JP4092936B2 - Tin phosphate glass and composite materials - Google Patents

Tin phosphate glass and composite materials Download PDF

Info

Publication number
JP4092936B2
JP4092936B2 JP2002105216A JP2002105216A JP4092936B2 JP 4092936 B2 JP4092936 B2 JP 4092936B2 JP 2002105216 A JP2002105216 A JP 2002105216A JP 2002105216 A JP2002105216 A JP 2002105216A JP 4092936 B2 JP4092936 B2 JP 4092936B2
Authority
JP
Japan
Prior art keywords
glass
powder
phosphate glass
tin phosphate
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002105216A
Other languages
Japanese (ja)
Other versions
JP2003252648A (en
Inventor
武民 菊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2002105216A priority Critical patent/JP4092936B2/en
Priority to KR1020020083190A priority patent/KR100911068B1/en
Priority to CNB021584710A priority patent/CN1258489C/en
Publication of JP2003252648A publication Critical patent/JP2003252648A/en
Application granted granted Critical
Publication of JP4092936B2 publication Critical patent/JP4092936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、蛍光表示管(VFD)、電界放射型ディスプレイ(FED)、プラズマディスプレイ(PDP)、陰極線管(CRT)といった表示管の封着等に用いることが可能な無鉛ガラス及びこれを用いた複合材料に関するものである。
【0002】
【従来の技術】
VFD、FED、PDP、CRT等の表示管の封着には、封着温度が430〜500℃、熱膨張係数が60〜100×10-7/℃程度の特性をもつ封着材料を用いたガラスペーストが使用されている。
【0003】
表示管の封着は、まず被封着物の封着部分にガラスペーストを塗布し、乾燥後、脱バインダーのために加熱する。その後、他方の被封着物と密着させた状態で本焼成を行い、封着を完了させる。なおPDP、CRT等の表示管では、封着後に排気のための熱処理に供されるため、これらの封着材料には、この処理で変質して気密性を損なうことがない材料を選択する必要がある。
【0004】
またより強固な結合を得るために、ガラス粉末が被封着物の接着表面を濡らすのに十分な温度まで加熱する必要があるが、工程温度をできる限り低く維持しなければならない場合があり、低温度でも封着可能な材料が望まれている。
【0005】
このような事情から、従来この種の封着材料には、低温度で封着可能なPbO−B23系ガラス粉末と耐火性フィラー粉末からなる複合材料が主として用いられている。
【0006】
【発明が解決しようとする課題】
しかしながら、最近では環境問題の観点から、ガラスから鉛を除くことが求められている。
【0007】
鉛を含まないガラスとして、リン酸スズ系ガラスが特開平7−69672号、特開平9−227154号などで提案されている。ところがこの系のガラスはP25を主要なガラス形成酸化物として多量に含有しているために、粉末焼成体の耐候性が劣化したり、吸湿性が高い為に粉末の保管時に変質を起こし、所定の特性を得られない、という欠点がある。また、SnOを多く含む為に、脱バインダー工程における加熱時にSnOがSnO2となって表面失透が発生しやすく、これにより目的とする材料との封着が達せられない等、リン酸塩ガラス特有の欠点が現れやすく、現在広く使用されているPbO−B23系ガラスの特性には未だ到っていない。
【0008】
吸湿性を改善する目的で、リン酸スズ系ガラスの組成中にIn23を添加したガラスが特開2000−219536号で提案されている。しかしながらIn23は貴金属であり非常に高価であることから、少量であってもガラス材料の価格が大幅に上昇する為、現実的ではない。また上記提案においても、未だ表面失透の問題については解決にいたっていない。
【0009】
本発明の目的は、鉛成分を含有しなくても、従来の封着材料や絶縁被覆材料等と同等の特性を有するガラス材料を提供することである。
【0010】
【課題を解決するための手段】
本発明者は種々の実験を行った結果、ガラス中に所定量のランタノイド酸化物を導入することにより、上記目的が達成できることを見いだし、本発明として提案するものである。
【0011】
即ち、本発明のリン酸スズ系ガラスは、モル%表示でSnO 30〜70%、P25 20〜45%、ランタノイド酸化物 0.1〜25%、ZnO 0〜20%、MgO 0〜20%、Al 2 3 0〜10%、SiO 2 0〜15%、B 2 3 0〜30%、R 2 O(RはLi、Na、K、Cs) 0〜20%の組成を有することを特徴とする。
【0012】
また本発明の複合材料は、上記リン酸スズ系ガラス粉末と耐火性フィラー粉末からなることを特徴とする。
【0013】
【作用】
本発明のリン酸スズ系ガラスにおいて、ガラスの組成範囲を上記のように限定した理由を以下に述べる。
【0014】
SnOはガラスを低融点化させる成分である。SnOが30%より少ないとガラスの粘性が高くなって焼成温度が高くなりすぎ、70%を超えるとガラス化しなくなる。なおSnO成分が多いと焼成時に失透しやすくなるので、60%以下であることが好ましい。また40%以上であれば、流動性に優れ、高い気密性を得ることができるため好ましい。
【0015】
25はガラス形成酸化物である。P25が20%未満の領域ではガラスの安定性が不十分である。20〜45%の範囲では、ガラスに十分な安定性が得られるが、45%を超えると耐湿性が悪くなる。またP25が25%以上であれば、ガラスがより安定化するが、35%を超えると焼成体の耐候性がやや悪くなる傾向が現れるので、25〜35%であることが好ましい。
【0016】
ランタノイド酸化物は、網目修飾酸化物であり、本発明において必須の成分である。ランタノイド酸化物をガラス成分中に合量で0.1%以上含むことで、下記1)〜3)の効果が得られる。
【0017】
1)ガラスを粉砕後、粉末の状態で保存したときの吸湿性を低下させるのに効果がある。ランタノイド酸化物が少ないと、保存中に吸湿し、使用時に求める特性が得られない場合がある。
【0018】
2)焼成(例えば封着のための本焼成)後の耐候性を向上させることができる。ランタノイド酸化物が少ないと、焼成後に高温多湿の状態で保管する場合、ガラス表面に粉状のものが浮き出たり、焼成体の周りに染み出しが発生し易い。
【0019】
3)焼成(例えば脱バインダーのための熱処理)時に失透が生じない。また焼成後に過酷な条件で再加熱される(例えばPDPの製造工程では、封着後に真空排気のために350℃〜450℃で10〜20時間という、比較的高温で加熱時間の長い熱処理が行われる)場合においても、ガラスに変質が生じない。ランタノイド酸化物が少ないと、焼成時に失透が生じ、設計通りの封着ができないことがある。また過酷な再加熱を受けると失透が生じて変質し気密性を保てなくなるおそれがある。なお失透が生じる原因は、ガラス成分のSnOが焼成時にSnO2に変化して析出することによる。
【0020】
一方、ランタノイド酸化物が25%を超えると、溶融時の融液粘性を上げ、また焼成時の流動性を阻害する。なお長期間の粉末の保存安定性や焼成後の耐候性の向上と、流動性のバランスを考慮すると、ランタノイド酸化物の含有量は合量で2〜15%、特に4〜15%であることが望ましい。
【0021】
ランタノイド酸化物としては、ガラスを着色させないLa23、CeO2及びGd23から選ばれる1種以上を使用することが好ましい。
【0022】
La23は、耐湿性や耐候性の改善効果が大きい成分である。ただし溶融時の粘度を上昇させる傾向があるため多量に使用しない方がよい。ランタノイド酸化物としてLa23を単独で使用する場合、その含有量は0.1〜10%、特に1〜5%、さらには3〜5%であることが好ましい。
【0023】
CeO2は、La23と比べて耐湿性及び耐候性の改善効果は小さいが、溶融時の粘度を上昇させる傾向がLa23より小さいため、比較的多量に含有させることができる。またランタノイド系原料の中で比較的安価である。CeO2を単独で使用する場合、その含有量は0.1〜15%、特に5〜10%、さらには5〜8%であることが好ましい。なお十分な効果を得るためには5%以上含有させることが望ましい。
【0024】
Gd23は、La23と同様に耐湿性及び耐候性の改善に効果がある。また溶融時の粘度を上昇させる傾向がLa23と比べて小さい。ただし脱バインダー後の封着時の失透傾向を強めるため、多量に使用しない方がよい。Gd23を単独で使用する場合、その含有量は0.1〜10%、特に1〜5%、さらには3〜5%であることが好ましい。
【0025】
上記のように、ランタノイド酸化物を単独で使用する場合、ガラスの組成設計上の制約が大きく、十分な効果を得ることが難しい場合がある。一方、ランタノイド酸化物を2種以上組み合わせて使用すると組成設計の自由度が広がり、所望の特性を容易に得ることができる。
【0026】
以下に、La23、CeO2及びGd23を組み合わせて使用する場合の好適な組成範囲を示す。
【0027】
La23とCeO2を組み合わせる場合、各成分の含有量はLa23 0.1〜10%、CeO2 0.1〜15%、特にLa23 1〜8%、CeO2 1〜10%、さらにはLa23 1〜5%、CeO2 3〜10%であることが好ましい。
【0028】
CeO2とGd23を組み合わせる場合、各成分の含有量はCeO2 0.1〜15%、Gd23 0.1〜10%、特にCeO2 1〜10%、Gd23 1〜8%、さらにはCeO2 3〜10%、Gd23 1〜5%であることが好ましい。
【0029】
La23とGd23を組み合わせる場合、各成分の含有量はLa23 0.1〜10%、Gd23 0.1〜10%、特にLa23 1〜8%、Gd23 1〜8%、さらにはLa23 1〜5%Gd23 1〜5%、であることが好ましい。
【0030】
またこれら3種を使用する場合、各成分の含有量は、La23 0.1〜5%、CeO2 0.1〜10%、Gd23 0.1〜5%、特にLa23 0.5〜5%、CeO2 1〜10%、Gd23 0.1〜5%、さらにはLa23 0.5〜3%、CeO2 1〜5%、Gd23 0.1〜3%であることが好ましい。
【0031】
なおランタノイド酸化物に加えて、他の稀土類、例えばY23を使用するとより効果的である。ランタノイド酸化物を除く稀土類の添加量は0〜5%であることが好ましい。
【0032】
また本発明のリン酸スズ系ガラスは、上記成分に加えて、ZnO 0〜20%、MgO 0〜20%、Al23 0〜10%、SiO2 0〜15%、B23 0〜30%、R2O(RはLi、Na、K及び/又はCsの合計) 0〜20%の組成を有する。以下に上記範囲に限定した理由を説明する。
【0033】
ZnOは中間酸化物である。ZnOは必須成分ではないが、ガラスを安定化させる効果が大きいため、4%以上含有させることが望ましい。しかしZnOが20%を超えると焼成時にガラス表面に失透が発生しやすくなる。また、焼成後に長時間(例えば1時間以上)の熱処理工程がある場合などは失透が起こりやすくなるため、よりガラスが安定になるように考慮する必要がある。このような場合、ZnOの含有量は5〜15%であることが望ましい。
【0034】
MgOは網目修飾酸化物であり、ガラスを安定化させる効果がある。MgOが20%を超えると焼成時にガラス表面に失透が発生しやすくなる。MgOの含有量は0〜5%であることが望ましい。
【0035】
Al23は中間酸化物である。Al23は必須成分ではないが、ガラスを安定化させる効果があり、また熱膨張係数を低下させる効果もあるので含有させることが望ましい。但し、10%を超えると軟化温度が上昇し、焼成時の流動性が阻害される。なおガラスの安定性や熱膨張係数及び流動性など考慮した場合、1〜5%の範囲がより好ましい。
【0036】
SiO2はガラス形成酸化物である。SiO2は脱バインダー後の封着における失透を抑制する効果があるので含有させることが望ましい。なお15%を超えると軟化温度が上昇し、焼成時の流動性が著しく悪くなる。低融点材料としての流動性など考慮した場合、SiO2の含有量は0〜10%であることが望ましい。
【0037】
23はガラス形成酸化物である。B23は溶融時にガラスが分離して発生するスカムを減少させる効果がある。またガラスを安定させる効果がある。但し、30%より多いとガラスの粘性が高くなりすぎ、焼成時の流動性が著しく悪くなり、封着部の気密性が損なわれる。B23の好適な範囲は0〜25%である。なおB23はガラスの粘性を高くする傾向が強いため、非常に高い流動性が要求され、軟化点を大幅に下げる必要がある場合は含有しないほうがよい。
【0038】
2O(RはLi、Na、K、Cs)は必須成分ではないが、R2O成分の内、少なくとも1種類が組成中に加わることにより被封着物との接着力が強くなる。しかし合量で20%を超えると焼成時に失透しやすくなる。なお表面失透や流動性を考慮した場合、R2O合量で10%以下であることが望ましい。またR2O成分の内、Li2Oは、最も基板との接着力を向上させる能力が高い成分である。
【0039】
また本発明のガラスは、上記成分に加えてさらに種々の成分を添加することができる。例えばWO3、MoO3、Nb25、TiO2、ZrO2、CuO、MnO、R’O(R’はMg、Ca、Sr、Ba)等のガラスを安定化させる成分を合量で35%以下含有させることができる。なおこれら安定化成分の含有量を35%以下に限定する理由は、35%を超えると逆にガラスが不安定になって成形時に失透し易くなるためである。より安定なガラスを得る為には25%以下にすることが好ましい。また耐候性や耐湿性を高めるためにIn23等を含有させることもできる。
【0040】
安定化成分の含有量及びその限定理由を以下に述べる。
【0041】
WO3及びMoO3の含有量は何れも0〜20%、特に0〜10%であることが好ましい。これらの成分が各々20%を超えるとガラスの粘性が高くなりやすい。
【0042】
Nb25、TiO2、及びZrO2の含有量は何れも0〜15%、特に各々0〜10%であることが好ましい。これらの成分が各々15%を超えるとガラスの失透傾向が大きくなりやすい。
【0043】
CuO及びMnOの含有量は何れも0〜10%、特に各々0〜5%が好ましい。これらの成分が各々10%を超えるとガラスが不安定になりやすい。
【0044】
R’Oの含有量は合量で0〜15%、特に0〜5%であることが好ましい。R’Oが15%を超えるとガラスが不安定になりやすい。
【0045】
In23は、コストを度外視した場合、高度な耐候性や耐湿性を得る目的で使用することができる。In23の含有量は0〜5%であることが好ましい。
【0046】
なおVFD、FED、CRT、PDP等の表示管用途の場合、F、Cl等のハロゲンは、電子放電等に悪影響を及ぼし、表示輝度を低下させる等の問題を発生させるおそれがある。それゆえ本発明のガラスを表示管用途に使用する場合は、ガラス中にハロゲンを含まないようにすることが望ましい。
【0047】
以上の組成を有するガラスは、270〜380℃のガラス転移点を有し、約400〜600℃の温度範囲で良好な流動性を示す。また30〜250℃において90〜150×10-7/℃程度の熱膨張係数を有する。
【0048】
このような特性を有する本発明のリン酸スズ系ガラスは、熱膨張係数が適合する材料に対しては単独で封着材料として使用できる。
【0049】
一方、熱膨張係数が適合しない材料、例えばアルミナ(70×10-7/℃)、高歪点ガラス(85×10-7/℃)、ソーダ板ガラス(90×10-7/℃)等を封着する場合には、耐火性フィラー粉末を加えて複合材料とすればよい。複合材料の熱膨張係数は、被封着物に対して10〜30×10-7/℃程度低く設計することが重要である。これは、封着後に封着材料に引っ張り応力がかかって封着材料が破壊するのを防ぐためである。VFD、FED、PDP、CRTの封着の場合、熱膨張係数が60〜100×10-7/℃程度となるように調整する。なお熱膨張係数の調整以外にも、例えば機械的強度の向上のために耐火性フィラー粉末を添加することができる。
【0050】
なお耐火性フィラー粉末を混合する場合、その混合量はガラス粉末50〜100体積%、フィラー粉末0〜50体積%であることが好ましい。これはフィラー粉末が50体積%より多いと、相対的にガラス粉末の割合が低くなりすぎて必要な流動性が得にくくなるためである。
【0051】
耐火性フィラー粉末としては種々の材料が使用でき、例えばコージエライト、ジルコン、酸化錫、酸化ニオブ、リン酸ジルコニウム、ウイレマイト、ムライト、等が挙げられる。またMgOを2重量%添加したNbZr(PO4)セラミック粉末は成分中にリン酸を含有するため、本発明のリン酸スズ系ガラスによく適合する。
【0052】
またCRTの封着用途の場合、強度向上のために封着材料を結晶化させることが望ましい。結晶化させるには、耐火性フィラー粉末とは別に、結晶性微粉末を添加すればよい。この微粉末としてはジルコニアが代表的であるが、結晶を促進させる微粉末であれば特に限定されるものではない。なお結晶性微粉末の添加割合は、全体の粉末重量に対し、0.1〜1.0wt%が好適である。
【0053】
本発明のリン酸スズ系ガラス及びこれを用いた複合材料を作製するには、まず上記組成を有するように原料を調合し、溶融してガラス化する。本発明のガラス組成範囲内では、空気中溶融を実施しても支障はないが、溶融時にSnOがSnO2に酸化されないように留意する必要がある。このためN2中で溶融したり、融液中にN2バブリングする等、非酸化性雰囲気で溶融することが好ましい。また実験室レベルでは、坩堝に蓋をして溶融することが望まれる。
【0054】
その後、溶融ガラスを成形し、粉砕、分級する。
【0055】
このようにしてリン酸スズ系ガラス粉末を得ることができる。さらに必要に応じて耐火性フィラー粉末を添加し混合して、複合材料を得ることができる。
【0056】
次に、本発明の複合材料を、VFD、FED、PDP、CRT等の表示管の封着材料として用いた使用例を示す。
【0057】
まず被封着物の封着表面に封着材料を塗布し、乾燥させる。塗布するに当たっては、封着材料をペースト状にし、ディスペンサーを用いて行えばよい。
【0058】
次に必要に応じて脱バインダーのための加熱を行い、その後、もう一方の被封着物と接触させながら本焼成を行う。本焼成では、ガラスが被封着物の接着表面を濡らすのに十分な条件で焼成することにより、被封着物同士を封着することができる。VFD、FED、PDP、CRTにおける一般的な封着温度が430〜500℃である。また封着を行う最高温度での保持時間は通常、VFD、FED、PDPでは10分程度で、CRTにおいては30分程度が適当である。
【0059】
本発明のリン酸スズ系ガラス或いは複合材料をペースト化する場合、樹脂としてエチルセルロース、溶媒としてテルピネオールを用いたビークルや、樹脂としてニトロセルロース、溶媒として酢酸イソアミルを用いたビークルと混練すればよい。好ましくは樹脂としてニトロセルロース、溶媒として酢酸イソアミルを用いたビークルを採用する方が焼成後の失透性が少なく好ましい。
【0060】
またテルピネオールや酢酸イソアミルに代えて、高級アルコールを使用することもできる。代表的な高級アルコールとしては、Cn2n+1OH(n=8〜20)で表されるイソへキシルアルコールからイソアイコシルアルコールを用いることが可能であるが、粘性を考慮するとイソデシルアルコール(n=10)以上の分子量を持つ方が、粉末と混合した場合の適性粘性にしやすい。また、焼成時の焼却しやすさを考慮するとイソへキサデシルアルコール(n=16)以下の分子量を持つものが好ましい。従って、高級アルコールを使用する場合は、イソドデシルアルコールやイソトリデシルアルコールが好適である。特にトータルバランスからイソトリデシルアルコールが最適である。
【0061】
リン酸スズ系ガラスやこれを用いた複合材料について、表示管の封着材料とし説明してきたが、本発明はこれに限定されるものではなく、例えばICパッケージやランプの封着に用いられる封着材料や、PDP、FED等に用いられる絶縁被覆材料、PDPの隔壁形成材料等、種々の用途に適用可能である。
【0062】
以下に、VFDやPDP等の絶縁被覆材料としての使用例を示す。
【0063】
まず被覆する基板に熱膨張係数が適合するように、必要に応じてガラスに耐火性フィラー粉末を添加して絶縁被覆材料を用意する。VFDではソーダ板ガラス(約90×10-7/℃)が、PDPでは高歪点ガラス(約85×10-7/℃)が主に使用されるので、熱膨張係数が60〜80×10-7/℃程度となるように調整すればよい。
【0064】
次に電気配線等が施された基板の表面に、絶縁被覆材料をスクリーン印刷により塗布する。塗布するに当たっては、封着材料と同様に材料をペースト状にして使用すればよい。
【0065】
その後、ガラスが被封着物の表面を濡らすのに十分な条件で焼成することにより、被覆することができる。絶縁被覆材料の熱処理条件は封着材料のそれよりも高い温度で処理されるのが一般的であり、500℃〜580℃程度である。
【0066】
【実施例】
以下、実施例に基づいて本発明を詳細に説明する。
(実施例1)
表1、2は、ランタノイド酸化物としてLa23を使用した本発明のガラス粉末試料(試料a〜g)、及び比較例のガラス粉末(試料I〜III)をそれぞれ示している。
【0067】
【表1】

Figure 0004092936
【0068】
【表2】
Figure 0004092936
【0069】
各ガラス粉末は次のようにして調製した。まず表の組成を有するように原料を調合し、空気中で800〜900℃で1〜2時間溶融した。
【0070】
なお、溶融時には、一酸化錫が酸化されにくいように溶融坩堝に蓋を被せた。また、使用したリン原料にはピロリン酸第一錫及びメタリン酸亜鉛を用い、液体原料である正リン酸(オルトリン酸)は使用せず、すべて固体原料を使用した。これは以下の理由による。つまり液体原料を直接溶融すると噴きこぼれの問題があり、これを避けるために一旦乾燥させなければならない。一方、固体原料であれば、従来の製造工程を変更する必要がないという利点がある。
【0071】
次に、溶融ガラスを水冷ローラー間に通して薄板状に成形し、ボールミルにて粉砕後、目開き105μmの篩を通過させて、平均粒径約10μmのリン酸スズ系ガラス粉末を得た。
【0072】
得られたガラス粉末試料について、ガラス転移点、熱膨張係数及び耐湿性を評価した。その結果、ガラス転移点が271〜333℃、熱膨張係数が110.1〜120.7×10-7/℃であった。また実施例である試料a〜gは耐湿性が良好であった。これに対して比較例である試料I〜IIIは耐湿性が劣っていた。
【0073】
なおガラス転移点は示差熱分析(DTA)により、熱膨張係数は押棒式熱膨張測定装置により求めた。
【0074】
耐湿性は次のようにして評価した。まずガラスの真比重に相当する重量のガラス粉末を金型により外径20mmのボタン状にプレスし、ボタン状ガラス粉末成形体を得た。次にこの成形体を温度70℃湿度95%の恒温高湿槽内に24時間保管した後、表に示す条件で焼成した。この時の流動状態を目視観察することにより評価した。併せて各試料について、同一の成形体を恒温恒湿糟に入れずに焼成し、これを通常の焼成品として比較対象とした。観察の結果、通常の焼成品と同等の流動状態を示す場合を◎、通常の焼成品と較べてボタン形状がいびつになり流動状態がやや劣ると判断されるが、発泡のないものを○、溶岩状の発泡を起こしたものを×とした。
【0075】
次にガラス粉末試料a〜g及びI〜IIIを、表3〜5に示す割合でフィラー粉末と混合し、複合材料試料とした。試料No.1〜11は本発明の実施例を、試料No.12〜14は比較例をそれぞれ示している。
【0076】
なお試料No.1〜3及び12〜14はVFDの封着用であり、2枚のソーダガラス板(熱膨張係数90×10-7/℃)を封着する材料である。試料No.4〜10はPDPの封着用であり、2枚の高歪点ガラス板(熱膨張係数85×10-7/℃)同士を封着する材料である。試料No.11はCRTの封着用であり、CRTパネル及びファンネル(熱膨張係数各100×10-7/℃)を封着する材料である。
【0077】
またフィラー粉末には、MgOを2重量%添加したNbZr(PO43セラミック粉末(NZP)、コージエライト、酸化ニオブ、二酸化錫を用いた。また試料No.11については、さらに結晶性微粉末としてジルコニアを添加した。
【0078】
このようにして用意した試料を各種の評価に供した。評価結果を表3〜5に示す。
【0079】
【表3】
Figure 0004092936
【0080】
【表4】
Figure 0004092936
【0081】
【表5】
Figure 0004092936
【0082】
表から明らかなように、本発明の実施例であるNo.1〜11の各試料は、30〜250℃における熱膨張係数が65.5〜76.1×10-7/℃であった。また表に示した焼成条件で21.5〜23.5mmの流動径を示し、良好な流動性を有していた。また、各試料とも耐候性及び再封着性に優れていた。
【0083】
これに対して比較例である試料No.12〜14は、耐候性や再封着性が劣っていた。
【0084】
なお流動径は次のようなフローボタンテストを行い評価した。まず複合材料の真比重に相当する重量の粉末を金型により外径20mmのボタン状にプレスし、ボタン状複合粉末成形体を得た。次にこの成形体をガラス基板の上に乗せた後、空気中、表の焼成温度まで10℃/分の速度で昇温して10分間保持した。その後、ボタンの直径を測定した。このフローボタン直径は封着材料に用いる場合には20mm以上が望ましい。なおガラス基板としては、VFD用材料にはソーダガラスを、PDP用材料には高歪点ガラスを、CRT用材料にはCRTパネルガラスをそれぞれを用いた。
【0085】
焼成体の耐候性については、フローボタンテスト後の試料について、温度70℃湿度95%の恒温高湿槽内に168時間保管した後の表面状態を目視観察することにより評価した。観察の結果、フローボタン表面に光沢が維持され、表面状態に何ら変化の無いものを◎、フローボタン表面の光沢はないが、染み出しがないものを○、表面に染み出し成分があるものを×とした。
【0086】
再封着性については、次のようにして評価した。まずボタン状複合粉末成形体を基板に載せ、表の焼成温度より30℃高い温度で、表に示す時間保持した。その後、もう一枚の基板を載せてクリップにより両者を固定し、再び表に示す条件で焼成し接着したかどうかを評価した。この結果、焼成により再流動してフローボタンが完全に潰れ、基板同士が接着したものを◎、フローボタンの一部が潰れ、僅かに接着したものを△、フローボタンの形状が変わらず、全く接着しなかったものを×とした。なおこの評価で接着したものは、脱バインダー時の熱処理において失透が生じないと判断できる。使用する基板は、各試料の被封着物と同材質のものを用いた。
【0087】
残留歪は、テスト後のフローボタンを5mm幅に切断し、ポラリメーター(歪計)によりガラス基板の引っ張り応力の大きさを測定したものである。なお複合材料と基板の強度的な観点から、基板側に引っ張り応力がかかっていることが理想とされる。
【0088】
また耐火性フィラー粉末として使用したNbZr(PO43セラミック粉末は、五酸化ニオブ、低α線ジルコニア、リン酸二水素アンモニウム、マグネシアを混合し、1450℃で16時間焼成した後、粉砕し、目開き45μmの篩を通過させ、平均粒径5μmの粉末としたものを使用した。
【0089】
コージエライト粉末は、次のようにして調製した。まず化学量論の組成(2MgO・2Al23・5SiO2 )を有するガラスを粉砕して、目開き105μmの篩を通過させた。次いでこのガラス粉末を1350℃で10時間加熱し、結晶化物を作製した。その後、この結晶化物を粉砕して、目開き45μmの篩を通過させ、コージエライト粉末を得た。
【0090】
酸化ニオブ粉末や酸化錫粉末は、原料粉末をそれぞれ1400℃で10時間加熱し、結晶化物を作製した。その後、この結晶化物を粉砕して、目開き45μmの篩を通過させ、それぞれ求める粉末を得た。
(実施例2)
表6〜9はCeO2及びGd23を含む本発明のガラス粉末試料(試料h〜w)を示している。
【0091】
【表6】
Figure 0004092936
【0092】
【表7】
Figure 0004092936
【0093】
【表8】
Figure 0004092936
【0094】
【表9】
Figure 0004092936
【0095】
各ガラス粉末は、実施例1と同様にして調製した。
【0096】
得られたガラス粉末試料について、実施例1と同様にして評価した結果、ガラス転移点が273〜323℃、熱膨張係数が102.1〜118.5×10-7/℃であり、何れの試料も良好な耐湿性を有していた。
【0097】
次にガラス粉末試料h〜wをフィラー粉末と混合し、複合材料試料(No.15〜30)を得た。なお試料No.15、16、20、21及び28はVFDの封着用として、試料No.17〜19、22〜23、25〜27、29及び30はPDPの封着用として、試料No.24はCRTの封着用としてそれぞれ作製した。
【0098】
このようにして用意した試料を実施例1と同様にして各種の評価に供した。評価結果を表10〜13に示す。
【0099】
【表10】
Figure 0004092936
【0100】
【表11】
Figure 0004092936
【0101】
【表12】
Figure 0004092936
【0102】
【表13】
Figure 0004092936
【0103】
表から明らかなように、No.15〜30の各試料は、30〜250℃における熱膨張係数が67.1〜76.0×10-7/℃であった。また表に示した焼成条件で22.5〜24.5mmの流動径を示し、良好な流動性を有していた。また、各試料とも耐候性及び再封着性に優れていた。
【0104】
【発明の効果】
以上説明したように、本発明のリン酸スズ系ガラスは、270〜380℃のガラス転移点を有し、500℃以下の熱処理で良好な流動性を示す。さらにリン酸塩ガラス特有の欠点もない。それゆえ従来品と同等の性能を有する無鉛系封着材料や絶縁被覆材料を作製することが可能である。またこれら用途以外にも、PDPの隔壁形成材料等、種々の用途に使用することが可能である。
【0105】
また本発明の複合材料は、低温封着が可能であり、蛍光表示管(VFD)、電界放射型ディスプレイ(FED)、プラズマディスプレイ(PDP)、陰極線管(CRT)といった表示管の封着材料として好適である。またFED、PDP等といった電気配線が形成された基板の絶縁被覆材料や、PDPの隔壁形成材料、ICパッケージやランプの封着材料等として使用することも可能である。さらに上記以外にも、種々の電子部品に使用されている鉛含有ガラスを含む材料の代替品として適用可能である。[0001]
[Industrial application fields]
The present invention uses lead-free glass that can be used for sealing display tubes such as a fluorescent display tube (VFD), a field emission display (FED), a plasma display (PDP), and a cathode ray tube (CRT), and the like. It relates to composite materials.
[0002]
[Prior art]
For sealing display tubes such as VFD, FED, PDP, and CRT, the sealing temperature is 430 to 500 ° C., and the thermal expansion coefficient is 60 to 100 × 10.-7A glass paste using a sealing material having a property of about / ° C. is used.
[0003]
For sealing the display tube, first, a glass paste is applied to a sealed portion of an object to be sealed, dried, and then heated for debinding. Then, the main baking is performed in a state of being in close contact with the other object to be sealed, and the sealing is completed. In addition, since display tubes such as PDP and CRT are subjected to a heat treatment for exhausting after sealing, it is necessary to select materials for these sealing materials that do not change in quality due to this processing and impair airtightness. There is.
[0004]
In order to obtain a stronger bond, it is necessary to heat the glass powder to a temperature sufficient to wet the adhesion surface of the object to be sealed, but the process temperature may need to be kept as low as possible. Materials that can be sealed even at temperatures are desired.
[0005]
For this reason, PbO-B that can be sealed at a low temperature is conventionally used for this type of sealing material.2OThreeA composite material composed of a glass-based glass powder and a refractory filler powder is mainly used.
[0006]
[Problems to be solved by the invention]
However, recently, from the viewpoint of environmental problems, it is required to remove lead from glass.
[0007]
As a glass not containing lead, tin phosphate glass has been proposed in JP-A-7-69672 and JP-A-9-227154. However, this glass is P2OFiveIs contained in a large amount as a main glass-forming oxide, so that the weather resistance of the powder fired body is deteriorated, or because of high hygroscopicity, the powder is altered during storage, and predetermined characteristics cannot be obtained. There is a drawback. In addition, since SnO is contained in a large amount, SnO becomes SnO during heating in the debinding process.2PbO-B which is easy to generate surface devitrification, and this makes it difficult to achieve sealing with the target material, which is likely to cause defects peculiar to phosphate glass.2OThreeThe properties of the glass have not yet been reached.
[0008]
In order to improve the hygroscopicity, In in the composition of tin phosphate glass2OThreeJapanese Patent Laid-Open No. 2000-219536 has proposed a glass to which is added. However, In2OThreeIs a precious metal and is very expensive, so even a small amount increases the price of the glass material, which is not realistic. Also in the above proposal, the problem of surface devitrification has not been solved yet.
[0009]
An object of the present invention is to provide a glass material having characteristics equivalent to those of conventional sealing materials, insulating coating materials, and the like, even without containing a lead component.
[0010]
[Means for Solving the Problems]
As a result of various experiments, the present inventor has found that the above object can be achieved by introducing a predetermined amount of lanthanoid oxide into the glass, and proposes the present invention.
[0011]
  That is, the tin phosphate glass of the present invention is SnO 30 to 70% in terms of mol%, P2OFive  20-45%, lanthanoid oxide 0.1-25%ZnO 0-20%, MgO 0-20%, Al 2 O Three 0-10%, SiO 2 0-15%, B 2 O Three 0-30%, R 2 O (R is Li, Na, K, Cs) 0-20%It has the composition of this.
[0012]
The composite material of the present invention is characterized by comprising the above tin phosphate glass powder and a refractory filler powder.
[0013]
[Action]
The reason why the composition range of the glass in the tin phosphate glass of the present invention is limited as described above will be described below.
[0014]
SnO is a component that lowers the melting point of glass. When SnO is less than 30%, the viscosity of the glass becomes high and the firing temperature becomes too high, and when it exceeds 70%, it does not vitrify. In addition, since it will become easy to devitrify at the time of baking when there are many SnO components, it is preferable that it is 60% or less. Moreover, if it is 40% or more, since it is excellent in fluidity | liquidity and high airtightness can be obtained, it is preferable.
[0015]
P2OFiveIs a glass-forming oxide. P2OFiveIs less than 20%, the stability of the glass is insufficient. In the range of 20 to 45%, sufficient stability is obtained for the glass, but when it exceeds 45%, the moisture resistance deteriorates. P2OFiveIf it is 25% or more, the glass becomes more stable, but if it exceeds 35%, the weather resistance of the fired product tends to be slightly deteriorated, so it is preferably 25 to 35%.
[0016]
Lanthanoid oxides are network-modified oxides and are essential components in the present invention. By including the lanthanoid oxide in the glass component in a total amount of 0.1% or more, the following effects 1) to 3) can be obtained.
[0017]
1) It is effective for reducing the hygroscopicity when the glass is crushed and stored in a powder state. If the amount of lanthanoid oxide is small, it absorbs moisture during storage, and the characteristics required during use may not be obtained.
[0018]
2) The weather resistance after baking (for example, main baking for sealing) can be improved. When the amount of lanthanoid oxide is small, when stored in a hot and humid state after firing, a powdery material is likely to float on the surface of the glass or ooze out around the fired body.
[0019]
3) Devitrification does not occur during firing (for example, heat treatment for debinding). Further, after firing, it is reheated under harsh conditions (for example, in the manufacturing process of PDP, a heat treatment with a relatively high temperature and a long heating time of 350 to 450 ° C. for 10 to 20 hours is performed for vacuum evacuation after sealing. The glass is not altered. If the amount of lanthanoid oxide is small, devitrification occurs during firing, and sealing as designed may not be possible. In addition, when subjected to severe reheating, devitrification occurs, and there is a possibility that the material deteriorates and cannot maintain airtightness. The cause of devitrification is that SnO of the glass component is SnO during firing.2It is because it changes into and precipitates.
[0020]
On the other hand, when the lanthanoid oxide exceeds 25%, the melt viscosity at the time of melting is increased, and the fluidity at the time of firing is inhibited. In consideration of the long-term storage stability of the powder, the improvement in weather resistance after firing, and the balance of fluidity, the total content of the lanthanoid oxide is 2 to 15%, particularly 4 to 15%. Is desirable.
[0021]
As lanthanoid oxides, La does not color the glass.2OThree, CeO2And Gd2OThreeIt is preferable to use 1 or more types selected from.
[0022]
La2OThreeIs a component having a large effect of improving moisture resistance and weather resistance. However, it is better not to use a large amount because it tends to increase the viscosity at the time of melting. La as a lanthanoid oxide2OThreeWhen used alone, its content is preferably 0.1 to 10%, particularly 1 to 5%, more preferably 3 to 5%.
[0023]
CeO2La2OThreeThe effect of improving the moisture resistance and weather resistance is small compared to La, but the tendency to increase the viscosity at the time of melting is La2OThreeSince it is smaller, it can be contained in a relatively large amount. Moreover, it is relatively inexpensive among lanthanoid materials. CeO2When used alone, the content is preferably 0.1 to 15%, particularly 5 to 10%, and more preferably 5 to 8%. In order to obtain a sufficient effect, it is desirable to contain 5% or more.
[0024]
Gd2OThreeLa2OThreeIt is effective in improving moisture resistance and weather resistance in the same manner as the above. Also, the tendency to increase the viscosity at the time of melting is La2OThreeSmall compared to However, in order to strengthen the devitrification tendency at the time of sealing after debinding, it is better not to use a large amount. Gd2OThreeWhen used alone, its content is preferably 0.1 to 10%, particularly 1 to 5%, more preferably 3 to 5%.
[0025]
As described above, when a lanthanoid oxide is used alone, there are great restrictions on the glass composition design, and it may be difficult to obtain a sufficient effect. On the other hand, when two or more lanthanoid oxides are used in combination, the degree of freedom in composition design is widened, and desired characteristics can be easily obtained.
[0026]
Below, La2OThree, CeO2And Gd2OThreeA suitable composition range when used in combination is shown.
[0027]
La2OThreeAnd CeO2When combining, the content of each component is La2OThree  0.1-10%, CeO2  0.1-15%, especially La2OThree  1-8%, CeO2  1-10% and even La2OThree  1-5%, CeO2  It is preferable that it is 3 to 10%.
[0028]
CeO2And Gd2OThreeIn combination, the content of each component is CeO2  0.1 to 15%, Gd2OThree  0.1-10%, especially CeO2  1-10%, Gd2OThree  1-8% and even CeO2  3-10%, Gd2OThree  It is preferable that it is 1 to 5%.
[0029]
La2OThreeAnd Gd2OThreeWhen combining, the content of each component is La2OThree  0.1 to 10%, Gd2OThree  0.1 to 10%, especially La2OThree  1-8%, Gd2OThree  1-8% and even La2OThree  1-5% Gd2OThree  It is preferably 1 to 5%.
[0030]
Moreover, when using these three types, the content of each component is La2OThree  0.1-5%, CeO2  0.1 to 10%, Gd2OThree  0.1-5%, especially La2OThree  0.5-5%, CeO2  1-10%, Gd2OThree  0.1-5% and even La2OThree  0.5-3%, CeO2  1-5%, Gd2OThree  It is preferable that it is 0.1 to 3%.
[0031]
In addition to lanthanoid oxides, other rare earths such as Y2OThreeIs more effective. The amount of rare earth added excluding the lanthanoid oxide is preferably 0 to 5%.
[0032]
  In addition to the above components, the tin phosphate glass of the present invention contains ZnO 0-20%, MgO 0-20%, Al2OThree  0-10%, SiO2  0-15%, B2OThree  0-30%, R2O (R is the sum of Li, Na, K and / or Cs) 0 to 20% of compositionTheThe reason for limiting to the above range will be described below.
[0033]
ZnO is an intermediate oxide. ZnO is not an essential component, but it is desirable to contain 4% or more because it has a great effect of stabilizing the glass. However, if ZnO exceeds 20%, devitrification tends to occur on the glass surface during firing. Further, when there is a heat treatment step for a long time (for example, 1 hour or more) after firing, devitrification is likely to occur, so it is necessary to consider so that the glass becomes more stable. In such a case, the ZnO content is desirably 5 to 15%.
[0034]
MgO is a network-modifying oxide and has the effect of stabilizing the glass. If MgO exceeds 20%, devitrification tends to occur on the glass surface during firing. The content of MgO is preferably 0 to 5%.
[0035]
Al2OThreeIs an intermediate oxide. Al2OThreeAlthough it is not an essential component, it has the effect of stabilizing the glass and also has the effect of lowering the thermal expansion coefficient, so it is desirable to contain it. However, if it exceeds 10%, the softening temperature rises and the fluidity during firing is hindered. In addition, when the stability of glass, a thermal expansion coefficient, fluidity | liquidity, etc. are considered, the range of 1-5% is more preferable.
[0036]
SiO2Is a glass-forming oxide. SiO2Is desirable to contain since it has an effect of suppressing devitrification in sealing after debinding. If it exceeds 15%, the softening temperature rises and the fluidity at the time of firing becomes extremely poor. When considering fluidity as a low melting point material, SiO2The content of is preferably 0 to 10%.
[0037]
B2OThreeIs a glass-forming oxide. B2OThreeHas the effect of reducing the scum generated when the glass separates during melting. It also has the effect of stabilizing the glass. However, if it exceeds 30%, the viscosity of the glass becomes too high, the fluidity at the time of firing becomes extremely poor, and the airtightness of the sealing part is impaired. B2OThreeThe preferred range is from 0 to 25%. B2OThreeSince glass has a strong tendency to increase the viscosity of glass, it is better not to contain it when extremely high fluidity is required and the softening point needs to be lowered significantly.
[0038]
R2O (R is Li, Na, K, Cs) is not an essential component, but R2When at least one of the O components is added to the composition, the adhesive force with the object to be sealed becomes strong. However, if the total amount exceeds 20%, devitrification tends to occur during firing. When considering surface devitrification and fluidity, R2The total amount of O is desirably 10% or less. Also R2Of the O component, Li2O is a component having the highest ability to improve the adhesive strength with the substrate.
[0039]
The glass of the present invention can further contain various components in addition to the above components. For example, WOThree, MoOThree, Nb2OFiveTiO2, ZrO2, CuO, MnO, R′O (R ′ is Mg, Ca, Sr, Ba) and the like can be contained in a total amount of 35% or less. The reason why the content of these stabilizing components is limited to 35% or less is that if it exceeds 35%, the glass becomes unstable and tends to devitrify during molding. In order to obtain a more stable glass, the content is preferably 25% or less. In order to improve weather resistance and moisture resistance2OThreeEtc. can also be contained.
[0040]
The content of the stabilizing component and the reason for limitation will be described below.
[0041]
WOThreeAnd MoOThreeIs preferably 0 to 20%, particularly preferably 0 to 10%. If each of these components exceeds 20%, the viscosity of the glass tends to increase.
[0042]
Nb2OFiveTiO2And ZrO2The content of each is preferably 0 to 15%, particularly preferably 0 to 10%. If each of these components exceeds 15%, the tendency to devitrify the glass tends to increase.
[0043]
The contents of CuO and MnO are both 0 to 10%, preferably 0 to 5% each. If each of these components exceeds 10%, the glass tends to become unstable.
[0044]
The total content of R′O is preferably 0 to 15%, particularly preferably 0 to 5%. If R'O exceeds 15%, the glass tends to be unstable.
[0045]
In2OThreeCan be used for the purpose of obtaining high weather resistance and moisture resistance when the cost is not taken into consideration. In2OThreeThe content of is preferably 0 to 5%.
[0046]
In the case of display tube applications such as VFD, FED, CRT, and PDP, halogens such as F and Cl may adversely affect electronic discharge and cause problems such as lowering display luminance. Therefore, when the glass of the present invention is used for display tube applications, it is desirable that no halogen be contained in the glass.
[0047]
The glass having the above composition has a glass transition point of 270 to 380 ° C. and exhibits good fluidity in a temperature range of about 400 to 600 ° C. 90-150 × 10 at 30-250 ° C.-7It has a thermal expansion coefficient of about / ° C.
[0048]
The tin phosphate glass of the present invention having such characteristics can be used alone as a sealing material for a material having a suitable thermal expansion coefficient.
[0049]
On the other hand, a material whose thermal expansion coefficient is not suitable, such as alumina (70 × 10-7/ ° C), high strain point glass (85 × 10-7/ ° C), soda plate glass (90 × 10-7/ ° C) or the like may be added to form a composite material by adding a refractory filler powder. The thermal expansion coefficient of the composite material is 10 to 30 × 10 with respect to the sealed object.-7It is important to design at a low temperature of about / ° C. This is to prevent the sealing material from being broken due to tensile stress applied to the sealing material after sealing. In the case of sealing of VFD, FED, PDP, CRT, the thermal expansion coefficient is 60 to 100 × 10-7Adjust to about / ° C. In addition to the adjustment of the thermal expansion coefficient, for example, a refractory filler powder can be added to improve the mechanical strength.
[0050]
In addition, when mixing a refractory filler powder, it is preferable that the mixing amount is 50-100 volume% of glass powder, and 0-50 volume% of filler powder. This is because when the filler powder is more than 50% by volume, the ratio of the glass powder becomes relatively low and it becomes difficult to obtain the required fluidity.
[0051]
Various materials can be used as the refractory filler powder, and examples thereof include cordierite, zircon, tin oxide, niobium oxide, zirconium phosphate, willemite, and mullite. NbZr (PO with 2% by weight of MgO added)Four) Since ceramic powder contains phosphoric acid in its components, it is well suited to the tin phosphate glass of the present invention.
[0052]
In the case of CRT sealing, it is desirable to crystallize the sealing material in order to improve the strength. In order to crystallize, a crystalline fine powder may be added separately from the refractory filler powder. This fine powder is typically zirconia, but is not particularly limited as long as it is a fine powder that promotes crystallization. The addition ratio of the crystalline fine powder is preferably 0.1 to 1.0 wt% with respect to the total powder weight.
[0053]
In order to produce the tin phosphate glass of the present invention and a composite material using the same, first, raw materials are prepared so as to have the above composition, and melted to be vitrified. Within the glass composition range of the present invention, there is no problem even if melting in air is performed, but SnO is SnO at the time of melting.2Care must be taken not to be oxidized. For this reason N2In the melt or N in the melt2It is preferable to melt in a non-oxidizing atmosphere such as bubbling. At the laboratory level, it is desirable to melt the crucible with a lid.
[0054]
Thereafter, the molten glass is formed, pulverized and classified.
[0055]
In this way, a tin phosphate glass powder can be obtained. Furthermore, if necessary, a refractory filler powder can be added and mixed to obtain a composite material.
[0056]
Next, the use example which used the composite material of this invention as a sealing material of display tubes, such as VFD, FED, PDP, and CRT is shown.
[0057]
First, a sealing material is applied to the sealing surface of an object to be sealed and dried. For application, the sealing material may be made into a paste and used with a dispenser.
[0058]
Next, if necessary, heating for debinding is performed, and then main firing is performed while contacting with the other object to be sealed. In the main baking, the objects to be sealed can be sealed together by baking under conditions sufficient for the glass to wet the adhesion surface of the objects to be sealed. A typical sealing temperature in VFD, FED, PDP, and CRT is 430 to 500 ° C. The holding time at the highest temperature for sealing is usually about 10 minutes for VFD, FED and PDP, and about 30 minutes for CRT.
[0059]
When the tin phosphate glass or composite material of the present invention is made into a paste, it may be kneaded with a vehicle using ethyl cellulose as a resin and terpineol as a solvent, a vehicle using nitrocellulose as a resin and isoamyl acetate as a solvent. It is preferable to use a vehicle using nitrocellulose as a resin and isoamyl acetate as a solvent because of less devitrification after firing.
[0060]
Higher alcohols can also be used in place of terpineol or isoamyl acetate. A typical higher alcohol is CnH2n + 1It is possible to use isoicosyl alcohol from isohexyl alcohol represented by OH (n = 8 to 20), but considering viscosity, the one having a molecular weight equal to or higher than isodecyl alcohol (n = 10) It is easy to achieve an appropriate viscosity when mixed with powder. In view of ease of incineration during firing, those having a molecular weight of isohexadecyl alcohol (n = 16) or less are preferable. Therefore, when a higher alcohol is used, isododecyl alcohol or isotridecyl alcohol is preferred. In particular, isotridecyl alcohol is optimal from the total balance.
[0061]
Although tin phosphate glass and composite materials using the same have been described as sealing materials for display tubes, the present invention is not limited to this. For example, sealing used for sealing IC packages and lamps. It can be applied to various applications such as a coating material, an insulating coating material used for PDP, FED, and the like, and a PDP partition wall forming material.
[0062]
Below, the usage example as insulation coating materials, such as VFD and PDP, is shown.
[0063]
First, an insulating coating material is prepared by adding a refractory filler powder to glass as necessary so that the thermal expansion coefficient is suitable for the substrate to be coated. VFD uses soda glass (about 90 × 10-7/ ° C) is a high strain point glass (about 85 × 10-7/ ° C.) is mainly used, so that the thermal expansion coefficient is 60 to 80 × 10-7The temperature may be adjusted to about / ° C.
[0064]
Next, an insulating coating material is applied to the surface of the substrate on which electrical wiring or the like has been applied by screen printing. For application, the material may be used in the form of a paste, similar to the sealing material.
[0065]
Then, it can coat | cover by baking on conditions sufficient for glass to wet the surface of a to-be-sealed thing. The heat treatment condition of the insulating coating material is generally processed at a temperature higher than that of the sealing material, and is about 500 ° C. to 580 ° C.
[0066]
【Example】
Hereinafter, the present invention will be described in detail based on examples.
Example 1
Tables 1 and 2 show that La as a lanthanoid oxide2OThreeThe glass powder samples (samples a to g) of the present invention using the glass and the glass powders (samples I to III) of the comparative examples are shown.
[0067]
[Table 1]
Figure 0004092936
[0068]
[Table 2]
Figure 0004092936
[0069]
Each glass powder was prepared as follows. First, raw materials were prepared so as to have the composition shown in the table, and melted in air at 800 to 900 ° C. for 1 to 2 hours.
[0070]
During melting, the melting crucible was covered with a lid so that tin monoxide was not easily oxidized. Further, stannous pyrophosphate and zinc metaphosphate were used as the phosphorus raw material used, and normal phosphoric acid (orthophosphoric acid) as a liquid raw material was not used, and all solid raw materials were used. This is due to the following reason. That is, if the liquid raw material is directly melted, there is a problem of spilling, and in order to avoid this, it must be dried once. On the other hand, if it is a solid raw material, there exists an advantage that it is not necessary to change the conventional manufacturing process.
[0071]
Next, the molten glass was passed between water-cooled rollers, formed into a thin plate shape, pulverized by a ball mill, and then passed through a sieve having an opening of 105 μm to obtain a tin phosphate glass powder having an average particle size of about 10 μm.
[0072]
About the obtained glass powder sample, the glass transition point, the thermal expansion coefficient, and moisture resistance were evaluated. As a result, the glass transition point was 271 to 333 ° C., and the thermal expansion coefficient was 110.1 to 120.7 × 10 6.-7/ ° C. Moreover, the samples ag which are an Example had favorable moisture resistance. In contrast, samples I to III, which are comparative examples, were inferior in moisture resistance.
[0073]
The glass transition point was determined by differential thermal analysis (DTA), and the thermal expansion coefficient was determined by a push rod type thermal expansion measuring device.
[0074]
The moisture resistance was evaluated as follows. First, a glass powder having a weight corresponding to the true specific gravity of the glass was pressed into a button shape having an outer diameter of 20 mm using a mold to obtain a button-shaped glass powder compact. Next, this compact was stored in a constant temperature and high humidity tank at 70 ° C. and 95% humidity for 24 hours, and then fired under the conditions shown in the table. The flow state at this time was evaluated by visual observation. In addition, for each sample, the same molded body was fired without being placed in a constant temperature and humidity chamber, and this was used as a comparison object as a normal fired product. As a result of observation, ◎ indicates a fluid state equivalent to that of a normal baked product, and the button shape is distorted and the fluid state is slightly inferior to that of a normal baked product. The thing which caused the lava-like foaming was set as x.
[0075]
Next, the glass powder samples a to g and I to III were mixed with the filler powder in the ratios shown in Tables 3 to 5 to obtain composite material samples. Sample No. 1 to 11 are examples of the present invention, sample No. Reference numerals 12 to 14 respectively show comparative examples.
[0076]
Sample No. 1 to 3 and 12 to 14 are VFD sealings, two soda glass plates (coefficient of thermal expansion 90 × 10-7/ ° C.). Sample No. 4 to 10 are PDP sealings, and two high strain point glass plates (coefficient of thermal expansion 85 × 10-7/ ° C) is a material for sealing together. Sample No. 11 is sealing of CRT, CRT panel and funnel (coefficient of thermal expansion each 100 × 10-7/ ° C.).
[0077]
Also, the filler powder contains NbZr (PO with 2% by weight of MgO added.Four)ThreeCeramic powder (NZP), cordierite, niobium oxide, and tin dioxide were used. Sample No. For No. 11, zirconia was further added as a crystalline fine powder.
[0078]
The sample thus prepared was subjected to various evaluations. The evaluation results are shown in Tables 3-5.
[0079]
[Table 3]
Figure 0004092936
[0080]
[Table 4]
Figure 0004092936
[0081]
[Table 5]
Figure 0004092936
[0082]
As is apparent from the table, No. 1 which is an example of the present invention. Each of the samples 1 to 11 has a thermal expansion coefficient of 65.5 to 76.1 × 10 at 30 to 250 ° C.-7/ ° C. Moreover, the flow diameter of 21.5-23.5 mm was shown on the baking conditions shown in the table | surface, and it had favorable fluidity | liquidity. Moreover, each sample was excellent in weather resistance and resealability.
[0083]
In contrast, Sample No. as a comparative example. 12-14 was inferior in weather resistance and resealability.
[0084]
The flow diameter was evaluated by the following flow button test. First, a powder having a weight corresponding to the true specific gravity of the composite material was pressed into a button shape having an outer diameter of 20 mm using a mold to obtain a button-shaped composite powder molded body. Next, after placing this compact on a glass substrate, the temperature was raised at a rate of 10 ° C./min to the firing temperature shown in the table in the air and held for 10 minutes. The button diameter was then measured. The flow button diameter is desirably 20 mm or more when used as a sealing material. As the glass substrate, soda glass was used for the VFD material, high strain point glass was used for the PDP material, and CRT panel glass was used for the CRT material.
[0085]
The weather resistance of the fired body was evaluated by visually observing the surface state of the sample after the flow button test after being stored in a constant temperature and high humidity bath at a temperature of 70 ° C. and a humidity of 95% for 168 hours. As a result of observation, the flow button surface has a glossy surface and no change in the surface state. X.
[0086]
The resealability was evaluated as follows. First, the button-shaped composite powder compact was placed on a substrate and held at a temperature 30 ° C. higher than the firing temperature shown in the table for the time shown in the table. Thereafter, another substrate was placed, both were fixed with a clip, and it was evaluated whether or not it was fired and bonded again under the conditions shown in the table. As a result, the flow button reflowed by firing and the flow buttons were completely crushed, and the substrates were bonded to each other. What did not adhere | attached was set as x. In addition, it can be judged that what adhered by this evaluation does not produce devitrification in the heat processing at the time of binder removal. The board | substrate used used the thing of the same material as the to-be-sealed thing of each sample.
[0087]
The residual strain is obtained by cutting the flow button after the test into a width of 5 mm and measuring the tensile stress of the glass substrate with a polarimeter. From the viewpoint of the strength of the composite material and the substrate, it is ideal that a tensile stress is applied to the substrate side.
[0088]
NbZr (PO used as refractory filler powder)Four)ThreeThe ceramic powder was mixed with niobium pentoxide, low α-ray zirconia, ammonium dihydrogen phosphate, and magnesia, fired at 1450 ° C. for 16 hours, pulverized, passed through a sieve with an opening of 45 μm, and an average particle size of 5 μm. The powder was used.
[0089]
Cordierite powder was prepared as follows. First, the stoichiometric composition (2MgO · 2Al2OThree・ 5SiO2 ) Was crushed and passed through a sieve having an opening of 105 μm. Next, this glass powder was heated at 1350 ° C. for 10 hours to produce a crystallized product. Thereafter, the crystallized product was pulverized and passed through a sieve having an opening of 45 μm to obtain cordierite powder.
[0090]
The niobium oxide powder and the tin oxide powder were each prepared by heating the raw material powder at 1400 ° C. for 10 hours. Thereafter, the crystallized product was pulverized and passed through a sieve having an opening of 45 μm to obtain each desired powder.
(Example 2)
Tables 6-9 are CeO2And Gd2OThreeThe glass powder sample (sample hw) of this invention containing is shown.
[0091]
[Table 6]
Figure 0004092936
[0092]
[Table 7]
Figure 0004092936
[0093]
[Table 8]
Figure 0004092936
[0094]
[Table 9]
Figure 0004092936
[0095]
Each glass powder was prepared in the same manner as in Example 1.
[0096]
As a result of evaluating the obtained glass powder sample in the same manner as in Example 1, the glass transition point was 273 to 323 ° C., and the thermal expansion coefficient was 102.1 to 118.5 × 10 6.-7Each sample had good moisture resistance.
[0097]
Next, glass powder samples h to w were mixed with filler powder to obtain composite material samples (No. 15 to 30). Sample No. Nos. 15, 16, 20, 21, and 28 are sample Nos. 17-19, 22-23, 25-27, 29 and 30 are sample Nos. 24 was prepared for sealing each CRT.
[0098]
The sample thus prepared was subjected to various evaluations in the same manner as in Example 1. The evaluation results are shown in Tables 10-13.
[0099]
[Table 10]
Figure 0004092936
[0100]
[Table 11]
Figure 0004092936
[0101]
[Table 12]
Figure 0004092936
[0102]
[Table 13]
Figure 0004092936
[0103]
As can be seen from the table, no. Each sample of 15 to 30 has a thermal expansion coefficient of 67.1 to 76.0 × 10 at 30 to 250 ° C.-7/ ° C. Moreover, the flow diameter of 22.5-24.5 mm was shown on the baking conditions shown in the table | surface, and it had favorable fluidity | liquidity. Moreover, each sample was excellent in weather resistance and resealability.
[0104]
【The invention's effect】
As described above, the tin phosphate glass of the present invention has a glass transition point of 270 to 380 ° C., and exhibits good fluidity in a heat treatment of 500 ° C. or less. Furthermore, there are no disadvantages specific to phosphate glass. Therefore, it is possible to produce a lead-free sealing material or an insulating coating material having performance equivalent to that of a conventional product. In addition to these applications, it can be used for various applications such as a PDP partition wall forming material.
[0105]
The composite material of the present invention can be sealed at a low temperature, and is used as a sealing material for display tubes such as a fluorescent display tube (VFD), a field emission display (FED), a plasma display (PDP), and a cathode ray tube (CRT). Is preferred. Further, it can also be used as an insulating coating material for a substrate on which an electrical wiring such as FED or PDP is formed, a PDP partition wall forming material, an IC package or a lamp sealing material. In addition to the above, the present invention can be applied as a substitute for a material containing lead-containing glass used in various electronic components.

Claims (13)

モル%表示でSnO 30〜70%、P25 20〜45%、ランタノイド酸化物 0.1〜25%、ZnO 0〜20%、MgO 0〜20%、Al 2 3 0〜10%、SiO 2 0〜15%、B 2 3 0〜30%、R 2 O(RはLi、Na、K、Cs) 0〜20%の組成を有することを特徴とするリン酸スズ系ガラス。SnO 30-70%, P 2 O 5 20-45%, lanthanoid oxide 0.1-25% , ZnO 0-20%, MgO 0-20%, Al 2 O 3 0-10% in mol% SiO 2 0~15%, B 2 O 3 0~30%, R 2 O (R is Li, Na, K, Cs) 0~20% of tin phosphate glass, characterized in that it comprises a composition. ランタノイド酸化物が、La23、CeO2及びGd23から選ばれることを特徴とする請求項1のリン酸スズ系ガラス。The tin phosphate glass according to claim 1, wherein the lanthanoid oxide is selected from La 2 O 3 , CeO 2 and Gd 2 O 3 . モル%表示でSnO 30〜70%、P25 20〜45%、La23 0.1〜10%の組成を有することを特徴とする請求項1又は2のリン酸スズ系ガラス。 3. The tin phosphate glass according to claim 1, which has a composition of 30 to 70% SnO, 20 to 45% P 2 O 5 and 0.1 to 10% La 2 O 3 in terms of mol%. モル%表示でSnO 30〜70%、P25 20〜45%、CeO2 0.1〜15%の組成を有することを特徴とする請求項1又は2のリン酸スズ系ガラス。3. The tin phosphate glass according to claim 1, which has a composition of 30 to 70% SnO, 20 to 45% P 2 O 5 and 0.1 to 15% CeO 2 in terms of mol%. モル%表示でSnO 30〜70%、P25 20〜45%、Gd23 0.1〜10%の組成を有することを特徴とする請求項1又は2のリン酸スズ系ガラス。SnO 30 to 70% by mol%, P 2 O 5 20~45%, Gd 2 O 3 0.1~10% of claim 1 or 2 of tin phosphate glass and having a composition. ランタノイド酸化物として、2種以上の成分を使用することを特徴とする請求項1又は2のリン酸スズ系ガラス。  The tin phosphate glass according to claim 1 or 2, wherein two or more components are used as the lanthanoid oxide. モル%表示でSnO 30〜70%、P25 20〜45%、La23 0.1〜10%、CeO2 0.1〜15%の組成を有することを特徴とする請求項1、2又は6のリン酸スズ系ガラス。SnO 30 to 70% by mol%, P 2 O 5 20~45%, La 2 O 3 0.1~10%, claim 1, characterized in that it comprises a composition of CeO 2 0.1 to 15% 2 or 6 tin phosphate glass. モル%表示でSnO 30〜70%、P25 20〜45%、CeO2 0.1〜15%、Gd23 0.1〜10%の組成を有することを特徴とする請求項1、2又は6のリン酸スズ系ガラス。SnO 30 to 70% by mol%, claim 1, wherein P 2 O 5 20~45%, CeO 2 0.1~15%, to have a composition of Gd 2 O 3 0.1 to 10% 2 or 6 tin phosphate glass. モル%表示でSnO 30〜70%、P25 20〜45%、La23 0.1〜10%、Gd23 0.1〜10%の組成を有することを特徴とする請求項1、2又は6のリン酸スズ系ガラス。SnO 30 to 70% by mol%, P 2 O 5 20~45%, La 2 O 3 0.1~10%, claims and having a composition of Gd 2 O 3 0.1 to 10% Item 1, 2 or 6 tin phosphate glass. モル%表示でSnO 30〜70%、P25 20〜45%、La23 0.1〜5%、CeO2 0.1〜10%、Gd23 0.1〜5%の組成を有することを特徴とする請求項1、2又はのリン酸スズ系ガラス。SnO 30 to 70% by mol%, P 2 O 5 20~45%, La 2 O 3 0.1~5%, CeO 2 0.1~10%, Gd 2 O 3 0.1~5% of The tin phosphate glass according to claim 1, 2 or 6 , wherein the tin phosphate glass has a composition. 請求項1〜1のいずれか1項に記載のリン酸スズ系ガラス粉末と耐火性フィラー粉末からなることを特徴とする複合材料。A composite material comprising the tin phosphate glass powder according to any one of claims 1 to 10 and a refractory filler powder. リン酸スズ系ガラス粉末50〜100体積%と耐火性フィラー粉末0〜50体積%からなることを特徴とする請求項1の複合材料。The composite material of claim 1 1, characterized in that it consists of 50 to 100 vol% tin phosphate glass powder and the refractory filler powder 0-50% by volume. 請求項1又は1に記載の複合材料からなることを特徴とする封着材料。Sealing material characterized by comprising a composite material according to claim 1 1 or 1 2.
JP2002105216A 2001-12-25 2002-04-08 Tin phosphate glass and composite materials Expired - Fee Related JP4092936B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002105216A JP4092936B2 (en) 2001-12-25 2002-04-08 Tin phosphate glass and composite materials
KR1020020083190A KR100911068B1 (en) 2001-12-25 2002-12-24 Lead-free tin phosphate-based glass sealable at low temperature and composite material using the same
CNB021584710A CN1258489C (en) 2001-12-25 2002-12-25 Low temp. sealing lead-containingless tin phosphate series glass and composite material using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001390989 2001-12-25
JP2001-390989 2001-12-25
JP2002105216A JP4092936B2 (en) 2001-12-25 2002-04-08 Tin phosphate glass and composite materials

Publications (2)

Publication Number Publication Date
JP2003252648A JP2003252648A (en) 2003-09-10
JP4092936B2 true JP4092936B2 (en) 2008-05-28

Family

ID=26625234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002105216A Expired - Fee Related JP4092936B2 (en) 2001-12-25 2002-04-08 Tin phosphate glass and composite materials

Country Status (3)

Country Link
JP (1) JP4092936B2 (en)
KR (1) KR100911068B1 (en)
CN (1) CN1258489C (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4556624B2 (en) * 2004-11-12 2010-10-06 日本電気硝子株式会社 Sealing powder and sealing paste
JPWO2006064733A1 (en) * 2004-12-16 2008-06-12 松下電器産業株式会社 Plasma display panel, manufacturing method thereof and sealing member
JP4978886B2 (en) * 2006-06-14 2012-07-18 日本電気硝子株式会社 Phosphor composite material and phosphor composite member
CN1915877B (en) * 2006-09-11 2010-04-14 中国建筑材料科学研究总院 Rare earth elements doped sealing by fusing glass powder without lead, and manufacturing method
CN101585660B (en) * 2009-06-23 2012-03-07 珠海彩珠实业有限公司 Preparation of lead-silicon-aluminum glass powder for passivation encapsulation of semiconductor
CN101712531B (en) * 2009-12-16 2011-09-28 贵阳华利美化工有限责任公司 Lead-free glass powder for electronic component connection and preparation method thereof
CN103723924B (en) * 2013-11-20 2018-11-02 江苏凯尚绿色建筑管理有限公司 A kind of edging material for making vacuum glass for negative pressure kettle legal system
CN107057420A (en) * 2016-12-29 2017-08-18 广州凯耀资产管理有限公司 Inorganic slim expansion fire-resistant coating for steel structure and preparation method thereof
CN109052965B (en) * 2018-09-07 2021-12-24 苏州融睿电子科技有限公司 Combination, mixture, sealing glass and manufacturing method thereof
CN111268911B (en) * 2020-02-21 2022-06-07 Oppo广东移动通信有限公司 Welding composition, shell assembly, preparation method and electronic equipment
JP2022131300A (en) * 2021-02-26 2022-09-07 日本碍子株式会社 Cylindrical member for exhaust gas treatment device, exhaust gas treatment device using cylindrical member, and insulation layer used in cylindrical member
JP2022131299A (en) * 2021-02-26 2022-09-07 日本碍子株式会社 Cylindrical member for exhaust gas treatment device, exhaust gas treatment device using cylindrical member, and insulation layer used in cylindrical member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996172A (en) * 1989-06-29 1991-02-26 Corning Incorporated Rare earth-containing zinc phosphate glasses
JP4061762B2 (en) * 1999-01-27 2008-03-19 旭硝子株式会社 Low hygroscopic glass frit, glass ceramic composition and fired body
JP4061792B2 (en) * 1999-11-05 2008-03-19 旭硝子株式会社 Lead-free low melting glass and glass frit

Also Published As

Publication number Publication date
CN1258489C (en) 2006-06-07
CN1428304A (en) 2003-07-09
KR100911068B1 (en) 2009-08-06
JP2003252648A (en) 2003-09-10
KR20030057344A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
JP3845853B2 (en) Tin borophosphate glass and sealing material
JP5041323B2 (en) Powder material and paste material
JP3951514B2 (en) Silica tin phosphate glass and sealing material
KR101242636B1 (en) Vanadium-phosphate glass
EP0630867B1 (en) Non-lead sealing glasses
JP4411648B2 (en) Tin phosphate glass and composite materials
JP4061762B2 (en) Low hygroscopic glass frit, glass ceramic composition and fired body
JP5354444B2 (en) Sealing material
JP4061792B2 (en) Lead-free low melting glass and glass frit
JP4092936B2 (en) Tin phosphate glass and composite materials
JP6617541B2 (en) Lead-free glass and sealing materials
JP4556624B2 (en) Sealing powder and sealing paste
JP4013012B2 (en) Tin borophosphate glass and sealing material
JP2005132650A (en) Composite material for sealing
WO2008015834A1 (en) Dielectric material for plasma display panel
JP2001199740A (en) Lead-free glass and composition for sealing
US6734615B2 (en) Color cathode ray tube and glass frit for color cathode ray tubes
JP2001180972A (en) Lead free glass with low melting point
US6163106A (en) Color cathode ray tube and water resistant glass frit
JP5152686B2 (en) Support frame forming material
JP2000264676A (en) Low melting point glass
JP5026121B2 (en) Antimony phosphate glass composition
JP4406918B2 (en) Composite material for sealing
JP3948165B2 (en) Sealing material
JPH0781975A (en) Glass material for sealing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees