JP2006339370A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2006339370A
JP2006339370A JP2005161673A JP2005161673A JP2006339370A JP 2006339370 A JP2006339370 A JP 2006339370A JP 2005161673 A JP2005161673 A JP 2005161673A JP 2005161673 A JP2005161673 A JP 2005161673A JP 2006339370 A JP2006339370 A JP 2006339370A
Authority
JP
Japan
Prior art keywords
silicon oxynitride
film
oxynitride film
gate insulating
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005161673A
Other languages
English (en)
Inventor
Shinji Mori
伸 二 森
Kazuro Saki
喜 和 朗 佐
Ichiro Mizushima
島 一 郎 水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005161673A priority Critical patent/JP2006339370A/ja
Publication of JP2006339370A publication Critical patent/JP2006339370A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】 窒素濃度が高く、尚且つ、膜厚の薄いシリコン酸窒化膜をゲート絶縁膜として形成することができる半導体装置の製造方法を提供する。
【解決手段】 半導体装置の製造方法は、半導体基板10上にシリコン酸化膜20を形成し、プラズマ窒化法を用いてシリコン酸化膜に窒素を導入することによって第1のシリコン酸窒化膜30を形成し、プラズマ窒化法を用いて第1のシリコン酸窒化膜に窒素を導入することによって第2のシリコン酸窒化膜40を形成する。
【選択図】 図4

Description

本発明は、半導体装置の製造方法に関する。
近年、素子の微細化やトランジスタの特性の向上のためにゲート絶縁膜の薄膜化が進んでいる。ゲート絶縁膜の薄膜化に伴い、ゲート絶縁膜のリーク電流が増加する。リーク電流を抑制するために、高誘電体材料をゲート絶縁膜として使用することが考えられている。その高誘電体材料の1つとしてシリコン酸窒化膜がある。
シリコン酸窒化膜の従来の製造方法は、次の通りである。まず、熱酸化プロセス等でシリコン基板上にシリコン酸化膜を形成する。次に、プラズマにより窒素を励起させてNイオンやNラジカルを発生させ、NイオンやNラジカルによってシリコン酸化膜を窒化する。これはプラズマ窒化法と呼ばれている。このプラズマ窒化法によって、シリコン酸化膜に窒素が導入され、シリコン酸窒化膜が形成される。
しかし、窒素がゲート絶縁膜とシリコン基板との界面にまで達すると、トランジスタの閾値電圧がシフトする。これにより、トランジスタの駆動力の劣化および素子の信頼性(例えば、NBTI(Negative Bias Temperature Instability)特性)の劣化を引き起こす。
プラズマ窒化法を用いて、ゲート絶縁膜とシリコン基板との界面には窒素を導入せず、ゲート絶縁膜の表面およびゲート絶縁膜のバルク中に窒素を高濃度に導入することができる。しかし、プラズマ窒化法は、シリコン酸化膜中の酸素を窒素に置換することにより窒素をシリコン酸化膜に導入する。したがって、プラズマ窒化法を用いて薄いシリコン酸化膜中に窒素を高濃度に導入すると、窒化により置換された酸素がシリコン酸化膜とシリコン基板との界面方向に向って拡散する。それにより、シリコン酸化膜とシリコン基板との界面において酸化反応が起こるので、ゲート絶縁膜の物理膜厚が増大するという問題が生じる。
この問題は、シリコン酸化膜の膜厚が薄くなるほど顕著となる。即ち、シリコン酸窒化膜中の窒素濃度の増大化とシリコン酸窒化膜の薄膜化との両立は困難であった。
特開2004−23008号公報
窒素濃度が高く、尚且つ、膜厚の薄いシリコン酸窒化膜をゲート絶縁膜として形成することができる半導体装置の製造方法を提供する。
本発明に係る実施形態に従った半導体装置の製造方法は、半導体基板上にゲート絶縁膜に用いられるシリコン酸化膜を形成し、プラズマ窒化法を用いて前記シリコン酸化膜に窒素を導入することにより第1のシリコン酸窒化膜を形成し、プラズマ窒化法を用いて前記第1のシリコン酸窒化膜にさらに窒素を導入することにより第2のシリコン酸窒化膜を形成することを特徴とする。
本発明による半導体装置の製造方法は、窒素濃度が高く、尚且つ、膜厚の薄いシリコン酸窒化膜をゲート絶縁膜として形成することができる。
以下、図面を参照して本発明に係る実施形態を説明する。本実施形態は、本発明を限定するものではない。
シリコン酸化膜に窒素を導入してシリコン酸窒化膜を形成する方法には、NOガスやNHガスを用いた熱窒化法と、プラズマによりNラジカルおよびNイオンを発生させることにより窒化を行うプラズマ窒化法がある。プラズマ窒化法の利点は、ゲート絶縁膜の特性を劣化させるシリコン酸化膜とシリコン基板との界面の窒素濃度を低減させつつ、シリコン酸化膜の表面およびバルクに高濃度の窒素を導入することができることである。これにより、NBTI特性等の信頼性の低下を抑制することができる。
本実施形態では、プロセス条件の異なる複数のプラズマ窒化プロセスを用いてシリコン酸化膜の一部に窒素を導入し、シリコン酸窒化膜を形成する。
(第1の実施形態)
図1から図3は、本発明に係る第1の実施形態に従った半導体装置の製造方法の流れを示す断面図である。図1に示すように、まず、半導体基板としてシリコン基板10を準備する。次に、シリコン基板10の表面を酸化し、ゲート絶縁膜としてシリコン酸化膜20を形成する。この酸化は、酸素雰囲気中および/またはHO雰囲気中で実行される熱酸化法でよい。シリコン酸化膜20の膜厚は、例えば、1.0nmである。
次に、図2に示すように、プラズマ窒化法を用いて比較的低濃度の窒素をシリコン酸化膜20へ導入する。これを第1のプラズマ窒化プロセスとする。第1のプラズマ窒化プロセスは、連続波形のプラズマを用いる。このとき第1のプラズマ窒化プロセスの条件は、電力:780W、プロセス圧力:50mTorr、Ar流量:1000sccm、N流量:50sccm、処理時間:3secであった。連続波形のプラズマ窒化法は、比較的深くかつ低濃度に窒素を導入することができる。これにより、第1のシリコン酸窒化膜30が形成される。第1のシリコン酸窒化膜30の窒素濃度は、15%であり、その深さは、約0.8nmである。
次に、図3に示すように、プラズマ窒化法を用いて比較的高濃度の窒素を第1のシリコン酸窒化膜30へ導入する。これを第2のプラズマ窒化プロセスとする。第2のプラズマ窒化プロセスは、非連続波形のプラズマを用いる。このとき第2のプラズマ窒化プロセスの条件は、平均電力:780W、プロセス圧力:50mTorr、Ar流量:1000sccm、N流量:50sccm、周波数:50kHz、Duty:50%、処理時間:10secであった。パルス波形のプラズマ窒化法は、比較的浅くかつ高濃度に窒素を導入することができる。これにより、第2のシリコン酸窒化膜が形成される。第2のシリコン酸窒化膜40の窒素濃度は、30%であり、その深さは、約0.5nmである。このように、シリコン酸化膜20、第1のシリコン酸窒化膜30および第2のシリコン酸窒化膜40から成るゲート絶縁膜50がシリコン基板10上に形成される。
その後、第1および第2のプラズマ窒化プロセスにより生じたゲート絶縁膜50中のダメージ(結晶欠陥等)を回復させるために減圧酸素アニールを行う。この熱処理は、例えば、RTA(Rapid Thermal Anneal)を用いて、大気圧よりも減圧された酸素雰囲気中において行う。RTAは、例えば、処理温度:1000℃、全圧:100Torr(酸素分圧:50Torr)、酸素流量:1slm、窒素流量:1slm、アニール時間:50secの条件で行った。その後、従来と同様の形成工程を経て、半導体装置が完成する。
図4は、第2のシリコン酸窒化膜40形成後のゲート絶縁膜50内の窒素濃度プロファイルを示すグラフである。縦軸が窒素濃度を示し、横軸がゲート絶縁膜表面からの深さを示す。このグラフから分かるように、第2のシリコン酸窒化膜40は、第1のシリコン酸窒化膜30に比べてゲート絶縁膜表面からの深さが浅く、かつ、窒素濃度が高い。また、第2のシリコン酸窒化膜40の窒素濃度プロファイルの勾配は、第1のシリコン酸窒化膜30のそれよりも急峻である。
本実施形態によれば、窒素濃度が低くかつ比較的深い第1のシリコン酸窒化膜30を形成し、その後、窒素濃度が高くかつ比較的浅い第2のシリコン酸窒化膜40を形成している。第2のシリコン酸窒化膜40が形成されるときには、図5に示すように、NラジカルまたはNイオンが第1のシリコン酸窒化膜30内へ導入される。このとき、窒素との置換によって発生した酸素は、空中や第1のシリコン酸窒化膜30の内部へ拡散される。しかし、シリコン酸化膜20とシリコン基板10との界面方向へ向かう酸素は、第1のシリコン酸窒化膜30によってその拡散が抑制される。その結果、シリコン酸化膜20とシリコン基板10との界面におけるシリコンの酸化反応を抑制することができるので、シリコン酸化膜20の物理膜厚の増加を抑制することができる。
図6は、ゲート絶縁膜50の窒素濃度とゲート絶縁膜50の物理膜厚との関係を示すグラフである。従来のように、一回のプラズマ窒化法で高濃度の窒素をシリコン酸化膜へ導入すると、シリコン酸化膜とシリコン基板との界面へ酸素が拡散することによってゲート絶縁膜の物理膜厚が厚くなってしまう。一方、本実施形態によれば、第1のシリコン酸窒化膜30によりシリコン酸化膜とシリコン基板との界面への酸素の拡散が抑制されるので、ゲート絶縁膜50の物理膜厚が薄く維持されている。
また、ゲート絶縁膜の物理膜厚が等しい場合、本実施形態のゲート絶縁膜50には、従来のゲート絶縁膜よりも高濃度の窒素が導入され得る。例えば、ゲート絶縁膜が1.2nmとすると、従来のゲート絶縁膜には窒素が1.2×1015cm−2程しか含まれ得ないが、本実施形態のゲート絶縁膜50には1.8×1015cm−2程含まれ得る。
このように、本実施形態によれば、窒素濃度が高く、尚且つ、膜厚の薄いシリコン酸窒化膜をゲート絶縁膜として形成することができる。
第1の実施形態において、第1のプラズマ窒化プロセスおよび第2のプラズマ窒化プロセスは、互いに条件が異なるものの、同じプラズマ窒化法を用いている。よって、第1および第2のプラズマ窒化プロセスは、同一のプラズマ窒化装置で実行してもよい。それにより、本実施形態による半導体装置の製造サイクルが短縮化され、コスト低下に繋がる。
(第2の実施形態)
第2の実施形態は、第1のプラズマ窒化プロセスと第2のプラズマ窒化プロセスとの間に熱処理を行なっている点で第1の実施形態と異なる。第2の実施形態による半導体装置の製造方法における素子断面図は、図1から図3に示したものと変わらないので、その図示を省略する。
第1のプラズマ窒化プロセスまでは、第1の実施形態と同様である。次に、第1のプラズマ窒化プロセスにより生じたゲート絶縁膜50中のダメージ(結晶欠陥等)を回復させるために第1の減圧酸素アニールプロセスを行う。この熱処理は、例えば、RTAを用いて、大気圧よりも減圧された酸素雰囲気中において行なう。ここでのRTAは、例えば、処理温度(第1の温度):1000℃、全圧:100Torr(酸素分圧:50Torr)、酸素流量:1slm、窒素流量:1slm、アニール時間:50secの条件で行った。
次に、第2のプラズマ窒化プロセスを実行する。このとき、第1の減圧酸素アニールプロセスによって、第1のプラズマ窒化プロセスにより生じたゲート絶縁膜50中のダメージは回復している。よって、シリコン酸化膜とシリコン基板との界面への酸素の拡散をさらに効果的に抑制することができる。
次に、第2のプラズマ窒化プロセスにより生じたゲート絶縁膜50中のダメージ(結晶欠陥等)を回復させるために第2の減圧酸素アニールを行う。この熱処理は、例えば、RTAを用いて、大気圧よりも減圧された酸素雰囲気中において行う。RTAは、例えば、処理温度(第2の温度):1025℃、全圧:50Torr(酸素分圧:25Torr)、酸素流量:1slm、窒素流量:1slm、アニール時間:30secの条件で行った。
第2の減圧酸素アニールの第2の温度は、第1の減圧酸素アニールの第1の温度よりも高温である。第2のプラズマ窒化プロセスで導入される窒素濃度は、第1のプラズマ窒化プロセスで導入される窒素濃度よりも高いのでゲート絶縁膜50中のダメージが比較的大きいと考えられる。よって、第1の温度よりも第2の温度を高くすることによって、第2のプラズマ窒化プロセスで生じたゲート絶縁膜50中のダメージをより良く回復させることができる。
第2の実施形態は、プラズマ窒化プロセスごとに熱処理を実行している。これにより、上述のように酸素の拡散をより効果的に抑制することができる。さらに、ゲート絶縁膜50中のダメージをプラズマ窒化プロセスごとに回復させるので、ゲート絶縁膜50の信頼性を高く維持することができる。
以上の実施形態において、第1および第2のシリコン酸窒化膜は、Hf、Zr、Alなどの金属元素を含んでいてもよい。
本発明に係る第1の実施形態に従った半導体装置の製造方法を示す断面図。 図1に続く半導体装置の製造方法を示す断面図。 図2に続く半導体装置の製造方法を示す断面図。 第2のシリコン酸窒化膜40形成後のゲート絶縁膜50内の窒素濃度プロファイルを示すグラフ。 窒素との置換によって発生した酸素が拡散する様子を示す図。 ゲート絶縁膜50の窒素濃度とゲート絶縁膜50の物理膜厚との関係を示すグラフ。
符号の説明
10…シリコン基板
20…シリコン酸化膜
30…第1のシリコン酸窒化膜
40…第2のシリコン酸窒化膜
50…ゲート絶縁膜

Claims (5)

  1. 半導体基板上にゲート絶縁膜に用いられるシリコン酸化膜を形成し、
    プラズマ窒化法を用いて前記シリコン酸化膜に窒素を導入することにより第1のシリコン酸窒化膜を形成し、
    プラズマ窒化法を用いて前記第1のシリコン酸窒化膜にさらに窒素を導入することにより第2のシリコン酸窒化膜を形成することを特徴とする半導体装置の製造方法。
  2. 前記第2のシリコン酸窒化膜内の窒素の濃度勾配は、前記第1のシリコン酸窒化膜内の窒素の濃度勾配よりも急峻であることを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記第2のシリコン酸窒化膜の窒素濃度は、前記第1のシリコン酸窒化膜の窒素濃度よりも高いことを特徴とする請求項1に記載の半導体装置の製造方法。
  4. 前記第1のシリコン酸窒化膜および前記第2のシリコン酸窒化膜は、同一の窒化装置で形成されることを特徴とする請求項1に記載の半導体装置の製造方法。
  5. 前記第1のシリコン酸窒化膜の形成後、前記半導体基板を減圧酸素雰囲気中において第1の温度で熱処理し、
    前記第2のシリコン酸窒化膜の形成後、前記半導体基板を減圧酸素雰囲気中において前記第1の温度よりも高温の第2の温度で熱処理することを特徴とする請求項1に記載の半導体装置の製造方法。
JP2005161673A 2005-06-01 2005-06-01 半導体装置の製造方法 Pending JP2006339370A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161673A JP2006339370A (ja) 2005-06-01 2005-06-01 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161673A JP2006339370A (ja) 2005-06-01 2005-06-01 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2006339370A true JP2006339370A (ja) 2006-12-14

Family

ID=37559669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161673A Pending JP2006339370A (ja) 2005-06-01 2005-06-01 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2006339370A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545895A (ja) * 2006-08-04 2009-12-24 アプライド マテリアルズ インコーポレイテッド 希ガスを含有するダブルプラズマ窒化物形成によるCMOSSiONゲート誘電性能の改善
US7932152B2 (en) 2008-02-05 2011-04-26 Chartered Semiconductor Manufacturing, Ltd. Method of forming a gate stack structure
WO2011125703A1 (ja) * 2010-03-31 2011-10-13 東京エレクトロン株式会社 プラズマ窒化処理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545895A (ja) * 2006-08-04 2009-12-24 アプライド マテリアルズ インコーポレイテッド 希ガスを含有するダブルプラズマ窒化物形成によるCMOSSiONゲート誘電性能の改善
US7932152B2 (en) 2008-02-05 2011-04-26 Chartered Semiconductor Manufacturing, Ltd. Method of forming a gate stack structure
WO2011125703A1 (ja) * 2010-03-31 2011-10-13 東京エレクトロン株式会社 プラズマ窒化処理方法
CN102725835A (zh) * 2010-03-31 2012-10-10 东京毅力科创株式会社 等离子体氮化处理方法

Similar Documents

Publication Publication Date Title
JP5072837B2 (ja) プラズマ窒化したゲート誘電体を2段階式で窒化後アニーリングするための改善された製造方法
US20080090425A9 (en) Two-step post nitridation annealing for lower EOT plasma nitrided gate dielectrics
JP2009545895A (ja) 希ガスを含有するダブルプラズマ窒化物形成によるCMOSSiONゲート誘電性能の改善
JP2008510319A5 (ja)
KR100464852B1 (ko) 반도체 장치의 게이트 산화막 형성방법
JP2008300779A (ja) 半導体装置及びその製造方法
WO2012018975A2 (en) Mos transistors including sion gate dielectric with enhanced nitrogen concentration at its sidewalls
JP3887364B2 (ja) 半導体装置の製造方法
JP2000243753A (ja) 半導体素子の金属配線の形成方法
JP2005116727A (ja) 絶縁体薄膜の製造方法と絶縁体薄膜および半導体装置の製造方法と半導体装置
JP2007194239A (ja) 半導体装置の製造方法
JP2006339370A (ja) 半導体装置の製造方法
US20080187747A1 (en) Dielectric Film and Method of Forming the Same
US20060172473A1 (en) Method of forming a two-layer gate dielectric
JP2006073796A (ja) 半導体装置及びその製造方法
KR20040004836A (ko) 누설 전류를 감소시킬 수 있는 게이트 절연막 형성방법
US20080128833A1 (en) High-Dielectric-Constant Film, Field-Effect Transistor and Semiconductor Integrated Circuit Device Using the Same, and Method for Producing High-Dielectric-Constant Film
JP2007142024A (ja) 半導体装置の製造方法
JP2009252842A (ja) 半導体装置及びその製造方法
JP2006108493A (ja) 半導体装置の製造方法
JP2002100674A (ja) 半導体装置の製造方法
JP4073393B2 (ja) 半導体装置の製造方法
JP3826792B2 (ja) 半導体装置の製造方法
JP2012043919A (ja) 半導体装置の製造方法および半導体装置
JP5548550B2 (ja) 半導体装置の製造方法