JP2006337301A - X-ray analyzer - Google Patents

X-ray analyzer Download PDF

Info

Publication number
JP2006337301A
JP2006337301A JP2005165179A JP2005165179A JP2006337301A JP 2006337301 A JP2006337301 A JP 2006337301A JP 2005165179 A JP2005165179 A JP 2005165179A JP 2005165179 A JP2005165179 A JP 2005165179A JP 2006337301 A JP2006337301 A JP 2006337301A
Authority
JP
Japan
Prior art keywords
ray
crystal
rays
wavelength
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005165179A
Other languages
Japanese (ja)
Other versions
JP4639971B2 (en
Inventor
Hiroyoshi Soejima
啓義 副島
Shigehiro Mitamura
茂宏 三田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005165179A priority Critical patent/JP4639971B2/en
Publication of JP2006337301A publication Critical patent/JP2006337301A/en
Application granted granted Critical
Publication of JP4639971B2 publication Critical patent/JP4639971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve detection sensitivity and wavelength resolution, by simple modification in an existing wavelength dispersive X-ray analyzer using a Johansson type X-ray spectroscope. <P>SOLUTION: A curved crystal arranged on a Rowland circle 5 is substituted with a plane crystal 6, and a point/parallel type multicapillary X-ray lens 4 is interposed between a sample 2 and the plane crystal 6 to provide a point focal point in an incident end face side and to emit a parallel beam in an emission end face side. A characteristic X-ray emitted from a micro area 3 on the sample 2 in response to irradiation of an electron beam is collected efficiently by the X-ray lens 4 to be converted into a parallel beam, and the X-rays of the same wavelength are diffracted by the plane crystal 6 to be brought into a parallel beam, and is analyzed by an X-ray detector 8. A conventional mechanism of fixing the micro area 3, and of moving the plane crystal 6 and the X-ray detector 8 along the Rowland circle 5 may be used, as it is, in wavelength scanning. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はX線分光装置に関し、更に詳しくは、電子線プローブ微小分析装置(EPMA)や走査電子顕微鏡(SEM)等、微小領域の分析を行うのに好適な波長分散型のX線分析装置に関する。   The present invention relates to an X-ray spectrometer, and more particularly to a wavelength dispersion type X-ray analyzer suitable for analyzing a minute region, such as an electron beam probe minute analyzer (EPMA) or a scanning electron microscope (SEM). .

電子線プローブ微小分析装置(EPMA)では、高エネルギーを有する微小径の電子線を励起線として試料に照射し、それによって試料の含有成分の内側電子が励起された際に外部に放出される固有X線を分析することにより、元素の同定や定量を行ったり、元素の分布を調べたりする。また、走査電子顕微鏡(SEM)では一般的には電子線の照射位置から発生した二次電子や反射電子を検出するが、最近は、波長分散型X線分光部を併設することでX線分析を可能とした装置も開発されている。   The electron beam probe microanalyzer (EPMA) irradiates a sample with an electron beam with a small diameter having high energy as an excitation ray, and thereby the intrinsic electron emitted to the outside when the inner electrons of the components contained in the sample are excited. By analyzing X-rays, elements are identified and quantified, and the distribution of elements is examined. In addition, the scanning electron microscope (SEM) generally detects secondary electrons and reflected electrons generated from the irradiation position of the electron beam, but recently, an X-ray analysis has been made by adding a wavelength dispersive X-ray spectrometer. A device that enables this is also being developed.

この種のX線分析装置では、試料面上のほぼ一点とみなせる微小領域から放出される固有X線を効率良く分光するため、従来、図4に示すような構成が広く利用されている(例えば特許文献1など参照)。このX線分析装置では、試料2上で電子線が照射される微小領域3とヨハンソン型の湾曲結晶10とX線検出器8とを同一基準面(図の紙面)上のローランド円5上に配置し、試料2上の微小領域3を固定点として、湾曲結晶10及びX線検出器8をリンク機構等の図示しない移動手段によってローランド円5に沿って移動させる。この湾曲結晶10及びX線検出器8の位置によって分光波長が決まるから、それらの移動によって波長走査を行って元素の種類を特定する。   In this type of X-ray analysis apparatus, a configuration as shown in FIG. 4 has been widely used in the past in order to efficiently disperse intrinsic X-rays emitted from a minute region that can be regarded as almost one point on a sample surface (for example, (See Patent Document 1). In this X-ray analysis apparatus, a minute region 3 irradiated with an electron beam on a sample 2, a Johansson-type curved crystal 10, and an X-ray detector 8 are placed on a Roland circle 5 on the same reference plane (the drawing sheet). The curved crystal 10 and the X-ray detector 8 are moved along the Roland circle 5 by a moving means (not shown) such as a link mechanism with the minute region 3 on the sample 2 as a fixed point. Since the spectral wavelength is determined by the positions of the curved crystal 10 and the X-ray detector 8, the wavelength scanning is performed by the movement thereof, and the type of element is specified.

一般に上述のように分光結晶を用いたX線分光器は比較的波長分解能が優れてはいるものの、湾曲結晶ではその湾曲面の寸法精度に限界があり、現状の装置で得られている波長分解能は10-3程度のオーダーである。また、試料2から放出されるX線のうち、湾曲結晶に入射して分析対象となるX線は一部にすぎず、湾曲結晶の回折面を大きくするにも限界があるため、検出感度も十分に高いとは言えない。こうした現状に対し、近年、既存の上記のような構成のEPMAやSEMを用い、より高い波長分解能で或いはより高い検出感度で以て分析を行いたいという強い要求がある。 In general, X-ray spectrometers using spectral crystals as described above have relatively good wavelength resolution, but curved crystals have limitations in the dimensional accuracy of the curved surface, and wavelength resolution obtained with current equipment. Is on the order of 10 −3 . In addition, among the X-rays emitted from the sample 2, only a part of the X-rays that are incident on the curved crystal and are analyzed, and there is a limit to increasing the diffractive surface of the curved crystal. It's not high enough. In recent years, there is a strong demand to perform analysis with higher wavelength resolution or higher detection sensitivity using the existing EPMA and SEM having the above-described configuration.

もちろん、上記のような構成とは異なる光路構成を採用したX線分析装置(例えば特許文献2など参照)によれば、波長分解能と検出感度とを改善できる可能性はある。しかしながら、こうしたX線分析装置では波長走査の際に湾曲結晶10やX線検出器8の移動機構が全く異なるものとなるため、新規に装置を購入する必要があり、既存の装置の簡単な改造等では対応できない。   Of course, according to the X-ray analyzer (for example, see Patent Document 2) employing an optical path configuration different from the above configuration, there is a possibility that the wavelength resolution and the detection sensitivity can be improved. However, in such an X-ray analysis apparatus, the movement mechanism of the curved crystal 10 and the X-ray detector 8 is completely different during wavelength scanning, so it is necessary to purchase a new apparatus, and a simple modification of an existing apparatus. Etc. can not cope.

特開平9−236697号公報Japanese Patent Laid-Open No. 9-236697 特開2003−294659公報JP 2003-294659 A

本発明は上記課題を解決するために成されたものであり、その目的とするところは、既存の波長分散型X線分析装置の分光器の主要な構成を活用して検出感度や波長分解能等の性能を向上させることができるX線分析装置を提供することである。   The present invention has been made in order to solve the above-mentioned problems, and the object of the present invention is to make use of the main configuration of the spectrometer of the existing wavelength dispersion type X-ray analyzer to detect detection sensitivity, wavelength resolution, etc. It is to provide an X-ray analyzer capable of improving the performance.

上記課題を解決するために成された第1発明は、X線を放出するX線源、前記X線を波長分散する分光結晶、及び波長分散されたX線を検出するX線検出器が、同一のローランド円上に配置されてなるX線分析装置において、
前記分光結晶を平板結晶とし、該平板結晶と前記X線源との間に、該X線源に向いた入射端面側で点焦点を有し、出射端面側で略平行光を出射するマルチキャピラリX線レンズを設けたことを特徴としている。
The first invention made to solve the above problems is an X-ray source that emits X-rays, a spectral crystal that wavelength-disperses the X-rays, and an X-ray detector that detects wavelength-dispersed X-rays, In an X-ray analyzer arranged on the same Roland circle,
A multicapillary, wherein the spectral crystal is a flat crystal, has a point focal point on the incident end face side facing the X-ray source, and emits substantially parallel light on the outgoing end face side between the flat crystal and the X-ray source An X-ray lens is provided.

また上記課題を解決するために成された第2発明は、X線を放出するX線源、前記X線を波長分散する分光結晶、及び波長分散されたX線を検出するX線検出器が、同一のローランド円上に配置されてなるX線分析装置において、
前記X線源と前記分光結晶との間に、該X線源に向いた入射端面側で点焦点を有し、出射端面側で略平行光を出射するマルチキャピラリX線レンズを設け、前記分光結晶を、前記マルチキャピラリX線レンズによる出射X線の広がり角に応じた湾曲形状の回折面を有する湾曲結晶としたことを特徴としている。
Further, the second invention made to solve the above problems includes an X-ray source that emits X-rays, a spectral crystal that wavelength-disperses the X-rays, and an X-ray detector that detects wavelength-dispersed X-rays. In the X-ray analyzer arranged on the same Roland circle,
A multicapillary X-ray lens is provided between the X-ray source and the spectroscopic crystal, having a point focal point on the incident end face side facing the X-ray source and emitting substantially parallel light on the exit end face side. The crystal is a curved crystal having a diffractive surface having a curved shape corresponding to the spread angle of the outgoing X-ray by the multicapillary X-ray lens.

例えば電子線プローブ微小分析装置等、励起線を試料に照射し、それに応じて試料から放出されたX線を分光分析するX線分析装置では、上記X線源とは試料そのものであり、より厳密に言えば、試料において励起線が照射された部分とその近傍である。   For example, in an X-ray analyzer that irradiates a sample with an excitation beam and performs spectroscopic analysis of X-rays emitted from the sample, such as an electron probe microanalyzer, the X-ray source is the sample itself, and more strictly In other words, the portion of the sample irradiated with the excitation beam and its vicinity.

第1及び第2発明に係るX線分析装置では、好ましくは、マルチキャピラリX線レンズの点焦点が試料表面に来る程度まで、該レンズの入射端面を試料表面に近接させる。これにより、マルチキャピラリX線レンズは、その入射端面側において、試料上の微小領域から出たX線を大きな立体角で以て効率良く取り込むことができる。取り込まれたX線はマルチキャピラリX線レンズにより平行光化され、第1発明に係るX線分析装置では平板結晶へ、第2発明に係るX線分析装置では湾曲結晶へと照射される。   In the X-ray analyzers according to the first and second inventions, preferably, the incident end face of the lens is brought close to the sample surface until the point focal point of the multicapillary X-ray lens comes to the sample surface. Thereby, the multicapillary X-ray lens can efficiently capture X-rays emitted from a minute region on the sample with a large solid angle on the incident end face side. The taken-in X-rays are collimated by a multicapillary X-ray lens, and are irradiated to a plate crystal in the X-ray analyzer according to the first invention and to a curved crystal in the X-ray analyzer according to the second invention.

第1発明に係るX線分析装置では、平行線束であるX線は平板結晶に当たり、同一波長のX線は同一方向に平行線束として回折され、X線検出器に到達して検出される。X線源、平板結晶、及びX線検出器は同一ローランド円上に配置されるので、従来のヨハンソン型X線分光器と同様に、例えばX線源の位置を固定して平板結晶とX線源とをローランド円に沿って移動させることで、検出するX線の波長走査を行えばよい。マルチキャピラリX線レンズを用いることで平板結晶の回折面を大きくすることなくX線の利用効率を高めることができるので、検出感度が向上する。また、平板結晶に入射して来るX線束の平行性が高く、しかも平板結晶では湾曲結晶よりも回折面の機械的精度を確保し易いため、波長分解能も向上させることができる。   In the X-ray analyzer according to the first aspect of the invention, X-rays that are parallel beam bundles hit a plate crystal, and X-rays having the same wavelength are diffracted as parallel beam bundles in the same direction and reach the X-ray detector to be detected. Since the X-ray source, the plate crystal, and the X-ray detector are arranged on the same Roland circle, for example, the position of the X-ray source is fixed and the plate crystal and the X-ray are fixed as in the conventional Johansson type X-ray spectrometer. The wavelength of the X-ray to be detected may be scanned by moving the source along the Roland circle. By using a multi-capillary X-ray lens, the utilization efficiency of X-rays can be increased without increasing the diffraction plane of the flat crystal, thereby improving detection sensitivity. In addition, the parallelism of the X-ray flux incident on the flat crystal is high, and the flat crystal can more easily ensure the mechanical accuracy of the diffraction surface than the curved crystal, so that the wavelength resolution can be improved.

したがって、第1発明に係るX線分析装置によれば、ヨハンソン型X線分光器を備えた既存の(つまり従来の)波長分散型X線分析装置に対し、ヨハンソン型湾曲結晶を平板結晶に置き換え、試料と該平板結晶との間にマルチキャピラリX線レンズを介挿することにより、波長走査のための駆動機構をそのまま利用して、検出感度と波長分解能とを改善させることができる。   Therefore, according to the X-ray analyzer of the first invention, the Johansson-type curved crystal is replaced with a plate crystal compared to the existing (that is, conventional) wavelength-dispersive X-ray analyzer equipped with the Johansson-type X-ray spectrometer. By inserting a multicapillary X-ray lens between the sample and the flat crystal, the detection mechanism and the wavelength resolution can be improved by using the drive mechanism for wavelength scanning as it is.

前述のようにマルチキャピラリX線レンズの出射X線束はかなり高い平行性となるものの、原理的に完全な平行線束を得ることはできず、若干ではあるが開き角を以て広がりながら進行する。第2発明に係るX線分析装置は、この出射X線束の広がりを考慮したものであり、ローランド円の半径よりも大きな曲率半径の回折面を有する湾曲結晶に当たったX線は、同一波長のX線が進行するに伴い集束するように回折される。そのため、X線検出器の検出面の手前では検出対象の波長のX線は第1発明のように平行線束である場合に比べて絞られており、検出器の手前に設けたスリットの幅を狭めることで不所望の波長のX線を除去し易くなる。その結果、波長分解能を一層向上させることができ、ノイズも低減させることができる。   As described above, although the outgoing X-ray flux of the multicapillary X-ray lens has a fairly high parallelism, in principle, a perfect parallel flux cannot be obtained, and it proceeds while spreading slightly with an opening angle. The X-ray analyzer according to the second invention takes into account the spread of the emitted X-ray flux, and X-rays hitting a curved crystal having a diffractive surface having a radius of curvature larger than the radius of the Roland circle have the same wavelength. As X-rays travel, they are diffracted to converge. Therefore, in front of the detection surface of the X-ray detector, the X-ray of the wavelength to be detected is narrowed compared to the case of the parallel beam bundle as in the first invention, and the width of the slit provided in front of the detector is reduced. By narrowing, it becomes easy to remove X-rays having an undesired wavelength. As a result, wavelength resolution can be further improved and noise can be reduced.

もちろん、この第2発明に係るX線分析装置でも、第1発明に係るX線分析装置と同様に、例えばX線源の位置を固定して平板結晶とX線源とをローランド円に沿って移動させることで、検出するX線の波長走査を行うことができるから、既存の波長分散型X線分析装置における波長走査のための駆動機構をそのまま利用して、ヨハンソン型湾曲結晶をこれよりも曲率半径の大きな湾曲結晶に置き換え、試料と該湾曲結晶との間にマルチキャピラリX線レンズを介挿すればよい。   Of course, in the X-ray analyzer according to the second invention as well, as in the X-ray analyzer according to the first invention, for example, the position of the X-ray source is fixed and the plate crystal and the X-ray source are aligned along the Roland circle. Since the wavelength scanning of the X-ray to be detected can be performed by moving, the Johansson-type curved crystal is made more than this by using the driving mechanism for wavelength scanning in the existing wavelength dispersion type X-ray analyzer as it is. Instead of a curved crystal having a large curvature radius, a multicapillary X-ray lens may be inserted between the sample and the curved crystal.

第1発明に係るX線分析装置の一実施例であるEPMAについて図1及び図2を参照して説明する。図1は本実施例のEPMAの概略構成図、図2は図1中のマルチキャピラリX線レンズの概略構成図である。なお、既に説明した図4中に記載の構成要素と同一の構成要素については同一符号を付している。   EPMA, which is an embodiment of the X-ray analyzer according to the first invention, will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of the EPMA of this embodiment, and FIG. 2 is a schematic configuration diagram of the multicapillary X-ray lens in FIG. In addition, the same code | symbol is attached | subjected about the component same as the component described in FIG. 4 already demonstrated.

この実施例によるEPMAは、図4で説明した従来の構成のEPMAのX線分光器において、ヨハンソン型の湾曲結晶10を平板結晶6に置き換え、この平板結晶6と試料2との間にマルチキャピラリX線レンズ4を介挿したものである。本発明におけるX線源である試料2上の微小領域3、平板結晶6及びX線検出器8は同一のローランド円5上に配置されており、例えば平板結晶6及びX線検出器8は微小領域3を固定点としてローランド円上を移動し得る。なお、平板結晶6はその回折面がローランド円5に外接するように配置される。   In the EPMA according to this embodiment, the Johanson-type curved crystal 10 is replaced with a flat crystal 6 in the EPMA X-ray spectrometer having the conventional configuration described with reference to FIG. 4, and a multicapillary is interposed between the flat crystal 6 and the sample 2. An X-ray lens 4 is inserted. In the present invention, the micro region 3, the plate crystal 6 and the X-ray detector 8 on the sample 2 which is the X-ray source are arranged on the same Roland circle 5, for example, the plate crystal 6 and the X-ray detector 8 are micro The region 3 can be moved on the Roland circle as a fixed point. The flat crystal 6 is arranged so that its diffraction surface circumscribes the Roland circle 5.

マルチキャピラリ(ポリキャピラリと呼ばれる場合もある)X線レンズは内径が2〜十数μm程度の微小径の硼珪酸ガラスから成る細管(キャピラリ)を多数(数百〜100万本程度)束ねた基本構造を有しており、図2(b)に示すように、1本のキャピラリ4aの内側に入射されたX線がそのガラス壁の内周面を臨界角以下の角度で以て全反射しながら進行してゆく原理を利用して、X線を効率良く案内するものである。ここでマルチキャピラリX線レンズ4は、入射端面側では各キャピラリが中央に集束されて外方に点焦点Fを有し、反対側の出射端面側では各キャピラリが平行に束ねられた、点/平行型のものである。したがって、図2(a)に示すように殆ど点とみなし得るX線源から出たX線を入射側端面で大きな立体角で以て取り込み、出射側端面から平行X線束を出射することができる。   A multicapillary (sometimes called polycapillary) X-ray lens is basically a bundle of a large number of capillaries (several hundreds to millions) made of borosilicate glass with an inner diameter of 2 to several tens of micrometers. As shown in FIG. 2 (b), the X-rays incident on the inside of one capillary 4a totally reflect the inner peripheral surface of the glass wall at an angle less than the critical angle. However, X-rays are efficiently guided using the principle of proceeding. Here, in the multicapillary X-ray lens 4, each capillary is focused in the center on the incident end face side and has a point focal point F on the outer side, and each capillary is bundled in parallel on the opposite exit end face side. It is a parallel type. Accordingly, as shown in FIG. 2 (a), X-rays emitted from an X-ray source that can be regarded as almost a point can be captured with a large solid angle at the incident side end face, and a parallel X-ray bundle can be emitted from the output side end face. .

本実施例のEPMAの動作を説明する。電子銃1から出射した電子線は図示しない対物レンズ等によりごく小径に絞られて試料2に照射され、その照射領域である微小領域3からは電子線により励起された固有X線が放出される。この固有X線はマルチキャピラリX線レンズ4により大きな立体角で以て効率良く収集され、平行線束として出射されて平板結晶6に照射される。平板結晶6では異なる波長のX線は異なる角度で出射するから、同一波長のX線が平行線束としてX線検出器8に向かって進み、その手前のスリット7を通過してX線検出器8に到達する。前述のように、異なる波長のX線を検出する場合には、微小領域3を固定点として平板結晶6及びX線検出器8(もちろんスリット7も一体に)をそれぞれローランド円5に沿って移動させる。   The operation of the EPMA of this embodiment will be described. An electron beam emitted from the electron gun 1 is narrowed down to a very small diameter by an objective lens (not shown) or the like and irradiated onto the sample 2, and a characteristic X-ray excited by the electron beam is emitted from the minute region 3 that is the irradiation region. . The intrinsic X-rays are efficiently collected with a large solid angle by the multicapillary X-ray lens 4, emitted as parallel beam bundles, and irradiated onto the flat crystal 6. Since the flat crystal 6 emits X-rays having different wavelengths at different angles, the X-rays having the same wavelength travel toward the X-ray detector 8 as parallel beam bundles, pass through the slit 7 in front of the X-ray detector 8, and the X-ray detector 8. To reach. As described above, when detecting X-rays having different wavelengths, the plate crystal 6 and the X-ray detector 8 (of course, the slit 7 are also integrally moved) are moved along the Roland circle 5 with the minute region 3 as a fixed point. Let

この実施例の構成では、上述したようにX線検出器8に入射してくる同一波長のX線は理想的には平行線束であるため、信号強度を上げるにはスリット7の開口を広げておく必要がある。これによって検出感度は上がるが、目的波長とは異なる、つまり目的波長のX線束とは平行でないX線もX線検出器8に到達し易くなり、波長分解能を上げる上で不利であるとともにノイズの点でも不利である。さらにまた、マルチキャピラリX線レンズ4から出射してくるX線束は完全な平行線束ではなく、僅かながら(原理的にはキャピラリ内壁面での臨界角と同程度の)開き角を以て広がりながら進行する。このX線束の広がりも波長分解能を低下させる一因となる。   In the configuration of this embodiment, as described above, the X-rays having the same wavelength incident on the X-ray detector 8 are ideally parallel bundles. Therefore, to increase the signal intensity, the opening of the slit 7 is widened. It is necessary to keep. This increases the detection sensitivity, but X-rays that are different from the target wavelength, that is, not parallel to the X-ray flux of the target wavelength, can easily reach the X-ray detector 8, which is disadvantageous in increasing the wavelength resolution and noise. It is also disadvantageous. Furthermore, the X-ray beam emitted from the multicapillary X-ray lens 4 is not a perfect parallel beam, but travels while spreading slightly with an opening angle (in principle, the same as the critical angle on the inner wall surface of the capillary). . The spread of the X-ray flux also contributes to a decrease in wavelength resolution.

そこで上記実施例の変形例として、第2発明に係るX線分析装置の一実施例であるEPMAについて図3を参照して説明する。図3は本実施例のEPMAの概略構成図である。なお、既に説明した図1、図2及び図4中に記載の構成要素と同一の構成要素については同一符号を付している。   Therefore, as a modification of the above embodiment, EPMA which is an embodiment of the X-ray analyzer according to the second invention will be described with reference to FIG. FIG. 3 is a schematic configuration diagram of the EPMA of this embodiment. In addition, the same code | symbol is attached | subjected about the component same as the component described in FIG.1, FIG.2 and FIG.4 already demonstrated.

この実施例によるEPMAは、図1で説明した構成のEPMAのX線分光器において、平板結晶6を湾曲結晶9に置き換えたものである。但し、この湾曲結晶9は図4に示した従来の構成におけるヨハンソン型の湾曲結晶10とは異なり、その湾曲形状の回折面9aの曲率半径はローランド円5の半径よりも大きく設定されている。この湾曲結晶9の回折面9aの曲率半径はマルチキャピラリX線レンズ4の出射X線束の開き角度を考慮して決められており、同一波長のX線が平行ではなく適度に集束するように決められている。その結果、図3に示すように、X線検出器8の手前で同一波長のX線は図1の場合よりも絞られており、スリット7の開口幅を狭くしても信号強度を確保することができる。それにより、目的波長とは異なる波長のX線の排除効果が高まり、散乱X線等のノイズ要因も減らすことができる。   The EPMA according to this embodiment is obtained by replacing the flat crystal 6 with the curved crystal 9 in the EPMA X-ray spectrometer having the configuration described in FIG. However, the curved crystal 9 is different from the Johansson-type curved crystal 10 in the conventional configuration shown in FIG. 4, and the curvature radius of the curved diffraction surface 9 a is set larger than the radius of the Roland circle 5. The radius of curvature of the diffractive surface 9a of the curved crystal 9 is determined in consideration of the opening angle of the outgoing X-ray bundle of the multicapillary X-ray lens 4, and is determined so that X-rays of the same wavelength are converged appropriately rather than in parallel. It has been. As a result, as shown in FIG. 3, X-rays having the same wavelength are narrowed before the X-ray detector 8 as compared with the case of FIG. 1, and the signal intensity is ensured even if the opening width of the slit 7 is narrowed. be able to. Thereby, the effect of eliminating X-rays having a wavelength different from the target wavelength is enhanced, and noise factors such as scattered X-rays can be reduced.

なお、上記実施例はいずれも本発明の一例であるから、本発明の趣旨の範囲で適宜変形、修正又は追加を行っても本願特許請求の範囲に包含されることは当然である。   In addition, since the said Example is an example of this invention, even if it changes suitably in the range of the meaning of this invention, correction, or addition, it is natural that it is included in the claim of this application.

第1発明の一実施例によるEPMAの概略構成図。The schematic block diagram of EPMA by one Example of 1st invention. 図1中のマルチキャピラリX線レンズの概略構成図。The schematic block diagram of the multicapillary X-ray lens in FIG. 第2発明の一実施例によるEPMAの概略構成図。The schematic block diagram of EPMA by one Example of 2nd invention. 従来の典型的なEPMAの概略構成図。The schematic block diagram of the conventional typical EPMA.

符号の説明Explanation of symbols

1…電子銃
2…試料
3…微小領域
4…マルチキャピラリX線レンズ
4a…キャピラリ
5…ローランド円
6…平板結晶
7…スリット
8…X線検出器
9…湾曲結晶
9a…回折面
DESCRIPTION OF SYMBOLS 1 ... Electron gun 2 ... Sample 3 ... Micro area | region 4 ... Multicapillary X-ray lens 4a ... Capillary 5 ... Roland circle 6 ... Flat crystal 7 ... Slit 8 ... X-ray detector 9 ... Curved crystal 9a ... Diffraction surface

Claims (2)

X線を放出するX線源、前記X線を波長分散する分光結晶、及び波長分散されたX線を検出するX線検出器が、同一のローランド円上に配置されてなるX線分析装置において、
前記分光結晶を平板結晶とし、該平板結晶と前記X線源との間に、該X線源に向いた入射端面側で点焦点を有し、出射端面側で略平行光を出射するマルチキャピラリX線レンズを設けたことを特徴とするX線分析装置。
In an X-ray analyzer in which an X-ray source that emits X-rays, a spectral crystal that wavelength-disperses X-rays, and an X-ray detector that detects wavelength-dispersed X-rays are arranged on the same Roland circle ,
A multicapillary, wherein the spectral crystal is a flat crystal, has a point focal point on the incident end face side facing the X-ray source, and emits substantially parallel light on the outgoing end face side between the flat crystal and the X-ray source An X-ray analyzer provided with an X-ray lens.
X線を放出するX線源、前記X線を波長分散する分光結晶、及び波長分散されたX線を検出するX線検出器が、同一のローランド円上に配置されてなるX線分析装置において、
前記X線源と前記分光結晶との間に、該X線源に向いた入射端面側で点焦点を有し、出射端面側で略平行光を出射するマルチキャピラリX線レンズを設け、前記分光結晶を、前記マルチキャピラリX線レンズによる出射X線の広がり角に応じた湾曲形状の回折面を有する湾曲結晶としたことを特徴とするX線分析装置。
In an X-ray analyzer in which an X-ray source that emits X-rays, a spectral crystal that wavelength-disperses X-rays, and an X-ray detector that detects wavelength-dispersed X-rays are arranged on the same Roland circle ,
A multicapillary X-ray lens is provided between the X-ray source and the spectroscopic crystal, having a point focal point on the incident end face side facing the X-ray source and emitting substantially parallel light on the exit end face side. An X-ray analyzer characterized in that the crystal is a curved crystal having a curved diffractive surface according to the spread angle of the X-rays emitted from the multicapillary X-ray lens.
JP2005165179A 2005-06-06 2005-06-06 X-ray analyzer Active JP4639971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165179A JP4639971B2 (en) 2005-06-06 2005-06-06 X-ray analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165179A JP4639971B2 (en) 2005-06-06 2005-06-06 X-ray analyzer

Publications (2)

Publication Number Publication Date
JP2006337301A true JP2006337301A (en) 2006-12-14
JP4639971B2 JP4639971B2 (en) 2011-02-23

Family

ID=37557975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165179A Active JP4639971B2 (en) 2005-06-06 2005-06-06 X-ray analyzer

Country Status (1)

Country Link
JP (1) JP4639971B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164503A (en) * 2006-12-28 2008-07-17 Horiba Ltd X-rays beam-condensing unit and x-ray analyzer
JP2018021836A (en) * 2016-08-04 2018-02-08 株式会社島津製作所 X-ray diffractometer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772050A (en) * 1980-10-22 1982-05-06 Jeol Ltd Goniometer such as x-ray microanalyzer
JPH02304400A (en) * 1989-05-18 1990-12-18 Shimadzu Corp X-ray spectroscopic device
JPH08105850A (en) * 1994-10-04 1996-04-23 Kobe Steel Ltd X-ray analyzer
JPH09236697A (en) * 1996-02-29 1997-09-09 Shimadzu Corp X-ray spectroscope
JP2000206061A (en) * 1999-01-18 2000-07-28 Rigaku Corp Fluorescent x-ray measuring device
JP2001116847A (en) * 1999-10-20 2001-04-27 Hitachi Ltd X-ray detector, element analyzer, and device for manufacturing semiconductor
JP2001242295A (en) * 2000-03-01 2001-09-07 Jeol Ltd Collimating x-ray spectrometer and collimator
JP2003294659A (en) * 2002-04-01 2003-10-15 Jeol Ltd X-ray analysis apparatus
JP2004061129A (en) * 2002-07-24 2004-02-26 National Institute For Materials Science Total reflection x-ray fluorescence analysis and device for it
JP2004294168A (en) * 2003-03-26 2004-10-21 Shimadzu Corp X-ray spectroscope for micro-portion analysis

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772050A (en) * 1980-10-22 1982-05-06 Jeol Ltd Goniometer such as x-ray microanalyzer
JPH02304400A (en) * 1989-05-18 1990-12-18 Shimadzu Corp X-ray spectroscopic device
JPH08105850A (en) * 1994-10-04 1996-04-23 Kobe Steel Ltd X-ray analyzer
JPH09236697A (en) * 1996-02-29 1997-09-09 Shimadzu Corp X-ray spectroscope
JP2000206061A (en) * 1999-01-18 2000-07-28 Rigaku Corp Fluorescent x-ray measuring device
JP2001116847A (en) * 1999-10-20 2001-04-27 Hitachi Ltd X-ray detector, element analyzer, and device for manufacturing semiconductor
JP2001242295A (en) * 2000-03-01 2001-09-07 Jeol Ltd Collimating x-ray spectrometer and collimator
JP2003294659A (en) * 2002-04-01 2003-10-15 Jeol Ltd X-ray analysis apparatus
JP2004061129A (en) * 2002-07-24 2004-02-26 National Institute For Materials Science Total reflection x-ray fluorescence analysis and device for it
JP2004294168A (en) * 2003-03-26 2004-10-21 Shimadzu Corp X-ray spectroscope for micro-portion analysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164503A (en) * 2006-12-28 2008-07-17 Horiba Ltd X-rays beam-condensing unit and x-ray analyzer
JP2018021836A (en) * 2016-08-04 2018-02-08 株式会社島津製作所 X-ray diffractometer

Also Published As

Publication number Publication date
JP4639971B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4492507B2 (en) X-ray focusing device
JP5100063B2 (en) X-ray analyzer
JP2014066731A (en) Fluorescent x-ray spectroscopy system and fluorescent x-ray spectroscopy method
EP3790025B1 (en) X-ray analyzer
JP5159068B2 (en) Total reflection X-ray fluorescence analyzer
JP2004184314A (en) X-ray fluorescence analytical device
JP4470816B2 (en) X-ray focusing device
JP4715345B2 (en) X-ray analyzer
JP4837964B2 (en) X-ray focusing device
JP2002189004A (en) X-ray analyzer
JP4639971B2 (en) X-ray analyzer
JP4483754B2 (en) X-ray focusing device
JP2009236622A (en) High-resolution x-ray microscopic apparatus with fluorescent x-ray analysis function
JP4706554B2 (en) X-ray spectrometer
JP4349146B2 (en) X-ray analyzer
JP5347559B2 (en) X-ray analyzer
JP2010197229A (en) Fluorescent x-ray analyzer
JP6754780B2 (en) Condensing mirror unit for sample analyzer and sample analyzer
JP4587887B2 (en) Sample measuring device
JP2014196925A (en) Fluorescent x-ray analyzer, and depth direction analysis method used for the same
JP4330981B2 (en) X-ray fluorescence analyzer
JP2017211290A (en) X-ray irradiation device
JP5646147B2 (en) Method and apparatus for measuring a two-dimensional distribution
JP4365687B2 (en) Analysis method and analyzer
JP2006275621A (en) Analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R151 Written notification of patent or utility model registration

Ref document number: 4639971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3