JP2006513577A - ハイブリッド型の冷却装置 - Google Patents
ハイブリッド型の冷却装置 Download PDFInfo
- Publication number
- JP2006513577A JP2006513577A JP2004567181A JP2004567181A JP2006513577A JP 2006513577 A JP2006513577 A JP 2006513577A JP 2004567181 A JP2004567181 A JP 2004567181A JP 2004567181 A JP2004567181 A JP 2004567181A JP 2006513577 A JP2006513577 A JP 2006513577A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- cooling device
- unit
- phase change
- liquid refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 166
- 230000008859 change Effects 0.000 claims abstract description 110
- 239000003507 refrigerant Substances 0.000 claims description 245
- 239000007788 liquid Substances 0.000 claims description 112
- 238000001704 evaporation Methods 0.000 claims description 106
- 230000008020 evaporation Effects 0.000 claims description 84
- 230000005484 gravity Effects 0.000 claims description 12
- 230000009471 action Effects 0.000 claims description 8
- 238000009434 installation Methods 0.000 claims description 8
- 238000003860 storage Methods 0.000 claims description 7
- 238000007664 blowing Methods 0.000 abstract description 4
- 239000012071 phase Substances 0.000 description 75
- 238000000034 method Methods 0.000 description 15
- 239000004065 semiconductor Substances 0.000 description 15
- 239000003570 air Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 239000010410 layer Substances 0.000 description 8
- 230000017525 heat dissipation Effects 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 239000002094 self assembled monolayer Substances 0.000 description 4
- 239000013545 self-assembled monolayer Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/02—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/046—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2210/00—Heat exchange conduits
- F28F2210/02—Heat exchange conduits with particular branching, e.g. fractal conduit arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2245/00—Coatings; Surface treatments
- F28F2245/02—Coatings; Surface treatments hydrophilic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
【課題】 ハイブリッド型の冷却装置を提供する。
【解決手段】 相変化による冷却と、送風及び対流による冷却とが何れも可能なハイブリッド型の冷却装置である。
【解決手段】 相変化による冷却と、送風及び対流による冷却とが何れも可能なハイブリッド型の冷却装置である。
Description
本発明は、半導体集積回路装置などの熱を冷却するための冷却装置に係り、特に、作動流体の相変化による冷却方式とフィン及び/またはファンによる冷却方式を併用するハイブリッド型(または、混合型)の冷却装置に関する。
半導体素子の高集積化の傾向により、デザインルールが減少し、それにより、半導体素子を構成する電子回路の線幅が狭くなることにより、単位面積当りのトランジスタ数が増加して、電子装備の小型化、高性能化を達成したが、それに伴って半導体素子の単位面積当りの熱発散率が更に上昇した。このような熱発散率の増加は、半導体素子の性能の低下及び寿命の短縮をもたらし、窮極的には、半導体素子を採用したシステムの信頼度を低下させる。特に、半導体素子においては、その動作温度によって各種パラメータ値が鋭敏に変化して、集積回路の特性を更に劣化させる。
このような熱発散率の上昇に対応して、これを冷却するための冷却技術も発展してきたが、公知の通常的な冷却技術としては、フィン−ファン冷却方式、熱電素子冷却方式、液体噴射冷却方式、浸水冷却方式、ヒートパイプ冷却方式などがある。
前記フィン−ファン冷却方式は、フィン及び/またはファンを利用して強制冷却させる方法であり、数十年間多く利用されてきたが、ノイズ、振動及び大きい体積に比べて冷却効率が低いという問題点がある。また、前記熱電素子冷却方式は、ノイズ、振動はないが、大きい駆動電源が要求されて、エネルギー保存法則により高熱側で必要以上の過多の熱消散装置が要求されるという問題点がある。また、前記液体噴射冷却方式は、効率性に優れており、冷却器の研究の主流になっているが、外部電源を利用する薄膜ポンプなどを使用して、その構造が複雑であり、重力の影響を多く受け、個人携帯電子装備に適用する場合、ロバスト設計が難しいという問題がある。
前記のような問題点により、最近では、ヒートパイプ冷却方式は、構造が簡単であり、製作が容易であるという長所があり、前記フィン−ファン冷却装置と共に小型冷却装置として多様な形状で広く適用されている。すなわち、図1に示すように、通常的なヒートパイプとフィン−ファンとを結合した冷却装置10は、その一端が熱源20と接触したヒートパイプ12と、前記ヒートパイプ12の他端に設置された複数のフィン14と、前記フィン14の近傍に設置されたファン16とを備えて、熱源20から吸収された熱を前記フィン14によって放出する構造を有する。
しかし、前記のようなヒートパイプを使用する冷却装置10では、気体及び液体の流動方向が互いに逆であるため、高熱量がヒートパイプに印加される場合、発生する気体の速い流速により、凝縮部から蒸発部に帰還する液体が気体移動部に再び吸い込まれて、結局、蒸発部まで帰還できず、これによりドライアウトが発生する。また、パイプの内部で気化された冷媒は、浮力と圧力との差に依存して移動し、ヒートパイプの内部では、液化された冷媒が帰還部の媒質の構造及びサイズによって重力に依存するため、設置可能な位置に多くの制限があるという問題点がある。
更に、最近の中央処理処置のような高集積化された半導体素子は、その発熱量が、従来の冷却装置では処理しがたい程度の多量であり、前記ヒートパイプとフィン−ファンとを結合した構造の冷却装置10においても、三つまたは四つに達するヒートパイプ12と、二つまたはそれ以上のファン16とを備えねば冷却が不可能な実情である。このように、構成要素の個数が増加すれば、そのサイズが非常に大きくなり、また、いくつかのファン16によるノイズ及び電力消耗も飛躍的に増加して、結局、実用性を失うという問題点がある。このような既存のヒートパイプ冷却モジュールの短所は、流体の相変化を利用するとしても、結局は、広い面積のフィンを介して熱を伝導させねばならないため、フィン自体での熱伝逹損失が、ヒートパイプの相変化媒質での熱伝逹に比べて急減するためである。
本発明は、前記の問題点を解決するためになされたものであって、本発明の目的は、相変化時の潜熱による冷却と、送風及び対流による冷却とを併行する小型のハイブリッド型の冷却装置を提供するところにある。
また、本発明の他の目的は、フィンとフィンとの間にハイブリッド型の冷却装置を配置して、フィンを介した熱伝導の損失を最小化し、冷却性能を向上させた小型のハイブリッド冷却装置を提供するところにある。
また、本発明の更に他の目的は、重力の影響に関係なく冷却性能を発揮できる小型のハイブリッド型の冷却装置を提供するところにある。
また、本発明の更に他の目的は、設置位置や場所に実質的な制限がない小型のハイブリッド型の冷却装置を提供するところにある。
前記目的を達成するために、本発明は、外部の熱源からの熱を冷却させるためのハイブリッド型の冷却装置において、内部に相変化する冷媒の循環ループが形成されるが、その一側に分岐部を備える相変化冷却器と、前記相変化冷却器の分岐部に設置されたファンとを備えるが、前記相変化冷却器は、その内部の一端に形成されるが、前記液状の冷媒が毛細管現象によって少なくとも一部に充填され、充填された液状の冷媒が外部の熱源から伝えられた熱によって気化される蒸発部と、前記蒸発部と隣接して形成されるが、気化された冷媒が前記分岐部に向って移動する気状冷媒移動部と、前記分岐部の少なくとも一部の領域であって、前記気状冷媒移動部と隣接した領域に形成されるが、少なくとも二段に分岐され、前記気状の冷媒が液状に凝縮される凝縮部と、前記分岐部の少なくとも一部の領域であって、前記凝縮部に隣接した領域に形成されるが、前記蒸発部と断熱され、液状に凝縮された冷媒が前記蒸発部に向って移動する液状冷媒移動部と、前記蒸発部と前記液状冷媒移動部の少なくとも一部を断熱させる断熱部と、を備えるハイブリッド型の冷却装置を提供する。
以下、添付図面を参照して本発明の好ましい実施形態について詳細に説明する。
まず、図2を参照すれば、図2は、本発明の第1実施形態によるハイブリッド型の冷却装置の平断面図である。図示するように、本実施形態によるハイブリッド型の冷却装置100は、その内部に相変化する冷媒の循環ループが形成されるが、その循環ループの少なくとも一部は、中空の環状に分岐された部分(以下、“分岐部”)より構成される相変化冷却器112と、前記相変化冷却器の分岐部の中空に設置されたファン120と、を備える。
前記相変化冷却器112のハウジングは、シリコンやガリウムのような半導体物質、自体結集断層膜(Self Assembled Monolayer;SAM)のような新素材積層物質、熱伝導率に優れた銅またはアルミニウムのような金属物質及び/またはそれらの合金物質、セラミック物質、プラスチックのような高分子物質や、ダイアモンドのような結晶質材料などの多様な素材で製造されうる。特に、外部熱源が半導体チップである場合、外部熱源の表面物質と同じ物質より形成して、接触熱抵抗を最小化できる。また、前記相変化冷却器112が半導体物質で製造される場合には、半導体チップの製造工程で、前記外部熱源の表面物質と一体になるように形成することも可能である。
次いで、前記相変化冷却器112内に注入される冷媒は、外部の熱により液状と気状との相変化を発生させ得るものから選択されうる。本実施形態によれば、前記冷媒として、潜熱及び表面張力の大きい水を使用することが好ましいが、これは、環境汚染を考慮して、フレオン(CFC)系列の冷媒を使用しないことが好ましいためである。
また、前記相変化冷却器112の材質により、その内壁と冷媒との間の表面張力のサイズが変わるため、本発明の実施においては、これに適した冷媒を選択せねばならない。例えば、水以外にも、メタノールまたはエタノールなどのアルコール系の冷媒を使用することも可能である。前記のような水やアルコール系の冷媒の場合、熱容量が大きく、半導体物質の内壁との間の表面張力による接触角が小さいため、冷媒の流速が大きくなって、多量の熱を伝達するのに有利であるという長所を有する。また、水またはアルコール系の冷媒の場合には、フレオン系の冷媒と違って、ある理由によって前記相変化冷却器112から漏れても、環境汚染の問題が発生しない。
このような冷媒の選択は、本発明の実施のための単純な設計的な選択事項に過ぎないため、本発明の技術的範囲を限定するものではない。
図示するように、前記相変化冷却器112は、その内部の一端に形成されるが、前記液状の冷媒が毛細管現象によって少なくとも一部に充填され、充填された液状の冷媒が外部の熱源(図示せず)から伝えられた熱によって気化される蒸発部104と、前記蒸発部104と隣接して形成されるが、気化された冷媒が、その圧力差によって所定方向に移動する気状冷媒移動部106と、前記気状冷媒移動部106と隣接して形成されるが、二段に分岐され、前記気状の冷媒が液状に凝縮される凝縮部108と、前記凝縮部108に隣接して形成されるが、前記蒸発部104と断熱され、液状に凝縮された冷媒が前記蒸発部104に向って移動する液状冷媒移動部102、110と、を備える。本実施形態では、前記凝縮部108及び液状冷媒移動部110が前記分岐部を構成する。
前記相変化冷却器112内で、前記冷媒は、図面の矢印方向に沿って循環ループを形成する。すなわち、前記蒸発部104、前記気状冷媒移動部106、前記凝縮部108、前記凝縮部側の液状冷媒移動部110及び前記蒸発部側の液状冷媒移動部102を順に通って循環されるように構成されている。
本発明の実施形態によっては、前記液状冷媒移動部102、110の所定領域に一定量の液状の冷媒が保存されうるように、適当な体積を有する冷媒保存部(図示せず)を更に備えうる。例えば、前記蒸発部側の液状冷媒移動部102の領域が冷媒保存部として形成されて使用されうる。
前記蒸発部側の液状冷媒移動部102の一端(“出口側”)には前記蒸発部104が隣接して形成され、前記蒸発部104は、複数の微細チャンネルが形成されて、毛細管現象によって前記微細チャンネルの少なくとも一部または全部に、前記蒸発部側の液状冷媒移動部102に保存された冷媒が充填される。また、前記蒸発部104は、外部の熱源(図示せず)に隣接するように設置されるが、それにより、前記熱源から伝えられた熱により、前記微細チャンネルに充填された液状の冷媒が気化されて、気状の冷媒に相変化される。従って、前記熱源からの熱は、前記冷媒の相変化による潜熱ほど前記冷媒に吸収され、後述するように、気状の冷媒を再び凝縮させることにより前記熱源の熱を除去する。
前記微細チャンネル内での表面張力は、重力より大きく形成されることが好ましい。前記微細チャンネルに充填された液状である冷媒のメニスカスの接触角は小さいほど好ましいが、このためには、前記微細チャンネルの内壁を親水性を有する物質より形成するか、または親水性の処理を実施することが好ましい。このような親水性処理としては、例えば、メッキ処理、塗装処理、コーティング処理、着色処理、アノーダイジング処理、プラズマ処理、レーザー処理などがある。また、その熱伝逹率を向上させるために前記微細チャンネルの内壁の表面粗度を調節できるが、約1Åないし約100?範囲の表面粗度を有することが好ましい。
更に、前記微細チャンネルの断面は、四角形以外にも、円形、楕円形、直方形、正方形、多角形などの多様な形態を有するように形成することもできる。特に、前記微細チャンネルの長手方向(すなわち、X軸方向)に沿って断面積を増加または減少させることにより、冷媒との間の表面張力のサイズを制御でき、その内壁に複数のグルーブまたはノードを設置して、冷媒の移動方向を決定するか、または冷媒の移動速度を制御することも可能である。
次いで、前記蒸発部104で気化された冷媒は、前記蒸発部側の液状冷媒移動部102の逆方向に移動するが、このように、気状の冷媒が移動できる通路の役割を行う気状冷媒移動部106を前記蒸発部104に隣接して形成する。図示するように、前記気状冷媒移動部106は、気化された冷媒が所定の方向(すなわち、前記冷媒保存部102の逆方向)に移動できるように、複数のガイド118を備えうる。前記ガイド118は、前記相変化冷却器112の機械的な強度を上昇させる機能も有する。従って、機械的な強度に問題がない場合には、前記ガイド118を備えなくても良い。
次いで、前記凝縮部108は、前記気状冷媒移動部106を介して移動してきた気状の冷媒が、再び凝縮されて液化される領域である。本実施形態によれば、前記凝縮部108は、前記蒸発部104と同じ平面上で、所定距離離れた位置に二段に分岐された環状に形成されている。図示するように、前記凝縮部108を前記分岐部に配置して二段に分岐させることにより、その間にファン120を設置することができる。設置された前記ファン120を回転させて前記凝縮部108の外気を所定方向に送風させれば、前記凝縮部108に到達した気状の冷媒が有する熱を容易に外部に放出させることができ、従って、冷媒は、凝縮されて液化される。
本実施形態では、前記凝縮部108が形成された領域を二段に分岐させて全体的に環状に形成したが、分岐部のそれぞれを直線状に形成するか、または“┐”字状に形成して、全体的にひし形に形成することも出来る(図13を参照)。このように形成された分岐部の間に前記ファン120を設置することにより、熱放出効率を向上させ得る構造を達成できる。
一方、前記凝縮部108は、前記蒸発部104に形成された微細チャンネルと類似した複数の微細チャンネル(図示せず)を備えうる。このような凝縮部108の微細チャンネルは、後述するように、前記液状冷媒移動部110にも延びて形成され、更に、前記蒸発部側の液状冷媒移動部102にも延びて形成されうる。このような凝縮部108の微細チャンネルは、気状冷媒の凝縮を更に容易にし、凝縮された液状の冷媒が前記蒸発部側の液状冷媒移動部102の方向に移動させる表面張力を提供することにより、冷媒循環ループの完成を促進する。
前記凝縮部108の微細チャンネルの深さは、前記蒸発部104の微細チャンネルより深く形成されることが好ましいが、これに限定されるものではない。その外にも、断面の形状や、断面積の変化、グルーブやノードの形成などに関して、前記蒸発部104の微細チャンネルに関するあらゆる事項が、前記凝縮部108の微細チャンネルにも同一に適用されうるため、その詳細な説明を省略する。
また、熱放出の効果を更に向上させるために、前記凝縮部108の外部の相変化冷却器112に複数のフィンを形成することもできる(図4ないし図6を参照)。前記フィンは、前記凝縮部108の外部に放射状に形成されるか、または、その他の所定の形状に形成されうる。このようなフィンの間に、前記ファン120によって送風される周りの空気が接触することにより、放熱効果を極大化させうる。また、後述するように、本発明の実施形態によっては、複数の相変化冷却器112を積層して使用することもできるが、この場合には、積層された相変化冷却器112の間にフィンを配置して、フィン内部での温度分布を均一にすることにより、冷却性能を更に向上させうる。
更に、前記フィンがマイクロアクチュエータを備えるように形成される場合には、前記凝縮部108から外部に放出される熱を再活用して、周りの空気を循環させるように駆動させることもできる。また、前記フィンが熱電素子を備える微細構造に形成された場合には、前記凝縮部108から放出される熱を電気的エネルギーに変換させて、微細駆動のためのエネルギーとして使用することもできる。
更に、前記凝縮部108の体積を前記蒸発部104の体積より大きく形成することにより、広くなる表面的による追加的凝縮効果を達成することもできる。
次いで、前記液状冷媒移動部110は、前記凝縮部108の外周側に形成されて、前記凝縮部108で凝縮された液状の冷媒が、前記蒸発部側の液状冷媒移動部102に移動する通路を形成する。図示するように、前記液状冷媒移動部110は、前記断熱部116によって前記気状冷媒移動部106、前記凝縮部108及び蒸発部104から断熱されて区分される。
前記断熱部116は、前記相変化冷却器112内の所定位置に形成された内部隔壁の形態に構成するか、または、前記相変化冷却器112内の所定位置に密封された別途の内部空間の形態、または前記相変化冷却器112の上下を貫通するように開放されている形態に構成されうる。前記相変化冷却器112内に密封された内部空間の形態に形成される場合、前記断熱部116は、真空状態を維持するか、または空気などの断熱物質で満たされることもある。
図示するように、前記液状冷媒移動部110は、前記相変化冷却器112の両側外周に沿って対称されるように形成することが好ましい。このような相変化冷却器112の外周に沿って対称的に形成される冷媒循環ループは、薄板の形態、すなわち、断面の縦横比の大きい場合、周りへの熱放出に非常に有利な構造であって、熱源から伝えられた熱を放射方向に拡散させることにより、広い面積を活用して周りへ放出させうる。
また、このような両方向の冷媒循環ループは、前記冷却装置100の設置位置により重力の影響を受けて、何れか一方の液状冷媒移動部110での冷媒循環が円滑でない場合にも、他方の液状冷媒移動部110を介して冷媒を循環させうるという長所を有する。
もちろん、前記のように、前記液状冷媒移動部110も、重力の影響をほとんど受けないための微細チャンネルを備えることができ、その微細チャンネル内には、前記冷媒保存部102に向う方向に複数のグルーブ(図示せず)を形成するなどの方法を使用できる。
一方、前記蒸発部側の液状冷媒移動部102と前記液状冷媒移動部110との境界部分、及び前記凝縮部108と前記液状冷媒移動部110との境界部分に、液状冷媒の移動方向を規定するための複数のガイド(図示せず)を形成して、冷媒の流路が急激に旋回することにより発生する冷媒循環の抵抗を減少させることも可能である。
以下、図3を参照すれば、図3は、図2のハイブリッド型の冷却装置100の分解斜視図である。図示するように、前記相変化冷却器112は、基板112a及び上板112bを備える。前記基板112a上に、図2を参照して前記の構造を後述する方法で形成し、外形が同じく形成された上板112bを接着させることが好ましい。実施形態によっては、上板112bの内部にも前記基板112aと同じ構造を形成できるということは言うまでもない。
以下では、図4ないし図6を参照して本発明の他の実施形態に関して詳細に説明する。
まず、図4Aは、本発明の第2実施形態によるハイブリッド型の冷却装置200の斜視図であり、図4Bは、図4Aのハイブリッド型の冷却装置200の凝縮部部分の拡大斜視図である。図示するように、本実施形態では、複数の相変化冷却器100a、100b及び100cが、上下複数層に配列される。外部の熱源からの熱は、例えば、図面の太い矢印の方向にそれぞれの相変化冷却器100a、100b及び100cの蒸発部に該当する領域に伝えられる。このために、前記相変化冷却器100a、100b及び100cの間に熱伝逹物質を充填させることもできる。
また、本実施形態では、各相変化冷却器100a、100b及び100cの凝縮部に対応する外側に、放射状に複数のフィン202を形成し、その中央空間にファン120が配置される。これにより、既存のヒートパイプモジュールとは違って、フィン内部での温度分布を均一に維持して冷却性能を極大化させうる。このような複数層構造のハイブリッド型の冷却装置200により、外部熱源の冷却効率を飛躍的に向上させうる。
次いで、図5Aは、本発明の第3実施形態によるハイブリッド型の冷却装置220の斜視図であり、図5Bは、図5Aのハイブリッド型の冷却装置220の側面図である。図示するように、本実施形態による冷却装置220は、図4Aに示す実施形態の相変化冷却器100a、100b及び100c等の冷媒保存部及び蒸発部を備える部分を相互接合させて形成したものである。凝縮部を備える部分は、ファン120による送風の効果を極大化させるために、接合せずに分離させ、最下層及び中間層の相変化冷却器の側面構造は、それにより多少変形された。
一方、本実施形態において、前記三層の相変化冷却器のそれぞれに属する蒸発部側の液状冷媒移動部及び蒸発部が相互独立的に形成される代わりに、相互共有されることも可能である。この場合には、蒸発部または気状冷媒移動部の所定位置から上下に分岐が形成される構造に形成される。蒸発部が共有される場合、蒸発部と気体移動部との間に各層の相変化冷却器に通じる流路(図示せず)が形成されて、蒸発部で気化された気体が各層に分岐されて移動する。
次いで、図6Aは、本発明の第4実施形態によるハイブリッド型の冷却装置230の斜視図であり、図6Bは、図6Aのハイブリッド型の冷却装置230の側面図である。本実施形態では、図5Aに示す実施形態でのフィンのサイズを、最上層及び最下層の相変化冷却器の外側を外れないように調整した。このようにすることにより、冷却装置230の設置が容易になる。
以上で説明した本発明の各実施形態のハイブリッド型の冷却装置を製作する方法は、現在公知された方法により製作されうるが、例えば、既に公知されたMIM(Metal Injection Molding)法や、半導体素子の製造工程を応用したMEMS(Micro Electro Mechanical System)法や、SAM(Self Assembled Monolayer)法を応用して製作できる。
前記MIM方法によって製作する場合には、まず、前記相変化冷却器112の形状の陰刻された上下モールドを形成し、このモールドにそれぞれバインダとしてポリマーや金属粉末が混ざった溶融体をモールドに注入して成形し、成形物をモールドから分離させた後、溶剤及び熱処理でバインダを除去して、最終的に上下板をブレージングなどの金属接合技術を使用して接合する。
あるいは、図2及び図3を参照して、半導体物質で製造する場合の具体的な製作方法の例を簡単に説明すれば、まず、相変化冷却器112の基板112aの表面をエッチングして蒸発部104及びその微細チャンネル、気状冷媒移動部106、凝縮部108及び液状冷媒移動部102、110などを形成する。その後、前記基板112aに対応して一定のパターンの形状が形成された上板112bを形成し、これらを互いに接着する。これらの接着方法の例としては、両者を相互接触させた後、両者に電圧を印加して陰極ボンディングを行える。次いで、前記蒸発部側の液状冷媒移動部102に隣接した相変化冷却器112の所定位置に形成された冷媒注入孔(図示せず)を通じて、真空状態で所定量の冷媒を注入し、前記冷媒注入孔を密封する。
次いで、図7を参照すれば、図7は、本発明の第5実施形態に係るハイブリッド型の冷却装置700の平断面図である。図示するように、本実施形態による冷却装置700の相変化冷却器712は、その分岐部の終端(点線で表示された部分)が相互連結されて、全体的に一つの閉環形状に形成されている。この場合にも、前記冷媒の循環ループは、図2を参照して前記の通りであり、その冷却原理及び効果も同じである。従って、それらの詳細に関しては、これを省略する。
図7では、本実施形態の相変化冷却器712が、前記第1実施形態による相変化冷却器112に含まれたガイド118を備えていないと図示されているが、前記ガイド118は、その設計上の選択によって備えられてもよく、備えられていなくてもよいということは前記の通りである。
次いで、図8を参照すれば、図8は、本発明の第6実施形態によるハイブリッド型の冷却装置800の平断面図である。図示するように、本実施形態による冷却装置800において、外部熱源(図示せず)からの熱を吸収して、液状の冷媒を気化させる蒸発部104が相変化冷却器812の中央の付近に形成されて、分岐部に隣接するように配置されている。
本実施形態によれば、気状の冷媒を凝縮させて液化させる凝縮部108と、凝縮されて液化された冷媒が、再び前記蒸発部104に向って移動する液状冷媒移動部110とが前記分岐部を構成する。それにより、前記蒸発部104が、前記気状冷媒移動部106と前記分岐部との間に配置される。このような構造により、前記蒸発部104から気化された冷媒は、前記分岐部の反対側に移動し、次いで、ハウジングの外周に沿って前記分岐部まで到達する。前記分岐部の中空にはファン120が設置されて、周りの空気を循環させ、従って、分岐部に到達した気状の冷媒は、凝縮されて液化される。従って、本実施形態では、図示するように、気状冷媒が凝縮される凝縮部108が前記分岐部の外周側に形成される。
特に、図示するように、本実施形態においては、前記蒸発部104と前記液状冷媒移動部110とを断熱させる断熱部を別途に形成せずとも、冷媒の循環には問題ない。すなわち、前記気状冷媒移動部106から流出された気状の冷媒は、結局、分岐部の分岐部に到達し、ここで、前記ファン120によって循環される空気により熱を奪われて凝縮される。
次いで、液化された冷媒は、前記分岐部の外周に形成された凝縮部108及びその内周に形成された液状冷媒移動部110に沿って移動して、再び前記蒸発部104に帰還する。前記凝縮部108及び液状冷媒移動部110は、隔壁810によって区分されている。前記隔壁810は、設計上の選択によって断熱部の役割も行える。
前記蒸発部104の分岐部側には、前記ファン120によって循環される周りの空気が持続的に接触するため、外部の熱源自体を直接冷却させる効果も達成される。
本実施形態においても、前記分岐部の終端を相互間に連結する構造を有しうることは言うまでもない。また、本実施形態の相変化冷却器812にも、前記第1実施形態による相変化冷却器112の気状冷媒移動部106に備えられたガイド118が備えられていないと図示されているが、その設計上の選択により前記ガイド118を備えてもよく、備えなくてもよい。
次いで、図9を参照すれば、図9は、本発明の第7実施形態によるハイブリッド型の冷却装置の平断面図である。図示するように、本実施形態による冷却装置900の相変化冷却器912は、分岐部が閉鎖された環状に形成されるが、その内部の冷媒が対称的に形成された循環ループを循環する代わりに、非対称的に一方向のみに循環する構造を有する。
すなわち、前記相変化冷却器912は、その内部の一端に形成された蒸発部104と、前記蒸発部104で気化された冷媒が所定方向に移動する気状冷媒移動部106と、前記気状の冷媒が一側に流入されて凝縮され、凝縮された液状の冷媒が所定方向に移動して他端に流出される部分であって、中央に空間を有する環状の分岐部108と、前記分岐部108の他端と隣接して形成されるが、前記液状の冷媒が前記蒸発部104に向って移動し続ける液状冷媒移動部102と、を備える。前記蒸発部104と気状冷媒移動部106は、隔壁116によって前記液状冷媒移動部102から分離されている。前記隔壁116は、断熱機能を有する断熱部として形成しても良い。
本実施形態によれば、前記冷媒の循環ループが非対称型であるという点と、外部熱源からの熱を前記蒸発部104の領域に吸収させるために、前記熱源がハウジングの中心部から多少外れて蒸発部の下部に配置されるという点とを除いては、前記第1実施形態の冷却装置100についての前記のあらゆる説明が同じく適用されうるため、その詳細な説明を省略する。
次いで、図10を参照すれば、図10は、本発明の第8実施形態によるハイブリッド型の冷却装置の平断面図である。図示するように、本実施形態による冷却装置1000の相変化冷却器1012は、第7実施形態による相変化冷却器912の冷媒循環ループと逆方向の冷媒循環ループを有する。
すなわち、冷媒を気化させる蒸発部104を分岐部に隣接した領域に形成し、気化された冷媒が前記分岐部108の逆方向に移動するように形成することで、気化された冷媒は、気状冷媒移動部106を通って前記分岐部108の一側に流入される。流入された冷媒は、前記分岐部108の中空に形成されたファン120による空気の循環によって凝縮されて液化される。液化された冷媒は、前記分岐部108を通って再び前記蒸発部104に流入される。
本実施形態の場合にも、図8を参照して前記したように、前記蒸発部104が前記ファン120に近くに配置されるため、前記ファン120によって循環される周辺空気が、外部熱源自体を冷却させる効果も達成できる。また、前記外部熱源は、前記蒸発部104の下部に配置されることが好ましい。
次いで、図11を参照すれば、図11は、本発明の第9実施形態によるハイブリッド型の冷却装置の平断面図である。図示するように、本実施形態による冷却装置1100は、それぞれの一端が所定の角度に曲がるように成形されて中空の分岐部の少なくとも一部を構成するように形成された一対の相変化冷却器1112a、1112bを備える。本実施形態によれば、前記一対の相変化冷却器1112a、1112bの曲がった部分が、設置時に分岐部を形成する。このように形成された分岐部の中空にも前記ファン120が設置される。
図示するように、本実施形態による相変化冷却器1112a、1112bのそれぞれは、ヒートパイプでありうる。この場合、一対のヒートパイプ1112a及び1112bのそれぞれは、それ自体が相変化による冷却機能を保有しているため、外部の熱源からの熱を吸収して、これを放熱できる。しかし、本発明によれば、その一部、すなわち、凝縮が発生する部分(点線108で表示された部分)を所定角度に曲げて環状に成形し、その中央の空間にファン120を設置して、周りの空気を循環させることにより、従来のヒートパイプのそれぞれが有している放熱容量をはるかに超える放熱容量を具現できる。
もちろん、前記一対の相変化冷却器1112a、1112bのそれぞれは、必ずしもヒートパイプである必要はない。この実施形態が図12Aに図示されている。図12Aは、本発明の第10実施形態によるハイブリッド型の冷却装置1200の平断面図である。本実施形態による冷却装置1200も、設置時に中央に空間を有する分岐部を構成する一対の相変化冷却器1212a、1212bと、前記一対の相変化冷却器1212a、1212bが構成する分岐部の中央空間に設置されたファン120と、を備える。しかし、本実施形態による前記相変化冷却器1212a、1212bのそれぞれは、その一側の端部の所定領域(本明細書では“一端”という)108、110が所定角度に曲がるように成形され、その内部に相変化する冷媒の循環ループが形成されるが、液状の冷媒が毛細管現象によって少なくとも一部に充填され、外部の熱源(図示せず)から伝えられた熱によって充填された液状の冷媒が気化される蒸発部104と、前記蒸発部104と隣接して形成されるが、気化された冷媒が前記一端108、110に向って移動する気状冷媒移動部106と、少なくとも前記気状冷媒移動部106と隣接して形成されるが、前記一端の少なくとも一部を形成するように成形され、前記気状の冷媒が一側に流入されて凝縮される凝縮部108と、前記凝縮部108と隣接して形成されるが、前記一端の少なくとも一部を形成するように成形され、前記液状の冷媒が前記蒸発部104に向って移動する液状冷媒移動部110及び前記蒸発部104と、前記液状冷媒移動部110の少なくとも一部を断熱させる断熱部106と、を備える構造を有する。
一方、図12Bを参照すれば、図12Bは、本発明の第11実施形態によるハイブリッド型の冷却装置1200’の平断面図である。本実施形態では、図7に示す第5実施形態の場合のように、分岐部の終端が相互連結されている。この実施形態の場合にも、冷媒の循環は、前記第10実施形態の場合と同じである。
従って、本実施形態による冷却装置1200、1200’は、図2及び図9に示す実施形態による冷却装置の長所を主に保有する。更に、本実施形態によれば、蒸発部が上下二つに分けられて形成されることにより、離れて設置された複数の熱源から伝えられる熱も放熱させうるという長所を有する。また、前記第10実施形態及び第11実施形態による相変化冷却器のそれぞれの蒸発部を相互隣接した位置に形成させることにより、更に広い面積の熱源を放熱させることも可能である。もちろん、この場合には、蒸発部の位置変化により、他の内部構造の配置も対称的に変化する。
一方、前記第10実施形態及び第11実施形態での蒸発部104を前記分岐部側に形成することにより、図8に示すような相変化冷却器800での効果を達成させることもできる。言い換えれば、この場合の冷却装置(図示せず)も、設置時に中央に空間を有する分岐部を構成する一対の相変化冷却器と、前記一対の相変化冷却器が構成する分岐部の中央の空間に設置されたファンと、を備える。しかし、この実施形態による前記相変化冷却器のそれぞれは、その一端が所定角度に曲がるように成形され、その内部に相変化する冷媒の循環ループが形成されるが、液状の冷媒が毛細管現象によって少なくとも一部に充填され、充填された液状の冷媒が外部の熱源から伝えられた熱によって気化される蒸発部と、前記蒸発部と隣接して形成されるが、気化された冷媒が前記曲がった一端の逆方向に向って移動する気状冷媒移動部と、前記曲がった一端に隣接した領域に形成されるが、前記曲がった一端の少なくとも一部を形成するように成形され、前記気状の冷媒が一側に流入されて凝縮される凝縮部と、前記凝縮部と隣接して形成されるが、前記曲がった一端の少なくとも一部を形成するように成形され、前記液状の冷媒が前記蒸発部に向って移動する液状冷媒移動部と、を備える。
本実施形態によれば、図2及び図10に示す実施形態による冷却装置等の長所を主に保有する。更に、本実施形態によれば、蒸発部が上下二つに分けられて形成されることにより、離れて設置された複数の熱源から伝えられる熱も放熱させうるという長所を有する。また、前記実施形態による相変化冷却器のそれぞれの蒸発部を相互隣接した位置に形成させることにより、更に広い面積の熱源を放熱させることもできる。もちろん、この場合には、蒸発部の位置変化により他の内部構造の配置も対称的に変化する。
前記図7ないし図12による冷却装置も、図2を参照して前記冷却装置100と同様に、複数の相変化冷却器を積層した構造に形成されうることは言うまでもない。更に、前記分岐部には所定の形状を有する複数のフィンを設置して、冷却効率を上昇させ得る。
また、前記相変化冷却器に備えられた凝縮部または液状冷媒移動部には、気状の冷媒がバブル状に備えられていてもよい。このようなバブルは、当然凝縮部の領域に更に多く備えられてもよく、図面では、これを区別するために、斜線領域と波線領域とで区分して示したが、その領域上の区分に限定されるものではないことは言うまでもない。
また、前記凝縮部または液状冷媒移動部には、前記蒸発部に形成されたものと類似した微細チャンネルを形成して、凝縮された液状冷媒の移動を更に容易にすることもできる。
次いで、図13Aないし図13Fを参照すれば、本発明による冷却装置の更に他の実施形態が示されている。図示するように、本発明による冷却装置の分岐部は、必ずしも円形の環状である必要はなく、直線状(図13Aまたは図13Dを参照)、終端が開放されたり閉鎖されたひし形(図13B、図13C、図13E及び図13Fを参照)に形成されることも可能である。従って、このような多様な分岐部の形状は、その設計的な選択事項に過ぎないため、本発明の技術的思想が分岐部の特定形状に限定されないことは言うまでもない。
本発明は、以上の実施形態について詳細に説明したが、これに限定されるものではなく、当業者により多様に変形実施できることは言うまでもない。例えば、前記微細チャンネルを直線状に形成する実施形態を説明したが、これを曲線型に形成でき、前記断熱部116の形状も多様に形成でき、その寸法や形状も適切にデザインして使用できるということは言うまでもない。
本発明によれば、相変化時の潜熱による冷却と、送風及び対流による冷却とを併行できる。
また、本発明によれば、各層のフィンとフィンとの間に複数の相変化冷却器を積層されるように配置して、フィンの冷却効率を極大化させて、既存の方式に比べて同じ面積のフィンを使用しても冷却性能を大きく向上させうる。
また、本発明によれば、重力の影響に関係なく冷却性能を発揮できる小型のハイブリッド型の冷却装置を提供できる。
また、本発明によれば、設置位置や場所に実質的な制限がない小型のハイブリッド型の冷却装置を提供できる。
また、本発明によれば、蒸発部及び凝縮部の微細チャンネルが、その内部での表面張力を重力より大きくすれば、重力の影響をほとんど受けずに冷媒を自然循環させうるため、設置位置及び設置方法に制限がない。
また、本発明によれば、断熱部により液状の冷媒移動部と気状の冷媒移動部とを熱的及び物理的に分離させることにより、冷媒流動の安定性を図り、混入限界を抑制させることで冷媒の質量流量を増加させて、冷却効率を向上させた。
また、本発明によれば、液状冷媒移動部を冷却装置の両側の外側に沿って配置し、両方向の循環ループより構成することにより、冷媒の過冷効果を上昇させ、重力水頭により一方の液状冷媒移動部への冷媒循環が行われない場合、反対側の液状冷媒移動部を冷媒の流動を円滑にして冷却効率が向上した。
100 ハイブリッド型の冷却装置
102 液状冷媒移動部
104 蒸発部
106 気状冷媒移動部
108 凝縮部
102、110 液状冷媒移動部
112 相変化冷却器
116 断熱部
118 ガイド
120 ファン
102 液状冷媒移動部
104 蒸発部
106 気状冷媒移動部
108 凝縮部
102、110 液状冷媒移動部
112 相変化冷却器
116 断熱部
118 ガイド
120 ファン
Claims (28)
- 外部の熱源からの熱を冷却させるためのハイブリッド型の冷却装置において、
内部に相変化する冷媒の循環ループが形成されるが、その一側に分岐部を備える相変化冷却器と、
前記相変化冷却器の分岐部に設置されたファンと、を備えるが、
前記相変化冷却器は、
その内部の一端に形成されるが、前記液状の冷媒が毛細管現象によって少なくとも一部に充填され、充填された液状の冷媒が外部の熱源から伝えられた熱によって気化される蒸発部と、
前記蒸発部と隣接して形成されるが、気化された冷媒が前記分岐部に向って移動する気状冷媒移動部と、
前記分岐部の少なくとも一部の領域であって、前記気状冷媒移動部と隣接した領域に形成されるが、少なくとも二段に分岐され、前記気状の冷媒が液状に凝縮される凝縮部と、
前記分岐部の少なくとも一部の領域であって、前記凝縮部に隣接した領域に形成されるが、前記蒸発部と断熱され、液状に凝縮された冷媒が前記蒸発部に向って移動する液状冷媒移動部と、
前記蒸発部と前記液状冷媒移動部の少なくとも一部を断熱させる断熱部と、を備えることを特徴とするハイブリッド型の冷却装置。 - 前記液状冷媒移動部の少なくとも一部は、前記液状の冷媒が保存される冷媒保存部であることを特徴とする請求項1に記載のハイブリッド型の冷却装置。
- 前記気状冷媒移動部と前記液状冷媒移動部は、前記断熱部により互いに分離されたことを特徴とする請求項1に記載のハイブリッド型の冷却装置。
- 前記液状冷媒移動部は、液状の冷媒と前記液状冷媒移動部の内壁との間の表面張力が重力より大きく設定された少なくとも一つの微細チャンネルを備えることを特徴とする請求項1に記載のハイブリッド型の冷却装置。
- 前記気状冷媒移動部には、気状の冷媒を前記凝縮部に移動させるための複数のガイドを備えることを特徴とする請求項1に記載のハイブリッド型の冷却装置。
- 前記相変化冷却器の外側において、前記凝縮部に対応する領域に形成された複数のフィンを更に備えることを特徴とする請求項1に記載のハイブリッド型の冷却装置。
- 前記複数のフィンのうち、少なくとも一部は、X−Y平面での断面が曲線状に形成されたことを特徴とする請求項6に記載のハイブリッド型の冷却装置。
- 少なくとも一つの前記相変化冷却器を更に備えるが、前記相変化冷却器の相互間に少なくとも前記蒸発部を共有することを特徴とする請求項1に記載のハイブリッド型の冷却装置。
- 前記蒸発部の所定位置から上下に分岐が形成され、前記共有された蒸発部で気化された気体が、前記複数の相変化冷却器のそれぞれに分岐されて移動できる冷媒流路を更に備えることを特徴とする請求項8に記載のハイブリッド型の冷却装置。
- 前記気状冷媒移動部の所定位置から上下に分岐が形成され、前記共有された蒸発部で気化された気体が、前記複数の相変化冷却器のそれぞれに分岐されて移動できる冷媒流路を更に備えることを特徴とする請求項8に記載のハイブリッド型の冷却装置。
- 少なくとも一つの前記相変化冷却器を更に備えるが、前記相変化冷却器のそれぞれの蒸発部が熱的に接触したことを特徴とする請求項1に記載のハイブリッド型の冷却装置。
- 前記分岐部の終端は、相互間に連結されて一つの閉環を形成することを特徴とする請求項1に記載のハイブリッド型の冷却装置。
- 外部の熱源からの熱を冷却させるためのハイブリッド型の冷却装置において、
内部に相変化する冷媒の循環ループが形成されるが、その一側に少なくとも二段の分岐部が形成された相変化冷却器と、
前記相変化冷却器の分岐部に設置されたファンと、を備えるが、
前記相変化冷却器は、
その内部の前記分岐部に隣接した領域に形成されるが、前記液状の冷媒が毛細管現象によって少なくとも一部に充填され、充填された液状の冷媒が外部の熱源から伝えられた熱によって気化される蒸発部と、
前記蒸発部と隣接して形成されるが、気化された冷媒が前記分岐部の逆方向に向って移動する気状冷媒移動部と、
前記分岐部に形成されるが、前記気状の冷媒が流入されて液状に凝縮される凝縮部と、
前記凝縮部に隣接して形成されるが、前記液状に凝縮された冷媒が前記蒸発部に向って移動する液状冷媒移動部と、を備えることを特徴とするハイブリッド型の冷却装置。 - 前記液状冷媒移動部の少なくとも一部は、前記液状の冷媒が保存される冷媒保存部であることを特徴とする請求項13に記載のハイブリッド型の冷却装置。
- 前記液状冷媒移動部は、液状の冷媒と前記液状冷媒移動部の内壁との間の表面張力が重力より大きく設定された少なくとも一つの微細チャンネルを備えることを特徴とする請求項13に記載のハイブリッド型の冷却装置。
- 前記気状冷媒移動部には、気状の冷媒を前記凝縮部に移動させるための複数のガイドを備えることを特徴とする請求項13に記載のハイブリッド型の冷却装置。
- 前記相変化冷却器の外側において、前記凝縮部に対応する領域に形成された複数のフィンを更に備えることを特徴とする請求項13に記載のハイブリッド型の冷却装置。
- 前記複数のフィンのうち、少なくとも一部は、X−Y平面での断面が曲線状に形成されたことを特徴とする請求項17に記載のハイブリッド型の冷却装置。
- 少なくとも一つの前記相変化冷却器を更に備えるが、前記相変化冷却器の相互間に少なくとも前記蒸発部を共有することを特徴とする請求項13に記載のハイブリッド型の冷却装置。
- 前記蒸発部の所定位置から上下に分岐が形成され、前記共有された蒸発部で気化された気体が、前記複数の相変化冷却器のそれぞれに分岐されて移動できる冷媒流路を更に備えることを特徴とする請求項19に記載のハイブリッド型の冷却装置。
- 前記気状冷媒移動部の所定位置から上下に分岐が形成され、前記共有された蒸発部で気化された気体が、前記複数の相変化冷却器のそれぞれに分岐されて移動できる冷媒流路を更に備えることを特徴とする請求項19に記載のハイブリッド型の冷却装置。
- 少なくとも一つの前記相変化冷却器を更に備えるが、前記相変化冷却器のそれぞれの蒸発部が熱的に接触したことを特徴とする請求項13に記載のハイブリッド型の冷却装置。
- 前記分岐部の終端は、相互間に連結されて一つの閉環を形成することを特徴とする請求項13に記載のハイブリッド型の冷却装置。
- 外部の熱源からの熱を冷却させるためのハイブリッド型の冷却装置において、
(イ)内部に相変化する冷媒の循環ループが形成されるが、
(イ−1)その内部の一端に形成されるが、前記液状の冷媒が毛細管現象によって少なくとも一部に充填され、充填された液状の冷媒が外部の熱源から伝えられた熱によって気化される蒸発部と、
(イ−2)前記蒸発部と隣接して形成されるが、気化された冷媒がその圧力差によって所定方向に移動する気状冷媒移動部と、
(イ−3)少なくとも前記気状冷媒移動部と隣接した領域であって、前記蒸発部の反対側に形成されるが、前記気状の冷媒が一側に流入されて凝縮され、凝縮された液状の冷媒が所定方向に移動して他端に流出され、中央に空間を有するように成形された分岐部と、
(イ−4)前記分岐部の他端と隣接して形成されるが、前記液状の冷媒が前記蒸発部に向って移動する液状冷媒移動部と、
(イ−5)前記蒸発部と前記液状冷媒移動部の少なくとも一部を断熱させる断熱部と、を備える相変化冷却器と、
(ロ)前記相変化冷却器の前記分岐部の中央空間に設置されたファンを備えることを特徴とするハイブリッド型の冷却装置。 - 外部の熱源からの熱を冷却させるためのハイブリッド型の冷却装置において、
(イ)内部に相変化する冷媒の循環ループが形成されるが、
(イ−1)その内部の一端に形成されるが、前記液状の冷媒が毛細管現象によって少なくとも一部に充填され、充填された液状の冷媒が外部の熱源から伝えられた熱によって気化される蒸発部と、
(イ−2)前記蒸発部と隣接して形成されるが、気化された冷媒がその圧力差によって所定方向に移動する気状冷媒移動部と、
(イ−3)前記蒸発部と隣接した領域であって、前記気状冷媒移動部の反対側に形成されるが、前記気状の冷媒が一側に流入されて凝縮され、凝縮された液状の冷媒が所定方向に移動して、前記蒸発部に流出されて中央に空間を有する分岐部と、を備える相変化冷却器と、
(ロ)前記相変化冷却器の前記分岐部の中空に設置されたファンを備えることを特徴とするハイブリッド型の冷却装置。 - 外部の熱源からの熱を冷却させるためのハイブリッド型の冷却装置において、
それぞれの一端が所定角度に曲がるように成形されて、設置時に中央に空間を有する分岐部を構成する一対のヒートパイプと、
前記一対のヒートパイプの曲がった部分が形成する分岐部の中央空間に設置されたファンと、を備えることを特徴とするハイブリッド型の冷却装置。 - 外部の熱源からの熱を冷却させるためのハイブリッド型の冷却装置において、
それぞれの一端が所定角度に曲がるように成形されて、設置時に中央に空間を有する分岐部を構成する一対の相変化冷却器と、
前記一対の相変化冷却器が構成する分岐部の中央空間に設置されたファンと、を備えるが、
前記一対の相変化冷却器のそれぞれは、
その内部に相変化する冷媒の循環ループが形成されるが、
(イ−1)その内部の一端に形成されるが、前記液状の冷媒が毛細管現象によって少なくとも一部に充填され、充填された液状の冷媒が外部の熱源から伝えられた熱によって気化される蒸発部と、
(イ−2)前記蒸発部と隣接して形成されるが、気化された冷媒が前記分岐部に向って移動する気状冷媒移動部と、
(イ−3)少なくとも前記気状冷媒移動部と隣接して形成されるが、前記分岐部の少なくとも一部を形成するように成形され、前記気状の冷媒が一側に流入されて凝縮される凝縮部と、
(イ−4)前記凝縮部と隣接して形成されるが、前記分岐部の少なくとも一部を形成するように成形され、前記液状の冷媒が前記蒸発部に向って移動する液状冷媒移動部と、
(イ−5)前記蒸発部と前記液状冷媒移動部の少なくとも一部を断熱させる断熱部と、を備えることを特徴とするハイブリッド型の冷却装置。 - 外部の熱源からの熱を冷却させるためのハイブリッド型の冷却装置において、
それぞれの一端が所定角度に曲がるように成形され、設置時に中央に空間を有する分岐部を構成する一対の相変化冷却器と、
前記一対の相変化冷却器が構成する分岐部の中央空間に設置されたファンと、を備えるが、
前記一対の相変化冷却器のそれぞれは、
その内部に相変化する冷媒の循環ループが形成されるが、
(イ−1)その内部の一端に形成されるが、前記液状の冷媒が毛細管現象によって少なくとも一部に充填され、充填された液状の冷媒が外部の熱源から伝えられた熱によって気化される蒸発部と、
(イ−2)前記蒸発部と隣接して形成されるが、気化された冷媒が前記分岐部の逆方向に向って移動する気状冷媒移動部と、
(イ−3)前記分岐部に隣接した領域に形成されるが、前記分岐部の少なくとも一部を形成するように成形され、前記気状の冷媒が一側に流入されて凝縮される凝縮部と、
(イ−4)前記凝縮部と隣接して形成されるが、前記分岐部の少なくとも一部を形成するように成形され、前記液状の冷媒が前記蒸発部に向って移動する液状冷媒移動部と、を備えることを特徴とするハイブリッド型の冷却装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0004932A KR100505554B1 (ko) | 2003-01-24 | 2003-01-24 | 하이브리드형 냉각 장치 |
PCT/KR2003/002282 WO2004065866A1 (en) | 2003-01-24 | 2003-10-28 | Cooling device of hybrid-type |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006513577A true JP2006513577A (ja) | 2006-04-20 |
Family
ID=36383779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004567181A Pending JP2006513577A (ja) | 2003-01-24 | 2003-10-28 | ハイブリッド型の冷却装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US7249627B2 (ja) |
EP (1) | EP1595099A4 (ja) |
JP (1) | JP2006513577A (ja) |
KR (1) | KR100505554B1 (ja) |
CN (1) | CN100419355C (ja) |
AU (1) | AU2003273116A1 (ja) |
RU (1) | RU2005126722A (ja) |
WO (1) | WO2004065866A1 (ja) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010530641A (ja) * | 2007-06-18 | 2010-09-09 | モレキュラー・インプリンツ・インコーポレーテッド | インプリント・リソグラフィのための溶媒支援層の形成 |
TWI449875B (zh) * | 2012-02-29 | 2014-08-21 | Acer Inc | 散熱裝置 |
KR101764381B1 (ko) * | 2007-11-16 | 2017-08-02 | 매뉴팩처링 리소시스 인터내셔널 인코포레이티드 | 전자 디스플레이 장치의 열 제어 방법 및 시스템 |
US9797588B2 (en) | 2008-03-03 | 2017-10-24 | Manufacturing Resources International, Inc. | Expanded heat sink for electronic displays |
US9801305B2 (en) | 2008-03-03 | 2017-10-24 | Manufacturing Resources International, Inc. | Heat exchanger for an electronic display |
US9835893B2 (en) | 2008-03-03 | 2017-12-05 | Manufacturing Resources International, Inc. | Heat exchanger for back to back electronics displays |
US9894800B2 (en) | 2008-03-03 | 2018-02-13 | Manufacturing Resources International, Inc. | Constricted convection cooling system for an electronic display |
US10080316B2 (en) | 2009-11-13 | 2018-09-18 | Manufacturing Resources International, Inc. | Electronic display assembly having thermal cooling plate and optional convective air cooling loop |
US10088702B2 (en) | 2013-07-08 | 2018-10-02 | Manufacturing Resources International, Inc. | Figure eight closed loop cooling system for electronic display |
US10194564B2 (en) | 2014-04-30 | 2019-01-29 | Manufacturing Resources International, Inc. | Back to back electronic display assembly |
US10212845B2 (en) | 2014-03-11 | 2019-02-19 | Manufacturing Resources International, Inc. | Hybrid rear cover and mounting bracket for electronic display |
US10278311B2 (en) | 2015-02-17 | 2019-04-30 | Manufacturing Resources International, Inc. | Perimeter ventilation system |
US10314212B2 (en) | 2008-12-18 | 2019-06-04 | Manufacturing Resources International, Inc. | System for cooling an electronic image assembly with circulating gas and ambient gas |
US10398066B2 (en) | 2017-04-27 | 2019-08-27 | Manufacturing Resources International, Inc. | System and method for preventing display bowing |
US10420257B2 (en) | 2008-03-26 | 2019-09-17 | Manufacturing Resources International, Inc. | System and method for maintaining a consistent temperature gradient across an electronic display |
JP2019190810A (ja) * | 2018-04-26 | 2019-10-31 | 泰碩電子股▲分▼有限公司 | スペーサーによって気体作動流体流路および液体作動流体流路を仕切る還流式ベイパーチャンバー |
US10485113B2 (en) | 2017-04-27 | 2019-11-19 | Manufacturing Resources International, Inc. | Field serviceable and replaceable display |
US10524384B2 (en) | 2013-03-15 | 2019-12-31 | Manufacturing Resources International, Inc. | Cooling assembly for an electronic display |
US10524397B2 (en) | 2013-03-15 | 2019-12-31 | Manufacturing Resources International, Inc. | Heat exchanger assembly for an electronic display |
US10559965B2 (en) | 2017-09-21 | 2020-02-11 | Manufacturing Resources International, Inc. | Display assembly having multiple charging ports |
US10660245B2 (en) | 2012-10-16 | 2020-05-19 | Manufacturing Resources International, Inc. | Back pan cooling assembly for electronic display |
US10795413B1 (en) | 2019-04-03 | 2020-10-06 | Manufacturing Resources International, Inc. | Electronic display assembly with a channel for ambient air in an access panel |
US10820445B2 (en) | 2016-03-04 | 2020-10-27 | Manufacturing Resources International, Inc. | Cooling system for double sided display assembly |
US10827656B2 (en) | 2008-12-18 | 2020-11-03 | Manufacturing Resources International, Inc. | System for cooling an electronic image assembly with circulating gas and ambient gas |
US11019735B2 (en) | 2018-07-30 | 2021-05-25 | Manufacturing Resources International, Inc. | Housing assembly for an integrated display unit |
US11096317B2 (en) | 2019-02-26 | 2021-08-17 | Manufacturing Resources International, Inc. | Display assembly with loopback cooling |
US11470749B2 (en) | 2020-10-23 | 2022-10-11 | Manufacturing Resources International, Inc. | Forced air cooling for display assemblies using centrifugal fans |
US11477923B2 (en) | 2020-10-02 | 2022-10-18 | Manufacturing Resources International, Inc. | Field customizable airflow system for a communications box |
US11744054B2 (en) | 2021-08-23 | 2023-08-29 | Manufacturing Resources International, Inc. | Fan unit for providing improved airflow within display assemblies |
US11762231B2 (en) | 2021-08-23 | 2023-09-19 | Manufacturing Resources International, Inc. | Display assemblies inducing turbulent flow |
US11778757B2 (en) | 2020-10-23 | 2023-10-03 | Manufacturing Resources International, Inc. | Display assemblies incorporating electric vehicle charging equipment |
US11919393B2 (en) | 2021-08-23 | 2024-03-05 | Manufacturing Resources International, Inc. | Display assemblies inducing relatively turbulent flow and integrating electric vehicle charging equipment |
US11968813B2 (en) | 2021-11-23 | 2024-04-23 | Manufacturing Resources International, Inc. | Display assembly with divided interior space |
US11966263B2 (en) | 2021-07-28 | 2024-04-23 | Manufacturing Resources International, Inc. | Display assemblies for providing compressive forces at electronic display layers |
US12010813B2 (en) | 2022-07-22 | 2024-06-11 | Manufacturing Resources International, Inc. | Self-contained electronic display assembly, mounting structure and methods for the same |
US12035486B1 (en) | 2022-07-25 | 2024-07-09 | Manufacturing Resources International, Inc. | Electronic display assembly with fabric panel communications box |
US12072561B2 (en) | 2022-07-22 | 2024-08-27 | Manufacturing Resources International, Inc. | Self-contained electronic display assembly, mounting structure and methods for the same |
US12127383B2 (en) | 2007-11-16 | 2024-10-22 | Manufacturing Resources International, Inc. | Electronic display assembly with thermal management |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005191452A (ja) * | 2003-12-26 | 2005-07-14 | Toshiba Corp | 放熱器、冷却装置および冷却装置を有する電子機器 |
KR100512116B1 (ko) * | 2004-12-17 | 2005-09-02 | 박윤종 | 냉각기 |
WO2006109929A1 (en) | 2005-04-11 | 2006-10-19 | Zalman Tech Co., Ltd. | Apparatus for cooling computer parts and method of manufacturing the same |
JP2006322630A (ja) * | 2005-05-17 | 2006-11-30 | Dainippon Screen Mfg Co Ltd | 熱処理装置 |
US7824075B2 (en) | 2006-06-08 | 2010-11-02 | Lighting Science Group Corporation | Method and apparatus for cooling a lightbulb |
WO2008133594A2 (en) * | 2007-04-27 | 2008-11-06 | National University Of Singapore | Cooling device for electronic components |
WO2009007905A2 (en) * | 2007-07-11 | 2009-01-15 | Koninklijke Philips Electronics N.V. | Heat pipe |
KR101007174B1 (ko) * | 2008-11-05 | 2011-01-12 | 한국전자통신연구원 | 박형 냉각소자 |
US20100212862A1 (en) * | 2009-02-26 | 2010-08-26 | Chun-Ju Lin | Cooling structure for a housing |
US8147994B2 (en) * | 2009-02-26 | 2012-04-03 | Tdk Corporation | Layered structure having FePt system magnetic layer and magnetoresistive effect element using the same |
WO2010150064A1 (en) * | 2009-05-18 | 2010-12-29 | Huawei Technologies Co. Ltd. | Heat spreading device and method therefore |
CN102052783A (zh) * | 2009-11-11 | 2011-05-11 | 施国庆 | 内凹放热界面真空循环集热元件 |
CN102052776B (zh) * | 2009-11-11 | 2014-08-06 | 邱丽琴 | 罩玻璃管放热真空循环集热元件太阳集热装置 |
CN102052784B (zh) * | 2009-11-11 | 2014-11-12 | 赵钦舫 | 玻璃管熔封的真空循环集热元件 |
CN102052778A (zh) * | 2009-11-11 | 2011-05-11 | 林根弟 | 可伐封接真空循环集热元件太阳集热装置 |
CN102052786A (zh) * | 2009-11-11 | 2011-05-11 | 徐利明 | 可伐封接的真空循环集热元件 |
CN102052779B (zh) * | 2009-11-11 | 2014-12-10 | 邱丽琴 | 真空循环集热元件太阳集热装置 |
CN102052785B (zh) * | 2009-11-11 | 2014-10-22 | 邱旭堂 | 罩玻璃管放热的真空循环集热元件 |
TWI423015B (zh) * | 2010-07-21 | 2014-01-11 | Asia Vital Components Co Ltd | Pressure gradient driven thin plate type low pressure heat siphon plate |
DE102011015097B4 (de) * | 2011-03-15 | 2013-10-24 | Asia Vital Components Co., Ltd. | Kühleinheit mit hydrophiler Verbindungsschicht |
US9506699B2 (en) * | 2012-02-22 | 2016-11-29 | Asia Vital Components Co., Ltd. | Heat pipe structure |
CN103313574B (zh) * | 2012-03-06 | 2016-03-30 | 宏碁股份有限公司 | 散热装置 |
US11454454B2 (en) * | 2012-03-12 | 2022-09-27 | Cooler Master Co., Ltd. | Flat heat pipe structure |
US9370123B2 (en) | 2012-04-19 | 2016-06-14 | Oe Solutions America, Inc. | System and methods for reduced power consumption and heat removal in optical and optoelectronic devices and subassemblies |
US20130291555A1 (en) | 2012-05-07 | 2013-11-07 | Phononic Devices, Inc. | Thermoelectric refrigeration system control scheme for high efficiency performance |
CN104780738A (zh) * | 2014-01-15 | 2015-07-15 | 奇鋐科技股份有限公司 | 热管结构及散热模块 |
US20150226492A1 (en) * | 2014-02-12 | 2015-08-13 | Asia Vital Components Co., Ltd. | Heat Pipe Structure and Thermal Module Using Same |
US20150308750A1 (en) * | 2014-04-28 | 2015-10-29 | J R Thermal LLC | Slug Pump Heat Pipe |
WO2015167419A1 (en) * | 2014-04-28 | 2015-11-05 | Hewlett-Packard Development Company, L.P. | A heat-dissipating device including a vapor chamber and a radial fin assembly |
CN105300145B (zh) * | 2014-07-02 | 2017-08-29 | 程长青 | 热管加热式散热器 |
US10458683B2 (en) | 2014-07-21 | 2019-10-29 | Phononic, Inc. | Systems and methods for mitigating heat rejection limitations of a thermoelectric module |
CN105579792A (zh) * | 2014-09-02 | 2016-05-11 | 阿威德热合金有限公司 | 用于热虹吸的蒸发器部段结构和冷凝器部段结构 |
JP2017534826A (ja) | 2014-09-15 | 2017-11-24 | アアヴィッド・サーマロイ・エルエルシー | 屈曲管部を備えたサーモサイホン |
CN104266518A (zh) * | 2014-10-13 | 2015-01-07 | 芜湖长启炉业有限公司 | 三环超导散热座 |
CN104296575A (zh) * | 2014-11-04 | 2015-01-21 | 芜湖长启炉业有限公司 | 管套式超导散热器 |
CN105258382A (zh) * | 2015-09-29 | 2016-01-20 | 青岛海尔特种电冰箱有限公司 | 换热装置及具有该换热装置的半导体制冷冰箱 |
US10746474B2 (en) | 2016-04-11 | 2020-08-18 | Qualcomm Incorporated | Multi-phase heat dissipating device comprising piezo structures |
US10353445B2 (en) * | 2016-04-11 | 2019-07-16 | Qualcomm Incorporated | Multi-phase heat dissipating device for an electronic device |
TWM532046U (zh) * | 2016-06-02 | 2016-11-11 | Tai Sol Electronics Co Ltd | 具有液汽分離結構的均溫板 |
US20190154352A1 (en) * | 2017-11-22 | 2019-05-23 | Asia Vital Components (China) Co., Ltd. | Loop heat pipe structure |
US11131511B2 (en) | 2018-05-29 | 2021-09-28 | Cooler Master Co., Ltd. | Heat dissipation plate and method for manufacturing the same |
CN109244051B (zh) * | 2018-10-30 | 2024-11-05 | 中国航天空气动力技术研究院 | 一种用于服务器芯片散热的并联式环路热管散热装置 |
US11913725B2 (en) | 2018-12-21 | 2024-02-27 | Cooler Master Co., Ltd. | Heat dissipation device having irregular shape |
US11181323B2 (en) | 2019-02-21 | 2021-11-23 | Qualcomm Incorporated | Heat-dissipating device with interfacial enhancements |
US11611192B2 (en) * | 2019-10-04 | 2023-03-21 | Accelsius, Llc | Embedded microfluidic distribution apparatus for passively cooling optoelectronic devices |
EP3816559A1 (en) * | 2019-10-29 | 2021-05-05 | ABB Schweiz AG | Two-phase heat transfer device for heat dissipation |
CN113453510B (zh) * | 2021-06-28 | 2022-10-11 | 航天科技控股集团股份有限公司 | 一种逆变器的散热结构 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07318269A (ja) | 1994-05-25 | 1995-12-08 | Mitsubishi Cable Ind Ltd | ヒートパイプ構造体 |
US6357517B1 (en) * | 1994-07-04 | 2002-03-19 | Denso Corporation | Cooling apparatus boiling and condensing refrigerant |
JP3549933B2 (ja) * | 1995-01-27 | 2004-08-04 | 住友精密工業株式会社 | プレートフィン型素子冷却器 |
JPH09113058A (ja) | 1995-10-23 | 1997-05-02 | Fuji Electric Co Ltd | 電子冷却式冷却ユニット |
JPH1163722A (ja) | 1997-08-11 | 1999-03-05 | Daikin Ind Ltd | 流体冷却装置 |
JPH11121667A (ja) * | 1997-10-20 | 1999-04-30 | Fujitsu Ltd | ヒートパイプ式冷却装置 |
JPH11121816A (ja) | 1997-10-21 | 1999-04-30 | Morikkusu Kk | 熱電モジュールユニット |
US6118655A (en) * | 1997-12-08 | 2000-09-12 | Compaq Computer Corporation | Cooling fan with heat pipe-defined fan housing portion |
CN1077676C (zh) * | 1998-03-30 | 2002-01-09 | 河北节能投资有限责任公司 | 采用热管传导散热的温差电致冷器 |
US6789611B1 (en) * | 2000-01-04 | 2004-09-14 | Jia Hao Li | Bubble cycling heat exchanger |
JP2001201233A (ja) * | 2000-01-20 | 2001-07-27 | Fujitsu General Ltd | 保温・保冷装置 |
JP2001227852A (ja) * | 2000-02-16 | 2001-08-24 | Komatsu Ltd | 断熱パネル |
US6422303B1 (en) * | 2000-03-14 | 2002-07-23 | Intel Corporation | Silent heat exchanger and fan assembly |
US6981543B2 (en) * | 2001-09-20 | 2006-01-03 | Intel Corporation | Modular capillary pumped loop cooling system |
-
2003
- 2003-01-24 KR KR10-2003-0004932A patent/KR100505554B1/ko not_active IP Right Cessation
- 2003-10-28 RU RU2005126722/12A patent/RU2005126722A/ru not_active Application Discontinuation
- 2003-10-28 JP JP2004567181A patent/JP2006513577A/ja active Pending
- 2003-10-28 AU AU2003273116A patent/AU2003273116A1/en not_active Abandoned
- 2003-10-28 CN CNB2003801101921A patent/CN100419355C/zh not_active Expired - Fee Related
- 2003-10-28 US US10/543,417 patent/US7249627B2/en not_active Expired - Fee Related
- 2003-10-28 WO PCT/KR2003/002282 patent/WO2004065866A1/en active Application Filing
- 2003-10-28 EP EP03754300A patent/EP1595099A4/en not_active Withdrawn
Cited By (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010530641A (ja) * | 2007-06-18 | 2010-09-09 | モレキュラー・インプリンツ・インコーポレーテッド | インプリント・リソグラフィのための溶媒支援層の形成 |
KR101853885B1 (ko) | 2007-11-16 | 2018-05-02 | 매뉴팩처링 리소시스 인터내셔널 인코포레이티드 | 전자 디스플레이 장치의 열 제어 방법 및 시스템 |
US12207452B2 (en) | 2007-11-16 | 2025-01-21 | Manufacturing Resources International, Inc. | Electronic display assembly with thermal management |
KR101764381B1 (ko) * | 2007-11-16 | 2017-08-02 | 매뉴팩처링 리소시스 인터내셔널 인코포레이티드 | 전자 디스플레이 장치의 열 제어 방법 및 시스템 |
US12207453B1 (en) | 2007-11-16 | 2025-01-21 | Manufacturing Resources International, Inc. | Electronic display assembly with thermal management |
US12185512B2 (en) | 2007-11-16 | 2024-12-31 | Manufacturing Resources International, Inc. | Electronic display assembly with thermal management |
US12127383B2 (en) | 2007-11-16 | 2024-10-22 | Manufacturing Resources International, Inc. | Electronic display assembly with thermal management |
US10721836B2 (en) | 2008-03-03 | 2020-07-21 | Manufacturing Resources International, Inc. | Electronic display with cooling |
US10506740B2 (en) | 2008-03-03 | 2019-12-10 | Manufacturing Resources International, Inc. | Electronic display with cooling |
US11013142B2 (en) | 2008-03-03 | 2021-05-18 | Manufacturing Resources International, Inc. | Electronic display with cooling |
US12207437B2 (en) | 2008-03-03 | 2025-01-21 | Manufacturing Resources International, Inc. | Electronic display with cooling |
US12207438B2 (en) | 2008-03-03 | 2025-01-21 | Manufacturing Resources International, Inc. | Electronic display with cooling |
US9797588B2 (en) | 2008-03-03 | 2017-10-24 | Manufacturing Resources International, Inc. | Expanded heat sink for electronic displays |
US9801305B2 (en) | 2008-03-03 | 2017-10-24 | Manufacturing Resources International, Inc. | Heat exchanger for an electronic display |
US11540418B2 (en) | 2008-03-03 | 2022-12-27 | Manufacturing Resources International, Inc. | Electronic display with cooling |
US12108562B2 (en) | 2008-03-03 | 2024-10-01 | Manufacturing Resources International, Inc. | Electronic display with cooling |
US11596081B2 (en) | 2008-03-03 | 2023-02-28 | Manufacturing Resources International, Inc. | Electronic display with cooling |
US9894800B2 (en) | 2008-03-03 | 2018-02-13 | Manufacturing Resources International, Inc. | Constricted convection cooling system for an electronic display |
US10506738B2 (en) | 2008-03-03 | 2019-12-10 | Manufacturing Resources International, Inc. | Constricted convection cooling for an electronic display |
US9835893B2 (en) | 2008-03-03 | 2017-12-05 | Manufacturing Resources International, Inc. | Heat exchanger for back to back electronics displays |
US10420257B2 (en) | 2008-03-26 | 2019-09-17 | Manufacturing Resources International, Inc. | System and method for maintaining a consistent temperature gradient across an electronic display |
US10314212B2 (en) | 2008-12-18 | 2019-06-04 | Manufacturing Resources International, Inc. | System for cooling an electronic image assembly with circulating gas and ambient gas |
US11191193B2 (en) | 2008-12-18 | 2021-11-30 | Manufacturing Resources International, Inc. | System for cooling an electronic image assembly with circulating gas and ambient gas |
US10827656B2 (en) | 2008-12-18 | 2020-11-03 | Manufacturing Resources International, Inc. | System for cooling an electronic image assembly with circulating gas and ambient gas |
US10080316B2 (en) | 2009-11-13 | 2018-09-18 | Manufacturing Resources International, Inc. | Electronic display assembly having thermal cooling plate and optional convective air cooling loop |
US10736245B2 (en) | 2009-11-13 | 2020-08-04 | Manufacturing Resources International, Inc. | Electronic display assembly with combined conductive and convective cooling |
TWI449875B (zh) * | 2012-02-29 | 2014-08-21 | Acer Inc | 散熱裝置 |
US10660245B2 (en) | 2012-10-16 | 2020-05-19 | Manufacturing Resources International, Inc. | Back pan cooling assembly for electronic display |
US10524397B2 (en) | 2013-03-15 | 2019-12-31 | Manufacturing Resources International, Inc. | Heat exchanger assembly for an electronic display |
US10524384B2 (en) | 2013-03-15 | 2019-12-31 | Manufacturing Resources International, Inc. | Cooling assembly for an electronic display |
US10359659B2 (en) | 2013-07-08 | 2019-07-23 | Manufactruing Resources Internatonal, Inc. | Cooling system for electronic display |
US10088702B2 (en) | 2013-07-08 | 2018-10-02 | Manufacturing Resources International, Inc. | Figure eight closed loop cooling system for electronic display |
US10212845B2 (en) | 2014-03-11 | 2019-02-19 | Manufacturing Resources International, Inc. | Hybrid rear cover and mounting bracket for electronic display |
US10687446B2 (en) | 2014-04-30 | 2020-06-16 | Manufacturing Resources International, Inc. | Back to back electronic display assembly |
US10194564B2 (en) | 2014-04-30 | 2019-01-29 | Manufacturing Resources International, Inc. | Back to back electronic display assembly |
US10973156B2 (en) | 2014-04-30 | 2021-04-06 | Manufacturing Resources International, Inc. | Dual electronic display assembly |
US10278311B2 (en) | 2015-02-17 | 2019-04-30 | Manufacturing Resources International, Inc. | Perimeter ventilation system |
US10548247B2 (en) | 2015-02-17 | 2020-01-28 | Manufacturing Resources International, Inc. | Perimeter ventilation system |
US10820445B2 (en) | 2016-03-04 | 2020-10-27 | Manufacturing Resources International, Inc. | Cooling system for double sided display assembly |
US11744036B2 (en) | 2016-03-04 | 2023-08-29 | Manufacturing Resources International, Inc. | Cooling system for double sided display assembly |
US10624218B2 (en) | 2017-04-27 | 2020-04-14 | Manufacturing Resources International, Inc. | Field serviceable and replaceable display assembly |
US10398066B2 (en) | 2017-04-27 | 2019-08-27 | Manufacturing Resources International, Inc. | System and method for preventing display bowing |
US11822171B2 (en) | 2017-04-27 | 2023-11-21 | Manufacturing Resources International, Inc. | Field serviceable and replaceable assembly |
US10925174B2 (en) | 2017-04-27 | 2021-02-16 | Manufacturing Resources International, Inc. | Field serviceable and replaceable assembly |
US10757844B2 (en) | 2017-04-27 | 2020-08-25 | Manufacturing Resources International, Inc. | System and method for reducing or combating display bowing |
US10716224B2 (en) | 2017-04-27 | 2020-07-14 | Manufacturing Resources International, Inc. | Field serviceable and replaceable assembly |
US11934054B2 (en) | 2017-04-27 | 2024-03-19 | Manufacturing Resources International, Inc. | Field serviceable and replaceable assembly |
US11032923B2 (en) | 2017-04-27 | 2021-06-08 | Manufacturing Resources International, Inc. | Field serviceable display assembly |
US10499516B2 (en) | 2017-04-27 | 2019-12-03 | Manufacturing Resources International, Inc. | Field serviceable and replaceable assembly |
US10485113B2 (en) | 2017-04-27 | 2019-11-19 | Manufacturing Resources International, Inc. | Field serviceable and replaceable display |
US10559965B2 (en) | 2017-09-21 | 2020-02-11 | Manufacturing Resources International, Inc. | Display assembly having multiple charging ports |
JP2019190810A (ja) * | 2018-04-26 | 2019-10-31 | 泰碩電子股▲分▼有限公司 | スペーサーによって気体作動流体流路および液体作動流体流路を仕切る還流式ベイパーチャンバー |
US12004311B2 (en) | 2018-07-30 | 2024-06-04 | Manufacturing Resources International, Inc. | Housing assembly for an integrated display unit |
US11019735B2 (en) | 2018-07-30 | 2021-05-25 | Manufacturing Resources International, Inc. | Housing assembly for an integrated display unit |
US11889636B2 (en) | 2018-07-30 | 2024-01-30 | Manufacturing Resources International, Inc. | Housing assembly for an integrated display unit |
US11096317B2 (en) | 2019-02-26 | 2021-08-17 | Manufacturing Resources International, Inc. | Display assembly with loopback cooling |
US12010824B2 (en) | 2019-02-26 | 2024-06-11 | Manufacturing Resources International, Inc. | Display assembly with loopback cooling |
US11617287B2 (en) | 2019-02-26 | 2023-03-28 | Manufacturing Resources International, Inc. | Display assembly with loopback cooling |
US12096607B1 (en) | 2019-02-26 | 2024-09-17 | Manufacturing Resources International, Inc. | Display assembly with loopback cooling |
US10795413B1 (en) | 2019-04-03 | 2020-10-06 | Manufacturing Resources International, Inc. | Electronic display assembly with a channel for ambient air in an access panel |
US11989059B2 (en) | 2019-04-03 | 2024-05-21 | Manufacturing Resources International, Inc. | Electronic display assembly with a channel for ambient air in an access panel |
US11507141B2 (en) | 2019-04-03 | 2022-11-22 | Manufacturing Resources International, Inc. | Electronic display assembly with a channel for ambient air in an access panel |
US11477923B2 (en) | 2020-10-02 | 2022-10-18 | Manufacturing Resources International, Inc. | Field customizable airflow system for a communications box |
US12052850B2 (en) | 2020-10-02 | 2024-07-30 | Manufacturing Resources International, Inc. | Field customizable airflow system for a communications box |
US11470749B2 (en) | 2020-10-23 | 2022-10-11 | Manufacturing Resources International, Inc. | Forced air cooling for display assemblies using centrifugal fans |
US12022624B2 (en) | 2020-10-23 | 2024-06-25 | Manufacturing Resources International, Inc. | Display assemblies incorporating electric vehicle charging equipment |
US11778757B2 (en) | 2020-10-23 | 2023-10-03 | Manufacturing Resources International, Inc. | Display assemblies incorporating electric vehicle charging equipment |
US12200877B2 (en) | 2020-10-23 | 2025-01-14 | Manufacturing Resources International, Inc. | Display assemblies incorporating electric vehicle charging equipment |
US12004310B2 (en) | 2020-10-23 | 2024-06-04 | Manufacturing Resources International, Inc. | Display assemblies incorporating electric vehicle charging equipment |
US12153479B2 (en) | 2021-07-28 | 2024-11-26 | Manufacturing Resources International, Inc. | Display assemblies for providing compressive forces at electronic display layers |
US11966263B2 (en) | 2021-07-28 | 2024-04-23 | Manufacturing Resources International, Inc. | Display assemblies for providing compressive forces at electronic display layers |
US11762231B2 (en) | 2021-08-23 | 2023-09-19 | Manufacturing Resources International, Inc. | Display assemblies inducing turbulent flow |
US11744054B2 (en) | 2021-08-23 | 2023-08-29 | Manufacturing Resources International, Inc. | Fan unit for providing improved airflow within display assemblies |
US11919393B2 (en) | 2021-08-23 | 2024-03-05 | Manufacturing Resources International, Inc. | Display assemblies inducing relatively turbulent flow and integrating electric vehicle charging equipment |
US12185513B2 (en) | 2021-11-23 | 2024-12-31 | Manufacturing Resources International, Inc. | Display assembly with divided interior space |
US12089382B2 (en) | 2021-11-23 | 2024-09-10 | Manufacturing Resources International, Inc. | Display assembly with divided interior space |
US11968813B2 (en) | 2021-11-23 | 2024-04-23 | Manufacturing Resources International, Inc. | Display assembly with divided interior space |
US12193187B2 (en) | 2022-07-22 | 2025-01-07 | Manufacturing Resources International, Inc. | Self-contained electronic display assembly, mounting structure and methods for the same |
US12197058B2 (en) | 2022-07-22 | 2025-01-14 | Manufacturing Resources International, Inc. | Self-contained electronic display assembly, mounting structure and methods for the same |
US12072561B2 (en) | 2022-07-22 | 2024-08-27 | Manufacturing Resources International, Inc. | Self-contained electronic display assembly, mounting structure and methods for the same |
US12010813B2 (en) | 2022-07-22 | 2024-06-11 | Manufacturing Resources International, Inc. | Self-contained electronic display assembly, mounting structure and methods for the same |
US12222592B2 (en) | 2022-07-22 | 2025-02-11 | Manufacturing Resources International, Inc. | Self-contained electronic display assembly, mounting structure and methods for the same |
US12108546B1 (en) | 2022-07-25 | 2024-10-01 | Manufacturing Resources International, Inc. | Electronic display assembly with fabric panel communications box |
US12035486B1 (en) | 2022-07-25 | 2024-07-09 | Manufacturing Resources International, Inc. | Electronic display assembly with fabric panel communications box |
Also Published As
Publication number | Publication date |
---|---|
EP1595099A1 (en) | 2005-11-16 |
US7249627B2 (en) | 2007-07-31 |
CN100419355C (zh) | 2008-09-17 |
KR100505554B1 (ko) | 2005-08-03 |
EP1595099A4 (en) | 2010-03-10 |
AU2003273116A1 (en) | 2004-08-13 |
CN1759284A (zh) | 2006-04-12 |
WO2004065866A1 (en) | 2004-08-05 |
KR20040067701A (ko) | 2004-07-30 |
US20060266499A1 (en) | 2006-11-30 |
RU2005126722A (ru) | 2006-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100505554B1 (ko) | 하이브리드형 냉각 장치 | |
KR100505279B1 (ko) | 드라이 아웃이 방지된 박판형 냉각장치 | |
KR100294317B1 (ko) | 초소형 냉각 장치 | |
Kandlikar et al. | Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal | |
JP2004190976A (ja) | 熱輸送装置及び電子デバイス | |
KR100495699B1 (ko) | 판형 열전달장치 및 그 제조방법 | |
US20100065255A1 (en) | Vapor Chamber | |
KR100414860B1 (ko) | 박판형 냉각장치 | |
Li et al. | Comprehensive review and future prospects on chip-scale thermal management: Core of data center’s thermal management | |
CN109979900A (zh) | 一种GaN HEMT器件基板级的微通道-纳米多孔复合结构蒸发器 | |
JP2007263427A (ja) | ループ型ヒートパイプ | |
JP5765045B2 (ja) | ループ型ヒートパイプ及びその製造方法 | |
Chen et al. | High power electronic component | |
Tong et al. | Liquid cooling devices and their materials selection | |
JP5938865B2 (ja) | ループ型ヒートパイプ及び電子装置 | |
US20220049905A1 (en) | Oscillating heat pipe channel architecture | |
TWI786526B (zh) | 具雙相單向流之超薄型均溫板元件 | |
US11828538B2 (en) | Loop type heat pipe | |
KR20050082311A (ko) | 멤스공정으로 제조되는 마이크로형 냉각장치 | |
KR100455291B1 (ko) | 평판형 기화기 | |
KR20080054784A (ko) | 복층형 냉각장치 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080805 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090310 |