点にあり、z平面上の多重極の位置が、j(jは1からmまでの整数)に対応して、原点からm段階に実軸上を右側にシフトした位置にそれぞれ位置することで特徴付けられる請求項3に記載のΣΔ型ノイズシェーパ。
  6. 前記m個のノイズシェーピング特性NS(jは1からmまでの整数)は、該ノイズシェーピング特性NSの伝達関数の多重零点の位置がz平面の(1,0)点にあり、その次数nが、j(jは1からmまでの整数)に対応して、高次から低次へ設定されることを特徴とする請求項2に記載のΣΔ型ノイズシェーパ。
  7. 前記m種類のノイズシェーピング特性NS(jは1からmまでの整数)は、該ノイズシェーピング特性NSの伝達関数の零点対の位置がいわゆる零点シフトによってz平面の(1,0)点から単位円上にシフトした位置にあり、次数nが奇数で単独零点がある場合にはその位置はz平面の(1,0)点にあり、その次数nが、j(jは1からmまでの整数)に対応して、高次から低次へ設定されることを特徴とする請求項2に記載のΣΔ型ノイズシェーパ。
  8. 請求項1ないし7に記載のΣΔ型ノイズシェーパをD/D変換器として用い、人の聴覚特性を活用して雑音抑制の効果を高めたことを特徴とするディジタル・オーディオ機器。
JP2005186248A 2005-06-27 2005-06-27 Σδ型ノイズシェーパ Pending JP2007006317A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186248A JP2007006317A (ja) 2005-06-27 2005-06-27 Σδ型ノイズシェーパ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186248A JP2007006317A (ja) 2005-06-27 2005-06-27 Σδ型ノイズシェーパ

Publications (1)

Publication Number Publication Date
JP2007006317A true JP2007006317A (ja) 2007-01-11

Family

ID=37691460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186248A Pending JP2007006317A (ja) 2005-06-27 2005-06-27 Σδ型ノイズシェーパ

Country Status (1)

Country Link
JP (1) JP2007006317A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205923A (ja) * 2007-02-21 2008-09-04 Matsushita Electric Ind Co Ltd デルタシグマ変調器とそれを備えたda変換装置
JP2008252490A (ja) * 2007-03-30 2008-10-16 Toyota Infotechnology Center Co Ltd 無線機
JP2010145593A (ja) * 2008-12-17 2010-07-01 Sony Corp 情報符号化装置
JP2012522459A (ja) * 2009-03-31 2012-09-20 アギア システムズ インコーポレーテッド デルタシグマ変調器を用いてrf信号を直接合成するための方法および装置
EP2983296A4 (en) * 2013-05-07 2016-04-06 Zte Corp DELTA SIGMA MODULATOR AND MODULATION METHOD THEREFOR

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205923A (ja) * 2007-02-21 2008-09-04 Matsushita Electric Ind Co Ltd デルタシグマ変調器とそれを備えたda変換装置
JP4745267B2 (ja) * 2007-02-21 2011-08-10 パナソニック株式会社 デルタシグマ変調器とそれを備えたda変換装置
JP2008252490A (ja) * 2007-03-30 2008-10-16 Toyota Infotechnology Center Co Ltd 無線機
JP2010145593A (ja) * 2008-12-17 2010-07-01 Sony Corp 情報符号化装置
JP4735711B2 (ja) * 2008-12-17 2011-07-27 ソニー株式会社 情報符号化装置
US8311816B2 (en) 2008-12-17 2012-11-13 Sony Corporation Noise shaping for predictive audio coding apparatus
JP2012522459A (ja) * 2009-03-31 2012-09-20 アギア システムズ インコーポレーテッド デルタシグマ変調器を用いてrf信号を直接合成するための方法および装置
KR101593729B1 (ko) 2009-03-31 2016-02-15 에이저 시스템즈 엘엘시 입력 신호로부터 rf 신호를 합성하기 위한 방법, 델타-시그마 변조기 및 집적 회로
EP2983296A4 (en) * 2013-05-07 2016-04-06 Zte Corp DELTA SIGMA MODULATOR AND MODULATION METHOD THEREFOR

Similar Documents

Publication Publication Date Title
JP4221302B2 (ja) パルス幅変調信号を発生する方法および装置
JP6073907B2 (ja) デジタル・スピーカ・アレイ・システムのチャネル等化およびビーム制御方法およびデバイス
US8362936B2 (en) Circuit and method for optimizing dynamic range in a digital to analog signal path
JP4443591B2 (ja) 過負荷補償のフィードバックステアリングを用いたノイズシェーピング回路および方法ならびにそれを使用するシステム
US20050012545A1 (en) Device and method for signal processing
US9391633B2 (en) Digital-to-analog converter for reducing pop noise and harmonic tone and related converting method
WO2008150972A2 (en) Pulse-code to pulse width modulation signal conversion with continuously variable ratio between clock and sampling frequencies and applications hereof
JP2007006317A (ja) Σδ型ノイズシェーパ
US7062340B2 (en) Audio data processing systems and methods utilizing high oversampling rates
KR100514340B1 (ko) 디지털 데이터 변환 장치
JP2006526328A (ja) 適応的フィルタリング
JP2010068033A (ja) Fm送信回路及びオーバーサンプリング処理回路
JP2011029739A (ja) 信号処理装置
JP3909529B2 (ja) ディジタルフィルタ
WO2007069369A1 (ja) 信号処理装置及び信号処理方法
JP4688175B2 (ja) D級電力増幅装置
JP4901416B2 (ja) デジタルフィルタ装置
JP2004179739A (ja) デルタシグマ変調器、デルタシグマ変調器の切り替え方法、およびデジタルアンプ
JP2001237708A (ja) データ処理方式
JP2006503472A (ja) データコンバータ
JP2006523406A (ja) デジタル信号のボリューム制御装置
JP2010109402A (ja) Δς変調器
JP2006098717A (ja) デジタル信号処理装置
JP2018152637A (ja) Δς変調器
JP2003348178A (ja) データ処理装置、プログラムおよび記録媒体、並びに、それを用いたパルス幅変調装置