JP2006517380A - 励磁回路および、磁束切替モーターの制御方法 - Google Patents

励磁回路および、磁束切替モーターの制御方法 Download PDF

Info

Publication number
JP2006517380A
JP2006517380A JP2006503344A JP2006503344A JP2006517380A JP 2006517380 A JP2006517380 A JP 2006517380A JP 2006503344 A JP2006503344 A JP 2006503344A JP 2006503344 A JP2006503344 A JP 2006503344A JP 2006517380 A JP2006517380 A JP 2006517380A
Authority
JP
Japan
Prior art keywords
motor
circuit
switching
signal
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006503344A
Other languages
English (en)
Inventor
ゴルティ,バヌ
Original Assignee
ブラック アンド デッカー インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラック アンド デッカー インコーポレイテッド filed Critical ブラック アンド デッカー インコーポレイテッド
Publication of JP2006517380A publication Critical patent/JP2006517380A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/092Converters specially adapted for controlling reluctance motors
    • H02P25/0925Converters specially adapted for controlling reluctance motors wherein the converter comprises only one switch per phase
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time

Abstract

磁束切替モーターの励磁回路である。該回路はブリッジ整流器のDC側を結ぶ低い値のフィルムコンデンサを含む。複数の電子切替は、マイクロコントローラによって制御されるPWM制御スキームおよびシングルパルス制御スキームに沿って、モーターの電機子巻線によって電流を切り替えるためにHブリッジ形式に配置されている。始動ダイオードは、該モーターの界磁巻線に配置され、モーターの始動状態が完了した後回路外で電気的に切り替えられる。該回路は界磁巻線を通じて、始動中に、モーターのさらなる定常性およびさらなる早期始動を増進させるために電機子エネルギー再循環を実行する。フィルムコンデンサの使用は、回路の力率を促進し、調波のAC電源への導入を止めるのを助け、EMI低減を補助する。逆整流は該モーターが非作動にされたとき即時停止を行うために用いられる。

Description

発明の詳細な説明
本発明は、電動機の励磁回路に関するものであり、より詳細には、励磁回路および、磁束切替モーターの始動と動作とを制御するための励磁回路および制御方法に関するものである。
磁束切替モーターは、巻線が無く突起した磁極回転子と、完全に調整されて固定子上に設けられた二組の巻線とによって特徴付けられる。これら巻線の組の一方、即ち界磁巻線は、実質的に単方向電流が流れる。巻線の組の他方、即ち電機子巻線は、双方向電流によって励磁され、その極性は回転子の位置によって決定される。
磁束切替モーターは、大型家庭用電化製品や、テーブルのこぎりやマイターのこぎり等のような小馬力の出力よりも大きな出力を要する電動工具を含む多種の応用例に用いられるのが好適である。磁束切替モーターはまた、ユニバーサルモーターに使用されるブラシおよび従来型の整流子がないことから、のこぎりのような電動工具に非常に有効に使用される。ブラシがないこと、および、該ブラシと整流子との間の機械的接触がないことは、密閉モーターに、粉塵に対する高い耐性を与えている。この粉塵は、一方では、従来型のユニバーサルモーターのブラシおよび整流子の動作に影響を及ぼすものである。このようなモーターはまた、整流子およびブラシがモーターの整流に必要とされる場合に通常起こる擦り切れがないことから、長寿命であり、定期的な修復および/または点検をほとんど必要としない。
磁束切替モーターとともに、一対の電子切替の使用を通じて、このようなモーターを電子的に整流することは、一般的である。該電子切替は、以下の方法における形式のコントローラーを介して制御される。この方法とは、一つ以上の電機子巻線の一つまたは二本巻き電機子巻線の異なる部分を通る電流の方向を、モーターの整流のために制御できるというものである。
多くの従来型の整流回路は、電流を流す経路を提供するための「スナバ」回路を、電子切替がオフにされ、該モーターを整流するように使用する必要があった。しかしながら、このようなスナバ回路は、電機子巻線の一つまたは単一の二本巻き巻線部分を通して電流が切り替えられる度に、浪費電力となる多量の電力を消耗する。このような手法の銅線使用もまた非常に少ない。
近年の磁束切替モーターの励磁回路もまた、回路の整流部分の出力に設けられたアルミニウム電解コンデンサを必要とする。それは安定した直流電圧を生成するためであり、かつ、モーターの整流中に生成された過渡成分を制御するためである。しかしながら、典型的には「バルク」コンデンサと呼ばれるアルミニウム電解コンデンサがないと、待機状態からの磁束切替モーターの始動は非常に遅く、かつ一定ではなくなるであろう。加えて、このようなバルクコンデンサがないと、モーターの動作速度に達するまでに必要とされる時間が許容できないほど長くなってしまう。テーブルのこぎりやマイターのこぎりといった電動工具など様々な適用例において、モーターの動作速度に達して使用できるまで、数秒またはそれ以上待機しなければならなかった。
しかしながら、そのようなバルクコンデンサはまた、モーターが電流保護分岐回路から引き出すことができる電力を削減する、典型的には0.75−0.70の低い力率を設定する。バルクコンデンサはまた、比較的大きく、プリント回路基板上における容積を非常に使用してしまい、さらに寿命に制限がある(一般的には約2000時間)。さらにバルクコンデンサは、振動に弱く、したがって電動工具における使用にはあまり適さない。またさらに、バルクコンデンサはAC電源への調波の影響を緩和することができない。これは実際、アメリカ合衆国では重大な検討事項ではないが、一方ではヨーロッパでのAC電源への調波の導入は、非常に深刻な検討事項であり、ヨーロッパにおいて使用されるモーターの励磁回路を設計する場合に考慮される必要がある。
したがって、以下に示すような磁束切替モーターのための励磁回路を提供するが極めて好ましい。それは、複数の電気的スイッチと、電気的にモーターを整流するスイッチング制御スキームとの構成を用いて、電機子巻線を通る電流の再循環を提供する励磁回路である。上述したスイッチング制御スキームおよびスイッチの構成の使用を通して従来型スナバ回路に対する要求を除去することもまた関連する目的である。
また本発明の他の目的は、該励磁回路の出力に交差して設けられて、従来のバルクコンデンサよりも比較的小さなフィルムコンデンサを使用するようにした磁束切替モーターの励磁回路を提供することである。従来のバルクコンデンサよりもフィルムコンデンサを使用することにより、回路の力率をかなり増進することができる。加えて、該回路によってAC電源へ戻される調波をかなり低減することが可能となる。また、EMI(電磁波妨害)の軽減に対しても前向きに寄与する。
また本発明の他の目的は、モーターの電機子巻線の逆整流をもたらすために制御される切替回路を使用するようにした磁束切替モーターの励磁回路を提供することである。さらにこれによってモーターがオンからオフになった場合に即時に停止できるようになる。このような特徴は、磁束切替モーターがテーブルのこぎりやマイターのこぎりや回転式ハンマー等の様々な電動工具に用いられる場合にきわめて望ましい。
さらに、電動モーターがのこぎり、ドリル、サンダー、ルーター等のような電動工具に使用されたときの他の検討事項は、工具が初めからAC電源にプラグで接続されているとき使用者が指を電源スイッチ(例えばオン/オフトリガ)の上に置いた場合の該電動工具の予期せぬ始動である。このとき、工具の電源コードがAC電源出力にプラグで接続されている一方で、使用者がオン・オフスイッチに関与していることに気づいていない場合、工具が突然始動すると使用者を驚かせることになる。AC電源が初めに提供されたとき、該モーターを電子的に整流する電子制御装置が、工具のオン/オフスイッチの位置を監視するために使用可能であるが、そのような目的のために別のスイッチ監視回路を提供することはさらに望ましい。したがって、電子制御装置が故障し、AC電力が電動工具に初めに提供されたときオン/オフスイッチがオン位置にあることを検知しない場合であっても、独立した該スイッチ位置監視回路はこの状態を検出できる。
上述した目的、および他の目的は、本発明の好ましい実施形態にて、磁束切替モーターの励磁回路によって与えられている。励磁回路は、切替回路を含む。該切替回路は、磁束切替モーターの電機子巻線とともにHブリッジ構成を構成した複数の電子切替素子を含む。モーターを整流している間の電機子電流の再循環を可能にするために、ダイオードのようなバイパス要素を有する電子切替素子が少なくとも一つ選択される。これは、従来型スナバ回路の必要性をなくし、モーターのトルク/速度性能を向上するものである。
励磁回路はさらに、従来のバルクコンデンサではなく、該回路の整流部の出力に交差して設けられたフィルムコンデンサを含む。フィルムコンデンサは、励磁回路に電力を与えるAC電源に見られる調波を低減する一方で、回路の力率をかなり向上させる。
励磁回路はさらに、電子切替装置の切替を制御するコントローラーを含む。好ましい構成において、該コントローラーは、電子切替に提供される切替信号の負荷サイクルを制御するために、パルス幅変調(PWM)制御スキームがシングルパルス制御と組み合わされて実行されるマイクロプロセッサーを含む。コントローラーをPWM制御スキームに沿って使用することは、実行されるトルク/速度プロファイルの変更をさらに可能にし、モーターそれ自体はまったく改変することなく単一の磁束切替モーターの性能特性を様々な応用に用いることができる。該コントローラーとともに使用されるソフトウェアのみの改変で、編成されるモーターのトルク/速度プロファイルに、モーターが使用される特定工具または複数の特定工具に対するモーターの最適性能を実現させる。
選択的な好ましい実施形態にて、本発明は、AC電力が電動工具に初めに提供されたときシステムに実装された電動工具のオンオフスイッチが「オン」位置にあるかどうかを監視する、独立したオンオフスイッチ監視回路を盛り込んでいる。AC電力が初めに提供されたとき、オン/オフスイッチ(例えばオン/オフトリガ)が「オン」位置に保持されている場合、実際この状態は即時に検知され、モーターを電気的に整流するために使用される電力切替要素を非作動にするためにラッチ回路が用いられる。この例において、使用者はオン/オフスイッチを解除し、モーターの電源が入る前にスイッチを再び係合する必要がある。電力が提供されたときに該スイッチが係合されていない場合、モーターは該監視回路から妨害されることなく整流されることができる。
本発明のさらなる適用領域は以下に記載する詳細な説明から明らかとなるだろう。本発明の好ましい実施形態を示した詳細な説明および実施例は、説明のみを目的としており、本発明の範囲を限定するものではない。
本発明は、詳細な説明および付属図面によってより理解されるだろう。
図1は、本発明の好ましい実施形態における励磁回路のブロック概略図である。
図2は、図1の励磁回路のHブリッジ切替回路を詳細に示した概略回路図である。
図2aは、界磁巻線全体からダイオードを除いた選択回路の概略回路図である。
図3は、モーターによって生成された位置センサー出力信号およびバックEMFの図であり、また用いられるPWM切替信号の進行を表す図である。
図4a〜4dは、回転子位置センサー出力波形に対するPWM切替信号のグラフであり、動作の様々な始動モード中のモーター速度に応じた負荷サイクルにおける変化を簡略的に示したものである。
図4eは、モーター速度に対する単一のパルス切替信号のグラフである。
図5は、モーター速度に関して本発明のシステムにより導入される例示的なPWM負荷サイクルプロファイルのグラフである。
図6は、モーター速度に対するPWM負荷サイクルの全体的なエンベロープのグラフである。
図7は、始動中におけるAC線電圧に対するPWM負荷サイクル変調のグラフである。
図8は、工具のAC電源コードが初めにAC電源に接続されているときに工具のオン/オフスイッチ(例えばオン/オフトリガ)が閉鎖されていた場合、電力が電動工具のモーターに供給されないことを保証する非励磁回路の概略図である。
以下に記載の好ましい実施形態は、実際、単なる一例であって、本発明およびその応用と使用とを限定するものではない。
図1は、本発明の好ましい実施形態における励磁システム10が示したものである。一般的に励磁システム10は、磁束切替モーター14に接続した電力切替回路12を備えている。該モーター14は、複数の磁極を有する固定子と、完全に調整された界磁巻線と、完全に調整された電機子巻線とを有する従来型の磁束切替モーターを備える。上記複数の磁極は、好ましくは四つである。界磁巻線および電機子巻線の巻数は変化するが、一実施形態において、モーター14は、巻線当たり40巻を有する界磁巻線および巻線当たり20巻を有する電機子巻線を備えていることが好ましい。一実施形態において、電機子巻線を二つの平行位置に配置する結果、該固定子は結果として生じる一対の磁極を有することになる。
モーター14はまた、位置センサー16によって回転位置を監視される回転子を有する。該センサー16の出力信号は、マイクロプロセッサーのようなコントローラー18に提供される。様々な事象を該コントローラー18に知らせるためのコントローラー18への情報入力のために複数の機械的スイッチ使用することができる。様々な事象とは、例えば、該モーター14を始動させるためのオン/オフトリガスイッチ20aの作動のようなものである。該コントローラー18は、駆動回路22に提供される切替信号を生成する。駆動回路22からの出力は、電力/切替回路12の切替要素を制御するために使用され、モーター14を機械的に整流する。
励磁システム10が様々な電動工具に広く用いられるであろうことが予想され、特徴的な実施はテーブルのこぎりやマイターのこぎりとの接続に関連している。この実施において、モーター14がテーブルのこぎりモードまたは、マイターのこぎりモードのどちらに使用されているかをコントローラー18に信号で伝えるために典型的に複数の外部スイッチが設けられる。この情報から、コントローラー18は、駆動部が特定の好ましいトルク/速度性能曲線を提供することによって、モーター14の整流を制御できるように、駆動部22へのその出力信号を改変することができる。
冗長切替検出回路部24は、外部スイッチ20の作動を監視するために備えられることが望ましい。この回路24は駆動部22に、一つ以上の外部スイッチの差動を示す信号を提供する。駆動部22がモーター14を始動させるための適当な信号を生成する前に、冗長切替検出回路部24からだけでなく、コントローラー18からも、駆動部22は適切な信号を受信する。したがって、冗長切替検出回路部24は、コントローラー18がいかなる誤作動を起こしても、それ自体からモーター14を作動させる信号が駆動部22に伝達されるのを防ぐことを保証する安全装置としての役割を果たす。選択的データ収集回路26は、EEPROMに工具使用データを格納するために用いられることが好ましい。
図2は、該システム10の電力/切替部分12を詳細に示したものである。図2の概略図には、冗長切替検出回路24と、外部スイッチ20と、駆動部22と、データ収集回路26とは含まれていない。該モーター14は、界磁巻線28および電機子巻線30により極めて簡潔な形式で示されている。AC電源32は、交流入力を全波ブリッジ整流回路34に供給する。フィルムコンデンサ36は、整流回路34の出力(すなわち直流側)と交差して結合されるために、直流レール33aおよび33bを跨いで結合される。好ましい一形態において、フィルムコンデンサ36は、約10μfd〜15μfd、より好ましくは約12.5μfdの静電容量を有する金属化ポリプロピレンフィルムコンデンサを含むことが好ましい。その値は、EMIテストおよび調波テストによって得られる。
始動ダイオード38は、リレー40の出力側の一対のスイッチ接触部40aを介して界磁巻線28に連結される。始動ダイオード38およびリレー40は、トライアック出力またはサイリスタ出力の光学スイッチまたはパルス変成器によってゲートされたサイリスタまたは他の適切な半導体によって置換できる。電機子エネルギー回収コンデンサ42はまた、直流レール33aおよび33bと連結される。電機子エネルギー回収コンデンサ42は、約10μfd〜15μfd、より好ましくは12.5μfdの値を有することが好ましい。
ダイオード38は、モーター動作が始動モードなのか作動モードなのかに基づいて、回路に該ダイオードを保持するか、または回路から該ダイオードを取り除くために、リレー接触部40aと組み合わせて用いられる。選択的な実施形態はダイオードの代わりにサイリスタ35を用い、リレーの代わりにパルス変成器35a(図2a)を用いる。両実施形態とも本質的に同じように機能する。
さらに、図2を参照すると、電力/切替部分12は電機子巻線30にHブリッジ形式に接続されている複数の電子切替装置44、46、48、および50を含んでいる。電子スイッチ44〜50はそれぞれ適当な電子切替装置のあらゆる形態を含むが、好ましい一形態において、スイッチ44〜50は、それぞれ絶縁ゲートバイポーラトランジスタ(IGBT)を含む。なおまた、それぞれのスイッチ44〜50は、一般的に「フリーホイール」ダイオードといわれているそれぞれのダイオード44a〜50aを含んでいる。これらの「フリーホイール」ダイオード44a〜50aは、該モーター14の始動中に電機子エネルギーの再循環を促進する。この特徴について詳細に説明する。
まず、スイッチ44〜50は、スイッチ44および46を含む第一対、スイッチ48および50を含む第二対という二対で制御される。スイッチ44〜50のそれぞれのゲートは、駆動部22を介しコントローラー18と連結する。スイッチ44および48のそれぞれは、パルス幅変調速度(PWM)制御スキームまたはシングルパルス制御を用いることによって、検知されたモーター速度に依存したコントローラー18によってオンされる。スイッチ46および50は、シングルパルス制御スキームによってのみ制御される。
該コントローラー18は、位置センサー16から、モーター14の回転子52の回転位置を示す信号を受信する。好ましい一形態において、該位置センサー16は光学センサーを含む。テキサス州、キャロルトンの株式会社オプテックテクノロジー(Optek Technology, Inc.)製のスロット光学スイッチは、特にシステム10に適して使用することができる。位置センサー16は、複数の異なる構成要素によって形成することができ、例えば磁気スイッチであれば、回転子の位置を示すことができる。
図3は、図2に示される回転子52の各磁極52aの位置を検知する該センサー16によって生成される波形54を示したものである。各磁極52aの検出により、一般的な方形波パルスの正方向の前縁56が生成される。四磁極回転子の360°周期ごとに、四つのパルスが生成される。したがって、各パルスの幅は四磁極モーターに対して、約45°の機械的角度となる。波形54の周波数は、検知されたモーター速度に応じて増減する。
作動モード
該システム10は、始動中に過剰な電流になることなく、該モーター14が最初に始動されて定格モーター速度に到達するときに順次実行される複数の作動モードが実装されている。定格モーター速度は、約15,000rpmが好ましい。これら四つのモードについて以下に1〜4に分けて説明する。
1.初期始動モード(約0〜450rpm)
図2および図4を参照すると、モーター14の初期始動中、AC電源32は、整流器34の入力側へ交流電力を供給する。好ましい一形態において、該交流電力は230ボルト交流信号である。整流器34は、整流されて、DC母線33aおよび33bに跨る交流電力を生成する。該モーター14が初期始動されたとき、もしセンサー出力波形54がロジック「1」(すなわち「ハイ」)レベルであったならば、コントローラー18は、電機子巻線30を通って矢印58の方向へ電流を流すように、スイッチ44および46をオンにする。回転子52は好ましくは、モーター14の出力軸押し付けられるか、または結合されて、電機子巻線30によって生成されるバックEMFが正であると知られるようにセンサー16に対して位置決めされる。したがって、ポジティブトルクを得るために、電流は電機子巻線30を通って矢印58の方向へ流れる必要がある。
該モーター14が初期始動されると、コントローラー18からの信号に応答して、始動ダイオード38は、スイッチ接触部40aを閉鎖したリレー40の作動によって、界磁巻線28を横切る形で配置される。これにより、界磁電流が始動段階の間に不連続となることがないように、界磁巻線28を通る界磁電流の再循環のための通路が提供される。四番目のセクションでさらに後述するように、一旦モーター14が動作すると、少なくとも約15,000rpmの速度であれば、始動ダイオード38は、リレー40を非作動化する開いた接触部40aによって回路12から取り除かれる。これは、モーターの高性能および高出力の結果によるモーターの最適性能を保証するものである。
初期始動モードの間、波形54がロジック1レベルを示す場合に、PWM切替信号60(図4a)はスイッチ44のみに提供される。スイッチ46はコントローラー18によって「オン」状態に維持される。同様に、対となっているスイッチ48および50が、コントローラー18によってオン状態に切り替えられる(図4bに示されているように波形54がロジック0レベルの場合)場合、PWM切替信号60を受信するのはスイッチ48のみであり、スイッチ50は対となっているスイッチ48および50がコントローラー18によってオフにされるまで、コントローラー18によって絶えずオン状態に維持される。このスキームは、ここに説明する始動モード全てを通して実行される。
ここに説明する始動モード全てを通して、スイッチ44および48に供給されるPWM切替信号60の周波数は約5kHz(周期200マイクロ秒)であることが好ましく、改変されるのは(図5に示されているように)PWM切替信号60の負荷サイクルだけである。しかしながらまた、この5kHzのPWM切替信号60は所定の応用に適用される場合に適宜その周波数を増減される。
初期始動モードの間(すなわち0〜450rpmの間)では、コントローラー18によって確実に検出されるには、モーター速度が遅すぎる。この範囲のモータ速度では、PWM切替信号60は、好ましくは約10〜25%の範囲、より好ましくは20%の一定の(すなわち固定された)負荷サイクルを有している。これは、図5に曲線70の部分70aに図示されており、このとき固定された負荷サイクルは20%である。図4Aは、約200rpmのモーター速度での制御信号を示すものである。したがって、波形54は75ミリ秒の周期を有する。波形54がロジック1レベルである間(約37.5ミリ秒)、約188PWMサイクルがスイッチ44のゲートに送られる。図5に示すように、これらPWMサイクルの負荷サイクルは、この低いモータ速度においては約20%しかないが、図4AのスケールになるとPWMパルスの負荷サイクルは識別できない。
さらに図4aを参照すると、PWM切替信号60はまた、位置センサー16によって生成される方形位置センサー出力波形54に関連して制御される。PWM切替信号60は、位置センサー16によってもたらされる各々のロジック1レベルパルスにより形成されるエンベロープの中で適用されるように制御される。なお「エンベロープ」という語は、PWM切替信号60が適用される位置センサー出力波形54のオン時の部分(すなわち周期)を意味する。すなわち、図4aにおいて、PWM切替信号60は、位置センサー出力波形54の各「オン」パルスの周期と一致したエンベロープを有するように見える。なお、図4aはトップスイッチ44に対するPWM信号のみを示す。トップスイッチ48に印加されるPWM信号は、波形54がロジックレベル0であるときに生じる。この波形は図4bに示す。
さらに始動モードにおいて重要な特徴は、モーターが非作動(すなわち待機)状態から作動する場合には毎回提供される逆「キック」(すなわちパルス)である。上述したように、コントローラー18はまず、位置センサー出力波形54から、モーター14を始動回転するように制御するためには、スイッチ44および46とスイッチ48および50とのどちらを制御すればよいのかを決定する。上述した例では、コントローラー18はまず、スイッチ44および46がパルスされる必要があると決定する。それに応じて、スイッチ44を「オン」および「オフ」にパルシングし、かつモーター14の回転を開始するためにスイッチ46をオンする直前に、コントローラー18は、一対のスイッチ44および46または一対のスイッチ48および50のうち、検知された回転子の位置から見て通常オンになっている一対とは逆の一対をオンすることによって、少なくとも一つのパルスをモーター14に印加する。すなわち、この例では、波形54が始動時にロジック1レベルであるため、コントローラー18はスイッチ48および50に好ましくは8〜10ミリ秒間ほどパルスを印加する。これにより、モーター14が始動を困難にする回転位置に位置する場合にモーター14を確実に始動するために、モーター14にごく小さな逆パルスを提供することになる。この瞬間的な逆パルスはモーター14がオン/オフトリガスイッチ20aを介して初めに始動される際に毎回印加される。
スイッチ44にPWM切替信号60を印加しているときに、スイッチ46を絶えずオンに維持すると、PWM切替信号60が印加されている間にスイッチ44が瞬間的にオフにされるときに、スイッチ46と、スイッチ50のフリーホイールダイオード50aと、電機子巻線30とを通る電機子電流の再循環がさらに可能になる。また同じく、対となったスイッチ48および50がコントローラー18によってオンにされていると、PWM切替信号60が印加されている間にスイッチ48が瞬間的にオフになったときに、スイッチ50と、スイッチ46のフリーホイールダイオード46aと、電機子巻線30とを通って電機子電流の再循環が生じる。
さらに、位置センサー出力波形54が全て移動した後で、信号60がスイッチ44または48の一方にその後印加されるときに、PWM切替信号60の数サイクルにおいて電機子電流の再循環が生じる。したがって、波形54の次の逆方向の縁が検出されると、スイッチ44はオフになり、その後スイッチ50がオンになる一方で、関連するスイッチ46はオンのままである。スイッチ46および50の両方は、スイッチ46がオフになり、スイッチ48がオンになる一定の時間、好ましくは100マイクロ秒、オンのままである。波形54の次の正方向の縁が検出されると、スイッチ48はオフになり、スイッチ50はオンのままであり、スイッチ50が再度オフになり、スイッチ44がオンになる一定の時間、好ましくは100マイクロ秒、スイッチ46がオンになる。電機子電流の再循環が要求されている限りこの態様は継続する。この電機子電流の再循環により、バルク直流コンデンサがなくとも、モーター14のより一様で迅速な始動が可能になる。電機子電流の再循環により、Hブリッジ切替構成はスナバ回路を必要としない。電機子電流の再循環はまた、モーター14の顕著な効率化を提供している。
初期始動モードを継続している間に、波形54の後縁部分62に示されるように、波形54がロジック0レベルに移行していることをコントローラー18が検知すると、スイッチ44および46がコントローラーによってオフになり、スイッチ48および50がオンになる。PWM切替信号60がスイッチ44および48に印加される前に、数サイクルのPWM切替信号60の間、再度、電機子電流の再循環が生じる。スイッチ48はその後、位置センサー出力波形54がロジックローレベルである間、何度かパルスオンされる。スイッチ48がパルスオンされると、スイッチ48を通して、矢印64の方向に電機子巻線30を通して、スイッチ50を通して電流が流される。スイッチ48がパルスオフされると、スイッチ46のフリーホイールダイオード46aは、電機子電流の再循環を許可する。
コントローラー18は、波形54がロジック0レベルに移行していることを検知すると、スイッチ44および46をオフにすることを決定し、かつ、スイッチ48および50をオンにすることを決定する。波形54がロジック0レベルにあるということは、モーター14のバックEMFがまさにネガティブであることを示し、かつ、モーター14から正のトルクを再度得るために矢印64方向への電流が必要となるだろう。該バックEMFは、位置センサー出力波形54に重ねあわされる波形66によって図3に示されている。一旦コントローラー18によって波形54の他の前縁56が検知されると、スイッチ44が所定の始動PWM負荷サイクル(すなわち約20%が好適)に応じたPWM切替信号60によって何度かパルスオンされるとともに、該コントローラーはスイッチ48および50をオフにし、スイッチ44および46を再度作動する。この工程はモーター14が、コントローラー18によって確実に決定することが可能である所定の速度(すなわち約450rpmを超える速度)に達するまで連続して繰り返される。
始動段階中の電機子エネルギーの再循環は、また、電機子エネルギー蓄積コンデンサ42を跨ぐ電圧を制御することを補助する。電機子エネルギーの再循環とともに、コンデンサ42を跨ぐ電圧は、230ボルトのAC入力信号が使用された場合、600ボルトよりも低く維持できる。界磁巻線28とともに、フィルムコンデンサ36および42を使用することはまた、EMIとAC電源に導入されるであろう過渡電流との低減を補助するパイフィルターを形成する。
2.第一中間始動モード
第一中間始動モードは、初期始動モードに続き、450rpmから好ましくは約6000rpm〜7500rpmの範囲に、より好ましくは6700rpmに延伸する。この始動モード段階の間では、PWM切替信号60の負荷サイクルはコントローラー18によって一般的にモーター速度に対して直線的に増加し、図5のグラフ70の70bの部分に示すように、約20%から約40%増加する。モーター14の速度が450rpmの速度を超えてもなお増加しているこの中間段階の間、電機子エネルギーの再循環はスイッチ44および48の切替を介して用いられる。図4Cは、約4000rpmのモーター速度での制御信号を示したものである。4000rpmでの波形54の周期は約3.75ミリ秒である。したがって、波形54のロジック1部分の周期は約2ミリ秒である。波形54のロジック1部分の間には、およそ9PWMサイクルがスイッチ44のゲートに印加される。これらのPWMサイクルの負荷サイクルは、およそ40%である。
3.第二中間始動モード
第二中間始動モードは、第一中間始動モードに続き、6700rpmのモーター速度から、14500rpmが好適となる。モーター速度が6700rpmに達すると、コントローラー18はPWM切替信号60のエンベロープ(波形54によって示される)を変える。具体的には、6700rpmの速度しきい値に達すると、PWM切替信号60に対するエンベロープは段階的に、位置センサー出力波形54の「オン」パルスの周期の区分まで減少される。波形54の該「オン」パルス幅に対する新しいエンベロープ幅の比の数値は、図6に示す速度の部分である。このエンベロープの低減は図4dに示され、PWM切替信号60は、位置センサー出力波形54の1パルスの「オン」周期によって定義されるよりも小さなエンベロープに含まれていることがわかる。図4Dは約10000rpmのモーター速度での制御信号を示したものである。10000rpmでの波形54の周期は約1.5ミリ秒である。したがって、波形54のロジック1レベル部分の周期は約0.8ミリ秒であるが、負荷サイクル制御(図6)はさらにそれを0.6ミリ秒に制限する。したがって、波形54のロジック1レベル部分の間、およそ3PWMサイクルがスイッチ44のゲートに印加される。これらのPWMサイクルの負荷サイクルは、およそ55%である(図5)。
この始動段階の間、PWM切替信号60の負荷サイクルは、6700rpmで40%から約11000rpmで最高の60%までモーター速度に対して一般に直線的に増加し続ける。図5のグラフ70の70c部分に示されるように、約11000rpmから14500rpmの間では、PWM切替信号60の負荷サイクルは一定に保たれる。しかしながら、図4dおよび図6に示されるように、PWM切替信号60に対するエンベロープは、位置センサー出力波形54の各「オン」パルスの周期の60%から80%まで継続して増加する。したがって、モーター速度が約14500rpmに達するまでに、PWM切替信号60の負荷サイクルは約60%の最大値となり、信号60に対するエンベロープは位置センサー出力波形54の各「オン」パルスのパルス幅の約80%となる。電機子エネルギーの再循環は約10000rpmの速度まで用いられ、その後は継続されない。
4.最終始動モード(動作の位相ロックモード)
最終始動モードは、約14500rpmから定格モーター速度までのモーター速度範囲をカバーする。定格モーター速度は、モーター14が使用される特定の工具に応じて変化するが、15000rpmから17000rpmの間が好適である。この速度範囲の初めでは、操作の位相ロックモードが開始され、定格モーター速度まで継続される。操作の位相ロック動作中、シングルパルス制御がスイッチ44〜50に用いられる。「シングルパルス」制御とは、PWM切替信号は用いずに、単一の継続した「オン」パルスが、位置センサー出力波形54の各「オン」パルスの期間に与えられるということを意味する。これは、図4eおよび図5に示されている。図4eは、位置センサー出力波形54の各「オン」パルスの約80%のエンベロープに対応する「オン」期間をそれぞれに有するパルス59aを含むシングルパルス切替信号59を示すものである。図4eに示されるように、約14500rpmから定格モーター速度の間、パルス59aの期間はこの80%エンベロープ値に保持される。約15000rpmにて、始動ダイオード38はシステムから切り離される。
始動モードのまとめ
上述した四つの始動モードを通して、PWM切替信号60またはシングルパルス切替信号59は、スイッチ44または48のうちのどちらか一方に印加されることがわかる。スイッチ46および50がそれぞれオンされると、それらは位置センサー出力波形54の各パルスの「オン」期間に同期して「オン」期間でシングルパルスを常に受信する。唯一の例外はモーター14への電力の初期印加である。
モーター14とともに使用される特定工具は、使用のために選択される最適モーター性能曲線に関係し得る。例えば、モーター14がテーブルのこぎりとともに用いられる場合、15000rpmから17000rpmの範囲、より好ましくは約17000rpmの定格モーター速度が一般に選択される。また、モーター14がマイターのこぎりとともに用いられる場合、20000rpmから25000rpmの範囲、より好ましくは約22500rpmの定格モーター速度が一般に好ましい。正確な負荷サイクル/モーター速度の関係もまた、モーター14とともに使用される特定工具によって変化する。本明細書中で説明している励磁システム10では約14500rpmの位相ロックしきい値が使用されているが、異なるモーター速度を位相ロックしきい値に設定することもできる。しかしながら、AC入力電源に過渡スパイクを生じさせる電源誘導電圧効果を避けるために、動作の位相ロックモードに入る前に、モーター速度が少なくとも約7000rpmの速度に達するまで待機することが好ましい。モーター14がロードされるのは、システム10が動作の位相ロックモードに入るよりも十分前を含めてモーター始動動作中の如何なる時点であってもよい。
PWM切替信号60の負荷サイクルと、それが適用される間のエンベロープと、位相ロック動作に入るときの正確な速度とを制御することによって、幅広い種類のモータートルクプロファイルが実行できる。これらの様々なモータートルクプロファイルは、テーブルのこぎりや、マイターのこぎりや、その他様々なモーター駆動工具のような特定工具のモーターの作動を調整するために使用することができる。
逆整流を用いた制動動作
システム10のさらなる特徴は、モーター14が使用者によって「オフ」にされた場合、該モーター14の逆整流がモーターの即時停止に用いられることである。モーターの即時停止能力は多くの電動工具、特にテーブルのこぎりや、マイターのこぎりのような装置において、重要な検討事項である。
システム10は、制動動作中にスイッチ44〜50に印加されたPWM切替信号60に対して修正されたPWM周波数および負荷サイクルを使用する。図3において、制動中において、正のモータートルクを維持するために矢印58(図2)の方向への電流の流れを必要とする高ロジックレベル(前縁56によって示される)に位置センサー出力波形54が移行したことをコントローラー18が検知すると、それはスイッチ48および50をオンする。このことは負のモータートルクを生じさせる矢印64の方向への電流の流れ(図2)を引き起こす。この間にリレー40は、制動時間を最短(通常3〜4秒未満)に保つことを補助するために、ダイオード38をシステム10に戻す切替に使用される。正のモータートルクを維持するために電機子巻線30を矢印64の方向へ流れる電流を必要とする波形54の各パルスの後縁62が起こると、コントローラー18はスイッチ48および50をオフにし、スイッチ44および46をオンする。このことは矢印58の方向への電流の流れを引き起こし、回転子の回転の期間中に負のモータートルクを生成する。
他のPWMスキームも制動モードに使用して同じような結果が得られることがわかる。例えば、可変負荷サイクルPWMパルスは、固定された周波数で使用することができる。該PWMパルス幅は、モーター速度の機能として生成される。またさらに、PWM負荷サイクルプロファイルは、モーターの即時停止を達成するために(例えばドーム状対直線状)変更され得る。これらの例の全てにおいて、制動中に実行される該負荷サイクルプロファイルに対する制限要素は、電機子エネルギー回収コンデンサ42への電圧である。従来のアルミニウム電解コンデンサの替わりに定格電圧が高い(600ボルトが好適)フィルムコンデンサ36を設けたことが、本発明の制動スキームをきわめて画期的なものとしている。モーター14は、12インチ(30.48センチ)の刃を有するのこぎりを駆動するために使用された場合、位相ロックしきい値速度を超える速度から約4秒未満で停止することができる。
最適性能のための回転子位置センサー信号の前進
図3ではさらに、モーター14の最大性能を得るために、位置センサー16からの信号54は、モーター14によりバックEMFが生成され始めるまでに電機子巻線30における電流を決定するために、物理的にまたはコントローラー18のソフトウェアを介して少しずつ前進されねばならない。該バックEMFは、図3に波形66で示される。波形60aおよび60bは、前進が提供されながらスイッチ44および46とスイッチ48および50とをそれぞれ制御するために使用されるPWM切替信号を示している。間隔66aおよび66bは、それぞれ、PWM切替信号60aおよび60bに提供される前進の程度を示す。該PWM切替波形60aおよび60bのパルスをわずかな程度66aだけ前進させると、矢印58方向(図2)への電流が、バックEMFが正になり始めるまでに電機子巻線30を通して確立する。該PWM切替信号60bのパルスを間隔66bに応じて前進させると、矢印64方向(図2)への電流が、バックEMFが負になり始めるまでに電機子巻線30において確立する。
電機子巻線バックEMFに関して、回転子52に対する位置センサー16の物理的な配置を通して進み角が得られる例においては、モーター14が始動する際に回転子52がまちがった方向に動く可能性がある。これは、バックEMFがセンサー信号位置と同期しない領域(すなわち回転子52の前進を表す領域)において、回転子が回転を止めた場合に発生する。この問題の一つの解決策は、バックEMF波形66のゼロ交点と一致する正方向パルスを生成するように位置センサー16を配置すること、およびコントローラー18のソフトウェアに整流進み角を組み込むことである。しかしながら、ここでの制限因子はコントローラー18が周期測定を実行するのにかかる時間である。けれども、始動時におけるモーター14の一時的な後方回転の可能性を避けるために、ソフトウェアを通して整流前進を実行することが好ましい。
始動中の過渡電流の制限
始動時に考慮しなければならないもう一つの因子は、システム10がインピーダンスの高い「ソフト」電源とともに用いられるときにAC電源32に導入される過渡電流ピークの可能性である。モーター14が待機時から始動されたとき、バックEMFはゼロであり、突入電流が比較的大きくなり、結果としてAC入力電圧波形のピークにおいてより顕著な電圧過渡ピークが生じる可能性がある。前記整流回路34のDC側に典型的なバルクコンデンサがないため、この現象は場合によってはシステム10においてより顕著になるかもしれない。これらのピークは、PWMパルス幅およびPWM周波数に応じて、500ボルトの高さになる可能性がある。
始動中の突入電流を制限するため、かつ電力線インピーダンスの影響を低減するために、上述した始動モードに対する二つの改変が実行される。第一の改変は、低始動負荷サイクル(例えば約20%)の高位PWM周波数(例えば約20KHz)および、これに続く速度に対する負荷サイクルの緩慢な変化の使用である。第二の改変には、AC入力電圧波形に応じたPWM切替信号60の負荷サイクルの調整が含まれる。この方法は図7に示され、AC入力波形は参照番号72として示される。一旦正確なモーター速度情報がコントローラー18によって得られると(一般的には450rpm前後)、該コントローラー18は検知されたモーター速度に基づいたパーセンテージ値によって、スイッチ44および46とスイッチ48および50に提供されるPWM負荷サイクルを改変(すなわち低減)する。この負荷サイクルはその後、AC電圧波形72にしたがって、図7に示されるように、AC入力電圧ピークに達するときに負荷サイクル値が減少するような方法で、調節される。したがって所定のモーター速度にて、AC入力電圧波形72のゼロ交点における負荷サイクル値は最大になる(すなわち、ここに提供されたパーセンテージ低減をまったくしていない)。AC入力電圧波形が正ピークであっても負ピークであっても、負荷サイクルは最小である(0%である必要はないが)。AC入力電圧波形72のピークにて負荷サイクルを最小まで減少させるために使用される増倍率は、AC電源における過渡電流軽減によって指示される。
追加の動作的特徴
上記システム10によるモーター14の始動中に用いられるさらなる動作的特徴は、回転子52の瞬間移動の検知である。開始100ミリ秒以内に回転子位置センサー16が回転子52の位置の変化を検知しない(すなわち位置センサー出力波形54が変化しない)場合には、モーター14のオン/オフスイッチは毎回差動し(すなわちオン状態となり)、コントローラー18はモーター14の整流を継続しない。この例では、使用者はオン/オフスイッチを解除し、再びオンする必要がある。これはまた、モーター14へのダメージを防ぐことにも役立つ。
モーター14を保護する他の特徴には、負荷が生じている間(例えば、のこぎりで切り始めるときなど)モーターの速度を監視する上記コントローラー18も含まれる。速度が10000rpmを下回る場合、コントローラー18はモーター14をオフにする。使用者はその後、該モーター14が再始動される前にオン/オフスイッチを解除しなくてはならない。
非励磁特性
本発明の選択的な好ましい実施形態のシステム100は、図8に示されている。図8のシステムは非励磁回路を含んでいる。本質的に非励磁回路は、オン/オフトリガ20aの位置を監視し、且つAC電力がオン/オフトリガ20aを支えるシステム10に提供される場合、モーター14の始動を防ぐ役割を果たす。システム10と共通しているシステム100の構成要素は、システム10の説明に関連する番号を超える100から増加する参照番号によって示されている。また、システム100の動作および構成要素は、システム10に提供されたものと同一であるが、例外は、以下に説明する非励磁回路の動作である。
非励磁回路は、全波ブリッジ整流回路180と、抵抗器182aおよび182bを含む分圧回路182とを含んでいる。整流回路180の出力は分圧回路182と連結されている。分圧回路182は、回路線184を介して、コンパレータ188の入力186と連結されている。また、入力186に連結されているのは遅延コンデンサ190である。コンパレータ188の第二入力192は、基準しきい値電圧と連結されている。該コンパレータの出力194は、ラッチ回路198の第一入力196と連結されている。好ましい一形態においては、該ラッチ回路はマルチプレクサを含む。ラッチ回路198の第二入力200は、回路線202を介して、電動工具のオン/オフトリガスイッチ20aと連結されている。
図8ではさらに、上記ラッチ回路198は「動作可能/動作不可能」出力204を有する。出力204は、駆動部122と連結されている。好ましい一形態において、どのような適当な電力切替装置が実装されてもよいのだが、スイッチ44〜50のように、スイッチ144〜150はそれぞれ絶縁ゲートバイポーラトランジスタ(IGBTs)を含んでいる。該駆動部122は、各駆動サブシステムの作動を可能にするために使用される「動作可能/動作不可能」ピン(すなわち入力)をそれぞれに有する、複数の駆動サブシステムを含んでいる。例えば、動作可能/動作不可能ピンにおける高ロジックレベル信号は所定の駆動サブシステムを作動させ、一方低ロジックレベル信号は所定の駆動サブシステムを非作動にさせる。
操作において、システム100とともに使用される動力工具にAC電力が初めに提供されたとき、オン/オフトリガスイッチ20aが「オン」位置にある場合、低ロジックレベル信号が回路線202で生成される。また、コンパレータ188の出力も初めは低ロジックレベルにある。遅延コンデンサ190は、コンパレータ188の入力186にて該信号が最大値に達する前に、ラッチ回路198と、コンパレータ188と、他の電気部品とが充分に出力を増加できる、きわめて短い周期(数ミリ秒が好適)を提供する。
コンパレータ188が低ロジックレベル信号を生成すると、ラッチ回路198は入力196でこの低ロジックレベル信号を認識する。そのとき、オン/オフトリガスイッチ20aが閉鎖されている(すなわち「オン」状態にある)ことを示す低ロジックレベル信号を回路線202が供給している場合、該ラッチ回路198は、出力204で低ロジックレベル信号を生成する。入力が異なると、該ラッチ回路198の出力は低ロジックレベルでラッチされる。この低ロジックレベル信号は、駆動部122を構成する駆動サブシステムの動作可能/動作不可能ピンにそれぞれの供給される。これにより、スイッチ144〜150が切り替わりモーターを整流し始めることが防止される。たとえコンパレータ188の入力186において該信号がしきい値電圧よりも上のレベルに上昇し、コンパレータ188の出力が変化する場合でも、このことはラッチ回路198の出力204に影響を与えない。駆動部122を動作不可能にするためにラッチ回路の出力204が低ロジックレベルで一旦ラッチされると、コンパレータ188の出力194がさらに変化してもラッチ回路198の出力204の状態は変化しない。ラッチ回路198の出力204を変化させる唯一の方法は、使用者がオン/オフトリガ20aを瞬間的に充分に(オン/オフトリガスイッチ20aが「オフ」位置になるように)解放することである。するとトリガ20aで生成された「オン」信号は取り除かれ、オン/オフトリガ20aを再度「オン」位置に戻す。オン/オフトリガ20aが瞬間的に解放されると、回路線202において低ロジックレベル信号が取り除かれ、またその後、低ロジックレベル信号がラッチ回路198の入力200から取り除かれる。使用者がトリガ20aを解放し、その後戻す間、コンパレータ188の入力186に供給された信号は、しきい値電圧よりも上のレベルに上昇し、したがって高ロジックレベル信号を出力194で生成させる。このことは即時にラッチ回路198の出力204を高ロジックレベルに上昇させ、したがって駆動部122内の駆動サブシステムを動作可能にする。
逆に、AC電力が上記動力工具に初めに提供されたときオン/オフトリガスイッチ20aが閉鎖された位置に保持されていない場合、高ロジックレベル信号は、回路線202を介してラッチ回路198の入力200に供給される。ラッチ回路198の出力は初めは低ロジックレベルにあるが、入力186の電圧がコンパレータ188の入力192におけるしきい値電圧を上回ると、コンパレータ188の出力は高ロジックレベルに上昇する。この信号は、ラッチ回路198の入力196に供給される。この時点で、ラッチ回路の出力204は高ロジックレベルに上昇し、しきい値でラッチされる。出力204からの高ロジックレベル信号は駆動部122を動作可能にする。この時点でオン/オフトリガ20aを解放しても、ラッチ回路198の出力は変化しない。したがって、動力工具はその後、オン/オフトリガ20aによって通常の方法で電源を入れたり切ったりする。しかしながら、もしオン/オフスイッチ20aが「オン」状態に保持され、そしてAC電力が該工具に再度提供される間にAC電源が不注意により該動力工具から外されたら、システム100は、上述したように、該動力工具のモーター14の即時始動を防止する。
したがって、上述した非励磁回路は、AC電力が初めにシステム100に(それから動力工具に)提供されたときオン/オフトリガスイッチ20aが「オン」位置となる状況を監視し、且つ、該システム100に関連して誤って該工具の電源が入ることを防止する。重要なのは、コントローラー118から独立してこの監視機能を行う本質的に独立した回路を、該非励磁回路が形成していることである。したがって、コントローラー118の故障は、ここに説明したシステム100によって実行される監視機能を妨げることはない。
当業者には上述の説明から本発明の広範な教示が様々な形態で実行可能であることが理解されよう。したがって、本発明を具体例に関連して説明してきたが、本発明の真の範囲はそのように限定されるべきものではなく、明細書および特許請求の範囲を読み、図面を見ることによって当業者には他の変更例が明らかになるだろう。
本発明の好ましい実施形態における励磁回路のブロック概略図である。 図1の励磁回路のHブリッジ切替回路を詳細に示した概略回路図である。 界磁巻線全体からダイオードを除いた選択回路の概略回路図である。 モーターによって生成された位置センサー出力信号およびバックEMFの図であり、また用いられるPWM切替信号の進行を表す図である。 回転子位置センサー出力波形に対するPWM切替信号のグラフであり、操作の様々な始動モード中のモーター速度に応じた負荷サイクルにおける変化を簡略的に示したものである。 回転子位置センサー出力波形に対するPWM切替信号のグラフであり、操作の様々な始動モード中のモーター速度に応じた負荷サイクルにおける変化を簡略的に示したものである。 回転子位置センサー出力波形に対するPWM切替信号のグラフであり、操作の様々な始動モード中のモーター速度に応じた負荷サイクルにおける変化を簡略的に示したものである。 回転子位置センサー出力波形に対するPWM切替信号のグラフであり、操作の様々な始動モード中のモーター速度に応じた負荷サイクルにおける変化を簡略的に示したものである。 モーター速度に対する単一のパルス切替信号のグラフである。 モーター速度に関して本発明のシステムにより導入される例示的なPWM負荷サイクルプロファイルのグラフである。 モーター速度に対するPWM負荷サイクルの全体的なエンベロープのグラフである。 始動中におけるAC線電圧に対するPWM負荷サイクル変調のグラフである。 工具のAC電源コードが初めにAC電源に接続されているときに工具のオン/オフスイッチ(例えばオン/オフトリガ)が閉鎖されていた場合、電力が電動工具のモーターに供給されないことを保証する非励磁回路の概略図である。

Claims (44)

  1. 界磁巻線および電機子巻線を有する磁束切替モーターの励磁回路であって、
    AC入力信号を整流AC信号に変換する整流回路と、
    上記電機子巻線に接続され、上記整流AC出力に応答するHブリッジ切替回路と、
    上記切替回路の出力側に接続された電機子エネルギー回収コンデンサと、
    上記Hブリッジ切替回路の各切替要素のオンおよびオフ切替を制御するコントローラーとを備え、
    上記Hブリッジ切替回路は、上記モーターの動作の始動段階において、上記Hブリッジ回路の選択された切替要素および上記電機子巻線を通じて電機子電流の再循環を可能にする複数のバイパス素子を含む励磁回路。
  2. エネルギー再循環のために上記界磁巻線を跨いで接続された半導体素子と、
    上記モーターの動作の始動段階において上記界磁巻線を跨ぐ上記半導体を切り替えるために、上記コントローラーにより制御される切替素子とをさらに含む請求項1に記載の励磁回路。
  3. 上記切替素子は界磁エネルギーを再循環させるリレーを含む請求項2に記載の励磁回路。
  4. 上記バイパス素子はフリーホイールダイオードを含む、請求項1に記載の励磁回路。
  5. 上記コントローラーは、上記動作の始動段階において、選択された上記切替要素へパルス幅変調(PWM)切替信号を供給する、請求項1に記載の励磁回路。
  6. 上記コントローラーは、上記モーターがオフされると制動動作を行うように上記Hブリッジ切替回路を制御する、請求項1に記載の励磁回路。
  7. 上記整流回路の出力に接続されて、約10μfd〜15μfdの静電容量を有するフィルムコンデンサをさらに含む、請求項1に記載の励磁回路。
  8. 上記AC入力信号の上記励磁回路への供給を制御するオン/オフスイッチと、
    上記オン/オフスイッチが使用者によりオン位置に維持されているとき、上記AC入力信号が上記励磁回路へ供給されたか否かを検出して、上記AC入力信号が上記モーターを始動させることを防止する検出回路とをさらに含む、請求項1に記載の励磁回路。
  9. 上記検出器は、上記使用者が上記オン/オフスイッチをオン位置からオフ位置へと解放した後にのみ、上記モーターを始動させるために上記AC入力信号が上記励磁回路へ供給されることを可能にする、請求項8に記載の励磁回路。
  10. 上記検出器は、整流回路と、
    上記整流回路の出力に応答するコンパレータと、
    上記オン/オフスイッチと該コンパレータの出力との組み合わせに応答して、上記オン/オフスイッチの位置に応じて上記モーターがオンするように上記励磁回路を制御する信号を生成するラッチ回路とを含む、請求項8に記載の励磁回路。
  11. 上記整流回路に動作可能に接続された分圧回路と、
    上記コンパレータに供給される入力信号に時間遅延を提供し、これによって、上記オン/オフスイッチの上記部分が検知されるように上記励磁回路のその部分がオンになる期間を提供するために、上記コンパレータの入力側および上記分圧回路に接続されたコンデンサとをさらに含む、請求項10に記載の励磁回路。
  12. 界磁巻線および電機子巻線を有する磁束切替モーターの励磁回路であって、
    AC入力信号を整流AC信号に変換する整流回路と、
    上記電機子巻線に接続され、上記整流AC出力に応答するHブリッジ切替回路と、
    上記切替回路の出力側に接続された電機子エネルギー回収コンデンサと、
    上記Hブリッジ切替回路の切替要素それぞれのオン/オフスイッチングを制御するコントローラーと、
    上記コントローラーに動作可能に関連付けられ、使用者が上記励磁回路をオンおよびオフにするとき上記コントローラーに信号を送るために、オン位置とオフ位置との間で使用者による操作が可能なオン/オフスイッチと、
    使用者が上記オン/オフスイッチをオン位置にしたまま上記AC入力信号が上記励磁回路に最初に供給された場合、上記励磁回路の即時作動を避けるために、上記オン/オフスイッチの上記位置および上記AC入力信号の上記励磁回路への供給に応答する検出回路とを含む、励磁回路。
  13. 上記検出回路は、上記AC入力信号の上記励磁回路への供給および上記オン/オフスイッチの位置に応答するラッチ回路を含み、
    上記AC入力信号が上記励磁回路に最初に供給されたとき、上記使用者が上記オン/オフスイッチを上記オン位置に保持した場合、上記磁束切替モーターの整流を避けるために、上記ラッチ回路が信号を生成する、請求項12に記載の励磁回路。
  14. 上記Hブリッジ切替回路は、上記モーターの動作の始動段階において、上記Hブリッジ回路の選択された切替要素および電機子巻線を通る電機子電流の再循環を可能にする複数のバイパス素子を含む、請求項12に記載の励磁回路。
  15. 界磁巻線および電機子巻線を有する磁束切替モーターの励磁回路であって、
    AC入力信号を受け、整流したAC信号を一対のDCバスラインに発生させる整流回路と、
    上記DCバスラインに接続され、上記電機子巻線がHブリッジ回路の複数の選択された切替要素の間に接続されたHブリッジ切替回路と、
    上記DCバスラインに交差して結合され、かつ上記切替回路に交差して結合された電機子回収コンデンサと、
    上記Hブリッジ切替回路を制御する切替信号を生成するコントローラーとを備え、
    上記Hブリッジ切替回路は、上記モーターの動作の始動段階において、上記電機子巻線を通る電機子電流の再循環を可能にする複数のバイパス素子を含み、
    上記コントローラーは、選択された上記切替要素を制御するパルス幅変調(PWM)切替信号を生成する磁束切替モーターの励磁回路。
  16. 上記DCバスラインに接続されたフィルムコンデンサをさらに含む、請求項15に記載の励磁回路。
  17. 上記モーターの動作の始動段階において、上記界磁巻線に接続された電流バイパス素子をさらに含む、請求項15に記載の励磁回路。
  18. 上記電流バイパス素子はダイオードを含み、
    上記ダイオードは、上記始動段階において、電流経路を提供するために上記界磁巻線を跨いで選択的に切り替えられる、請求項17に記載の励磁回路。
  19. 上記界磁巻線を跨ぐ上記ダイオードを選択的に切り替えるために、上記コントローラーに応答するリレーをさらに含む、請求項18に記載の励磁回路。
  20. 上記コントローラーは、上記モーターがオフにされると、改造式制動動作を実行するために上記Hブリッジ回路を制御する、請求項15に記載の励磁回路。
  21. 界磁巻線および電機子巻線を有する磁束切替モーターを励磁する方法であって、
    AC電源からAC入力信号を供給する工程と、
    上記AC入力信号を受け、整流したAC信号を一対のDCバスラインに生成するために整流器を使用する工程と、
    上記電機子巻線を通じて上記整流されたAC信号の電流を選択的に方向付けるために、上記電機子巻線と動作可能に結合されたHブリッジ切替回路を使用する工程と、
    上記モーターの動作の始動段階において、上記電機子巻線を通る上記電流の再循環を可能にするために、上記Hブリッジ切替回路に関連付けられた複数のバイパス素子を使用する工程と、
    上記モーターを動作させるために上記Hブリッジ切替回路を制御するためのコントローラーを使用する工程と、
    上記モーターの動作中に、上記Hブリッジ切替回路に結合され電機子エネルギーを蓄積する電機子エネルギー回収コンデンサを使用する工程とを含む磁束切替モーターを励磁する方法。
  22. 界磁巻線および電機子巻線を有する磁束切替モーターを励磁する方法であって、
    AC電源からAC入力信号を供給する工程と、
    上記AC入力信号を整流して整流AC信号を生成する工程と、
    上記電機子巻線を通って流れる電機子電流の方向を交互に切り替えるために、上記電機子巻線に関連付けられた切替回路に上記整流AC信号を供給する工程と、
    上記電機子巻線を通して流れる電機子電流の方向を切り替えるときに、上記電機子巻線を通して流れる電機子電流の再循環が可能になるように、上記切替回路とともに複数のバイパス素子を使用する工程と、
    上記切替回路の動作を制御するためにコントローラーを使用する工程と、
    上記切替回路の動作中に、電機子エネルギーを蓄積するエネルギー回収コンデンサを使用する工程とを含む磁束切替モーターを励磁する方法。
  23. 磁束切替モーターを制御する方法であって、
    第一始動速度範囲を規定する工程と、
    上記第一始動速度範囲に続く第二始動速度範囲を規定する工程と、
    所定負荷サイクルを有するパルス幅変調(PWM)切替信号が上記磁束切替モーターに供給される間における第一時間エンベロープを規定する工程と、
    上記初期始動速度範囲の間において、上記磁束切替モーターを整流するために、上記第一時間エンベロープに基づいて上記PWM切替信号を上記磁束切替モーターに提供する工程と、
    上記第一時間エンベロープを改変して第二時間エンベロープを生成する工程と、
    上記第二始動速度範囲の始まりにおいて、上記第二時間エンベロープに基づいて上記PWM切替信号を供給し、上記磁束切替モーターの整流を継続する工程とを含む磁束切替モーターを制御する方法。
  24. 上記第一および第二時間エンベロープは、上記磁束切替モーターのモーター速度を示すパルス速度信号に対して規定される、請求項23に記載の方法。
  25. 上記第二時間エンベロープは、上記第一時間エンベロープよりも短い周期を有する、請求項24に記載の方法。
  26. 上記PWM切替信号の上記所定の負荷サイクルは、上記第二始動速度範囲の間で改変される、請求項24に記載の方法。
  27. 磁束切替モーターの整流方法であって、
    上記磁束切替モーターに対する第一速度範囲を規定する工程と、
    上記磁束切替モーターに対する第二速度範囲を規定する工程と、
    上記第一速度範囲中に上記磁束切替モーターに複数の作動電気整流パルスを供給する工程とを含み、
    上記作動電気整流パルスのそれぞれは、所定の負荷サイクルを有するパルス幅変調(PWM)整流信号を含み、
    上記PWM整流信号がさらに、第一所定時間エンベロープに基づいて供給され、各作動電気整流パルスの周期の全長が制御され、
    上記第一所定時間エンベロープを改変して第二所定時間エンベロープを生成し、各作動電気整流パルスの周期の全長を改変する工程をさらに含む磁束切替モーターの整流方法。
  28. 上記第一および第二所定時間エンベロープは、上記磁束切替モーターの速度を示すモーター速度信号に対して生成される、請求項27に記載の方法。
  29. 上記第二所定時間エンベロープは、上記第一所定時間エンベロープよりも短い持続期間を有する、請求項27に記載の方法。
  30. 上記PWM整流信号の所定負荷サイクルは、上記第二速度範囲中に改変される、請求項27に記載の方法。
  31. 磁束切替モーターの整流方法であって、
    磁束切替モーターの速度を検知する工程と、
    上記磁束切替モーターを整流するために上記磁束切替モーターに供給される複数の作動整流パルスを含む整流信号を生成し、上記作動整流パルスのそれぞれがパルス幅変調(PWM)信号を含む工程と、
    非回転状態から上記磁束切替モーターが定格モーター速度で動作する状態に速度を増加する上記モーターに供給される電力をさらに制御するために、上記検知されたモーター速度に基づいて上記磁束切替モーターへ上記作動整流パルスのそれぞれが供給される間に、時間エンベロープを改変する工程とを含む磁束切替モーターの整流方法。
  32. 上記時間エンベロープは、上記磁束切替モーターの上記モーター速度が増加すると低減される、請求項31に記載の方法。
  33. 上記PWM信号の負荷サイクルは、磁束切替モーターの上記モーター速度が増加する場合に改変される、請求項31に記載の方法。
  34. 上記磁束切替モーターが所定のモーター速度に達すると、上記時間エンベロープに基づいて、上記PWM信号の供給が止められ、単一の作動パルスが供給される、請求項31に記載の方法。
  35. 非回転状態から所定の動作速度まで電動モーターを整流する方法であって、
    上記モーターのモーター速度を検知する工程と、
    所定負荷サイクルを有するパルス幅変調(PWM)信号をそれぞれに含む複数の作動パルスを含むパルスされた作動電気整流信号を、上記電動モーターを整流するために供給する工程と、
    上記モーター速度が増加するに従って上記モーターに送られる電力量が変化するように、各作動パルスの時間エンベロープを改変することにより上記作動パルスをさらに制御する工程とを含む電動モーターの整流方法。
  36. 上記検知されたモーター速度に基づいて上記所定負荷サイクルを改変し、上記所定負荷サイクルのパーセンテージは、上記モーター速度が増加するに従って増加する工程をさらに含む、請求項35に記載の方法。
  37. 所定の検知されたモーター速度において上記PWM信号の生成を停止する工程および上記時間エンベロープに応じた周期をそれぞれ有する複数のシングルパルスを使用する工程をさらに含む、請求項35に記載の方法。
  38. 電動工具をオンおよびオフにするために使用者により係合可能なオン/オフスイッチと、
    界磁巻線および電機子巻線を有する磁束切替モーターと、
    励磁回路とを備え、
    上記励磁回路は、AC入力信号を受け、整流したAC信号を一対のDCバスラインに生成する整流回路と、
    上記DCバスラインに接続され、複数の切替要素を有し、上記電機子巻線が選択された複数の上記切替要素の間に接続されたHブリッジ切替回路と、
    上記DCバスラインに交差して結合され、かつ上記切替回路に交差して結合された電機子回収コンデンサと、
    上記オン/オフスイッチの動作に応答して、上記Hブリッジ切替回路を制御するパルス幅変調信号を生成し、上記モーターを整流するために選択された上記切替要素のオン/オフ切替を制御するコントローラーとを備え、
    上記Hブリッジ切替回路は、上記モーターの動作の始動段階において、上記電機子巻線を通る電機子電流の再循環を可能にする複数のバイパス素子を含む電動工具。
  39. 上記AC信号が上記電動工具へ最初に供給されたときに、上記オン/オフスイッチが上記使用者により作動位置に維持されているか否かを検出し、上記切替モーターの始動を防止する検出回路をさらに備える、請求項38に記載の電動工具。
  40. 上記検出回路はラッチ回路を含み、上記AC信号が上記電動工具へ最初に供給された後、いつ上記オン/オフスイッチが解放されたかを上記ラッチ回路が検出し、その後上記電動工具を作動可能にする、請求項39に記載の電動工具。
  41. 上記Hブリッジ切替回路は駆動回路をさらに含み、上記コントローラーの動作から独立して上記Hブリッジ切替回路を制御するために、上記ラッチ回路が出力信号を上記駆動回路に供給する、請求項39に記載の電動工具。
  42. 工具をオン状態またはオフ状態におく、使用者により係合可能なオン/オフスイッチと、
    界磁巻線および電機子巻線を有する磁束切替モーターとを備えた電動工具であって、
    上記励磁回路が、AC入力信号を受け、整流したAC信号を一対のDCバスラインに生成する整流回路と、
    上記DCバスラインに接続され、複数の切替要素を有し、上記電機子巻線が複数の選択された上記切替要素の間に接続されたHブリッジ切替回路と、
    上記DCバスラインに交差して結合され、かつ上記切替回路に交差して結合された電機子回収コンデンサと、
    上記Hブリッジ切替回路を制御する切替信号を生成し、選択された上記切替要素を制御するパルス幅変調(PWM)信号を生成するコントローラーとを有し、
    上記電動工具が、上記使用者が上記オン/オフスイッチをオン位置にしたまま上記AC入力信号が上記電動工具に最初に供給された場合、上記オン/オフスイッチの位置に応じて、上記電動工具の作動を防止する検出回路をさらに備える、電動工具。
  43. 上記検出回路は、上記オン/オフスイッチに応答して、上記コントローラーから独立した上記Hブリッジ切替回路の動作を可能にするラッチ回路を含む、請求項42に記載の電動工具。
  44. 上記Hブリッジ切替回路が、上記モーターの動作の始動段階において、上記電機子巻線を通る電気子電流の再循環を可能にする複数のバイパス素子をさらに含む、請求項42に記載の装置。
JP2006503344A 2003-02-07 2004-02-05 励磁回路および、磁束切替モーターの制御方法 Pending JP2006517380A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/360,968 US6943510B2 (en) 2001-08-06 2003-02-07 Excitation circuit and control method for flux switching motor
PCT/US2004/003297 WO2004073140A2 (en) 2003-02-07 2004-02-05 Excitation circuit and control method for flux switching motor

Publications (1)

Publication Number Publication Date
JP2006517380A true JP2006517380A (ja) 2006-07-20

Family

ID=32867951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006503344A Pending JP2006517380A (ja) 2003-02-07 2004-02-05 励磁回路および、磁束切替モーターの制御方法

Country Status (7)

Country Link
US (1) US6943510B2 (ja)
EP (2) EP2264885B1 (ja)
JP (1) JP2006517380A (ja)
CN (1) CN100454747C (ja)
AT (2) ATE507608T1 (ja)
DE (1) DE602004032426D1 (ja)
WO (1) WO2004073140A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199491A1 (ja) * 2015-06-09 2016-12-15 日立オートモティブシステムズ株式会社 負荷駆動装置

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943510B2 (en) * 2001-08-06 2005-09-13 Black & Decker Inc. Excitation circuit and control method for flux switching motor
US7075257B2 (en) * 2002-10-18 2006-07-11 Black & Decker Inc. Method and device for braking a motor
US7023159B2 (en) * 2002-10-18 2006-04-04 Black & Decker Inc. Method and device for braking a motor
US20040155532A1 (en) 2003-02-07 2004-08-12 Brotto Daniele C. Method for sensing switch closure to prevent inadvertent startup
US7395871B2 (en) * 2003-04-24 2008-07-08 Black & Decker Inc. Method for detecting a bit jam condition using a freely rotatable inertial mass
US20050162140A1 (en) * 2004-01-23 2005-07-28 Mark Hirst Apparatus including switching circuit
EP1740347B1 (en) * 2004-04-13 2009-06-17 BLACK & DECKER INC. Low profile electric sander
US7365458B2 (en) * 2005-03-31 2008-04-29 Nidec Shibaura Corporation Brushless DC motor with molded resin housing
DE102005024068A1 (de) * 2005-05-25 2006-11-30 Robert Bosch Gmbh Verfahren zur Steuerung eines aus einem Gleichspannungsnetz gespeisten Elektromotors
JP2009506743A (ja) * 2005-08-25 2009-02-12 コンサーク コーポレイション パルス幅変調電力インバータ出力制御
TWM293142U (en) * 2005-11-17 2006-07-01 Rexon Ind Corp Ltd Control device for driving motor
JP4938326B2 (ja) * 2006-03-24 2012-05-23 オンセミコンダクター・トレーディング・リミテッド モータ駆動回路
CN101038494B (zh) * 2006-03-15 2011-06-29 苏州宝时得电动工具有限公司 位置控制方法、位置控制装置和包含此装置的电动工具
ATE543247T1 (de) * 2006-09-06 2012-02-15 Siemens Ag Verfahren zum betreiben eines motorsystems sowie ein motorsystem
US7728534B2 (en) 2006-10-17 2010-06-01 Mtd Products Inc Hybrid electric lawnmower
WO2008048618A2 (en) 2006-10-17 2008-04-24 Desa Ip. Llc Hybrid electric device
US8732896B2 (en) 2006-10-17 2014-05-27 Mtd Products Inc Hybrid electric cleaning device
US8076873B1 (en) 2007-06-01 2011-12-13 Mtd Products Inc Hybrid outdoor power equipment
JP5359021B2 (ja) * 2007-06-28 2013-12-04 セイコーエプソン株式会社 電動機の駆動制御回路
US7598683B1 (en) 2007-07-31 2009-10-06 Lsi Industries, Inc. Control of light intensity using pulses of a fixed duration and frequency
US8604709B2 (en) 2007-07-31 2013-12-10 Lsi Industries, Inc. Methods and systems for controlling electrical power to DC loads
US8903577B2 (en) 2009-10-30 2014-12-02 Lsi Industries, Inc. Traction system for electrically powered vehicles
JP2010022137A (ja) * 2008-07-10 2010-01-28 Sanyo Electric Co Ltd 駆動信号出力回路およびマルチチップパッケージ
US8232755B2 (en) * 2009-04-02 2012-07-31 Young-Chun Jeung Motor with circuits for protecting motor from input power outages or surges
US8220372B2 (en) 2009-04-28 2012-07-17 Credo Technology Corporation Combination table-miter saw safety system
US9722334B2 (en) * 2010-04-07 2017-08-01 Black & Decker Inc. Power tool with light unit
CN101807874B (zh) * 2010-04-26 2011-12-07 扬州中凌自动化技术有限公司 实现电子力矩换向的直流串励电机控制方法及装置
JP5709446B2 (ja) * 2010-09-27 2015-04-30 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー ドライブ回路の起動時制御回路
RU2464697C2 (ru) * 2010-10-27 2012-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ФГБОУ ВПО ИрГУПС) Способ увеличения коэффициента мощности и устройство для его реализации
EP2524774A3 (en) 2011-05-19 2014-11-05 Black & Decker Inc. Electronic switching module for a power tool
KR101914127B1 (ko) 2011-11-24 2018-11-01 현대모비스 주식회사 모터의 고장 감지 장치
DE102011088411A1 (de) * 2011-12-13 2013-06-13 Robert Bosch Gmbh Schaltungsanordnung und Verfahren zum Erkennen einer Schalterstellung
DE102011121174B4 (de) 2011-12-16 2014-04-03 Eads Deutschland Gmbh Elektrische Maschine, insbesondere für Luftfahrzeuge
US9908182B2 (en) 2012-01-30 2018-03-06 Black & Decker Inc. Remote programming of a power tool
US9114536B2 (en) * 2012-04-13 2015-08-25 Rethink Robotics, Inc. Electronic emergency-stop braking circuit for robotic arms
US8919456B2 (en) 2012-06-08 2014-12-30 Black & Decker Inc. Fastener setting algorithm for drill driver
US9209724B2 (en) * 2013-06-03 2015-12-08 Black & Decker Inc. Reverse rotation detection and overspeed protection for power tool with brushless motor
US9608507B2 (en) 2013-06-14 2017-03-28 Sinope Technologies Inc. Low power and low EMI power stealing circuit for a control device
US10011006B2 (en) 2013-08-08 2018-07-03 Black & Decker Inc. Fastener setting algorithm for drill driver
CN103475291A (zh) * 2013-08-22 2013-12-25 国家电网公司 一种发电机在电力系统暂态过程中的全过程励磁控制方法
US9762153B2 (en) * 2013-10-18 2017-09-12 Black & Decker Inc. Cycle-by-cycle current limit for power tools having a brushless motor
US9314900B2 (en) 2013-10-18 2016-04-19 Black & Decker Inc. Handheld grinder with a brushless electric motor
US9554431B2 (en) * 2014-01-06 2017-01-24 Garrity Power Services Llc LED driver
WO2015116006A1 (en) * 2014-01-31 2015-08-06 Supat Kittiratsatcha Switched reluctance motor control using a single power supply and transformer-coupled gate drive circuits
JP2015187560A (ja) * 2014-03-26 2015-10-29 トヨタ自動車株式会社 レゾルバ励磁回路
EP2928066A1 (en) * 2014-03-31 2015-10-07 ABB Technology Ltd A high efficiency commutation circuit
US9614466B2 (en) 2014-05-20 2017-04-04 Black & Decker Inc. Electronic braking for a universal motor in a power tool
CN104617832B (zh) * 2015-01-22 2017-06-30 南京航空航天大学 一种电励磁双凸极电机无反转启动方法
JP2017071010A (ja) * 2015-10-06 2017-04-13 株式会社マキタ 電動工具
US9859826B2 (en) * 2016-02-03 2018-01-02 Infineon Technologies Ag Intelligent detection unit (iDU) to detect the position of a rotor controlled by pulse modulation
US11047528B2 (en) 2016-02-12 2021-06-29 Black & Decker Inc. Electronic braking for a power tool having a brushless motor
TWI734749B (zh) 2016-02-25 2021-08-01 美商米沃奇電子工具公司 包括輸出位置感測器之動力工具
CN107302326A (zh) * 2016-04-15 2017-10-27 松下电器研究开发(苏州)有限公司 马达驱动系统和方法、以及具备该系统的小功率电动设备
EP3299127A1 (en) * 2016-06-24 2018-03-28 Black & Decker Inc. Control scheme for operating cordless power tool based on battery temperature
JP6343037B1 (ja) * 2017-01-11 2018-06-13 日立ジョンソンコントロールズ空調株式会社 モータ駆動装置および冷凍機器
CN107154765B (zh) * 2017-05-11 2019-03-29 东南大学 一种磁通切换型记忆电机高功率因数控制方法
US10608501B2 (en) 2017-05-24 2020-03-31 Black & Decker Inc. Variable-speed input unit having segmented pads for a power tool
US10931102B2 (en) * 2017-08-11 2021-02-23 Black & Decker Inc. Hardware control for prevention of dangerous restart in a power tool
TWI730281B (zh) 2018-01-03 2021-06-11 美商米沃奇電子工具公司 電動工具中之電子制動技術
FR3086474B1 (fr) * 2018-09-26 2020-12-04 Safran Electrical & Power Procede de demarrage d'un moteur electrique synchrone a aimants permanents
US11142075B2 (en) 2019-08-08 2021-10-12 Hamilton Sundstrand Corporation Efficient regenerative electrical braking
CN113497573A (zh) * 2020-04-07 2021-10-12 南京德朔实业有限公司 电动工具转速控制方法及电动工具
UA127614C2 (uk) * 2021-09-06 2023-11-01 Володимир Олексійович Кльосов Схема підключення багатофазного асинхронного двигуна до джерела живлення постійного струму
CN115847358A (zh) * 2021-09-23 2023-03-28 南京泉峰科技有限公司 扭力输出工具及扭力输出工具的电机控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051497A (ja) * 1983-08-29 1985-03-22 Mitsubishi Electric Corp モ−タの制御回路
JPS62144586A (ja) * 1985-12-19 1987-06-27 Brother Ind Ltd モ−タ速度制御装置
JPH01227841A (ja) * 1988-03-04 1989-09-12 Mazda Motor Corp エンジンの制御装置
JPH0215906A (ja) * 1988-05-24 1990-01-19 Black & Decker Inc 電動工具
JPH0526278U (ja) * 1991-09-17 1993-04-06 日本電気精器株式会社 電動工具
JPH0560197U (ja) * 1992-01-10 1993-08-06 株式会社東海理化電機製作所 Dcモータ駆動装置
JPH071350A (ja) * 1993-06-14 1995-01-06 Makita Corp 強制停止機構付電池式締付工具
JPH07194162A (ja) * 1993-11-26 1995-07-28 Tai-Her Yang 直巻又は複巻電動機の速度制御回路
JPH08340686A (ja) * 1995-06-13 1996-12-24 Takaoka Electric Mfg Co Ltd 直流直巻電動機の制動装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2629849A (en) * 1950-06-20 1953-02-24 Westinghouse Electric Corp Dynamic braking control
DE1763278B2 (de) * 1968-04-27 1975-06-05 Robert Bosch Gmbh, 7000 Stuttgart Elektrowerkzeug
DE2315841C3 (de) 1973-03-30 1981-11-19 Robert Bosch Gmbh, 7000 Stuttgart Im Handgriff einer elektromotorisch angetriebenen Handwerkzeugmaschine angeordnete Betätigungsvorrichtung
US4006334A (en) 1975-03-17 1977-02-01 Mcgraw-Edison Company Safety switch for power tool
DE2850120A1 (de) 1977-11-21 1979-05-23 Black & Decker Mfg Co Schalter-betaetigungseinrichtung
US4258368A (en) 1979-03-29 1981-03-24 Emerson Electric Co. Safety means for preventing the automatic restart of a motor
DE3036133A1 (de) 1980-09-25 1982-05-06 Robert Bosch Gmbh, 7000 Stuttgart Anlaufsperre nach stromausfall bei elektrischen geraeten
US4451865A (en) 1981-05-18 1984-05-29 The Singer Company Electrical cutout for under voltage or power loss conditions
US4444091A (en) 1981-08-26 1984-04-24 The Stanley Works Safety lock-off throttle device
DE3146495A1 (de) 1981-11-24 1983-07-07 Black & Decker, Inc., 19711 Newark, Del. Anlaufsicherungsschaltung
US4466040A (en) 1982-05-10 1984-08-14 The Singer Company Safety device
DE3332790A1 (de) 1983-09-10 1985-03-28 Robert Bosch Gmbh, 7000 Stuttgart Schaltanordnung fuer elektrowerkzeuge
US4628233A (en) 1984-03-23 1986-12-09 Black & Decker Inc. Microprocessor based motor control
DE3825654A1 (de) 1988-07-28 1990-02-01 Bosch Gmbh Robert Sicherheitseinrichtung an einer handwerkzeugmaschine
US4853821A (en) 1988-11-29 1989-08-01 Lewis Dennis E Alternating current power sensing device for preventing start-up at power restoration
DE4107431A1 (de) 1990-03-15 1991-09-19 Telefunken Electronic Gmbh Schaltung zum schutz und zum steuern elektrischer geraete
DE4304690C1 (de) 1993-02-16 1994-08-25 Bosch Siemens Hausgeraete Elektronische Anlauf-Sicherheitsschaltung für den motorischen Antrieb eines Elektrogerätes
US5654595A (en) 1994-12-29 1997-08-05 Ferguson; Thomas R. Electrical current regulating device for a power tool
US5793175A (en) * 1995-01-19 1998-08-11 Textron Inc. Performance event sensing for control of electric motor driven golf car
US5598072A (en) * 1995-04-04 1997-01-28 General Electric Company Regenerative braking circuit utilizing separately excited motor
JP3092474B2 (ja) 1995-04-28 2000-09-25 日立工機株式会社 停電回復後の起動阻止装置
GB9804472D0 (en) 1998-03-04 1998-04-29 Black & Decker Inc A switch lock-off mechanism
US6118239A (en) * 1998-11-23 2000-09-12 Kadah; Andrew S. Speed control drive circuit for blower motor
US6208042B1 (en) 1999-04-05 2001-03-27 Gilbert Solis Anti-reactivation safety device
DE19925552A1 (de) 1999-06-04 2000-12-07 Leuze Electronic Gmbh & Co Sicherheitsschalteranordnung
US6445879B1 (en) * 1999-07-21 2002-09-03 Lg Electronics Inc. Apparatus and method for braking a washing machine
US6462506B2 (en) * 1999-12-30 2002-10-08 Textron Inc. Electric golf car with low-speed regenerative braking
US6392373B1 (en) * 2000-12-06 2002-05-21 Milwaukee Electric Tool Corporation Automatic reverse motor controller
EP1421669A4 (en) * 2001-08-06 2016-08-24 Black & Decker Inc EXCITATION CIRCUIT AND METHOD FOR CONTROLLING FLOW SWITCHING MOTOR
US6943510B2 (en) * 2001-08-06 2005-09-13 Black & Decker Inc. Excitation circuit and control method for flux switching motor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051497A (ja) * 1983-08-29 1985-03-22 Mitsubishi Electric Corp モ−タの制御回路
JPS62144586A (ja) * 1985-12-19 1987-06-27 Brother Ind Ltd モ−タ速度制御装置
JPH01227841A (ja) * 1988-03-04 1989-09-12 Mazda Motor Corp エンジンの制御装置
JPH0215906A (ja) * 1988-05-24 1990-01-19 Black & Decker Inc 電動工具
JPH0526278U (ja) * 1991-09-17 1993-04-06 日本電気精器株式会社 電動工具
JPH0560197U (ja) * 1992-01-10 1993-08-06 株式会社東海理化電機製作所 Dcモータ駆動装置
JPH071350A (ja) * 1993-06-14 1995-01-06 Makita Corp 強制停止機構付電池式締付工具
JPH07194162A (ja) * 1993-11-26 1995-07-28 Tai-Her Yang 直巻又は複巻電動機の速度制御回路
JPH08340686A (ja) * 1995-06-13 1996-12-24 Takaoka Electric Mfg Co Ltd 直流直巻電動機の制動装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199491A1 (ja) * 2015-06-09 2016-12-15 日立オートモティブシステムズ株式会社 負荷駆動装置
JP2017005834A (ja) * 2015-06-09 2017-01-05 日立オートモティブシステムズ株式会社 負荷駆動装置
US10340833B2 (en) 2015-06-09 2019-07-02 Hitachi Automotive Systems, Ltd. Load drive device

Also Published As

Publication number Publication date
EP1602170A2 (en) 2005-12-07
EP2264885A1 (en) 2010-12-22
ATE507608T1 (de) 2011-05-15
EP1602170B1 (en) 2011-04-27
EP1602170A4 (en) 2007-12-12
ATE542287T1 (de) 2012-02-15
US6943510B2 (en) 2005-09-13
WO2004073140A2 (en) 2004-08-26
DE602004032426D1 (de) 2011-06-09
CN1757154A (zh) 2006-04-05
CN100454747C (zh) 2009-01-21
WO2004073140A3 (en) 2005-01-27
US20030117095A1 (en) 2003-06-26
EP2264885B1 (en) 2012-01-18
WO2004073140A8 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP2006517380A (ja) 励磁回路および、磁束切替モーターの制御方法
JP4217615B2 (ja) 励弧回路および、フラックス切替モーターの励起方法
US11750124B2 (en) Low-speed sensorless brushless motor control in a power tool
WO1998035428A1 (en) Brushless dc motor control
GB2484289A (en) Control of a permanent magnet electrical machine
JP2016509464A (ja) ブラシレスモータ用の駆動回路
Jang et al. Optimal commutation of a BLDC motor by utilizing the symmetric terminal voltage
CN113054887B (zh) 一种电动工具的过压保护电路、方法以及电动工具
JP7267456B2 (ja) パワーツールのためのセンサレスモータ制御
US10972023B2 (en) Power tool and control method thereof
CN112400274B (zh) 控制无刷永磁电机的方法
JP2005184884A (ja) ブラシレスdcモータの駆動装置
JP2014143839A (ja) 電動機の制御装置
CN114079407A (zh) 电动工具及电动工具控制方法
JPH02254993A (ja) 可変リラクタンスモータの駆動装置
JPH09149683A (ja) 直流ブラシレスモータの駆動装置
JP2008079473A (ja) 無刷子電動機の駆動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622