JP2006342044A - Vanadium phosphate base glass - Google Patents
Vanadium phosphate base glass Download PDFInfo
- Publication number
- JP2006342044A JP2006342044A JP2006119783A JP2006119783A JP2006342044A JP 2006342044 A JP2006342044 A JP 2006342044A JP 2006119783 A JP2006119783 A JP 2006119783A JP 2006119783 A JP2006119783 A JP 2006119783A JP 2006342044 A JP2006342044 A JP 2006342044A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- powder
- vanadium phosphate
- sealing
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/16—Silica-free oxide glass compositions containing phosphorus
- C03C3/21—Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
Landscapes
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Glass Compositions (AREA)
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
- Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
- Gas-Filled Discharge Tubes (AREA)
Abstract
Description
本発明は、蛍光表示装置(VFD)、電界放射型ディスプレイ(FED)、プラズマディスプレイパネル(PDP)、陰極線管(CRT)等の表示装置の封着等に用いることができるガラスおよびこれを用いた粉末材料に関するものである。また、本発明は、半導体素子および水晶振動子等を収容したパッケージ等の電子部品の封着等に用いることができるガラスおよびこれを用いた粉末材料に関するものである。 The present invention uses glass that can be used for sealing display devices such as a fluorescent display device (VFD), a field emission display (FED), a plasma display panel (PDP), and a cathode ray tube (CRT), and the like. It relates to powder materials. The present invention also relates to glass that can be used for sealing electronic components such as a package containing a semiconductor element, a crystal resonator, and the like, and a powder material using the glass.
VFD、FED、PDP、CRT等の表示装置の封着には、封着温度が430〜500℃、熱膨張係数が60〜100×10-7/℃程度の特性を有する封着ガラスが使用されている。また、半導体素子および水晶振動子等を収容したパッケージ等の電子部品の封着には、封着温度が320〜500℃、熱膨張係数が60〜100×10-7/℃程度の特性を有する封着ガラスが使用されている。 For sealing display devices such as VFD, FED, PDP, and CRT, sealing glass having characteristics such as a sealing temperature of 430 to 500 ° C. and a thermal expansion coefficient of about 60 to 100 × 10 −7 / ° C. is used. ing. Further, for sealing electronic components such as packages containing semiconductor elements and crystal resonators, the sealing temperature is 320 to 500 ° C., and the thermal expansion coefficient is about 60 to 100 × 10 −7 / ° C. Sealing glass is used.
表示装置の封着は、まず被封着物の封着部分にガラスペーストを塗布し、乾燥後、脱バインダーのために加熱する。その後、他方の被封着物と密着させた状態で本焼成を行い、封着を完了させる。なお、VFD、FED、PDP、CRT等の表示装置では、封着後に真空排気のための熱処理に供される。したがって、これらの封着材料には、この熱処理で変質して気密性を損なうことがないガラスを選択する必要がある。 For sealing the display device, first, a glass paste is applied to a sealed portion of an object to be sealed, dried, and then heated for debinding. Then, the main baking is performed in a state of being in close contact with the other object to be sealed, and the sealing is completed. Note that display devices such as VFD, FED, PDP, and CRT are subjected to heat treatment for evacuation after sealing. Therefore, it is necessary to select a glass which does not deteriorate the airtightness due to the heat treatment.
また、より強固な結合を得るために、ガラス粉末が被封着物の接着表面を濡らすのに十分な温度まで加熱する必要がある。一方、高温に弱い素子等を内蔵した電子部品を封着する場合等、工程温度をできる限り低く維持しなければならない場合があり、低温度でも封着可能な材料が望まれている。 In order to obtain a stronger bond, it is necessary to heat the glass powder to a temperature sufficient to wet the adhesion surface of the object to be sealed. On the other hand, there are cases where the process temperature has to be kept as low as possible, for example, when sealing an electronic component containing a device that is sensitive to high temperatures, and a material that can be sealed even at a low temperature is desired.
このような事情から、従来この種の封着材料には、低い温度で封着可能なPbO−B2O3系ガラス粉末と耐火性フィラー粉末からなる粉末材料が主として用いられている。 Under such circumstances, conventionally, a powder material composed of a PbO—B 2 O 3 glass powder that can be sealed at a low temperature and a refractory filler powder is mainly used for this type of sealing material.
しかしながら、最近では環境問題の観点から、ガラスから鉛を除くことが求められている。鉛を含まないガラスとして、例えばリン酸スズ系ガラスが特許文献1で提案されている。ところが、この系のガラスは、P2O5を主要なガラス形成酸化物として多量に含有しているため、吸湿性が高く、粉末の保管時に変質を起こしたり、粉末焼成体の耐候性が劣化する場合があった。そのため所定の特性を得られず、高温高湿下で使用される電子部品等に使用できない場合があった。 However, recently, from the viewpoint of environmental problems, it is required to remove lead from glass. As a glass not containing lead, for example, a tin phosphate glass is proposed in Patent Document 1. However, this type of glass contains a large amount of P 2 O 5 as a main glass-forming oxide, so it has high hygroscopicity, causes deterioration during storage of the powder, and deteriorates the weather resistance of the powder fired body. There was a case. Therefore, predetermined characteristics cannot be obtained, and there are cases where it cannot be used for electronic parts used under high temperature and high humidity.
また、錫リン酸系ガラスは、脱バインダー工程および封着工程において、SnOがSnO2に酸化されることにより表面失透が発生しやすく、目的とする材料との封着を行うために焼成雰囲気の制御等が必要であった。特に、SnOを多量に含有している場合、その傾向が顕著であった。したがって、錫リン酸系ガラスは、現在広く使用されているPbO−B2O3系ガラスの特性に未だ及ばないのが実情である。 In addition, tin phosphate glass tends to cause surface devitrification due to oxidation of SnO to SnO 2 in a debinding step and a sealing step, and a firing atmosphere for sealing with a target material. It was necessary to control. In particular, when SnO is contained in a large amount, the tendency is remarkable. Therefore, in reality, tin phosphate glass does not reach the characteristics of PbO—B 2 O 3 glass that is widely used at present.
また、この他に低融点封着用組成物として、特許文献2でBi2O3−B2O3−ZnO系ガラスが提案されている。しかしながら、Bi2O3−B2O3−ZnO系ガラスは、PbO−B2O3系ガラスと比較してガラスの軟化点が高く、封着温度を高くしなければ十分な流動が得られない問題があった。このため高温で特性が劣化する表示装置や電子部品等の封着等に使用できなった。 In addition, Bi 2 O 3 —B 2 O 3 —ZnO-based glass is proposed in Patent Document 2 as a low melting point sealing composition. However, Bi 2 O 3 —B 2 O 3 —ZnO glass has a higher softening point than that of PbO—B 2 O 3 glass, and sufficient flow can be obtained unless the sealing temperature is increased. There was no problem. For this reason, it could not be used for sealing display devices and electronic parts whose characteristics deteriorate at high temperatures.
さらに、V2O5−ZnO−BaO−TeO2系ガラスが特許文献3において提案されている。このV2O5−ZnO−BaO−TeO2系ガラスは低温で封着することができる低融点無鉛ガラスであるが、耐水性が悪いといった問題を有していた。また、熱的な安定性が十分ではなく、高温度域で使用するとガラスが失透するといった問題も有していた。
本発明者は、種々の実験を行うことによりこれらの問題を改良し、本発明として提案するものである。すなわち、本発明者は、鋭意努力の結果、ガラス組成としてV2O5、P2O5およびBi2O3を含有するバナジウムリン酸系ガラスを用いることにより、これらの問題を解決し、本発明として提案するものである。 The present inventor improves these problems by conducting various experiments and proposes the present invention. That is, as a result of diligent efforts, the present inventors have solved these problems by using vanadium phosphate glass containing V 2 O 5 , P 2 O 5 and Bi 2 O 3 as glass compositions. It is proposed as an invention.
具体的には、ガラス組成中のV2O5を60モル%以下の範囲とすることで熱的な安定性を向上させ、失透性の問題を改善した。さらに、ガラスの構成成分としてP2O5を含有させることで熱的安定性を向上させ、耐水性向上成分としてBi2O3を含有させることで耐水性の低下を抑制させた。 Specifically, the V 2 O 5 in the glass composition is in the range of 60 mol% or less, thereby improving the thermal stability and improving the devitrification problem. Furthermore, thermal stability was improved by containing P 2 O 5 as a constituent component of glass, and a decrease in water resistance was suppressed by containing Bi 2 O 3 as a water resistance improving component.
上記の目的を達成するために、本発明のバナジウムリン酸系ガラスは、ガラス組成としてV2O5、P2O5およびBi2O3を含有することに特徴付けられる。 In order to achieve the above object, the vanadium phosphate glass of the present invention is characterized by containing V 2 O 5 , P 2 O 5 and Bi 2 O 3 as a glass composition.
第二に、本発明のバナジウムリン酸系ガラスは、下記酸化物換算のモル%表示で、ガラス組成として、V2O5 10〜60%、P2O5 5〜40%、Bi2O3 1〜30%、ZnO 0〜40%、TeO2 0〜40%、R2O 0〜20%(RはLi、Na、K、Cs)、R’O 0〜30%(R’はMg、Ca、Sr、Ba)を含有することに特徴付けられる。 Secondly, the vanadium phosphate glass of the present invention is expressed in terms of mol% in terms of the following oxides, and has a glass composition of V 2 O 5 10-60%, P 2 O 5 5-40%, Bi 2 O 3. 1~30%, 0~40% ZnO, TeO 2 0~40%, R 2 O 0~20% (R is Li, Na, K, Cs) , R'O 0~30% (R ' is Mg, It is characterized by containing Ca, Sr, Ba).
第三に、本発明のバナジウムリン酸系ガラスは、PbOを含有しないことに特徴付けられる。なお、本発明において「PbOを含有しない」とは、実質的にPbOを含有しないことを意味し、具体的には、PbO含有量が1000ppm以下の場合を指す。 Third, the vanadium phosphate glass of the present invention is characterized by not containing PbO. In the present invention, “not containing PbO” means substantially not containing PbO, and specifically refers to a case where the PbO content is 1000 ppm or less.
第四に、本発明の粉末材料は、上記のバナジウムリン酸系ガラスの粉末45〜100体積%と耐火性フィラー粉末0〜55体積%を含有することに特徴付けられる。 Fourthly, the powder material of the present invention is characterized by containing 45 to 100% by volume of the vanadium phosphate glass powder and 0 to 55% by volume of the refractory filler powder.
第五に、本発明の導電性粉末材料は、上記のバナジウムリン酸系ガラスの粉末10〜60重量%と金属粉末40〜90重量%と耐火性フィラー粉末0〜20重量%を含有することに特徴付けられる。 Fifth, the conductive powder material of the present invention contains 10 to 60% by weight of the vanadium phosphate glass powder, 40 to 90% by weight of metal powder, and 0 to 20% by weight of refractory filler powder. Characterized.
第六に、本発明の封着用粉末材料は、上記のバナジウムリン酸系ガラスの粉末45〜100体積%と耐火性フィラー粉末0〜55体積%を含有し、表示装置または電気部品に用いることに特徴付けられる。 Sixth, the sealing powder material of the present invention contains 45 to 100% by volume of the vanadium phosphate glass powder and 0 to 55% by volume of the refractory filler powder, and is used for a display device or an electrical component. Characterized.
第七に、本発明の絶縁層形成用粉末材料は、上記のバナジウムリン酸系ガラスの粉末45〜100体積%と耐火性フィラー粉末0〜55体積%を含有し、表示装置または電気部品に用いることに特徴付けられる。 Seventh, the insulating layer-forming powder material of the present invention contains 45 to 100% by volume of the vanadium phosphate glass powder and 0 to 55% by volume of the refractory filler powder, and is used for display devices or electrical components. It is characterized by that.
第八に、本発明の隔壁形成用粉末材料は、上記のバナジウムリン酸系ガラスの粉末45〜100体積%と耐火性フィラー粉末0〜55体積%を含有し、表示装置または電子部品に用いることに特徴付けられる。 Eighth, the partition wall forming powder material of the present invention contains 45 to 100% by volume of the vanadium phosphate glass powder and 0 to 55% by volume of the refractory filler powder, and is used for a display device or an electronic component. Characterized by
第九に、本発明のペースト材料は、上記の粉末材料と樹脂バインダーと溶剤を含有することに特徴付けられる。 Ninth, the paste material of the present invention is characterized by containing the above powder material, a resin binder, and a solvent.
本発明のバナジウムリン酸系ガラスにおいて、ガラスの組成範囲を上記のように限定した理由を以下に述べる。なお、以下の%表示は、特に限定のある場合を除き、モル%を指す。 The reason why the composition range of the glass in the vanadium phosphate glass of the present invention is limited as described above will be described below. In addition, the following% display points out mol% unless there is particular limitation.
V2O5はガラス形成酸化物であると同時に、ガラスを低融点化させる成分である。V2O5が10%より少ないとガラスの粘性が高くなって焼成温度が高くなる。V2O5が60%を超えてもガラス化はするが、ガラスの失透性が強くなる。また、V2O5成分が多いと、焼成時に発泡しやすくなるので、60%以下であることが好ましい。20%以上であれば、流動性に優れ、高い気密性を得ることができるためより好ましい。49%以下であれば、さらに失透性が抑制され,ガラスの熱的安定性が向上するのでより好ましい。したがって、V2O5のより好ましい範囲は20〜49%である。特に好ましい範囲は20〜45%である。 V 2 O 5 is a glass forming oxide and a component that lowers the melting point of the glass. If V 2 O 5 is less than 10%, the viscosity of the glass increases and the firing temperature increases. Even if V 2 O 5 exceeds 60%, the glass is vitrified, but the devitrification property of the glass becomes strong. Further, when V 2 O 5 component is great, since easily foaming during firing is preferably 60% or less. If it is 20% or more, it is more preferable because it is excellent in fluidity and high airtightness can be obtained. If it is 49% or less, devitrification is further suppressed, and the thermal stability of the glass is improved, which is more preferable. Therefore, a more preferable range of V 2 O 5 is 20 to 49%. A particularly preferred range is 20 to 45%.
P2O5はガラス形成酸化物である。P2O5が5%未満の領域ではガラスの安定性が不十分であり、ガラスを低融点化する効果も得られない。P2O5が10〜40%の範囲では、高い熱的安定性が得られるが、40%を超えると耐湿性が悪くなる。また、P2O5が20%以上であれば、ガラスがより安定化するが、30%を超えるとガラスの耐候性がやや悪くなる傾向がある。したがって、P2O5のより好ましい範囲は20〜30%である。 P 2 O 5 is a glass forming oxide. In the region where P 2 O 5 is less than 5%, the stability of the glass is insufficient, and the effect of lowering the melting point of the glass cannot be obtained. When P 2 O 5 is in the range of 10 to 40%, high thermal stability is obtained, but when it exceeds 40%, moisture resistance is deteriorated. Further, if the P 2 O 5 is more than 20%, a glass is further stabilized, it tends to be somewhat poor weatherability of the glass exceeds 30%. Therefore, a more preferable range of P 2 O 5 is 20 to 30%.
Bi2O3は中間酸化物であり、本発明において必須の成分である。Bi2O3を1%以上ガラス成分中に含有させることで、ガラスの耐候性を向上させることができる。さらに、好ましくは3%以上含有させると耐候性はより良好になる。一方、30%を超えると、ガラスの軟化温度が高くなり流動性が損なわれる虞がある。したがって、ガラスの耐候性と流動性のバランスを考慮すると、Bi2O3の含有量は1〜30%、特に3〜10%であることが望ましい。 Bi 2 O 3 is an intermediate oxide and is an essential component in the present invention. By containing Bi 2 O 3 in the glass component in an amount of 1% or more, the weather resistance of the glass can be improved. Furthermore, the weather resistance becomes better when the content is preferably 3% or more. On the other hand, if it exceeds 30%, the softening temperature of the glass becomes high and the fluidity may be impaired. Therefore, considering the balance between weather resistance and fluidity of the glass, the content of Bi 2 O 3 is preferably 1 to 30%, particularly 3 to 10%.
ZnOは中間酸化物である。ZnOは必須成分ではないが、ガラスを安定化させる効果が大きいため、含有させることが望ましい。しかし、ZnOが40%を超えるとガラスの失透性が強くなる。したがって、ZnOの好ましい範囲は0〜40%である。また、封着後に長時間(例えば1時間以上)の熱処理工程がある場合などは失透が起こりやすくなるため、よりガラスが安定になるように配慮する必要がある。このような場合、ZnOの含有量は25%以下が好ましい。したがって、好ましいZnOの範囲は0〜25%となる。また、ZnOの含有量が3%未満の場合、ガラスの安定化効果が乏しくなる。したがって、ZnOのより好ましい範囲は3〜25%である。 ZnO is an intermediate oxide. Although ZnO is not an essential component, it is desirable to contain ZnO because it has a great effect of stabilizing the glass. However, when ZnO exceeds 40%, the devitrification of the glass becomes strong. Therefore, the preferable range of ZnO is 0 to 40%. In addition, when there is a heat treatment step for a long time (for example, 1 hour or more) after sealing, devitrification is likely to occur, so it is necessary to consider that the glass becomes more stable. In such a case, the ZnO content is preferably 25% or less. Therefore, the preferable range of ZnO is 0 to 25%. On the other hand, when the ZnO content is less than 3%, the glass stabilizing effect is poor. Therefore, the more preferable range of ZnO is 3 to 25%.
TeO2は中間酸化物である。TeO2はガラスを低温化させる効果がある。しかし、TeO2は、その含有量が40%を超えると膨張が高くなりすぎる。また、TeO2は高価な原料であるため、ガラス組成にTeO2を多量に含有させると、封着ガラスが高価になるので現実的ではない。これらのことを考慮すると、TeO2は0〜40%が好ましい。特に、TeO2は0〜25%の範囲であれば、低融点の効果を阻害させずに、安定化が可能になる。 TeO 2 is an intermediate oxide. TeO 2 has the effect of lowering the glass temperature. However, if the content of TeO 2 exceeds 40%, the expansion becomes too high. Further, since TeO 2 is an expensive raw material, if a large amount of TeO 2 is contained in the glass composition, the sealing glass becomes expensive, which is not realistic. Considering these, TeO 2 is preferably 0 to 40%. In particular, if TeO 2 is in the range of 0 to 25%, stabilization is possible without inhibiting the effect of the low melting point.
R2O(RはLi、Na、K、Cs)は必須成分ではないが、R2O成分の内、少なくとも1種類が組成中に加わることにより被封着物との接着力が強くなる。しかし、合量で20%を超えると焼成時に失透しやすくなる。なお、失透性や流動性を考慮した場合、R2O合量で10%以下であることが望ましい。また、R2O成分の内、Li2Oは、最も基板との接着力を向上させる効果が高いため、なるべく使用することが望ましい。ただし、Li2Oを単独で5%以上含有させると失透しやすくなるので、他のアルカリ成分と併用するのが良い。 R 2 O (R is Li, Na, K, Cs) is not an essential component, but when at least one of the R 2 O components is added to the composition, the adhesive strength with the object to be sealed becomes strong. However, if the total amount exceeds 20%, devitrification tends to occur during firing. In consideration of devitrification and fluidity, the total R 2 O content is preferably 10% or less. Of the R 2 O components, Li 2 O has the highest effect of improving the adhesive strength with the substrate, so it is desirable to use it as much as possible. However, if Li 2 O is contained alone in an amount of 5% or more, it tends to devitrify, so it is preferable to use it together with other alkali components.
R’O(R’はMg、Ca、Sr、Ba)等のガラスを安定化させる成分であり、網目修飾酸化物である。R’Oは、合量で30%以下の範囲で含有させることができる。なお、これらの安定化成分の含有量を30%以下に限定する理由は、30%を超えると逆にガラスが不安定になって成形時に失透し易くなるためである。より安定なガラスを得るためには、R’Oを25%以下にすることが好ましい。特に、BaOがガラスの安定化に最も効果がある。なお、MgOもガラスを安定化させる効果がある。 R′O (R ′ is a component that stabilizes glass such as Mg, Ca, Sr, Ba) and is a network-modified oxide. R'O can be contained in a total amount of 30% or less. The reason why the content of these stabilizing components is limited to 30% or less is that if it exceeds 30%, the glass becomes unstable and easily devitrifies during molding. In order to obtain a more stable glass, R′O is preferably 25% or less. In particular, BaO is most effective for stabilizing the glass. MgO also has the effect of stabilizing the glass.
また、本発明のバナジウムリン酸系ガラスは、上記成分に加えて、B2O3 0〜20%、Fe2O3 0〜10%、Al2O3 0〜10%、SiO2 0〜10%の成分を含有させても良い。以下に各成分を上記範囲に限定した理由を説明する。 The vanadium phosphate glass of the present invention, in addition to the above components, B 2 O 3 0~20%, Fe 2 O 3 0~10%, Al 2 O 3 0~10%, SiO 2 0~10 % Component may be included. The reason why each component is limited to the above range will be described below.
B2O3はガラス形成酸化物である。B2O3は必須成分ではないが、ガラスを安定化させる効果が大きいため、2%以上含有させることが望ましい。但し、B2O3が20%より多いとガラスの粘性が高くなりすぎ、焼成時の流動性が著しく悪くなり、封着部の気密性が損なわれる。B2O3の好適な範囲は0〜20%で、より好ましくは2〜10%である。 B 2 O 3 is a glass forming oxide. Although B 2 O 3 is not an essential component, it is desirable to contain 2% or more because it has a great effect of stabilizing the glass. However, if the B 2 O 3 content is more than 20%, the viscosity of the glass becomes too high, the fluidity during firing becomes extremely poor, and the hermeticity of the sealing part is impaired. A preferred range of B 2 O 3 is 0-20%, more preferably 2-10%.
Fe2O3は網目修飾酸化物である。Fe2O3は必須成分ではないが、ガラスを安定化させる効果が大きいため、1%以上含有させることが望ましい。但し、Fe2O3が10%より多いと、ガラスの粘性が高くなりすぎ、焼成時の流動性が著しく悪くなる。Fe2O3の好適な範囲は0〜10%で、より好ましくは1〜5%である。 Fe 2 O 3 is a network-modified oxide. Fe 2 O 3 is not an essential component, but it is desirable to contain 1% or more because it has a great effect of stabilizing the glass. However, if Fe 2 O 3 is more than 10%, the viscosity of the glass becomes too high, and the fluidity during firing becomes extremely poor. A preferred range of Fe 2 O 3 is 0-10%, more preferably 1-5%.
Al2O3は網目修飾酸化物である。Al2O3は必須成分ではないが、ガラスを安定化させる効果がある。また、熱膨張係数を低下させる効果もある。Al2O3が10%を超えると軟化温度が上昇し、焼成時の流動性が阻害される。なお、ガラスの安定性や流動性など考慮した場合、Al2O3の好ましい範囲は0〜10%であり、より好ましい範囲は0〜5%である。 Al 2 O 3 is a network-modified oxide. Al 2 O 3 is not an essential component but has an effect of stabilizing the glass. It also has the effect of reducing the thermal expansion coefficient. If Al 2 O 3 exceeds 10%, the softening temperature rises and the fluidity during firing is hindered. Incidentally, considering such stability and fluidity of the glass, the preferred range of Al 2 O 3 is 0-10%, more preferred range is 0 to 5%.
SiO2はガラス形成酸化物である。SiO2は必須成分ではないが、失透を抑制し、耐候性を向上させる効果があるので、なるべく含有させることが望ましい。なお、SiO2が10%を超えると、軟化温度が上昇し、焼成時の流動性が著しく悪くなる。焼成時の流動性など考慮した場合、SiO2の含有量は0〜10%であることが望ましい。 SiO 2 is a glass forming oxide. Although SiO 2 is not an essential component, it has an effect of suppressing devitrification and improving weather resistance, so it is desirable to contain it as much as possible. If SiO 2 exceeds 10%, the softening temperature rises and the fluidity during firing becomes extremely poor. In consideration of fluidity during firing, the content of SiO 2 is preferably 0 to 10%.
また、本発明のバナジウムリン酸系ガラスは、上記成分に加えてさらに種々の成分を添加することができる。例えば、WO3、MoO3、Sb2O3、Ta2O5、Nb2O5、TiO2、ZrO2、CuO、MnO等を含有させることもでき、また耐候性や耐湿性を高めるためにIn2O3等を含有させることもできる。 In addition to the above components, the vanadium phosphate glass of the present invention can further contain various components. For example, WO 3 , MoO 3 , Sb 2 O 3 , Ta 2 O 5 , Nb 2 O 5 , TiO 2 , ZrO 2 , CuO, MnO and the like can be contained, and in order to improve weather resistance and moisture resistance In 2 O 3 or the like can also be contained.
安定化成分の含有量およびその限定理由を以下に述べる。 The content of the stabilizing component and the reason for limitation will be described below.
WO3およびMoO3の含有量は何れも0〜20%、特に0〜10%であることが好ましい。これらの成分が各々20%を超えるとガラスの粘性が高くなりやすい。 The contents of WO 3 and MoO 3 are both preferably 0 to 20%, particularly preferably 0 to 10%. If each of these components exceeds 20%, the viscosity of the glass tends to increase.
Sb2O3は必須成分ではないが、耐水性を向上させる効果があるので、一定量含有させることができる。また、Sb2O3は、20%を超えると軟化温度が高くなり流動が阻害される。したがって、Sb2O3の含有量は0〜20%が好ましい。 Although Sb 2 O 3 is not an essential component, it has an effect of improving water resistance, so it can be contained in a certain amount. On the other hand, when Sb 2 O 3 exceeds 20%, the softening temperature becomes high and the flow is inhibited. Therefore, the content of Sb 2 O 3 is preferably 0 to 20%.
Ta2O5、Nb2O5、TiO2およびZrO2の含有量は何れも0〜15%、特に0〜10%であることが好ましい。これらの成分が15%を超えるとガラスの失透化傾向が大きくなりやすい。 The contents of Ta 2 O 5 , Nb 2 O 5 , TiO 2 and ZrO 2 are all preferably 0 to 15%, particularly preferably 0 to 10%. If these components exceed 15%, the tendency to devitrify the glass tends to increase.
CuOおよびMnOの含有量は何れも0〜10%、特に0〜5%が好ましい。これらの成分が10%を超えるとガラスが不安定になりやすい。 The content of CuO and MnO is preferably 0 to 10%, particularly 0 to 5%. If these components exceed 10%, the glass tends to be unstable.
In2O3は、耐候性や耐湿性を向上させる目的で使用することができる。但し、In2O3は、高価な原料であるため、ガラス組成中に多く含有させることは現実的でない。また、In2O3が10%を超えると、焼成時の流動性が低下する。したがって、In2O3の含有量は0〜10%であることが好ましい。 In 2 O 3 can be used for the purpose of improving weather resistance and moisture resistance. However, since In 2 O 3 is an expensive raw material, it is not realistic to include a large amount in the glass composition. On the other hand, if In 2 O 3 exceeds 10%, the fluidity during firing is lowered. Therefore, the content of In 2 O 3 is preferably 0 to 10%.
このような特性を有する本発明のバナジウムリン酸系ガラスは、熱膨張係数が適合する材料に対しては単独で封着材料として使用できる。 The vanadium phosphate glass of the present invention having such characteristics can be used alone as a sealing material for a material having a suitable thermal expansion coefficient.
一方、熱膨張係数が適合しない材料、例えばアルミナ(70×10-7/℃)、高歪点ガラス(85×10-7/℃)、ソーダ板ガラス(90×10-7/℃)等を封着する場合には、バナジウムリン酸系ガラスの粉末に耐火性フィラー粉末を加え、複合体(コンポジット)とするのが好ましい。複合体の熱膨張係数は、被封着物に対して10〜30×10-7/℃程度低く設計することが重要である。一般的に、封着材料は被封着物よりも弱いので、接着層を構成する封着材料部分に残留する歪みはコンプレッション(圧縮)側であることが望ましい。これにより封着材料の破壊を防ぐことができる。 On the other hand, materials with incompatible thermal expansion coefficients such as alumina (70 × 10 −7 / ° C.), high strain point glass (85 × 10 −7 / ° C.), soda plate glass (90 × 10 −7 / ° C.), etc. are sealed. In the case of wearing, it is preferable to add a refractory filler powder to the vanadium phosphate glass powder to form a composite. It is important that the thermal expansion coefficient of the composite is designed to be about 10 to 30 × 10 −7 / ° C. lower than the material to be sealed. In general, since the sealing material is weaker than the object to be sealed, it is desirable that the distortion remaining in the sealing material portion constituting the adhesive layer is on the compression (compression) side. Thereby, destruction of the sealing material can be prevented.
また、VFD、FED、PDP、CRTの封着の場合、熱膨張係数が60〜90×10-7/℃程度となるように調整する。なお、熱膨張係数の調整以外にも、例えば機械的強度の向上のために耐火性フィラー粉末を添加することもできる。 Moreover, in the case of sealing of VFD, FED, PDP, and CRT, it adjusts so that a thermal expansion coefficient may be set to about 60-90 * 10 < -7 > / degreeC. In addition to the adjustment of the thermal expansion coefficient, for example, a refractory filler powder can be added to improve the mechanical strength.
耐火性フィラー粉末を混合する場合、その混合量は、ガラス粉末45〜100体積%、フィラー粉末0〜55体積%であることが好ましい。耐火性フィラー粉末が55体積%より多いと、相対的にガラス粉末の割合が低くなりすぎて必要な流動性が得にくくなるからである。なお、ガラス粉末および耐火性フィラー粉末の粒度は、レーザー回折式粒度分布測定装置(株式会社島津製作所製SALD−2000J)において平均粒径(D50)で1.0〜15.0μmが好ましい。平均粒径が1.0μmより小さいと、耐火性フィラーの低膨張化の効果が得られにくくなり、15μmを超えると封着材料の流動性を阻害したり、電子部品のパッケージ等を封着する場合には気密信頼性が得られにくくなる。 When mixing a refractory filler powder, the mixing amount is preferably 45 to 100% by volume of glass powder and 0 to 55% by volume of filler powder. This is because if the amount of the refractory filler powder is more than 55% by volume, the ratio of the glass powder becomes relatively low and it becomes difficult to obtain the required fluidity. In addition, the particle size of the glass powder and the refractory filler powder is preferably 1.0 to 15.0 μm in terms of an average particle size (D 50 ) in a laser diffraction particle size distribution analyzer (SALD-2000J manufactured by Shimadzu Corporation). When the average particle size is less than 1.0 μm, it is difficult to obtain the effect of reducing the expansion of the refractory filler. When the average particle size exceeds 15 μm, the fluidity of the sealing material is hindered or the electronic component package is sealed. In such a case, it becomes difficult to obtain airtight reliability.
耐火性フィラーとしては種々の材料が使用でき、例えばジルコン(珪酸ジルコニウム)、酸化ジルコニウム、酸化錫、酸化ニオブ、リン酸ジルコニウム、ウイレマイト、ムライト、コージエライト、アルミナ等が使用できる。 Various materials can be used as the refractory filler, such as zircon (zirconium silicate), zirconium oxide, tin oxide, niobium oxide, zirconium phosphate, willemite, mullite, cordierite, and alumina.
また、[AB2(MO4)3]の基本構造を有する耐火性フィラーも使用可能である。ここでAはLi、Na、K、Mg、Ca、Sr、Ba、Zn、Cu、Ni、Mn等の元素が適合する。BはZr、Ti、Sn、Nb、Al、Sc、Y等の元素が適合する。MはP、Si、W、Mo等の元素が適合する。 Moreover, a refractory filler having a basic structure of [AB 2 (MO 4 ) 3 ] can be used. Here, elements such as Li, Na, K, Mg, Ca, Sr, Ba, Zn, Cu, Ni, and Mn are suitable for A. B is compatible with elements such as Zr, Ti, Sn, Nb, Al, Sc, and Y. M is an element such as P, Si, W, or Mo.
これらの耐火性フィラーの中で、本発明のガラスにはジルコン、二酸化錫、酸化ニオブ、Na0.5Nb0.5Zr1.5(PO4)3、KZr2(PO4)3、Ca0.25Nb0.5Zr1.5(PO4)3、NbZr(PO4)、KZr2(PO4)3、Na0.5Nb0.5Zr1.5(PO4)3、K0.5Nb0.5Zr1.5(PO4)3、Ca0.25Nb0.5Zr1.5(PO4)3が良く適合する。特に、Na0.5Nb0.5Zr1.5(PO4)3、KZr2(PO4)3、Ca0.25Nb0.5Zr1.5(PO4)3の低膨張化の効果は特に強く、その他のフィラーを用いる場合よりも少量の含有量で膨張を低くすることが可能である。必要に応じて、耐火性白色顔料(例えばTiO2)、耐火性黒色顔料(例えばFe−Mn系、Fe−Co−Cr系、Fe−Mn−Al系の顔料)を添加することもできる。 Among these refractory fillers, the glass of the present invention includes zircon, tin dioxide, niobium oxide, Na 0.5 Nb 0.5 Zr 1.5 (PO 4 ) 3 , KZr 2 (PO 4 ) 3 , Ca 0.25 Nb 0.5 Zr 1.5 ( PO 4 ) 3 , NbZr (PO 4 ), KZr 2 (PO 4 ) 3 , Na 0.5 Nb 0.5 Zr 1.5 (PO 4 ) 3 , K 0.5 Nb 0.5 Zr 1.5 (PO 4 ) 3 , Ca 0.25 Nb 0.5 Zr 1.5 ( PO 4 ) 3 fits well. In particular, Na 0.5 Nb 0.5 Zr 1.5 (PO 4 ) 3 , KZr 2 (PO 4 ) 3 , and Ca 0.25 Nb 0.5 Zr 1.5 (PO 4 ) 3 have a particularly strong effect of lowering the expansion than when other fillers are used. However, the expansion can be lowered with a small content. If necessary, a refractory white pigment (for example, TiO 2 ) and a refractory black pigment (for example, Fe—Mn, Fe—Co—Cr, and Fe—Mn—Al pigments) may be added.
次に、本発明のバナジウムリン酸系ガラスを用いた粉末材料をVFD、FED、PDP、CRT等の表示装置の封着材料として用いたときの使用例を示す。 Next, an example of use when the powder material using the vanadium phosphate glass of the present invention is used as a sealing material for display devices such as VFD, FED, PDP, CRT, etc. will be described.
まず被封着物の封着表面に封着材料を塗布し、乾燥させる。封着材料の塗布は、封着材料をペースト状にし、ディスペンサー等を用いて行えばよい。必要に応じて脱バインダーのための加熱を行い、その後、もう一方の被封着物と接触させながら焼成を行う。この場合、ガラスが被封着物の接着表面を濡らすのに十分な条件で焼成することにより、被封着物同士を封着することができる。VFD、FED、PDP、CRTにおいて、一般的に、封着温度は430〜500℃である。また、封着を行う最高温度での保持時間は、通常、CRT、FED、PDPでは20〜30分程度が適当であり、VFDでは10分程度が適当である。 First, a sealing material is applied to the sealing surface of an object to be sealed and dried. The sealing material may be applied by making the sealing material into a paste and using a dispenser or the like. If necessary, heating for debinding is performed, and then baking is performed while contacting with the other object to be sealed. In this case, the objects to be sealed can be sealed together by baking under conditions sufficient for the glass to wet the adhesion surface of the objects to be sealed. In VFD, FED, PDP, and CRT, the sealing temperature is generally 430 to 500 ° C. The holding time at the maximum temperature for sealing is usually about 20 to 30 minutes for CRT, FED and PDP, and about 10 minutes for VFD.
また、本発明のバナジウムリン酸系ガラスを用いた粉末材料をペースト化する場合、エチルセルロース、ニトロセルロース、アクリル樹脂、ブチラール樹脂等の樹脂バインダーと、テルピネオール、酢酸イソアミル、エチルセロソルブ、ジブチルセロソルブ、ブチルカルビトール、ブチルカルビトールアセテート、エチレングリコールモノフェニルエーテル等の溶媒の混合物をビークルとして使用すればよい。必要に応じて、ビークルに可塑剤、増粘剤および界面活性剤を添加することも可能である。ビークルとバナジウムリン酸系ガラスを用いた粉末材料の混練は、三本ロールミル等で行うことができる。 When the powder material using the vanadium phosphate glass of the present invention is made into a paste, a resin binder such as ethyl cellulose, nitrocellulose, acrylic resin, butyral resin, terpineol, isoamyl acetate, ethyl cellosolve, dibutyl cellosolve, butylcarbi A mixture of solvents such as tall, butyl carbitol acetate and ethylene glycol monophenyl ether may be used as the vehicle. If necessary, plasticizers, thickeners and surfactants can be added to the vehicle. The kneading of the powder material using the vehicle and the vanadium phosphate glass can be performed by a three-roll mill or the like.
本発明のバナジウムリン酸系ガラスを用いた粉末材料を導電性粉末として使用する場合、バナジウムリン酸系ガラスの粉末10〜60重量%と金属粉末40〜90重量%と耐火性フィラー粉末0〜20重量%を含有する粉末材料とすることが好ましい。金属粉末が90重量%より多いと、相対的にガラス粉末の割合が低くなりすぎて必要な流動性が得にくくなり、40重量%より少ないと導電性が確保できないからである。また、耐火性フィラー粉末が20重量%より多いと、相対的にガラス粉末の割合が低くなりすぎて必要な流動性が得にくくなるからである。ここで、金属粉末としてはAg、Pd、Al、Ni、Cu、Auまたはこれらの混合物等の粉末が挙げられる。また、耐火性フィラー粉末としては、封着用粉末材料と同様のものを使用できる。必要に応じて耐火性白色顔料(例えばTiO2)、耐火性黒色顔料(例えばFe−Mn系、Fe−Co−Cr系、Fe−Mn−Al系の顔料)を添加することもできる。 When the powder material using the vanadium phosphate glass of the present invention is used as a conductive powder, the vanadium phosphate glass powder is 10 to 60% by weight, the metal powder is 40 to 90% by weight, and the refractory filler powder is 0 to 20%. A powder material containing% by weight is preferable. This is because if the amount of the metal powder is more than 90% by weight, the ratio of the glass powder becomes relatively low and it becomes difficult to obtain the required fluidity, and if it is less than 40% by weight, the conductivity cannot be secured. Moreover, when there are more refractory filler powders than 20 weight%, the ratio of a glass powder will become comparatively too low, and it will become difficult to obtain required fluidity | liquidity. Here, examples of the metal powder include powders of Ag, Pd, Al, Ni, Cu, Au, or a mixture thereof. Moreover, as a refractory filler powder, the same powder material for sealing can be used. If necessary, a refractory white pigment (for example, TiO 2 ) and a refractory black pigment (for example, Fe—Mn, Fe—Co—Cr, and Fe—Mn—Al pigments) may be added.
この導電性粉末を用いて導体パターンを形成するためには、導電性粉末材料に適宜上述のビークルを加えて、ペースト材料にすることが好ましい。このようにして得られた導電性ペーストは400〜900℃、5分〜1時間程度の加熱焼成をすることにより、導電パターンを形成できる。 In order to form a conductor pattern using this conductive powder, it is preferable to add the above-mentioned vehicle as appropriate to the conductive powder material to obtain a paste material. The conductive paste thus obtained can form a conductive pattern by heating and baking at 400 to 900 ° C. for about 5 minutes to 1 hour.
本発明のバナジウムリン酸系ガラスを用いた粉末材料を絶縁層形成用粉末材料として使用する場合、バナジウムリン酸系ガラスの粉末45〜100体積%と耐火性フィラー粉末0〜55体積%を含有する粉末材料とすることが好ましい。以下に、VFDやPDP等の絶縁層形成用粉末材料(絶縁被覆粉末材料)としての使用例を示す。 When the powder material using the vanadium phosphate glass of the present invention is used as a powder material for forming an insulating layer, it contains 45 to 100% by volume of vanadium phosphate glass and 0 to 55% by volume of refractory filler powder. It is preferable to use a powder material. Examples of use as an insulating layer forming powder material (insulating coating powder material) such as VFD and PDP are shown below.
まず絶縁層を形成(被覆)する基板に熱膨張係数が適合するように、ガラス粉末に必要に応じて耐火性フィラー粉末を添加した絶縁層形成用粉末材料を用意する。VFDではソーダ板ガラス(約90×10-7/℃)、PDPでは高歪点ガラス(約85×10-7/℃)が主に使用されるので、熱膨張係数が60〜80×10-7/℃程度となるように調整すればよい。 First, a powder material for forming an insulating layer is prepared by adding a refractory filler powder to a glass powder as necessary so that the thermal expansion coefficient is suitable for a substrate on which an insulating layer is formed (covered). Since soda plate glass (about 90 × 10 −7 / ° C.) is mainly used for VFD and high strain point glass (about 85 × 10 −7 / ° C.) is mainly used for PDP, the thermal expansion coefficient is 60 to 80 × 10 −7. The temperature may be adjusted to about / ° C.
次にスクリーン印刷により、絶縁層形成用粉末材料を電気配線等が施された基板の表面に塗布する。塗布するに当たっては、封着材料と同様に粉末材料をペースト状にして使用すればよい。 Next, the insulating layer-forming powder material is applied to the surface of the substrate on which electrical wiring or the like has been applied by screen printing. For application, the powder material may be used in the form of a paste, similar to the sealing material.
その後、ガラスが被封着物の表面を濡らすのに十分な条件で焼成することにより、絶縁層を形成することができる。絶縁層形成用粉末材料の熱処理条件は封着材料のそれよりも高い温度で処理されるのが一般的であり、500℃〜580℃程度である。 Thereafter, the insulating layer can be formed by baking under conditions sufficient for the glass to wet the surface of the object to be sealed. The heat treatment condition of the insulating layer forming powder material is generally processed at a temperature higher than that of the sealing material, and is about 500 ° C. to 580 ° C.
本発明のバナジウムリン酸系ガラスを用いた粉末材料を表示装置および電子部品の隔壁形成に使用する場合、バナジウムリン酸系ガラスの粉末45〜100体積%と耐火性フィラー粉末0〜55体積%を含有する粉末材料とすることが好ましい。また、低膨張セラミックスフィラー粉末としては、封着用粉末材料と同様のものを使用できる。必要に応じて白色顔料(例えばTiO2)、黒色顔料(例えばFe−Mn系、Fe−Co−Cr系、Fe−Mn−Al系の顔料)を添加することもできる。 When the powder material using the vanadium phosphate glass of the present invention is used for forming partition walls for display devices and electronic parts, 45 to 100 vol% of vanadium phosphate glass powder and 0 to 55 vol% of refractory filler powder are added. It is preferable to make it the powder material to contain. Moreover, as a low expansion | swelling ceramic filler powder, the thing similar to the powder material for sealing can be used. A white pigment (for example, TiO 2 ) and a black pigment (for example, Fe—Mn, Fe—Co—Cr, and Fe—Mn—Al pigments) may be added as necessary.
なお、バナジウムリン酸系ガラスを用いた粉末材料の用途は、上記の記述に限定されるものではなく、例えばICパッケージ、ランプ、光ファイバ−接続部品の封着および被覆等に用いることもできる。 The use of the powder material using vanadium phosphate glass is not limited to the above description, and can be used, for example, for sealing and covering IC packages, lamps, and optical fiber-connected components.
(発明の実施の形態)
以下、実施例に基づいて本発明を詳細に説明する。
(Embodiment of the Invention)
Hereinafter, the present invention will be described in detail based on examples.
表1〜5は本発明のガラス粉末試料(試料a〜w)をそれぞれ示している。 Tables 1 to 5 show the glass powder samples (samples a to w) of the present invention, respectively.
各ガラス粉末は次のようにして調製した。まず表の組成を有するようにバッチ原料を調合し、空気中において温度900℃で2時間溶融した。 Each glass powder was prepared as follows. First, batch raw materials were prepared so as to have the composition shown in the table, and melted in air at a temperature of 900 ° C. for 2 hours.
また、使用したバッチ原料にはリン酸塩原料を使用した。具体的には、メタリン酸亜鉛やリン酸マグネシウム、リン酸カルシウム、リン酸アルミニウムを用い、液体原料である正リン酸(オルトリン酸)は出来る限り使用せず、リン酸塩原料を使用した。 Moreover, the phosphate raw material was used for the batch raw material used. Specifically, zinc metaphosphate, magnesium phosphate, calcium phosphate, and aluminum phosphate were used, and normal phosphoric acid (orthophosphoric acid) as a liquid raw material was not used as much as possible, and a phosphate raw material was used.
その理由は、以下の通りである。液体原料を直接溶融すると溶融坩堝から融液の吹きこぼれといった問題が発生する。これを避けるためには、ガラスバッチを高温で乾燥し、正リン酸に含まれる水分を揮発しなければならない。一方、固体原料を使用した場合、融液の吹きこぼれやガラスバッチの乾燥といった不都合がなく、従来の製造設備および溶融条件を採用できる。したがって、リン酸塩原料だけでリン酸成分をすべて導入できない場合に限り、その不足のリン酸成分を正リン酸で補った。 The reason is as follows. When the liquid raw material is directly melted, a problem such as spilling of the melt from the melting crucible occurs. In order to avoid this, the glass batch must be dried at a high temperature to volatilize the water contained in the orthophosphoric acid. On the other hand, when a solid raw material is used, there is no inconvenience such as spilled melt or drying of a glass batch, and conventional production equipment and melting conditions can be employed. Therefore, only when the phosphoric acid component could not be introduced with only the phosphate raw material, the insufficient phosphoric acid component was supplemented with normal phosphoric acid.
次に、溶融ガラスを水冷ローラー間に通して薄板状に成形し、ボールミルにて粉砕後、目開き105μmの篩を通過させて、レーザー回折式粒度分布測定装置(株式会社島津製作所製SALD−2000J)において平均粒径約10μmのバナジウムリン酸系ガラス粉末を得た。 Next, the molten glass is passed through a water-cooled roller, formed into a thin plate shape, pulverized by a ball mill, passed through a sieve having an aperture of 105 μm, and a laser diffraction particle size distribution measuring device (SALD-2000J manufactured by Shimadzu Corporation). ) To obtain a vanadium phosphate glass powder having an average particle size of about 10 μm.
得られたガラス粉末試料について、それぞれ焼成体の失透状態、ガラス転移点、熱膨張係数および耐候性を評価した。その結果、試料a〜wはすべてガラス化状態が良好で、焼成体に失透が生じておらず、ガラス転移点が297〜345℃、熱膨張係数が96〜118×10-7/℃であった。また、実施例である試料a〜wの耐候性は光沢がある状態を維持していたか、またはガラス成分の染み出しのない状態であり、実際の使用に問題のない状態であった。 About the obtained glass powder sample, the devitrification state, the glass transition point, the thermal expansion coefficient, and the weather resistance of the fired body were evaluated. As a result, all the samples a to w are in a vitrified state, no devitrification occurs in the fired body, the glass transition point is 297 to 345 ° C., and the thermal expansion coefficient is 96 to 118 × 10 −7 / ° C. there were. Moreover, the weather resistance of the samples a to w as examples was maintained in a glossy state or in a state in which the glass component did not bleed out, and there was no problem in actual use.
以下に上記項目の評価方法を述べる。 The evaluation methods for the above items are described below.
ガラス化状態の評価は、溶融ガラスを水冷ローラー間に通して薄板状に成形したガラスフィルムとアニールしたガラスバルクを用いて、光沢があり均質な状態にあるか目視で判断することで行った。良好であれば○、失透または分相している場合は×とした。 The evaluation of the vitrification state was performed by visually judging whether the glass was glossy and homogeneous using a glass film formed into a thin plate by passing molten glass between water-cooled rollers and an annealed glass bulk. If it was good, it was marked as ◯, and if it was devitrified or phase-separated, it was marked as x.
焼成体の失透性の評価は、以下のようにして行った。 Evaluation of the devitrification property of the fired body was performed as follows.
粉末ガラスの真比重に相当する重量のガラス粉末を外径20mmの金型で乾式プレスし、ボタン状ガラス粉末成型体を得た。その後この成型体を480℃10分の条件で焼成した。得られたボタン状焼成体の表面状態を光学顕微鏡で観察することにより、失透性を評価した。焼成体の表面に結晶が析出していない場合を○、結晶が析出している場合を×とした。 Glass powder having a weight corresponding to the true specific gravity of powder glass was dry-pressed with a mold having an outer diameter of 20 mm to obtain a button-shaped glass powder molded body. Thereafter, this molded body was fired under conditions of 480 ° C. for 10 minutes. The devitrification was evaluated by observing the surface state of the obtained button-like fired body with an optical microscope. The case where the crystal | crystallization did not precipitate on the surface of a baking body was set as (circle), and the case where the crystal | crystallization precipitated was set as x.
ガラス転移点は示差熱分析(DTA)により、熱膨張係数(30〜250℃)は押棒式熱膨張測定装置(TMA)により求めた。 The glass transition point was determined by differential thermal analysis (DTA), and the thermal expansion coefficient (30 to 250 ° C.) was determined by a push rod type thermal expansion measuring device (TMA).
耐候性は次のようにして評価した。上述した粉末のボタン状焼成体を70℃90%の恒温恒湿槽に480時間入れ、表面状態に変化がないかどうかを確認した。恒温恒湿槽に入れる前と同じ光沢を保持している場合を◎、光沢はないがリン酸成分等のガラス成分の染み出しがないものを○、焼成体からリン酸成分等のガラス成分の染み出しを起こしたものを×とした。 The weather resistance was evaluated as follows. The button-shaped fired body of the powder described above was placed in a constant temperature and humidity chamber at 70 ° C. and 90% for 480 hours, and it was confirmed whether or not the surface state was changed. When the same gloss is maintained as before being placed in a thermo-hygrostat, ◎, when there is no gloss but there is no leaching of glass components such as phosphoric acid components, ○ from the fired body of glass components such as phosphoric acid components What exuded was made x.
表6は比較例のガラス粉末(試料A〜E)をそれぞれ示している。 Table 6 shows glass powders (samples A to E) of comparative examples.
比較例の各ガラス粉末は実施例と同様に調製し、得られたガラス粉末試料について、粉末ガラス焼成体の失透状態、ガラス転移点、熱膨張係数および耐候性を実施例と同様に評価した。また、ガラス化状態の評価も上述の実施例と同様に評価した。その結果、試料A〜Eは、ガラス転移点が258〜327℃、熱膨張係数が84〜100×10-7/℃であった。 Each glass powder of the comparative example was prepared in the same manner as in the example, and the obtained glass powder sample was evaluated for the devitrification state, glass transition point, thermal expansion coefficient, and weather resistance of the powder glass fired body in the same manner as in the example. . Moreover, evaluation of the vitrification state was also evaluated in the same manner as in the above-described Examples. As a result, samples A to E had a glass transition point of 258 to 327 ° C. and a thermal expansion coefficient of 84 to 100 × 10 −7 / ° C.
また、試料Cはガラスが分相を起こし、不均質であった。試料Aはガラス化の状態は良好であったが、粉末ガラスの焼成体の表面に結晶があり失透しており、封着ガラスとしての機能を発揮しなかった。試料B、D、Eはガラス化の状態は良好であり、粉末ガラスの焼成体の表面も光沢があり良好であったが、耐候性試験でガラス表面からガラス成分の染み出しがあり、封着ガラスとして使用できる耐候性のレベルにはなかった。 Sample C was non-homogeneous because of glass phase separation. Sample A was in a vitrified state, but had a crystal on the surface of the sintered body of powdered glass and was devitrified, and did not function as a sealing glass. Samples B, D, and E had good vitrification, and the surface of the sintered body of powdered glass was glossy and good, but in the weather resistance test, the glass component exuded from the glass surface and sealed. It was not at the level of weather resistance that could be used as glass.
次に、実施例のガラス粉末試料を、表7〜9に示す割合でフィラー粉末と混合し、粉末試料とした。なお、試料No.1〜3はVFDの封着用であり、2枚のソーダガラス板(熱膨張係数90×10-7/℃)を封着するための材料である。試料No.4〜15はPDPの封着用であり、2枚の高歪点ガラス板(熱膨張係数85×10-7/℃)同士を封着するための材料である。 Next, the glass powder samples of the examples were mixed with the filler powder at the ratios shown in Tables 7 to 9 to obtain powder samples. Sample No. 1-3 are VFD sealing materials, which are materials for sealing two soda glass plates (coefficient of thermal expansion 90 × 10 −7 / ° C.). Sample No. 4 to 15 are sealing materials for PDP, which are materials for sealing two high strain point glass plates (coefficient of thermal expansion 85 × 10 −7 / ° C.).
また、フィラー粉末には、ジルコン、酸化ニオブ、二酸化錫、Na0.5Nb0.5Zr1.5(PO4)3(表中はNaNbZP)、KZr2(PO4)3(表中はKZP)、Ca0.25Nb0.5Zr1.5(PO4)3(表中はCaNbZP)を用いた。 The filler powder includes zircon, niobium oxide, tin dioxide, Na 0.5 Nb 0.5 Zr 1.5 (PO 4 ) 3 (NaNbZP in the table), KZr 2 (PO 4 ) 3 (KZP in the table), Ca 0.25 Nb. 0.5 Zr 1.5 (PO 4 ) 3 (CaNbZP in the table) was used.
このようにして用意した試料を各種の評価に供した。評価結果を表7〜9に示す。 The sample thus prepared was subjected to various evaluations. The evaluation results are shown in Tables 7-9.
表7〜9から明らかなように、本発明の実施例であるNo.1〜3の各試料は、30〜250℃における熱膨張係数が74〜76×10-7/℃であり、VFDの封着に好適であった。また、本発明の実施例であるNo.4〜15の各試料は、30〜250℃における熱膨張係数が69〜71×10-7/℃であり、PDPの封着に好適であった。さらに、No.1〜15の各試料とも表に示した焼成条件で20〜22mmの流動径を示し、良好な流動性を有していた。そして、各試料とも全てガラス成分の染み出し等の問題はなく良好な耐候性を有していた。 As is apparent from Tables 7 to 9, No. 1 as an example of the present invention. Each of the samples 1 to 3 had a thermal expansion coefficient of 74 to 76 × 10 −7 / ° C. at 30 to 250 ° C., and was suitable for sealing VFD. In addition, No. which is an embodiment of the present invention. Each sample of 4 to 15 had a thermal expansion coefficient of 69 to 71 × 10 −7 / ° C. at 30 to 250 ° C., and was suitable for sealing PDP. Furthermore, no. Each of the samples 1 to 15 showed a flow diameter of 20 to 22 mm under the firing conditions shown in the table, and had good fluidity. All the samples had good weather resistance with no problem such as oozing out of glass components.
なお、流動径は、次のようなフローボタンテストを行い評価した。まず粉末試料の真比重に相当する重量の粉末を外径20mmの金型を用いて乾式プレスし、ボタン状粉末成型体を得た。次にこの成型体を窓板ガラスの上に乗せた上で、空気中で480℃まで10℃/分の速度で昇温して10分間保持した後、得られたボタンの直径を測定した。封着材料に用いる場合、一般的に、フローボタンの直径は20mm以上が望ましい。 The flow diameter was evaluated by performing the following flow button test. First, a powder having a weight corresponding to the true specific gravity of the powder sample was dry-pressed using a mold having an outer diameter of 20 mm to obtain a button-shaped powder molded body. Next, the molded body was placed on a window glass, heated to 480 ° C. at a rate of 10 ° C./min and held for 10 minutes, and then the diameter of the obtained button was measured. When used as a sealing material, generally, the diameter of the flow button is preferably 20 mm or more.
なお、本評価において流動径が20mm未満の場合であっても、ガラス基板同士を貼り合わす際、クリップ等の加圧冶具を使用すれば基板間の封着が可能となる。 In addition, even if it is a case where a flow diameter is less than 20 mm in this evaluation, when glass substrates are bonded together, if pressure jigs, such as a clip, are used, the sealing between substrates will be attained.
焼成体の耐候性の評価は、フローボタンテスト後の試料について、ガラスの場合と同様に行った。 Evaluation of the weather resistance of the fired body was performed on the sample after the flow button test in the same manner as in the case of glass.
次に、フィラー粉末の作製方法を述べる。 Next, a method for producing filler powder will be described.
酸化ニオブ(Nb2O5)フィラーおよび二酸化錫(SnO2)フィラーは、同様の方法で作製した。まず原料粉末に焼結助剤として酸化亜鉛を3wt%添加し混合した後、アルミナルツボ中、1400℃で16時間焼成した。続いて焼結塊を取り出し、アルミナボールミルにて粉砕した後、金属製の325メッシュの篩を通し、平均粒径12μmの酸化ニオブ(Nb2O5)および二酸化錫(SnO2)のフィラーを得た。 A niobium oxide (Nb 2 O 5 ) filler and a tin dioxide (SnO 2 ) filler were produced by the same method. First, 3 wt% of zinc oxide was added to the raw material powder as a sintering aid and mixed, followed by firing at 1400 ° C. for 16 hours in an alumina crucible. Subsequently, the sintered ingot was taken out and pulverized with an alumina ball mill, and then passed through a metal 325 mesh sieve to obtain a niobium oxide (Nb 2 O 5 ) and tin dioxide (SnO 2 ) filler having an average particle diameter of 12 μm. It was.
Na0.5Nb0.5Zr1.5(PO4)3フィラーの作製は、次のように行った。原料としてリン酸ナトリウム:NaPO3を0.5mol相当、リン酸ニオブ:NbPO5を0.5mol相当、酸化ジルコニウム:ZrO2を0.5mol相当、リン酸ジルコニウム:ZrP2O7を1mol相当を混合し、結晶化助剤として酸化マグネシウムを総量の3wt%に相当する量を添加してアルミナボールミルで1時間混合した。次いで、この混合粉末をアルミナルツボ中、1450℃で16時間焼成を行い、Na0.5Nb0.5Zr1.5(PO4)3を合成した。冷却後、坩堝からNa0.5Nb0.5Zr1.5(PO4)3の焼結物を取り出し、アルミナボールミルにて粉砕、分級し、金属製の325メッシュの篩を通し、平均粒径10μmのNa0.5Nb0.5Zr1.5(PO4)3フィラー粉末を得た。KZr2(PO4)3およびCa0.25Nb0.5Zr1.5(PO4)3についても、Na0.5Nb0.5Zr1.5(PO4)3と同様にそれぞれの化学当量に相当する原料を調製し、同じ焼成条件で耐火性フィラーを作製した。 The production of Na 0.5 Nb 0.5 Zr 1.5 (PO 4 ) 3 filler was performed as follows. As raw materials, sodium phosphate: NaPO 3 equivalent to 0.5 mol, niobium phosphate: NbPO 5 equivalent to 0.5 mol, zirconium oxide: ZrO 2 equivalent to 0.5 mol, zirconium phosphate: ZrP 2 O 7 equivalent equivalent to 1 mol Then, magnesium oxide as a crystallization aid was added in an amount corresponding to 3 wt% of the total amount, and mixed with an alumina ball mill for 1 hour. Next, this mixed powder was fired at 1450 ° C. for 16 hours in an alumina crucible to synthesize Na 0.5 Nb 0.5 Zr 1.5 (PO 4 ) 3 . After cooling, the sintered product of Na 0.5 Nb 0.5 Zr 1.5 (PO 4 ) 3 is taken out from the crucible, pulverized and classified with an alumina ball mill, passed through a metal 325 mesh sieve, and Na 0.5 Nb with an average particle size of 10 μm. 0.5 Zr 1.5 (PO 4 ) 3 filler powder was obtained. For KZr 2 (PO 4 ) 3 and Ca 0.25 Nb 0.5 Zr 1.5 (PO 4 ) 3 , raw materials corresponding to the respective chemical equivalents were prepared in the same manner as Na 0.5 Nb 0.5 Zr 1.5 (PO 4 ) 3, and the same firing was performed. A refractory filler was produced under the conditions.
以下に、本発明のバナジウムリン酸系ガラスを用いた粉末材料をPDP、VFD等の導体パターン、絶縁層、隔壁に適用した実施例を示す。 Below, the Example which applied the powder material using the vanadium phosphate glass of this invention to conductor patterns, insulation layers, and partition walls, such as PDP and VFD, is shown.
PDP、VFD等の導体パターンに用いる場合としては、表1のガラス粉末dとAl金属粉末を重量比40:60の割合で混合し、その後エチルセルロースを溶解させたテルピネオールからなるビークルと混練し、ペースト化した。そのペーストを所定のパターンにスクリーン印刷し、乾燥後、焼成温度480℃で焼成し、導体パターンを形成した。その結果、焼結性は良好であり、熱膨張係数は141×10-7/℃であった。 When used for a conductor pattern such as PDP, VFD, etc., the glass powder d in Table 1 and an Al metal powder are mixed in a weight ratio of 40:60, and then kneaded with a vehicle made of terpineol in which ethylcellulose is dissolved. Turned into. The paste was screen printed in a predetermined pattern, dried, and then fired at a firing temperature of 480 ° C. to form a conductor pattern. As a result, the sinterability was good and the thermal expansion coefficient was 141 × 10 −7 / ° C.
PDP、VFD等の絶縁層形成用に用いる場合としては、表1のガラス粉末cとアルミナ粉末を体積比で70:30の割合で混合し、その後エチルセルロースを溶解させたテルピネオールからなるビークルと混練し、ペースト化した。そのペーストをスクリーン印刷し、乾燥後、焼成温度480℃で焼成した。その結果、焼結性は良好であり、熱膨張係数は78×10-7/℃であった。 When used for forming an insulating layer such as PDP, VFD, etc., glass powder c and alumina powder in Table 1 are mixed at a volume ratio of 70:30, and then kneaded with a vehicle made of terpineol in which ethylcellulose is dissolved. And pasted. The paste was screen printed, dried, and fired at a firing temperature of 480 ° C. As a result, the sinterability was good and the thermal expansion coefficient was 78 × 10 −7 / ° C.
PDP、VFD等の隔壁に用いる場合としては、表2のガラス粉末iとアルミナ粉末を体積比で70:30の割合で混合し、その後エチルセルロースを溶解させたテルピネオールからなるビークルと混練し、ペースト化した。そのペーストをスクリーン印刷し、乾燥後サンドブラストによりパターニングを行った。なお、ペースト中に感光性樹脂を混合し、スクリーン印刷し、乾燥後、露光し、エッチングによりパターン形成してもよい。所定形状の隔壁は、焼成温度500℃で焼成することで形成した。その結果、焼結性は良好であり、熱膨張係数は79×10-7/℃であった。なお、焼結性の評価は、焼成後の焼成体の断面を電子顕微鏡により1000倍で観察し、ボイド割合(空孔割合)が20%未満のものを焼結性良とし、20%以上のものを焼結性不良とした。 When used for partition walls such as PDP and VFD, the glass powder i and the alumina powder in Table 2 are mixed at a volume ratio of 70:30, and then kneaded with a vehicle made of terpineol in which ethyl cellulose is dissolved to form a paste. did. The paste was screen printed, dried and then patterned by sandblasting. Note that a photosensitive resin may be mixed in the paste, screen-printed, dried, exposed, and patterned by etching. The partition having a predetermined shape was formed by firing at a firing temperature of 500 ° C. As a result, the sinterability was good and the thermal expansion coefficient was 79 × 10 −7 / ° C. The evaluation of the sinterability was performed by observing the cross section of the fired body after firing at 1000 times with an electron microscope, and having a void ratio (void ratio) of less than 20% as good sinterability, 20% or more. The product was regarded as having poor sinterability.
(発明の効果)
以上説明したように、本発明のバナジウムリン酸系ガラスは、500℃以下で良好な流動性を示す。さらにリン酸塩ガラス特有の耐候性の問題もない。それゆえ従来の鉛硼酸系ガラスと同等の性能を有する封着材料を作製することが可能である。したがって、本発明のバナジウムリン酸系ガラスを用いた粉末材料は、低温封着が可能であり、蛍光表示管(VFD)、電界放射型ディスプレイ(FED)、プラズマディスプレイパネル(PDP)、陰極線管(CRT)等の表示装置に用いる封着材料として好適である。
(The invention's effect)
As described above, the vanadium phosphate glass of the present invention exhibits good fluidity at 500 ° C. or lower. Furthermore, there is no problem of weather resistance peculiar to phosphate glass. Therefore, it is possible to produce a sealing material having performance equivalent to that of conventional lead borate glass. Therefore, the powder material using the vanadium phosphate glass of the present invention can be sealed at a low temperature, and a fluorescent display tube (VFD), a field emission display (FED), a plasma display panel (PDP), a cathode ray tube ( It is suitable as a sealing material used for display devices such as CRT).
また、FED、PDP等といった電気配線が形成された基板の絶縁層形成用材料や、PDPの隔壁形成用材料、ICパッケージやランプの封着材料等として使用することも可能である。さらに上記以外にも本発明のバナジウムリン酸系ガラスを用いた粉末材料は、種々の電子部品に使用されている鉛含有ガラスを含む材料の代替品として適用可能である。 Further, it can also be used as a material for forming an insulating layer of a substrate on which an electric wiring such as FED or PDP is formed, a material for forming a partition wall of a PDP, a sealing material for an IC package or a lamp. In addition to the above, the powder material using the vanadium phosphate glass of the present invention is applicable as a substitute for a material containing lead-containing glass used in various electronic components.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006119783A JP5041323B2 (en) | 2005-05-09 | 2006-04-24 | Powder material and paste material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005135799 | 2005-05-09 | ||
JP2005135799 | 2005-05-09 | ||
JP2006119783A JP5041323B2 (en) | 2005-05-09 | 2006-04-24 | Powder material and paste material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006342044A true JP2006342044A (en) | 2006-12-21 |
JP5041323B2 JP5041323B2 (en) | 2012-10-03 |
Family
ID=37639280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006119783A Expired - Fee Related JP5041323B2 (en) | 2005-05-09 | 2006-04-24 | Powder material and paste material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5041323B2 (en) |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006347840A (en) * | 2005-06-17 | 2006-12-28 | Hitachi Ltd | Electroconductive joining member and image display device having spacer joined by using the electroconductive joining member |
JP2007070127A (en) * | 2005-09-02 | 2007-03-22 | Hitachi Ltd | Conductive member and image display device |
JP2007320822A (en) * | 2006-06-02 | 2007-12-13 | Hitachi Ltd | Glass sealing material, frame glass for flat-panel type display device, and flat-panel type display device |
JP2008214153A (en) * | 2007-03-06 | 2008-09-18 | Hitachi Powdered Metals Co Ltd | Glass paste composition and sealing method |
JP2008247658A (en) * | 2007-03-30 | 2008-10-16 | Hitachi Powdered Metals Co Ltd | Glass paste composition |
JP2008247682A (en) * | 2007-03-30 | 2008-10-16 | Hitachi Powdered Metals Co Ltd | Glass paste composition |
JP2008251325A (en) * | 2007-03-30 | 2008-10-16 | Hitachi Ltd | Plasma display panel, and its manufacturing method |
JP2009209032A (en) * | 2008-02-08 | 2009-09-17 | Hitachi Powdered Metals Co Ltd | Glass composition |
JP2009221049A (en) * | 2008-03-17 | 2009-10-01 | Nippon Electric Glass Co Ltd | Sealing material |
JP2009221047A (en) * | 2008-03-17 | 2009-10-01 | Nippon Electric Glass Co Ltd | Vanadium-based glass composition and vanadium-based material |
JP2009221048A (en) * | 2008-03-17 | 2009-10-01 | Nippon Electric Glass Co Ltd | Vanadium-based glass composition and vanadium-based material |
WO2009128451A1 (en) * | 2008-04-18 | 2009-10-22 | 日本電気硝子株式会社 | Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell |
WO2010048044A2 (en) | 2008-10-20 | 2010-04-29 | Corning Incorporated | Antimony-free glass, antimony-free frit and a glass package that is hermetically sealed with the frit |
US7754629B2 (en) * | 2006-11-30 | 2010-07-13 | Corning Incorporated | Phosphotellurite-containing glasses, process for making same and articles comprising same |
JP2010184852A (en) * | 2009-01-16 | 2010-08-26 | Hitachi Powdered Metals Co Ltd | Low melting point glass composition, low-temperature sealing material using the same, and electronic component |
US7867934B2 (en) * | 2006-10-23 | 2011-01-11 | Ohara, Inc. | Optical glass |
JP2011032153A (en) * | 2009-07-06 | 2011-02-17 | Nippon Electric Glass Co Ltd | Refractory filler powder and sealing material using the same |
JP2011040360A (en) * | 2009-08-06 | 2011-02-24 | Dongjin Semichem Co Ltd | Photosensitive paste for forming plasma display panel electrode |
CN101633560B (en) * | 2008-07-23 | 2011-07-27 | 中国科学院过程工程研究所 | Lead-free low-melting-point glass and preparation method thereof |
WO2011108115A1 (en) * | 2010-03-05 | 2011-09-09 | ヤマト電子株式会社 | Lead-free glass material for organic-el sealing, organic el display formed using same, and process for producing the display |
US8022000B2 (en) * | 2006-01-06 | 2011-09-20 | Hitachi Displays Ltd. | Display device and production method thereof |
US8071183B2 (en) * | 2006-06-02 | 2011-12-06 | Hitachi Displays, Ltd. | Display apparatus |
JP2011251880A (en) * | 2010-06-03 | 2011-12-15 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | Vanadate-phosphate glass excellent in water resistance and chemical durability |
JP2012012228A (en) * | 2010-06-29 | 2012-01-19 | Asahi Glass Co Ltd | Glass frit, and conductive paste and electronic device using the same |
KR20120007497A (en) | 2009-03-27 | 2012-01-20 | 히다치 훈마츠 야킨 가부시키가이샤 | Glass composition and covering and sealing members using same |
KR20120010244A (en) * | 2009-03-27 | 2012-02-02 | 히다치 훈마츠 야킨 가부시키가이샤 | Glass composition, electrically conductive paste composition comprising same, electrode wiring member, and electronic component |
JP2012096993A (en) * | 2012-02-07 | 2012-05-24 | Hitachi Ltd | Bonding glass and flat panel display device using the same |
WO2012086972A2 (en) * | 2010-12-20 | 2012-06-28 | 동우화인켐 주식회사 | Composition for aluminum paste and solar cell element using same |
KR101162040B1 (en) * | 2011-06-01 | 2012-07-04 | 대주전자재료 주식회사 | Glass composition for sealing of and display panel comprising the same |
US8551368B2 (en) | 2009-10-28 | 2013-10-08 | Shoei Chemical Inc. | Conductive paste for forming a solar cell electrode |
JP2014500840A (en) * | 2010-10-21 | 2014-01-16 | 川崎重工業株式会社 | Waste treatment facility |
JP2014509295A (en) * | 2011-02-22 | 2014-04-17 | ガーディアン・インダストリーズ・コーポレーション | Frit material mainly composed of vanadium and method for producing the same |
US8871348B2 (en) | 2009-07-24 | 2014-10-28 | Nippon Electric Glass Co. Ltd. | Glass substrate with conductive film for solar cell |
JP2014534148A (en) * | 2011-09-21 | 2014-12-18 | ガーディアン・インダストリーズ・コーポレーション | Frit material mainly composed of vanadium and method for producing the same |
JP2015511922A (en) * | 2012-01-20 | 2015-04-23 | ガーディアン・インダストリーズ・コーポレーション | Thermal expansion coefficient filler for vanadium-based frit material and / or production method thereof and / or utilization method thereof |
WO2015083248A1 (en) * | 2013-12-04 | 2015-06-11 | 株式会社日立製作所 | Sealed structure, multi-layer heat-insulating glass and glass container |
JP2015532634A (en) * | 2012-08-30 | 2015-11-12 | コーニング インコーポレイテッド | Antimony-free glass, antimony-free frit, and glass package hermetically sealed with the frit |
WO2016051577A1 (en) | 2014-10-02 | 2016-04-07 | ヤマト電子株式会社 | Vanadate glass material for use in sealing by local heating, flat display manufactured using same, and method for manufacturing said display |
WO2016123273A1 (en) * | 2015-01-28 | 2016-08-04 | Corning Incorporated | A glass frit and a glass assembly sealed with the glass frit |
US20170092437A1 (en) * | 2014-05-21 | 2017-03-30 | Orion Co., Ltd. | Glass material for sealing large-area dye-sensitized solar cell |
JP2017218335A (en) * | 2016-06-03 | 2017-12-14 | 旭硝子株式会社 | Glass, conductive paste and solar battery |
US10252938B2 (en) | 2011-07-04 | 2019-04-09 | Hitachi, Ltd. | Glass composition, glass frit containing same, glass paste containing same, and electrical/electronic component obtained using same |
KR20190101766A (en) * | 2018-02-23 | 2019-09-02 | 엘지전자 주식회사 | Lead-free low temperature calcined glass frit suitable for strengthened glass, paste and vacuum glass assembly using the same |
KR20200031600A (en) * | 2018-02-23 | 2020-03-24 | 엘지전자 주식회사 | Lead-free low temperature calcined glass frit suitable for strengthened glass, paste and vacuum glass assembly using the same |
US10858880B2 (en) | 2011-02-22 | 2020-12-08 | Guardian Glass, LLC | Vanadium-based frit materials, binders, and/or solvents and/or methods of making the same |
WO2021074560A1 (en) * | 2019-10-17 | 2021-04-22 | Johnson Matthey Public Limited Company | Composition, paste and methods |
JP2021066647A (en) * | 2018-12-11 | 2021-04-30 | Agc株式会社 | Glass composition, glass powder, sealing material, glass paste, sealing method, sealing package and organic electroluminescence element |
US11091386B2 (en) * | 2018-06-27 | 2021-08-17 | Samsung Display Co., Ltd. | Glass frit and display device including the same |
EP3757079A4 (en) * | 2018-02-23 | 2021-12-22 | LG Electronics Inc. | Low-temperature fired, lead-free glass frit, paste, and vacuum glass assembly using same |
JP2022022329A (en) * | 2019-08-30 | 2022-02-03 | 昭和電工マテリアルズ株式会社 | Lead-free low-melting point glass composition, low-melting point glass composite material, glass paste, and applied product |
WO2022176520A1 (en) * | 2021-02-16 | 2022-08-25 | 昭和電工マテリアルズ株式会社 | Composition for forming electrode, solar cell element, and aluminum/silver stacked electrode |
RU2782750C1 (en) * | 2019-01-30 | 2022-11-02 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Lead-free glass frit fired at low temperatures, paste, and vacuum glass assembly applying said frit |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61111935A (en) * | 1984-11-02 | 1986-05-30 | Hitachi Ltd | Glass composition |
JPH02149446A (en) * | 1988-11-29 | 1990-06-08 | Matsushita Electric Ind Co Ltd | Sealing composition and crystal resonator |
JP2000072473A (en) * | 1998-09-02 | 2000-03-07 | Ohara Inc | Low melting point glass and sealing composition |
JP2006290665A (en) * | 2005-04-08 | 2006-10-26 | Boe Technology Group Co Ltd | Lead-free sealing glass powder and its producing method |
-
2006
- 2006-04-24 JP JP2006119783A patent/JP5041323B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61111935A (en) * | 1984-11-02 | 1986-05-30 | Hitachi Ltd | Glass composition |
JPH02149446A (en) * | 1988-11-29 | 1990-06-08 | Matsushita Electric Ind Co Ltd | Sealing composition and crystal resonator |
JP2000072473A (en) * | 1998-09-02 | 2000-03-07 | Ohara Inc | Low melting point glass and sealing composition |
JP2006290665A (en) * | 2005-04-08 | 2006-10-26 | Boe Technology Group Co Ltd | Lead-free sealing glass powder and its producing method |
Cited By (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006347840A (en) * | 2005-06-17 | 2006-12-28 | Hitachi Ltd | Electroconductive joining member and image display device having spacer joined by using the electroconductive joining member |
JP2007070127A (en) * | 2005-09-02 | 2007-03-22 | Hitachi Ltd | Conductive member and image display device |
US8022000B2 (en) * | 2006-01-06 | 2011-09-20 | Hitachi Displays Ltd. | Display device and production method thereof |
US8075961B2 (en) | 2006-06-02 | 2011-12-13 | Hitachi Displays, Ltd. | Display apparatus |
JP2007320822A (en) * | 2006-06-02 | 2007-12-13 | Hitachi Ltd | Glass sealing material, frame glass for flat-panel type display device, and flat-panel type display device |
US8071183B2 (en) * | 2006-06-02 | 2011-12-06 | Hitachi Displays, Ltd. | Display apparatus |
US7867934B2 (en) * | 2006-10-23 | 2011-01-11 | Ohara, Inc. | Optical glass |
US7754629B2 (en) * | 2006-11-30 | 2010-07-13 | Corning Incorporated | Phosphotellurite-containing glasses, process for making same and articles comprising same |
JP2008214153A (en) * | 2007-03-06 | 2008-09-18 | Hitachi Powdered Metals Co Ltd | Glass paste composition and sealing method |
JP2008247658A (en) * | 2007-03-30 | 2008-10-16 | Hitachi Powdered Metals Co Ltd | Glass paste composition |
JP2008251325A (en) * | 2007-03-30 | 2008-10-16 | Hitachi Ltd | Plasma display panel, and its manufacturing method |
JP2008247682A (en) * | 2007-03-30 | 2008-10-16 | Hitachi Powdered Metals Co Ltd | Glass paste composition |
JP2009209032A (en) * | 2008-02-08 | 2009-09-17 | Hitachi Powdered Metals Co Ltd | Glass composition |
US8367573B2 (en) | 2008-02-08 | 2013-02-05 | Hitachi Powdered Metals Co., Ltd. | Glass composition and its applications |
JP2009221048A (en) * | 2008-03-17 | 2009-10-01 | Nippon Electric Glass Co Ltd | Vanadium-based glass composition and vanadium-based material |
JP2009221047A (en) * | 2008-03-17 | 2009-10-01 | Nippon Electric Glass Co Ltd | Vanadium-based glass composition and vanadium-based material |
JP2009221049A (en) * | 2008-03-17 | 2009-10-01 | Nippon Electric Glass Co Ltd | Sealing material |
WO2009128451A1 (en) * | 2008-04-18 | 2009-10-22 | 日本電気硝子株式会社 | Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell |
US8106294B2 (en) | 2008-04-18 | 2012-01-31 | Nippon Electric Glass Co., Ltd. | Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell |
CN101633560B (en) * | 2008-07-23 | 2011-07-27 | 中国科学院过程工程研究所 | Lead-free low-melting-point glass and preparation method thereof |
EP2346789A4 (en) * | 2008-10-20 | 2012-04-04 | Corning Inc | Antimony-free glass, antimony-free frit and a glass package that is hermetically sealed with the frit |
CN102216233A (en) * | 2008-10-20 | 2011-10-12 | 康宁股份有限公司 | Antimony-free glass, antimony-free frit and a glass package that is hermetically sealed with the frit |
CN102216233B (en) * | 2008-10-20 | 2014-05-14 | 康宁股份有限公司 | Antimony-free glass, antimony-free frit and glass package that is hermetically sealed with frit |
WO2010048044A2 (en) | 2008-10-20 | 2010-04-29 | Corning Incorporated | Antimony-free glass, antimony-free frit and a glass package that is hermetically sealed with the frit |
US8685872B2 (en) | 2009-01-16 | 2014-04-01 | Hitachi Chemical Co., Ltd. | Low softening point glass composition, bonding material using same and electronic parts |
JP2010184852A (en) * | 2009-01-16 | 2010-08-26 | Hitachi Powdered Metals Co Ltd | Low melting point glass composition, low-temperature sealing material using the same, and electronic component |
US8470723B2 (en) | 2009-01-16 | 2013-06-25 | Hitachi Powdered Metals Co., Ltd. | Low softening point glass composition, bonding material using same and electronic parts |
KR20120007497A (en) | 2009-03-27 | 2012-01-20 | 히다치 훈마츠 야킨 가부시키가이샤 | Glass composition and covering and sealing members using same |
KR20120010244A (en) * | 2009-03-27 | 2012-02-02 | 히다치 훈마츠 야킨 가부시키가이샤 | Glass composition, electrically conductive paste composition comprising same, electrode wiring member, and electronic component |
KR101683239B1 (en) * | 2009-03-27 | 2016-12-09 | 히타치가세이가부시끼가이샤 | Glass composition, electrically conductive paste composition comprising same, electrode wiring member, and electronic component |
US9048056B2 (en) | 2009-03-27 | 2015-06-02 | Hitachi Powdered Metals Co., Ltd. | Glass composition and covering and sealing members using same |
JP2011032153A (en) * | 2009-07-06 | 2011-02-17 | Nippon Electric Glass Co Ltd | Refractory filler powder and sealing material using the same |
US8871348B2 (en) | 2009-07-24 | 2014-10-28 | Nippon Electric Glass Co. Ltd. | Glass substrate with conductive film for solar cell |
JP2011040360A (en) * | 2009-08-06 | 2011-02-24 | Dongjin Semichem Co Ltd | Photosensitive paste for forming plasma display panel electrode |
US8551368B2 (en) | 2009-10-28 | 2013-10-08 | Shoei Chemical Inc. | Conductive paste for forming a solar cell electrode |
US10347787B2 (en) | 2009-10-28 | 2019-07-09 | Shoei Chemical Inc. | Method for forming a solar cell electrode with conductive paste |
WO2011108115A1 (en) * | 2010-03-05 | 2011-09-09 | ヤマト電子株式会社 | Lead-free glass material for organic-el sealing, organic el display formed using same, and process for producing the display |
US8766524B2 (en) | 2010-03-05 | 2014-07-01 | Yamato Electronic Co., Ltd. | Lead-free glass material for organic-EL sealing, organic EL display formed using the same |
JP2011251880A (en) * | 2010-06-03 | 2011-12-15 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | Vanadate-phosphate glass excellent in water resistance and chemical durability |
JP2012012228A (en) * | 2010-06-29 | 2012-01-19 | Asahi Glass Co Ltd | Glass frit, and conductive paste and electronic device using the same |
JP2014500840A (en) * | 2010-10-21 | 2014-01-16 | 川崎重工業株式会社 | Waste treatment facility |
WO2012086972A3 (en) * | 2010-12-20 | 2012-09-07 | 동우화인켐 주식회사 | Composition for aluminum paste and solar cell element using same |
WO2012086972A2 (en) * | 2010-12-20 | 2012-06-28 | 동우화인켐 주식회사 | Composition for aluminum paste and solar cell element using same |
US10196299B2 (en) | 2011-02-22 | 2019-02-05 | Guardian Glass, LLC | Vanadium-based frit materials, and/or methods of making the same |
US10087676B2 (en) | 2011-02-22 | 2018-10-02 | Guardian Glass, LLC | Vanadium-based frit materials, and/or methods of making the same |
CN108164146A (en) * | 2011-02-22 | 2018-06-15 | 葛迪恩实业公司 | Vanadium base glass frit and its manufacturing method |
US11014847B2 (en) | 2011-02-22 | 2021-05-25 | Guardian Glass, LLC | Vanadium-based frit materials, and/or methods of making the same |
US9776910B2 (en) | 2011-02-22 | 2017-10-03 | Guardian Glass, LLC | Vanadium-based frit materials, and/or methods of making the same |
JP2014509295A (en) * | 2011-02-22 | 2014-04-17 | ガーディアン・インダストリーズ・コーポレーション | Frit material mainly composed of vanadium and method for producing the same |
US10858880B2 (en) | 2011-02-22 | 2020-12-08 | Guardian Glass, LLC | Vanadium-based frit materials, binders, and/or solvents and/or methods of making the same |
TWI403483B (en) * | 2011-06-01 | 2013-08-01 | Daejoo Electronic Mat Co Ltd | Glass composition for sealing and display panel comprising the same |
KR101162040B1 (en) * | 2011-06-01 | 2012-07-04 | 대주전자재료 주식회사 | Glass composition for sealing of and display panel comprising the same |
US10252938B2 (en) | 2011-07-04 | 2019-04-09 | Hitachi, Ltd. | Glass composition, glass frit containing same, glass paste containing same, and electrical/electronic component obtained using same |
JP2014534148A (en) * | 2011-09-21 | 2014-12-18 | ガーディアン・インダストリーズ・コーポレーション | Frit material mainly composed of vanadium and method for producing the same |
JP2015511922A (en) * | 2012-01-20 | 2015-04-23 | ガーディアン・インダストリーズ・コーポレーション | Thermal expansion coefficient filler for vanadium-based frit material and / or production method thereof and / or utilization method thereof |
JP2012096993A (en) * | 2012-02-07 | 2012-05-24 | Hitachi Ltd | Bonding glass and flat panel display device using the same |
TWI586624B (en) * | 2012-08-30 | 2017-06-11 | 康寧公司 | Antimony-free glass, antimony-free frit and a glass package that is hermetically sealed with the frit |
JP2015532634A (en) * | 2012-08-30 | 2015-11-12 | コーニング インコーポレイテッド | Antimony-free glass, antimony-free frit, and glass package hermetically sealed with the frit |
JPWO2015083248A1 (en) * | 2013-12-04 | 2017-03-16 | 株式会社日立製作所 | Sealing structure, multi-layer insulation glass, glass container |
CN105683111A (en) * | 2013-12-04 | 2016-06-15 | 株式会社日立制作所 | Sealed structure, multi-layer heat-insulating glass and glass container |
US10392296B2 (en) | 2013-12-04 | 2019-08-27 | Hitachi, Ltd. | Sealed structural body and method for manufacturing the same |
WO2015083248A1 (en) * | 2013-12-04 | 2015-06-11 | 株式会社日立製作所 | Sealed structure, multi-layer heat-insulating glass and glass container |
US10068712B2 (en) * | 2014-05-21 | 2018-09-04 | Orion Co., Ltd. | Glass material for sealing large-area dye-sensitized solar cell |
US20170092437A1 (en) * | 2014-05-21 | 2017-03-30 | Orion Co., Ltd. | Glass material for sealing large-area dye-sensitized solar cell |
WO2016051577A1 (en) | 2014-10-02 | 2016-04-07 | ヤマト電子株式会社 | Vanadate glass material for use in sealing by local heating, flat display manufactured using same, and method for manufacturing said display |
US9988301B2 (en) | 2014-10-02 | 2018-06-05 | Yej Glass Co., Ltd. | Vanadium-based glass material for local heat sealing, flat display using the same, and method for manufacturing the display |
CN107406305A (en) * | 2015-01-28 | 2017-11-28 | 康宁股份有限公司 | Frit and the glass assembly sealed with the frit |
WO2016123273A1 (en) * | 2015-01-28 | 2016-08-04 | Corning Incorporated | A glass frit and a glass assembly sealed with the glass frit |
JP2017218335A (en) * | 2016-06-03 | 2017-12-14 | 旭硝子株式会社 | Glass, conductive paste and solar battery |
KR102379839B1 (en) | 2018-02-23 | 2022-03-28 | 엘지전자 주식회사 | Lead-free low temperature calcined glass frit suitable for strengthened glass, paste and vacuum glass assembly using the same |
US11958772B2 (en) | 2018-02-23 | 2024-04-16 | Lg Electronics Inc. | Low-temperature fired, lead-free glass frit, paste, and vacuum glass assembly using same |
KR102091839B1 (en) | 2018-02-23 | 2020-03-20 | 엘지전자 주식회사 | Lead-free low temperature calcined glass frit suitable for strengthened glass, paste and vacuum glass assembly using the same |
EP3757079A4 (en) * | 2018-02-23 | 2021-12-22 | LG Electronics Inc. | Low-temperature fired, lead-free glass frit, paste, and vacuum glass assembly using same |
KR20200031600A (en) * | 2018-02-23 | 2020-03-24 | 엘지전자 주식회사 | Lead-free low temperature calcined glass frit suitable for strengthened glass, paste and vacuum glass assembly using the same |
KR20190101766A (en) * | 2018-02-23 | 2019-09-02 | 엘지전자 주식회사 | Lead-free low temperature calcined glass frit suitable for strengthened glass, paste and vacuum glass assembly using the same |
US11091386B2 (en) * | 2018-06-27 | 2021-08-17 | Samsung Display Co., Ltd. | Glass frit and display device including the same |
JP2021066647A (en) * | 2018-12-11 | 2021-04-30 | Agc株式会社 | Glass composition, glass powder, sealing material, glass paste, sealing method, sealing package and organic electroluminescence element |
RU2782750C1 (en) * | 2019-01-30 | 2022-11-02 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Lead-free glass frit fired at low temperatures, paste, and vacuum glass assembly applying said frit |
JP2022022329A (en) * | 2019-08-30 | 2022-02-03 | 昭和電工マテリアルズ株式会社 | Lead-free low-melting point glass composition, low-melting point glass composite material, glass paste, and applied product |
JP7375804B2 (en) | 2019-08-30 | 2023-11-08 | 株式会社レゾナック | Lead-free low-melting glass compositions, low-melting glass composites, glass pastes and applied products |
CN114585593A (en) * | 2019-10-17 | 2022-06-03 | 芬齐Agt荷兰有限责任公司 | Compositions, pastes and methods |
WO2021074560A1 (en) * | 2019-10-17 | 2021-04-22 | Johnson Matthey Public Limited Company | Composition, paste and methods |
WO2022176520A1 (en) * | 2021-02-16 | 2022-08-25 | 昭和電工マテリアルズ株式会社 | Composition for forming electrode, solar cell element, and aluminum/silver stacked electrode |
Also Published As
Publication number | Publication date |
---|---|
JP5041323B2 (en) | 2012-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5041323B2 (en) | Powder material and paste material | |
KR101242636B1 (en) | Vanadium-phosphate glass | |
KR101011420B1 (en) | Glass composition for sealing and sealed material | |
JP4972954B2 (en) | Bismuth-based glass composition and bismuth-based sealing material | |
JP2008037740A (en) | Glass composition for sealing and sealing material | |
JP5354444B2 (en) | Sealing material | |
KR101020143B1 (en) | Bismuth-based sealing material and bismuth-based paste material | |
JP5083706B2 (en) | Bismuth-based glass composition and bismuth-based sealing material | |
JP4791746B2 (en) | Lead-free borosilicate glass frit and its glass paste | |
JP4411648B2 (en) | Tin phosphate glass and composite materials | |
JP2009001433A (en) | Sealing material | |
JP4092936B2 (en) | Tin phosphate glass and composite materials | |
JP2005132650A (en) | Composite material for sealing | |
JP2011225404A (en) | SnO-P2O5 BASED GLASS, SEALING MATERIAL AND SEALING PASTE | |
JP5419249B2 (en) | Bismuth-based glass composition and bismuth-based sealing material | |
JP7172209B2 (en) | sealing material | |
JP2009062263A (en) | Sealing material, and a method of manufacturing the same | |
JP2001199740A (en) | Lead-free glass and composition for sealing | |
JP2008308393A (en) | Lead-free low softening point glass, lead-free low softening point glass composition, lead-free low softening point glass paste, and fluorescent display tube | |
EP4393893A1 (en) | Glass composition and sealing material | |
KR101028340B1 (en) | Frit composition having softening characteristics at low temperature | |
JP5025209B2 (en) | Lead-free borosilicate glass frit and glass paste for forming an insulating layer | |
JP5152686B2 (en) | Support frame forming material | |
JP3948165B2 (en) | Sealing material | |
JP4406918B2 (en) | Composite material for sealing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111202 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120420 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120618 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5041323 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120701 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150720 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |