JP4587887B2 - Sample measuring device - Google Patents

Sample measuring device Download PDF

Info

Publication number
JP4587887B2
JP4587887B2 JP2005189297A JP2005189297A JP4587887B2 JP 4587887 B2 JP4587887 B2 JP 4587887B2 JP 2005189297 A JP2005189297 A JP 2005189297A JP 2005189297 A JP2005189297 A JP 2005189297A JP 4587887 B2 JP4587887 B2 JP 4587887B2
Authority
JP
Japan
Prior art keywords
energy beam
sample
mirror
energy
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005189297A
Other languages
Japanese (ja)
Other versions
JP2007010392A (en
Inventor
健太郎 西方
豊 西條
繁 柿沼
淳一 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2005189297A priority Critical patent/JP4587887B2/en
Priority to US11/477,085 priority patent/US7589322B2/en
Priority to EP06013357A priority patent/EP1739715A3/en
Publication of JP2007010392A publication Critical patent/JP2007010392A/en
Application granted granted Critical
Publication of JP4587887B2 publication Critical patent/JP4587887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、エネルギ線を試料に照射することにより生じる光を測定する試料測定装置に関するものである。   The present invention relates to a sample measuring apparatus for measuring light generated by irradiating a sample with energy rays.

この種の試料測定装置(光学測定装置)には、電子線を試料に照射することにより試料から生じる光(カソードルミネッセンス)を用いて試料の微小領域における物性評価や半導体素子の解析を行うものがある。   This type of sample measurement device (optical measurement device) performs physical property evaluation or analysis of a semiconductor element in a minute region of a sample using light (cathode luminescence) generated from the sample by irradiating the sample with an electron beam. is there.

この試料測定装置は、特許文献1に示すように、カソードルミネッセンスを集光するために、試料を覆うように集光ミラー部を配置し、電子顕微鏡の外部に設けられた光ファイバ又は分光器入射スリットに焦点が結像されるように構成している。この集光ミラー部は、試料を覆っているため、電子線を試料に照射するために電子線が通過する通路が設けられている。そして、測定する際には、電子顕微鏡からの電子線が集光ミラー部の通路を通過するために、電子線の軸をその通路内に設定するために集光ミラー部の位置決めをしなければならない。さらに、電子線が照射される照射位置を集光ミラー部の焦点内に合わせるようにしなければならない。   In this sample measuring apparatus, as shown in Patent Document 1, in order to collect cathodoluminescence, a condensing mirror portion is disposed so as to cover the sample, and an optical fiber or spectroscope incident outside the electron microscope is incident. The focus is formed on the slit. Since this condensing mirror part covers the sample, a passage through which the electron beam passes is provided in order to irradiate the sample with the electron beam. When measuring, since the electron beam from the electron microscope passes through the path of the collector mirror unit, the collector mirror unit must be positioned in order to set the axis of the electron beam in the channel. Don't be. Furthermore, the irradiation position where the electron beam is irradiated must be adjusted within the focal point of the condensing mirror unit.

しかしながら、従来は電子線の軸を通路内に設定し、照射位置を焦点内に合わせるためには、集光ミラー部を移動し調整する位置調節機構が必要となり、装置が複雑、肥大化してしまい、また位置調節機構を用いても、その移動及び調節が非常に手間であるという問題がある。   However, conventionally, in order to set the axis of the electron beam in the passage and to adjust the irradiation position within the focal point, a position adjusting mechanism for moving and adjusting the condensing mirror is necessary, and the apparatus becomes complicated and enlarged. Moreover, even if the position adjusting mechanism is used, there is a problem that the movement and adjustment are very troublesome.

特に、高分解能走査型電子顕微鏡を用いた場合には、電子線の照射面積は10ナノメートルを下回るような微小領域であり、集光ミラー部の焦点内にその照射位置に合わせることは非常に困難であり、熟練した技術を持ってしても容易ではない。   In particular, when a high-resolution scanning electron microscope is used, the irradiation area of the electron beam is a very small area that is less than 10 nanometers, and it is very difficult to match the irradiation position within the focal point of the collector mirror section. It is difficult and it is not easy even with skilled skills.

また、電子顕微鏡の鏡筒部と集光ミラー部とが互いに固定されておらず、振動などによりその相対位置が変化してしまい、焦点と照射位置がずれてしまうことも多い。
特開2003−157789号公報
In addition, the lens barrel and the condenser mirror of the electron microscope are not fixed to each other, and the relative position changes due to vibration or the like, and the focal point and the irradiation position often shift.
JP 2003-157789 A

そこで、本発明は、上記問題点を一挙に解決するためになされたものであり、簡単な構成でありながら、エネルギ線の照射位置を集光ミラー部の焦点内に簡易に位置調節できること及び振動などによる集光ミラー部の位置ずれを防ぐことをその主たる所期課題とするものである。   Therefore, the present invention has been made to solve the above-mentioned problems all at once, and is capable of easily adjusting the irradiation position of the energy beam within the focal point of the condensing mirror unit and vibration while having a simple configuration. The main purpose of the present invention is to prevent misalignment of the condensing mirror due to the above.

すなわち本発明に係る試料測定装置は、エネルギ線を試料に照射することにより生じる光を測定する試料測定装置であって、エネルギ線を発生させるエネルギ線発生部と、前記エネルギ線発生部で発生したエネルギ線を収束させるエネルギ線制御手段を有し、当該エネルギ線制御手段によりそのエネルギ線制御手段の軸線に対し、エネルギ線をその軸が一致するように収束させる鏡筒部と、前記鏡筒部及び前記試料の間に設けられ、前記鏡筒部で収束されたエネルギ線を通過させ、そのエネルギ線を前記試料に照射するためのエネルギ線通路と、その通路の軸線上に焦点が設定されたミラー面とを有し、前記試料から生じる光を前記ミラー面により集光する集光ミラー部と、前記鏡筒部及び前記集光ミラー部をそれぞれ着脱可能にする一方、前記エネルギ線制御手段の軸線と前記エネルギ線通路の軸線とを同軸に位置決めして、前記エネルギ線の軸と前記焦点とを一致させるように、前記鏡筒部に前記集光ミラー部を支持させる位置決め構造とを備え、前記位置決め構造が、少なくとも前記集光ミラー部上面に形成され、内周面で前記エネルギ線通路を規定した筒状凸部と、その筒状凸部の外周面と略同一に形成された前記鏡筒部のエネルギ線射出口の内周面とから構成されることを特徴とする。ここで、試料から生じる光には、例えば、カソードルミネッセンスなどがある。 That is, the sample measurement device according to the present invention is a sample measurement device that measures light generated by irradiating a sample with an energy beam, the energy beam generator that generates the energy beam, and the energy beam generator generated by the energy beam generator. An energy beam control means for converging the energy beam, and the energy beam control means causes the energy beam to converge so that the axis thereof coincides with the axis of the energy beam control means; and the lens barrel unit And an energy beam path for passing the energy beam converged by the lens barrel portion and irradiating the sample with the energy beam, and a focal point on the axis of the channel. A mirror surface, and a condensing mirror portion that condenses light generated from the sample by the mirror surface, and the lens barrel portion and the condensing mirror portion are detachable, The axis of the energy beam control means and the axis of the energy beam passage are positioned coaxially, and the focusing mirror is supported by the lens barrel so that the axis of the energy beam and the focal point coincide with each other. A cylindrical projecting portion that is formed on at least the upper surface of the condenser mirror portion and defines the energy beam path on the inner peripheral surface thereof, and is substantially the same as the outer peripheral surface of the cylindrical convex portion. It is comprised from the inner peripheral surface of the energy ray exit of the said lens-barrel part formed in this. Here, the light generated from the sample includes, for example, cathodoluminescence.

このようなものであれば、簡単な構成でありながら、エネルギ線の照射位置を集光ミラー部の焦点内に簡易に位置調節できること及び振動などによる集光ミラー部の位置ずれを防ぐことができる。また、互いに分離した鏡筒部と集光ミラー部とを組み合わせることにより、集光ミラー部を鏡筒部に支持させることができる。さらに、位置決め構造が、集光ミラー部上面に形成された筒状凸部と、鏡筒部のエネルギ線射出口の内周面とから構成されることから、位置決め構造の構成を簡単にするとともに、位置決めを一層確実にすることができる。 If it is such, although it is a simple structure, it can adjust the irradiation position of an energy beam easily in the focus of a condensing mirror part, and can prevent position shift of a condensing mirror part by vibration etc. . Further, by combining the lens barrel part and the condenser mirror part separated from each other, the condenser mirror part can be supported by the lens barrel part. Furthermore, since the positioning structure is composed of a cylindrical convex portion formed on the upper surface of the condensing mirror portion and the inner peripheral surface of the energy ray exit of the lens barrel portion, the configuration of the positioning structure is simplified. , Positioning can be further ensured.

このように本発明によれば、簡単な構成でありながら、エネルギ線の照射位置を集光ミラー部の焦点内に簡易に位置調節できること及び振動などによる集光ミラー部の位置ずれを防ぐことができる。   As described above, according to the present invention, the position of the energy beam irradiation position can be easily adjusted within the focal point of the collector mirror unit and the position of the collector mirror unit can be prevented from being displaced due to vibration or the like, although the configuration is simple. it can.

以下に本発明の一実施形態について図面を参照して説明する。   An embodiment of the present invention will be described below with reference to the drawings.

本実施形態に係る試料測定装置(光学測定装置)1は、エネルギ線である電子線EBを試料Wに照射することにより試料Wから生じる光L(カソードルミネッセンス)を用いて、試料Wの微小領域における物性評価や半導体素子の解析を行うもの(以下、電子線測定装置という。)であり、図1に示すように、試料台1と、その試料台1に載せた試料Wにエネルギ線である電子線EBを照射する電子線照射装置2と、電子線EBの照射によって試料Wから発生するルミネッセンスLを分光し、検出する光検出部たる検出装置3と、その検出装置3からの出力信号を受信し、前記試料Wを評価等(例えば応力測定)するために所定の演算処理を行う情報処理装置4とを備えている。   A sample measurement apparatus (optical measurement apparatus) 1 according to the present embodiment uses a light L (cathode luminescence) generated from a sample W by irradiating the sample W with an electron beam EB, which is an energy beam, and uses a micro region of the sample W. 1 for performing physical property evaluation and semiconductor element analysis (hereinafter referred to as an electron beam measuring apparatus). As shown in FIG. 1, the sample stage 1 and the sample W placed on the sample stage 1 are energy beams. An electron beam irradiation device 2 that irradiates an electron beam EB, a detection device 3 that is a light detection unit that splits and detects the luminescence L generated from the sample W by irradiation of the electron beam EB, and an output signal from the detection device 3 And an information processing device 4 that performs predetermined arithmetic processing to receive and evaluate the sample W (for example, stress measurement).

各部1〜4を説明する。   Each part 1-4 is demonstrated.

試料台1は、X軸、Y軸及びZ軸方向に移動可能なものであり、さらに本実施形態では試料スペクトルのピーク半値幅を小さくし、前記スペクトルから意味のある情報を得るために、図示しない冷却手段及び温度制御機構をさらに設け、この試料台1及び試料Wを数十K以下の所定温度に冷却できるようにしている。   The sample stage 1 is movable in the X-axis, Y-axis, and Z-axis directions. Further, in this embodiment, the sample stage 1 is illustrated in order to reduce the peak half-value width of the sample spectrum and obtain meaningful information from the spectrum. Further, a cooling means and a temperature control mechanism are provided so that the sample stage 1 and the sample W can be cooled to a predetermined temperature of several tens of K or less.

電子線照射装置2は、例えば走査型のもので、エネルギ線発生部である電子銃21と、電子銃21から射出された電子線EBを試料Wの測定部位に収束させるとともに走査させるための、コンデンサレンズ221、アパーチャ222、偏向コイル223、及び対物レンズ(電界型などの対物レンズ)224等のレンズ機構からなるエネルギ線制御手段22と、電子銃21及びエネルギ線制御手段22を収容している鏡筒部23とを備えている。鏡筒部23は、電子銃21からの電子線EBを試料Wに照射するためのエネルギ線射出口23Aと有しており(図2参照)、このエネルギ線射出口23Aはエネルギ線である電子線EBの軸Oに沿って開口している。なお本実施形態では前記電子銃21に熱フィラメント電界開放型のものを用いている。   The electron beam irradiation device 2 is, for example, of a scanning type, and converges and scans the electron gun 21 that is an energy beam generation unit and the electron beam EB emitted from the electron gun 21 to the measurement site of the sample W. An energy beam control unit 22 including a lens mechanism such as a condenser lens 221, an aperture 222, a deflection coil 223, and an objective lens (an objective lens such as an electric field type) 224, an electron gun 21, and an energy beam control unit 22 are housed. A lens barrel portion 23 is provided. The lens barrel 23 has an energy beam exit 23A for irradiating the sample W with the electron beam EB from the electron gun 21 (see FIG. 2), and the energy beam exit 23A is an electron that is an energy beam. Opening along the axis O of the line EB. In the present embodiment, the electron gun 21 is of a hot filament electric field open type.

検出装置3は、集光ミラー部31、分光部32及びセンシング部33を備えたものである。   The detection device 3 includes a condensing mirror unit 31, a spectroscopic unit 32, and a sensing unit 33.

集光ミラー部31は、鏡筒部23及び試料Wの間に設けられ、試料Wから発生するルミネッセンスLを最小限の損失で集め分光部32に導くものであり、鏡筒部23で収束されたエネルギ線EBを通過させ、そのエネルギ線EBを試料Wに照射するためのエネルギ線通路312と、その通路312の軸線上に焦点Fが設定されたミラー面311とを有するものである。この集光ミラー部31は、パーマロイ、鉄、珪素鋼板などの電磁シールド材料を用いることで、エネルギ線通路312を含めた集光ミラー部31は試料直前に至るまで電磁シールドが可能となる。   The condensing mirror part 31 is provided between the lens barrel part 23 and the sample W, collects the luminescence L generated from the sample W with a minimum loss, and guides it to the spectroscopic part 32, and is converged by the lens barrel part 23. The energy beam path 312 for passing the measured energy beam EB and irradiating the sample W with the energy beam EB, and the mirror surface 311 having the focal point F set on the axis of the channel 312 are provided. By using an electromagnetic shield material such as permalloy, iron, silicon steel plate, etc., the collector mirror unit 31 including the energy beam passage 312 can be electromagnetically shielded until just before the sample.

ミラー面311は、放物面鏡又は楕円面鏡などが考えられるが本実施形態では楕円面鏡を用いている。楕円面鏡311はそれ自体が受光と集光の作用をし、楕円面により焦点Fを自由に設定できる利点を有している。その一方で楕円面鏡311は、結像倍率が機械的配置条件から決まるため、分光部32とのカップリングがうまくいかない欠点を有する。そこでこれを解消し、なおかつ光軸調整を簡単にするということから光ファイバ321を用い、楕円面鏡311で集光したルミネッセンスLを分光部32に転送するようにしている。ここで、上記光軸調節は、楕円面鏡311の焦点Fに併せて、図示しない調節機構により光ファイバの光入射部321Aを調節することにより行う。   The mirror surface 311 may be a parabolic mirror or an elliptical mirror, but an elliptical mirror is used in this embodiment. The ellipsoidal mirror 311 itself has the advantages of receiving and condensing light, and has the advantage that the focal point F can be freely set by the ellipsoid. On the other hand, the ellipsoidal mirror 311 has a defect that the coupling with the spectroscopic unit 32 is not successful because the imaging magnification is determined by the mechanical arrangement condition. In order to solve this problem and simplify the optical axis adjustment, the luminescence L collected by the ellipsoidal mirror 311 is transferred to the spectroscopic unit 32 using the optical fiber 321. Here, the optical axis adjustment is performed by adjusting the light incident portion 321A of the optical fiber by an adjustment mechanism (not shown) in conjunction with the focal point F of the ellipsoidal mirror 311.

エネルギ線通路312は、図2に示すように、エネルギ線射出口23Aから射出された電子線EBを試料Wに照射するためのものであり、このエネルギ線通路312を通過した電子線EBが試料Wに照射される。また、エネルギ線通路312は、後述する筒状凸部313の内周面により規定されており、エネルギ線通路312を通過した電子線EBが試料Wに照射される照射位置Pが集光ミラー部31の焦点F内に入るようにしている。   As shown in FIG. 2, the energy beam passage 312 is for irradiating the sample W with the electron beam EB emitted from the energy beam outlet 23A, and the electron beam EB that has passed through the energy beam passage 312 is irradiated with the sample. W is irradiated. The energy beam passage 312 is defined by an inner peripheral surface of a cylindrical convex portion 313, which will be described later, and the irradiation position P at which the sample W is irradiated with the electron beam EB that has passed through the energy beam passage 312 is the condensing mirror portion. It falls within the focal point F of 31.

分光部32は、前記集光ミラー部31で集光されたルミネッセンスLを単色光に分離するもので、例えばモノクロメータを利用して構成している。   The spectroscopic unit 32 separates the luminescence L collected by the condensing mirror unit 31 into monochromatic light, and is configured using, for example, a monochromator.

センシング部33は、前記分光部32で波長毎に複数に分光された各単色光の強度をそれぞれ測定し、各単色光の強度に応じた値の電流値(又は電圧値)を有する出力信号を出力するものである。本実施形態ではこのセンシング部33をフォトマルチプライヤ(PMT)を用いて構成しているが、測定する波長領域によって使用する機器を変えても構わない。例えば赤外(1μm〜)においては、Ge検出器、Pbs検出器、赤外PMT等を用いることが好ましい。また、光−電子変換効率、ダイナミックレンジ、S/Nに優れているといったことからCCDを利用してもよい。CCDによればスペクトルの一括検出も可能である。   The sensing unit 33 measures the intensity of each monochromatic light split into a plurality of wavelengths for each wavelength by the spectroscopic unit 32, and outputs an output signal having a current value (or voltage value) corresponding to the intensity of each monochromatic light. Output. In the present embodiment, the sensing unit 33 is configured using a photomultiplier (PMT), but the device to be used may be changed depending on the wavelength region to be measured. For example, in the infrared (from 1 μm), it is preferable to use a Ge detector, a Pbs detector, an infrared PMT, or the like. Further, a CCD may be used because of its excellent photoelectric conversion efficiency, dynamic range, and S / N. According to the CCD, it is possible to detect the spectrum collectively.

情報処理装置4は、構造としては、CPU、メモリ、入出力インターフェイス、AD変換器、入力手段等からなる汎用又は専用のコンピュータである。そして、前記メモリの所定領域に格納してあるプログラムに基づいてCPUやその周辺機器が作動することにより、この情報処理装置4が、前記検出装置3からの出力信号を受信し、走査した各測定ポイントでの応力を算出する。   The information processing apparatus 4 is a general-purpose or dedicated computer including a CPU, a memory, an input / output interface, an AD converter, an input unit, and the like. Then, when the CPU or its peripheral device operates based on a program stored in a predetermined area of the memory, the information processing device 4 receives an output signal from the detection device 3 and scans each measurement. Calculate the stress at the point.

具体的な算出方法は、検出装置3からの光強度信号を受信してスペクトル波形を示すデータであるスペクトルデータを生成し、そのスペクトルデータの示すスペクトル波形をスムージングする。次に、スムージングによって得られた波形に微分演算を施して、得られた値がプラスからマイナスに反転する時点での波長をピーク波長とする。なお、所定の関数でフィッティングしてピーク波長を求めても良い。そして、測定対象となる試料Wから得られるピーク波長と基準となるピーク波長との変位量に基づいて、その試料Wに作用している応力を算出する。   A specific calculation method is to receive the light intensity signal from the detection device 3, generate spectrum data that is data indicating a spectrum waveform, and smooth the spectrum waveform indicated by the spectrum data. Next, a differential operation is performed on the waveform obtained by smoothing, and the wavelength at the time when the obtained value is inverted from plus to minus is set as the peak wavelength. The peak wavelength may be obtained by fitting with a predetermined function. Then, the stress acting on the sample W is calculated based on the amount of displacement between the peak wavelength obtained from the sample W to be measured and the reference peak wavelength.

この応力算出について原理を簡単に説明しておく。測定試料Wの電子線EBを照射された部位に存在する応力と得られるピーク波長との関係は、応力の大きさが十数GPa程度までは直線近似することができ、その相関は、下式(1)で示される。   The principle of this stress calculation will be briefly described. The relationship between the stress existing at the site irradiated with the electron beam EB of the measurement sample W and the peak wavelength obtained can be linearly approximated until the magnitude of the stress is about 10 GPa. It is indicated by (1).

νσ=ν+Π・σ ・・・(1) ν σ = ν 0 + Π · σ (1)

ここでνσは測定したスペクトルのピーク波長、νは基準となるピーク波長、σは測定試料Wに作用している応力を示すテンソル、ΠはPS(Piezo−Spectroscopic)係数と呼ばれ、応力のみに依存して位置に依存しないテンソルである。このν及びΠが相関データとしてメモリ内の格納部に格納してある。かかる相関データは、測定試料Wと同等の試料に、既知の応力を複数作用させることによって統計的に求めるようにしている。 Here, ν σ is the peak wavelength of the measured spectrum, ν 0 is the reference peak wavelength, σ is a tensor indicating the stress acting on the measurement sample W, and Π is called a PS (Piezo-Spectroscopic) coefficient. A position-independent tensor that depends only on. Ν 0 and Π are stored as correlation data in a storage unit in the memory. Such correlation data is statistically obtained by applying a plurality of known stresses to a sample equivalent to the measurement sample W.

ここで基準となるピーク波長は、例えば、試料Wの残留応力を測定したい場合には、残留応力の存在していない他の同等の試料や、当該試料Wにおける残留応力の存在していない部位から得られた蛍光スペクトル波形から特定する。一方、例えば試料Wに作用させた外力に起因して発生する内部応力を測定したい場合には、外力を作用させていない状態での試料Wから得られた蛍光スペクトル波形から基準となるピーク波長を特定する。この基準ピーク波長を示すデータは、例えばメモリの所定領域に設定した格納部に格納してある。   Here, the reference peak wavelength is, for example, when measuring the residual stress of the sample W, from another equivalent sample where no residual stress exists, or from a portion where the residual stress does not exist in the sample W. It identifies from the acquired fluorescence spectrum waveform. On the other hand, for example, when it is desired to measure the internal stress generated due to the external force applied to the sample W, the reference peak wavelength is obtained from the fluorescence spectrum waveform obtained from the sample W in the state where no external force is applied. Identify. Data indicating the reference peak wavelength is stored, for example, in a storage unit set in a predetermined area of the memory.

しかして、本実施形態の電子線測定装置は、図2及び図3に示すように、エネルギ線EBの軸Oと焦点Fとを一致させるように、鏡筒部23に集光ミラー部31を支持させることにより、それらを一体的に構成し、鏡筒部23と集光ミラー部31との相対位置が一定となるようにしている。本実施形態では、鏡筒部23と集光ミラー部31とは互いに分離したものであるので、鏡筒部23及び集光ミラー部31を一体的に構成するために位置決め構造5を備えている。   Therefore, as shown in FIGS. 2 and 3, the electron beam measuring apparatus according to the present embodiment is provided with the condensing mirror unit 31 in the lens barrel unit 23 so that the axis O and the focal point F of the energy beam EB coincide with each other. By supporting them, they are integrally configured so that the relative position between the lens barrel portion 23 and the condenser mirror portion 31 is constant. In the present embodiment, since the lens barrel portion 23 and the condensing mirror portion 31 are separated from each other, the positioning structure 5 is provided to integrally configure the lens barrel portion 23 and the condensing mirror portion 31. .

位置決め構造5は、鏡筒部23及び集光ミラー部31をそれぞれ着脱可能にする一方で、エネルギ線制御手段22の軸線と前記エネルギ線通路312の軸線とを同軸に位置決めして、エネルギ線EBの軸Oと焦点Fとを一致させるように、前記鏡筒部23に前記集光ミラー部31を支持させるものである。そして、鏡筒部23及び集光ミラー部31の一方に設けた凸構造と、他方に設けられ前記凸構造に対応する凹構造とから構成され、具体的には、集光ミラー部上面31Aに形成され、内周面で前記エネルギ線通路312を規定した筒状凸部313と、その筒状凸部313の外周面と略同一に形成され鏡筒部23のエネルギ線射出口23Aの内周面と、から構成されている。そして、筒状凸部313をエネルギ線射出口23Aの内周面(本実施形態では図1に示すように、鏡筒部23の下端に形成された対物レンズ224内)に嵌め合わせることにより連続一体化する。   The positioning structure 5 enables the lens barrel portion 23 and the condensing mirror portion 31 to be detachable, while positioning the axis of the energy beam control means 22 and the axis of the energy beam passage 312 coaxially, and the energy beam EB The condensing mirror part 31 is supported by the lens barrel part 23 so that the axis O and the focal point F coincide with each other. And it is comprised from the convex structure provided in one of the lens-barrel part 23 and the condensing mirror part 31, and the concave structure corresponding to the said convex structure provided in the other, and specifically, on the condensing mirror part upper surface 31A A cylindrical convex portion 313 which is formed and defines the energy beam passage 312 on the inner peripheral surface, and an inner periphery of the energy beam outlet 23A of the lens barrel portion 23 which is formed substantially the same as the outer peripheral surface of the cylindrical convex portion 313. And a surface. Then, the cylindrical convex portion 313 is continuously fitted into the inner peripheral surface of the energy beam emission port 23A (in this embodiment, as shown in FIG. 1, in the objective lens 224 formed at the lower end of the lens barrel portion 23). Integrate.

筒状凸部313は円筒形状で、その外径はエネルギ線射出口23Aの内径と略同一であり、集光ミラー部31の上面31Aに設けるようにしている。また筒状凸部313の中心軸にエネルギ線通路312が通るようにしており、筒状凸部313の上面中央部313A(図3参照)においてエネルギ線通路312が開口している。これにより、筒状凸部313をエネルギ線射出口23Aに嵌め合わせることにより、エネルギ線射出口23Aとエネルギ線通路312とが連続して形成される。   The cylindrical convex portion 313 has a cylindrical shape, and its outer diameter is substantially the same as the inner diameter of the energy beam exit port 23 </ b> A, and is provided on the upper surface 31 </ b> A of the condenser mirror portion 31. Further, the energy ray passage 312 passes through the central axis of the cylindrical convex portion 313, and the energy ray passage 312 opens at the upper surface central portion 313A (see FIG. 3) of the cylindrical convex portion 313. Thereby, the energy ray exit port 23A and the energy ray passage 312 are continuously formed by fitting the cylindrical convex portion 313 to the energy ray exit port 23A.

このように構成した電子線測定装置1によれば、鏡筒部23に集光ミラー部31を支持させているので、測定毎に一々集光ミラー部31の位置調節をする必要がなくなり、簡単な構成でありながら、電子線EBの照射位置Pを集光ミラー部31の焦点F内に簡易に位置調節できること及び振動などによる集光ミラー部31の位置ずれを防ぐことができる。したがって、常に電子線EBの照射位置Pが焦点F内に収まるので、照射位置Pにおいて励起されて生じる光Lを全て集光することができ、検出信号の減少を可及的に抑えることができる。   According to the electron beam measuring apparatus 1 configured as described above, since the condensing mirror unit 31 is supported by the lens barrel unit 23, it is not necessary to adjust the position of the condensing mirror unit 31 for each measurement. Although the configuration is simple, the position of the irradiation position P of the electron beam EB can be easily adjusted within the focal point F of the condensing mirror unit 31, and the positional deviation of the condensing mirror unit 31 due to vibration or the like can be prevented. Therefore, since the irradiation position P of the electron beam EB always falls within the focal point F, all the light L generated by being excited at the irradiation position P can be collected, and the decrease in the detection signal can be suppressed as much as possible. .

また、位置決め構造5を、エネルギ線射出口23Aと筒状凸部313とから構成し、筒状凸部313をエネルギ線射出口23Aに嵌め合わせることにより連続一体化するので、一体化と位置決めとを同時に行うことができ、位置決めの手間をさらに省くことができる。   In addition, the positioning structure 5 is composed of the energy beam injection port 23A and the cylindrical convex portion 313, and is continuously integrated by fitting the cylindrical convex portion 313 to the energy beam injection port 23A. Can be performed simultaneously, and the labor of positioning can be further saved.

なお、本発明は前記実施形態に限られるものではない。   The present invention is not limited to the above embodiment.

例えば、前記実施形態では、互いに分離した鏡筒部と集光ミラー部とを連続一体化したが、図4に示すように、鏡筒部と集光ミラー部とを一体成形するようにしても良い。   For example, in the above-described embodiment, the lens barrel portion and the collector mirror portion separated from each other are continuously integrated. However, as shown in FIG. 4, the lens barrel portion and the collector mirror portion may be integrally formed. good.

これによれば、集光ミラー部の位置調節が全く必要なくなり、振動などによる集光ミラー部の位置ずれを防ぐことができる。   According to this, it is not necessary to adjust the position of the condenser mirror part at all, and the positional deviation of the condenser mirror part due to vibration or the like can be prevented.

また、前記実施形態では位置決め構造をエネルギ線射出口及び筒状凸部から構成したが、これに限られることはなく、集光ミラー部を直接的又は間接的に鏡筒部に支持させればよい。その一法として、鏡筒部及び集光ミラー部以外に連結部材を設け、この連結部材を用いて鏡筒部及び集光ミラー部を連結するようにしても良い。   Moreover, in the said embodiment, although the positioning structure was comprised from the energy-beam exit and the cylindrical convex part, it is not restricted to this, If a condensing mirror part is directly or indirectly supported by a lens-barrel part Good. As one of the methods, a connecting member may be provided in addition to the lens barrel portion and the condensing mirror portion, and the lens barrel portion and the condensing mirror portion may be connected using this connecting member.

さらに、前記実施形態では集光ミラー部として、楕円面鏡を用いたがこれに限られず、例えば放物面鏡を用いても良い。この場合、放物面鏡の特性により試料Wからの光Lを反射すると平行光となるので、図5に示すように、この平行光を光ファイバ321の光入射部321Aに集光させるために凸レンズ314を集光ミラー部31と光ファイバ321との間に設けている。   Furthermore, in the said embodiment, although the ellipsoidal mirror was used as a condensing mirror part, it is not restricted to this, For example, you may use a parabolic mirror. In this case, when the light L from the sample W is reflected due to the characteristics of the parabolic mirror, it becomes parallel light. Therefore, as shown in FIG. 5, in order to collect the parallel light on the light incident part 321A of the optical fiber 321. A convex lens 314 is provided between the condenser mirror unit 31 and the optical fiber 321.

その上、前記実施形態の集光ミラー部に設けたエネルギ線通路を差動排気用アパーチャとしても良い。つまり、生態試料を測定する場合などは、鏡筒部内を高真空に排気しつつ、集光ミラー部及び試料台を設けたチャンバー内は低真空に排気する必要があり、この両室の差圧を保ちながら排気するためのアパーチャとしても機能させるようにしても良い。   In addition, the energy line passage provided in the condensing mirror portion of the embodiment may be a differential exhaust aperture. In other words, when measuring biological samples, it is necessary to evacuate the interior of the lens barrel to a high vacuum while evacuating the chamber with the collector mirror and sample stage to a low vacuum. It may be made to function as an aperture for exhausting while maintaining the above.

その他、前述した実施形態や変形実施形態の一部又は全部を適宜組み合わせてよいし、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, some or all of the above-described embodiments and modified embodiments may be combined as appropriate, and the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. .

本発明の一実施形態に係る光学測定装置を示す模式的構成図。The typical block diagram which shows the optical measuring device which concerns on one Embodiment of this invention. 同実施形態における鏡筒部及び集光ミラー部の部分拡大断面図。The partial expanded sectional view of the lens-barrel part and condensing mirror part in the embodiment. 同実施形態における鏡筒部及び集光ミラー部の組み立て図。The assembly drawing of the lens-barrel part and condensing mirror part in the embodiment. その他の実施形態における鏡筒部及び集光ミラー部の部分拡大断面図。The partial expanded sectional view of the lens-barrel part and condensing mirror part in other embodiment. 本発明のその他の実施形態に係る光学測定装置を示す模式的構成図。The typical block diagram which shows the optical measuring device which concerns on other embodiment of this invention.

1 ・・・試料測定装置
EB ・・・エネルギ線(電子線)
W ・・・試料
21 ・・・エネルギ線発生部(電子銃)
23A・・・エネルギ線射出口
23 ・・・鏡筒部
311・・・ミラー面
312・・・エネルギ線通路
31 ・・・集光ミラー部
O ・・・エネルギ線の軸線
5 ・・・位置決め構造
313・・・筒状凸部
F ・・・焦点
P ・・・照射位置
1 ... Sample measuring device EB ... Energy beam (electron beam)
W ... Sample 21 ... Energy ray generator (electron gun)
23A ... Energy beam exit 23 ... Lens barrel 311 ... Mirror surface 312 ... Energy beam passage 31 ... Condensing mirror unit O ... Energy beam axis 5 ... Positioning structure 313: cylindrical convex portion F: focal point P: irradiation position

Claims (1)

エネルギ線を試料に照射することにより生じる光を測定する試料測定装置であって、
エネルギ線を発生させるエネルギ線発生部と、
前記エネルギ線発生部で発生したエネルギ線を収束させるエネルギ線制御手段を有し、当該エネルギ線制御手段によりそのエネルギ線制御手段の軸線に対し、エネルギ線をその軸が一致するように収束させる鏡筒部と、
前記鏡筒部及び前記試料の間に設けられ、前記鏡筒部で収束されたエネルギ線を通過させ、そのエネルギ線を前記試料に照射するためのエネルギ線通路と、その通路の軸線上に焦点が設定されたミラー面とを有し、前記試料から生じる光を前記ミラー面により集光する集光ミラー部と、
前記鏡筒部及び前記集光ミラー部をそれぞれ着脱可能にする一方、前記エネルギ線制御手段の軸線と前記エネルギ線通路の軸線とを同軸に位置決めして、前記エネルギ線の軸と前記焦点とを一致させるように、前記鏡筒部に前記集光ミラー部を支持させる位置決め構造とを備え、
前記位置決め構造が、少なくとも前記集光ミラー部上面に形成され、内周面で前記エネルギ線通路を規定した筒状凸部と、その筒状凸部の外周面と略同一に形成された前記鏡筒部のエネルギ線射出口の内周面とから構成される試料測定装置。
A sample measuring device for measuring light generated by irradiating a sample with energy rays,
An energy ray generating unit for generating energy rays;
A mirror that has energy beam control means for converging the energy beam generated by the energy beam generator, and that causes the energy beam control means to converge the energy beam so that its axis coincides with the axis of the energy beam control unit; A tube part;
An energy beam path that is provided between the lens barrel and the sample, passes an energy beam converged by the lens barrel, and irradiates the sample with the energy beam, and is focused on the axis of the channel. And a mirror surface that collects the light generated from the sample by the mirror surface,
While allowing the lens barrel and the condensing mirror to be detachable, the axis of the energy beam control means and the axis of the energy beam passage are positioned coaxially, and the axis of the energy beam and the focal point are aligned. A positioning structure for supporting the light collecting mirror part in the lens barrel part so as to match,
The positioning structure is formed on at least the upper surface of the condensing mirror part, and has a cylindrical convex part defining the energy ray path on the inner peripheral surface, and the mirror formed substantially the same as the outer peripheral surface of the cylindrical convex part A sample measuring device comprising an inner peripheral surface of an energy ray injection port of a cylindrical portion .
JP2005189297A 2005-06-29 2005-06-29 Sample measuring device Active JP4587887B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005189297A JP4587887B2 (en) 2005-06-29 2005-06-29 Sample measuring device
US11/477,085 US7589322B2 (en) 2005-06-29 2006-06-28 Sample measuring device
EP06013357A EP1739715A3 (en) 2005-06-29 2006-06-28 Sample measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005189297A JP4587887B2 (en) 2005-06-29 2005-06-29 Sample measuring device

Publications (2)

Publication Number Publication Date
JP2007010392A JP2007010392A (en) 2007-01-18
JP4587887B2 true JP4587887B2 (en) 2010-11-24

Family

ID=37749117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005189297A Active JP4587887B2 (en) 2005-06-29 2005-06-29 Sample measuring device

Country Status (1)

Country Link
JP (1) JP4587887B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5677777B2 (en) * 2010-07-20 2015-02-25 株式会社堀場製作所 Concentrator device
JP7194202B2 (en) 2018-05-30 2022-12-21 ガタン インコーポレイテッド Apparatus and method for wavelength-resolved and angle-resolved cathodoluminescence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276624U (en) * 1980-06-19 1987-05-16
JPS63206637A (en) * 1987-02-24 1988-08-25 Shimadzu Corp Cathode luminescence analyser
JPH1123481A (en) * 1997-06-27 1999-01-29 Advantest Corp Micro-object analyzing apparatus, and adjusting apparatus for micro-object detecting means used in the micro-object analyzing apparatus
JP2002162350A (en) * 2000-11-22 2002-06-07 Hitachi Ltd Fluorescence measuring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276624U (en) * 1980-06-19 1987-05-16
JPS63206637A (en) * 1987-02-24 1988-08-25 Shimadzu Corp Cathode luminescence analyser
JPH1123481A (en) * 1997-06-27 1999-01-29 Advantest Corp Micro-object analyzing apparatus, and adjusting apparatus for micro-object detecting means used in the micro-object analyzing apparatus
JP2002162350A (en) * 2000-11-22 2002-06-07 Hitachi Ltd Fluorescence measuring apparatus

Also Published As

Publication number Publication date
JP2007010392A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
US7589322B2 (en) Sample measuring device
US20070108387A1 (en) Tunable x-ray fluorescence imager for multi-element analysis
US7023954B2 (en) Optical alignment of X-ray microanalyzers
JP2007179002A (en) Optical microscope and method of measuring spectrum
JP4696197B2 (en) Cathode luminescence detection device
US10943764B2 (en) Apparatus for wavelength resolved angular resolved cathodoluminescence
JP2004184314A (en) X-ray fluorescence analytical device
JP2007093593A (en) Total reflection fluorescent x-ray analysis method and device
JP4587887B2 (en) Sample measuring device
US20230280267A1 (en) Analysis device
JP4724604B2 (en) Sample measuring device
JP5507177B2 (en) Photodetector
JP4920539B2 (en) Cathodoluminescence measuring device and electron microscope
JP4140490B2 (en) X-ray analyzer and its focusing device
JP2008180656A (en) Non-scanning wavelength-dispersive x-ray spectrometer and measuring method of using the same
JP4706554B2 (en) X-ray spectrometer
JP7157715B2 (en) Spectrometer
JP4639971B2 (en) X-ray analyzer
JP2010197229A (en) Fluorescent x-ray analyzer
JP5563935B2 (en) X-ray detection system
JP2007271528A (en) Coaxial compact fluorescence spectroscopic analyzer
JP5441856B2 (en) X-ray detection system
JP2010197187A (en) X-ray analyzer
JP2008151518A (en) Apparatus for measuring sample
JPWO2017131132A1 (en) Sample analyzer and condenser mirror unit for sample analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100907

R150 Certificate of patent or registration of utility model

Ref document number: 4587887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250