JP4483754B2 - X-ray focusing device - Google Patents

X-ray focusing device Download PDF

Info

Publication number
JP4483754B2
JP4483754B2 JP2005281020A JP2005281020A JP4483754B2 JP 4483754 B2 JP4483754 B2 JP 4483754B2 JP 2005281020 A JP2005281020 A JP 2005281020A JP 2005281020 A JP2005281020 A JP 2005281020A JP 4483754 B2 JP4483754 B2 JP 4483754B2
Authority
JP
Japan
Prior art keywords
rays
ray
capillary
parallel
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005281020A
Other languages
Japanese (ja)
Other versions
JP2007093314A (en
Inventor
啓義 副島
茂宏 三田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005281020A priority Critical patent/JP4483754B2/en
Publication of JP2007093314A publication Critical patent/JP2007093314A/en
Application granted granted Critical
Publication of JP4483754B2 publication Critical patent/JP4483754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子線プローブ微小分析装置(EPMA)や走査電子顕微鏡(SEM)、透過電子顕微鏡、蛍光X線分析装置など、X線を利用して分析を行うX線分析装置、XRD、X線CT、レントゲン装置等においてX線を集束したり平行化したりするために利用されるX線集束装置に関する。   The present invention relates to an X-ray analyzer, an XRD, and an X-ray that perform analysis using X-rays, such as an electron probe microanalyzer (EPMA), a scanning electron microscope (SEM), a transmission electron microscope, and a fluorescent X-ray analyzer. The present invention relates to an X-ray focusing apparatus used for focusing or collimating X-rays in a CT, an X-ray apparatus or the like.

電子線プローブ微小分析装置(EPMA)では、高エネルギーを有する微小径の電子線を励起線として試料に照射し、それによって試料の含有成分の内側電子が励起された際に外部に放出される固有X線(特性X線)を分析することにより、元素の同定や定量を行ったり、元素の分布を調べたりする。また、走査電子顕微鏡(SEM)では一般的には電子線の照射位置から発生した二次電子や反射電子を検出するが、最近は、エネルギー分散型X線検出部を併設することでX線分析を可能とした装置も開発されている。   The electron beam probe microanalyzer (EPMA) irradiates a sample with an electron beam with a small diameter having high energy as an excitation ray, and thereby the intrinsic electron emitted to the outside when the inner electrons of the components contained in the sample are excited. By analyzing X-rays (characteristic X-rays), elements are identified and quantified, and the distribution of elements is examined. In addition, the scanning electron microscope (SEM) generally detects secondary electrons and reflected electrons generated from the irradiation position of the electron beam, but recently, an X-ray analysis is performed by adding an energy dispersive X-ray detector. A device that enables this is also being developed.

この種のX線分析装置においてX線を集光したり平行化したりするために、従来より、マルチキャピラリ(ポリキャピラリと呼ばれることもある)X線レンズと呼ばれる一種のX線集束装置が知られている(特許文献1、2など参照)。図3はマルチキャピラリX線レンズの形態例を示す図、図4は点/平行型マルチキャピラリX線レンズの利用形態の一例を示す概略図、図5はマルチキャピラリX線レンズにおけるX線の伝達の原理図である。   In order to collect and collimate X-rays in this type of X-ray analyzer, a kind of X-ray focusing device called a multi-capillary (sometimes called polycapillary) X-ray lens has been known. (See Patent Documents 1 and 2, etc.). FIG. 3 is a diagram showing an example of a form of a multicapillary X-ray lens, FIG. 4 is a schematic diagram showing an example of a use form of a point / parallel type multi-capillary X-ray lens, and FIG. 5 is an X-ray transmission in the multicapillary X-ray lens. FIG.

マルチキャピラリX線レンズは例えば内径が2〜十数μm程度の微小径の硼珪酸ガラスから成る細管(キャピラリ)を多数(数百〜100万本程度)束ねた基本構造を有しており、図5に示すように、1本のキャピラリ22の内側に入射されたX線がそのガラス壁の内周面を臨界角以下の角度で以て全反射しながら進行してゆく原理を利用して、X線を効率良く案内するものである。図5(a)に示すようにキャピラリ22が直線状でも、図5(b)に示すようにキャピラリ22が湾曲状であっても、同じようにしてX線を案内することができる。   A multicapillary X-ray lens has a basic structure in which a large number of capillaries (about several hundred to one million) made of borosilicate glass having a small diameter of, for example, an inner diameter of about 2 to over 10 μm are bundled. As shown in FIG. 5, using the principle that X-rays incident on the inside of one capillary 22 travel while totally reflecting the inner peripheral surface of the glass wall at an angle less than the critical angle, X-rays are guided efficiently. Even if the capillary 22 is linear as shown in FIG. 5 (a) or the capillary 22 is curved as shown in FIG. 5 (b), X-rays can be guided in the same manner.

マルチキャピラリX線レンズには種々の形態があり、例えば図3(a)に示すマルチキャピラリX線レンズ20は、殆ど点とみなし得るX線源から出たX線を入射側端面で大きな立体角で以て取り込み、反対側の出射側端面から出たX線を一点に集束させる点/点型のものである。また図3(b)に示すマルチキャピラリX線レンズ21は、同様に入射側端面の略一点から出たX線を大きな立体角で以て取り込んだ後、出射側端面から平行ビームを出射する或いはその逆の経路とする点/平行型のものである。これ以外に、両端面がともに平行ビームを入射及び出射する平行/平行型もある。   There are various types of multicapillary X-ray lenses. For example, the multicapillary X-ray lens 20 shown in FIG. 3A has a large solid angle on the incident side end face for X-rays emitted from an X-ray source that can be regarded as almost a point. Thus, it is a point / point type that focuses and collects X-rays emitted from the opposite emission side end face at one point. Similarly, the multicapillary X-ray lens 21 shown in FIG. 3B emits a parallel beam from the exit side end surface after taking in X-rays emitted from substantially one point on the entrance side end surface with a large solid angle. The reverse path is a point / parallel type. In addition, there is a parallel / parallel type in which both end surfaces receive and emit parallel beams.

点/平行型マルチキャピラリX線レンズ21は例えば図4に示すような構成のX線分析装置に利用される。即ち、電子ビーム等の励起線の照射より試料5から放出された固有X線は、その励起線の照射領域付近に点焦点が来るように配置された点/平行型マルチキャピラリX線レンズ21により効率良く集光されて平行光化され、平板型の分光結晶6に照射される。X線は分光結晶6により波長分散されつつ反射され、この分散光がX線検出器7により検出される。この構成では、分光波長を走査する際には、分光結晶6が紙面に垂直な軸を中心に角度θずつ回転駆動され、X線検出器7も同一軸を中心にして分光結晶6の回転角θの2倍の角度2θを保つように回転駆動される。   The point / parallel type multi-capillary X-ray lens 21 is used in an X-ray analyzer configured as shown in FIG. 4, for example. That is, the intrinsic X-rays emitted from the sample 5 by the irradiation of the excitation beam such as an electron beam are generated by the point / parallel multicapillary X-ray lens 21 arranged so that the point focal point comes near the irradiation region of the excitation beam. The light is efficiently collected and collimated, and is irradiated onto the flat plate-type spectral crystal 6. X-rays are reflected while being wavelength-dispersed by the spectral crystal 6, and the dispersed light is detected by the X-ray detector 7. In this configuration, when the spectral wavelength is scanned, the spectral crystal 6 is rotationally driven by an angle θ about an axis perpendicular to the paper surface, and the X-ray detector 7 also rotates the rotational angle of the spectral crystal 6 about the same axis. It is rotationally driven so as to maintain an angle 2θ that is twice as large as θ.

しかしながら、マルチキャピラリX線レンズ21の平行端21bから出射したX線は厳密には全てが平行光ではなく、一部が拡散光となることが原理的に避けられない。即ち、図6に示すように、X線は1本のキャピラリ22の内壁面を全反射しながら進行するが、その反射角の最大は臨界角θである。そのため、キャピラリ22の端部からX線が出射する際に、光軸(キャピラリ22の中心線)Cに対し臨界角θの開き角度を有してX線が拡がる可能性がある。その結果、図7に示すように、点/平行型マルチキャピラリX線レンズ21の平行端21b側の端面から出射したX線は完全な平行光として進行するものもあるが、一部は図中に示すような臨界角θの立体角範囲に拡がるおそれがあり、それ故に、平行端21bの端面から距離tだけ離れた位置では、例えば理想的な平行光に対する照射領域B1よりも大きなサイズの照射領域B2にX線が当たることになる。   However, strictly speaking, all of the X-rays emitted from the parallel end 21b of the multicapillary X-ray lens 21 are not parallel light, and part of the X-ray is diffusive light in principle. That is, as shown in FIG. 6, X-rays travel while totally reflecting the inner wall surface of one capillary 22, but the maximum reflection angle is the critical angle θ. Therefore, when X-rays are emitted from the end of the capillary 22, the X-rays may spread with an opening angle of the critical angle θ with respect to the optical axis (center line of the capillary 22) C. As a result, as shown in FIG. 7, some X-rays emitted from the end face on the parallel end 21b side of the point / parallel type multicapillary X-ray lens 21 travel as completely parallel light, but some of them are shown in the figure. Therefore, at a position away from the end face of the parallel end 21b by a distance t, for example, irradiation with a size larger than that of the irradiation region B1 with respect to ideal parallel light may occur. The X-ray hits the area B2.

このように照射領域のサイズが大きくなると図4に示すように一部のX線が分光結晶6に当たらなくなり、X線検出器7に向かうX線強度が低下して検出感度や精度の悪化をもたらすおそれがある。特に、マルチキャピラリX線レンズ21の平行端21bと分光結晶6との距離が遠いようなX線光学系の配置においては、こうした問題は一層深刻になる。   When the size of the irradiation region increases in this way, as shown in FIG. 4, some X-rays do not hit the spectral crystal 6, and the X-ray intensity toward the X-ray detector 7 decreases and the detection sensitivity and accuracy deteriorate. There is a risk. In particular, in the arrangement of the X-ray optical system in which the distance between the parallel end 21b of the multicapillary X-ray lens 21 and the spectral crystal 6 is long, such a problem becomes more serious.

特公平7−11600号公報Japanese Examined Patent Publication No. 7-11600 特公平7−40080号公報Japanese Patent Publication No. 7-40080

本発明は上記課題を解決するために成されたものであり、その主な目的は、本来、平行光化されたX線を取得したい側の端面から出射するX線の照射領域のサイズがその端面のサイズよりも大きくなることを抑制し、特にその端面からの離間距離に拘わらずX線の照射領域のサイズをほぼ同一にすることができるX線集束装置を提供することである。   The present invention has been made to solve the above-mentioned problems, and the main purpose of the present invention is that the size of the irradiation region of X-rays emitted from the end face on the side where the X-rays converted into parallel light are originally desired to be acquired is It is an object to provide an X-ray focusing apparatus that can suppress the size of the end face from becoming larger than that of the end face, and can make the size of the X-ray irradiation region substantially the same regardless of the distance from the end face.

上記課題を解決するために成された本発明は、一点又は微小領域から出射したX線を集束して平行光化するために、それぞれがX線を案内する細管が多数束ねられた細管集合体から成るX線集束装置において、
前記細管集合体にあって平行なX線を出射する側の端は、径方向に最外周に位置する複数の細管が細管内部を通過するX線に対する全反射臨界角に相当する角度だけ該細管集合体の中心部側に指向するように屈曲され、それよりも内周側の細管もそれぞれの位置に応じて、全反射臨界角に相当する角度よりも小さい所定角度だけ中心部側に指向するように屈曲されることで、全体が絞られた形状を有することを特徴としている。
The present invention was made in order to solve the above-the order to you collimating and focusing the X-rays emitted from one point or small area, capillary collection, each bundled tubules number for guiding the X-rays In an X-ray focusing device consisting of a body,
End on the side of I De parallel X-rays In the said capillary assembly, by an angle which a plurality of capillaries positioned in the outermost periphery in the radial direction corresponds to the total reflection critical angle for X-rays passing through the inner tubular The capillary tube is bent so as to be directed toward the center of the capillary tube assembly, and the capillary tube on the inner peripheral side of the tube assembly is also moved toward the center by a predetermined angle smaller than the angle corresponding to the total reflection critical angle depending on the position. By being bent so as to be oriented, the whole has a narrowed shape.

従来のこの種のX線集束装置では、「平行なX線を入射又は出射する側の端面」において細管集合体を構成する全ての細管の端部は互いに平行に配置されていた。これに対し、本発明に係るX線集束装置では、「平行なX線を入射又は出射する側の端面」において、各細管は互いに平行に配置されているのではなく、最外周に位置にする細管が細管集合体全体としての光軸(ほぼ中心の細管の中心線)に向くように全反射臨界角の分だけ傾斜又は屈曲されており、それよりも内周側の細管も同様に上記光軸に近づく方向にそれぞれ傾斜又は屈曲されている。即ち、各細管内をX線が通過してその端面から出射する際に理論的に生じる可能性のあるX線の拡がりの分だけ光軸に近づく方向に出射するため、この端面の外側でのX線の照射範囲は端面の面積とほぼ同一になり、その照射領域のサイズは端面からの離間距離に依存しない。   In the conventional X-ray focusing apparatus of this type, the end portions of all the thin tubes constituting the thin tube assembly are arranged in parallel with each other on the “end surface on the side where parallel X-rays are incident or emitted”. On the other hand, in the X-ray focusing apparatus according to the present invention, in the “end surface on the side where parallel X-rays are incident or emitted”, the thin tubes are not arranged in parallel to each other but are positioned on the outermost periphery. The narrow tube is inclined or bent by the critical angle of total reflection so as to face the optical axis (substantially the center line of the thin tube) as a whole of the thin tube assembly. It is inclined or bent in the direction approaching the axis. That is, since the X-rays pass through each narrow tube and exit from the end face, the X-rays that may theoretically occur are emitted in the direction approaching the optical axis. The X-ray irradiation range is almost the same as the area of the end face, and the size of the irradiation area does not depend on the distance from the end face.

なお、ここで「全反射臨界角に相当する角度」とは、必ずしも臨界角と完全に一致する角度だけではなく、おおよそ臨界角に相当する角度を含むものとする。何故なら、完全に臨界角と一致していなくても臨界角に近い角度であれば、一致した場合と殆ど遜色ない効果が達成されるからである。   Here, the “angle corresponding to the total reflection critical angle” includes not only an angle that completely coincides with the critical angle, but also an angle that roughly corresponds to the critical angle. This is because even if the angle is not completely coincident with the critical angle, if the angle is close to the critical angle, an effect almost equal to that in the case of coincidence is achieved.

典型的な一態様として、本発明に係るX線集束装置では、前記細管集合体にあって平行なX線を出射する側の端面における各細管端部は、該端面から軸方向の外側に点焦点を有するように形成されている構成とすればよい。
As an exemplary embodiment, an X-ray focusing device according to the present invention, each capillary end in the end face on the side of I De parallel X-rays In the said capillary assembly, axially outward from the end surface What is necessary is just to set it as the structure formed so that it may have a point focus.

この構成では、一点又は微小領域から出射したX線を集束して平行光化する細管集合体(マルチキャピラリX線レンズ)であっても、構造上は点/平行型ではなく点/点型である。但し、X線の全反射臨界角(図6中のθ)は実際には非常に小さい(通常1°以下)から、平行X線を出射する端面の外側の点焦点は端面から非常に離れた所に位置することになる。 In this configuration, even one point or focused by collimating be that thin tube assemblies X-rays emitted from the minute area (multicapillary X-ray lens), structurally the point / point type rather than a point / parallel type It is. However, the total reflection critical angle of the X-ray (in FIG. 6 theta) from actually very small (typically 1 ° or less), the focal point of the outer end face that shines out of the parallel X-rays is very from the end face It will be located away.

このように本発明に係るX線集束装置によれば、平行X線を取得したい端面の外側でのX線の照射領域の拡がりを抑制できるので、例えば分光結晶などのX線光学素子に適切にX線を導入することができ、それによりX線の強度の低下を回避して分析感度や精度の向上に寄与する。   As described above, according to the X-ray focusing apparatus of the present invention, it is possible to suppress the expansion of the X-ray irradiation area outside the end face where parallel X-rays are desired to be acquired. X-rays can be introduced, thereby avoiding a decrease in the intensity of the X-rays and contributing to improvement in analysis sensitivity and accuracy.

以下、本発明に係るX線集束装置の一実施例について、図1、図2を参照しながら説明する。   An embodiment of the X-ray focusing apparatus according to the present invention will be described below with reference to FIGS.

図1は本実施例によるマルチキャピラリX線レンズの要部、つまり両端部の詳細構成図である。図1に示すマルチキャピラリX線レンズ1において、その左端部1aは図3(b)に示した点/平行型マルチキャピラリX線レンズの左端部(集束端)に相当し、その右端部1bは図3(b)に示した点/平行型マルチキャピラリX線レンズの右端部(平行端)に相当する。左端部1aは従来と同じであり、各キャピラリの中心線が左端部1aの外側の近傍の1点を通過するように各キャピラリの端部が絞られている。   FIG. 1 is a detailed configuration diagram of the main part, that is, both ends of the multicapillary X-ray lens according to the present embodiment. In the multicapillary X-ray lens 1 shown in FIG. 1, the left end 1a corresponds to the left end (focusing end) of the point / parallel multicapillary X-ray lens shown in FIG. 3B, and the right end 1b is This corresponds to the right end (parallel end) of the point / parallel multicapillary X-ray lens shown in FIG. The left end 1a is the same as the conventional one, and the end of each capillary is narrowed so that the center line of each capillary passes one point near the outside of the left end 1a.

一方、右端部1bは従来とは異なり、各キャピラリが互いに平行に束ねられているのではなく、最外周のキャピラリの中心線は臨界角θに相当する角度だけこのX線レンズ1の中心軸Aに指向するように内方に屈曲されている。そして、その最外周よりも内周側のキャピラリもそれぞれその位置に応じて、臨界角θに相当する角度よりも小さい所定の角度だけ中心線が中心軸Aに指向するように内方に屈曲されている。   On the other hand, the right end portion 1b is different from the conventional one in that the capillaries are not bundled in parallel with each other, but the center line of the outermost capillary is the central axis A of the X-ray lens 1 by an angle corresponding to the critical angle θ. It is bent inward so that it points to The capillaries on the inner peripheral side of the outermost periphery are also bent inward so that the center line is directed to the central axis A by a predetermined angle smaller than the angle corresponding to the critical angle θ, depending on the position. ing.

即ち、右端部1bも子細に見れば全体が絞られた形状となっている。但し、一般に臨界角θは非常に小さく、通常1°以下(例えば0.1°程度)であるため、この右端部1bにより形成される焦点は右端部1bの端面からかなり離れた位置にある。したがって、従来の図3(a)に示したような点/点型のマルチキャピラリX線レンズとはかなり異なる様相である。   That is, the right end portion 1b has a narrowed shape as a whole when viewed in detail. However, since the critical angle θ is generally very small and is usually 1 ° or less (for example, about 0.1 °), the focal point formed by the right end portion 1b is located at a position far away from the end face of the right end portion 1b. Therefore, it is quite different from the conventional point / point type multi-capillary X-ray lens as shown in FIG.

上記構成を有する本実施例のマルチキャピラリX線レンズ1は、右端部1bの最外周に位置するキャピラリから出射するX線の中で外側に拡がろうとするX線はちょうど中心軸Aに平行に進むことになる。したがって、右端部1bの端面全体から出射するX線の照射範囲は図1中の符号2で示す範囲となり、その端面の面積とほぼ同一になる。そのため、端面からの距離に関係なくX線照射範囲のサイズは同一に保たれる。厳密に言えば、例えば最外周のキャピラリの端面から出射して中心軸Aに向かって進むX線は最終的には中心軸Aを横切って反対側に飛び出ることになるから、端面から非常に離れた位置では照射範囲のサイズは大きくなる。しかしながら、上述したように臨界角θが小さいためにそうしたことは全く問題とならない。   In the multicapillary X-ray lens 1 of the present embodiment having the above-described configuration, the X-rays that are to spread outward among the X-rays emitted from the capillary located at the outermost periphery of the right end 1b are just parallel to the central axis A. Will go on. Therefore, the irradiation range of X-rays emitted from the entire end face of the right end portion 1b is a range indicated by reference numeral 2 in FIG. 1, and is almost the same as the area of the end face. Therefore, the size of the X-ray irradiation range is kept the same regardless of the distance from the end face. Strictly speaking, for example, X-rays emitted from the end face of the outermost capillary and traveling toward the central axis A will eventually jump out across the central axis A, so that they are very far from the end face. The size of the irradiation range becomes large at a certain position. However, since the critical angle θ is small as described above, this is not a problem at all.

本実施例のマルチキャピラリX線レンズ1をX線分析装置に利用することにより、図2に示すように、平板型分光結晶6に無駄なくX線を照射することができるようになる。したがって、X線検出器7に入射するX線の強度が増加し、高感度、高精度の分析が可能となる。   By using the multicapillary X-ray lens 1 of the present embodiment for an X-ray analyzer, it is possible to irradiate the plate-type spectral crystal 6 without waste as shown in FIG. Therefore, the intensity of X-rays incident on the X-ray detector 7 is increased, and analysis with high sensitivity and high accuracy becomes possible.

なお、上記実施例は本発明の一例であるから、本発明の趣旨の範囲で適宜変形、修正又は追加を行っても本願特許請求の範囲に包含されることは当然である。   It should be noted that the above embodiment is an example of the present invention, and it is obvious that any modification, correction, or addition as appropriate within the scope of the present invention is included in the scope of the claims of the present application.

本発明の一実施例であるX線集束装置の要部の構成図。The block diagram of the principal part of the X-ray focusing apparatus which is one Example of this invention. 本実施例のX線集束装置の応用例であるX線検査装置の概略構成図。The schematic block diagram of the X-ray inspection apparatus which is an application example of the X-ray focusing apparatus of a present Example. 従来知られているマルチキャピラリX線レンズの形態例を示す図。The figure which shows the example of a form of the conventionally known multicapillary X-ray lens. 従来のマルチキャピラリX線レンズを用いたX線検査装置の概略構成図。The schematic block diagram of the X-ray inspection apparatus using the conventional multicapillary X-ray lens. マルチキャピラリX線レンズにおけるX線の伝達の原理図。The principle figure of transmission of X-rays in a multicapillary X-ray lens. 従来のマルチキャピラリX線レンズの問題点を説明するための図。The figure for demonstrating the problem of the conventional multicapillary X-ray lens. 従来のマルチキャピラリX線レンズの問題点を説明するための図。The figure for demonstrating the problem of the conventional multicapillary X-ray lens.

符号の説明Explanation of symbols

1…マルチキャピラリX線レンズ
1a…左端部
1b…右端部
5…試料
6…分光結晶
7…X線検出器

DESCRIPTION OF SYMBOLS 1 ... Multicapillary X-ray lens 1a ... Left end part 1b ... Right end part 5 ... Sample 6 ... Spectral crystal 7 ... X-ray detector

Claims (2)

一点又は微小領域から出射したX線を集束して平行光化するために、それぞれがX線を案内する細管が多数束ねられた細管集合体から成るX線集束装置において、
前記細管集合体にあって平行なX線を出射する側の端は、径方向に最外周に位置する複数の細管が細管内部を通過するX線に対する全反射臨界角に相当する角度だけ該細管集合体の中心部側に指向するように屈曲され、それよりも内周側の細管もそれぞれの位置に応じて、全反射臨界角に相当する角度よりも小さい所定角度だけ中心部側に指向するように屈曲されることで、全体が絞られた形状を有することを特徴とするX線集束装置。
In order to you collimating and focusing the X-rays emitted from one point or small area, in each X-ray focusing device comprising a capillary numerous bundled capillary assembly for guiding the X-rays,
End on the side of I De parallel X-rays In the said capillary assembly, by an angle which a plurality of capillaries positioned in the outermost periphery in the radial direction corresponds to the total reflection critical angle for X-rays passing through the inner tubular The capillary tube is bent so as to be directed toward the center of the capillary tube assembly, and the capillary tube on the inner peripheral side of the tube assembly is also moved toward the center by a predetermined angle smaller than the angle corresponding to the total reflection critical angle depending on the position. An X-ray focusing apparatus characterized by being bent so as to be oriented and having a narrowed shape as a whole.
前記細管集合体にあって平行なX線を出射する側の端面における各細管端部は、該端面から軸方向の外側に点焦点を有するように形成されていることを特徴とする請求項1に記載のX線集束装置。 Each tubular end portion at the end face on the side of I De parallel X-rays In the said capillary assemblies claims, characterized in that it is formed so as to have a point focus on the outside in the axial direction from the end surface 2. The X-ray focusing apparatus according to 1.
JP2005281020A 2005-09-28 2005-09-28 X-ray focusing device Active JP4483754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281020A JP4483754B2 (en) 2005-09-28 2005-09-28 X-ray focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281020A JP4483754B2 (en) 2005-09-28 2005-09-28 X-ray focusing device

Publications (2)

Publication Number Publication Date
JP2007093314A JP2007093314A (en) 2007-04-12
JP4483754B2 true JP4483754B2 (en) 2010-06-16

Family

ID=37979219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281020A Active JP4483754B2 (en) 2005-09-28 2005-09-28 X-ray focusing device

Country Status (1)

Country Link
JP (1) JP4483754B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846497A (en) * 2010-04-29 2010-09-29 上海宏力半导体制造有限公司 Key size calibration method and device thereof
CN102013012A (en) * 2010-12-22 2011-04-13 中国政法大学 Latent fingerprint extraction spectrometer based on capillary X-ray converging lens
CN103698350B (en) * 2013-12-26 2016-03-30 北京师范大学 A kind of X-ray double spectrometer
JP6397690B2 (en) * 2014-08-11 2018-09-26 株式会社日立ハイテクノロジーズ X-ray transmission inspection apparatus and foreign object detection method

Also Published As

Publication number Publication date
JP2007093314A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4492507B2 (en) X-ray focusing device
US9418767B2 (en) X-ray focusing device
JP6851107B2 (en) X-ray analyzer
US7508907B2 (en) X-ray analysis apparatus
JP2014066731A (en) Fluorescent x-ray spectroscopy system and fluorescent x-ray spectroscopy method
JP4470816B2 (en) X-ray focusing device
JP4483754B2 (en) X-ray focusing device
JP4540509B2 (en) Fluorescence detection method, flow cell unit and flow cytometer
JP4837964B2 (en) X-ray focusing device
JP4900660B2 (en) X-ray focusing element and X-ray irradiation apparatus
JP4715345B2 (en) X-ray analyzer
US11467107B2 (en) X-ray analysis apparatus and x-ray generation unit
JP4706554B2 (en) X-ray spectrometer
JP4133923B2 (en) Polycapillary lens
JP5338483B2 (en) X-ray focusing device
JP4639971B2 (en) X-ray analyzer
JP4160124B2 (en) X-ray spectrometer having an analyzer crystal having a partially varying and partially constant radius of curvature
JP5347559B2 (en) X-ray analyzer
JP2010117240A (en) Fluorescence detection device
JP2005233670A (en) X-ray analyzer
JP2001201599A (en) Apparatus for guiding x-ray
JP2005249559A (en) X-ray concentrator
JP2017211290A (en) X-ray irradiation device
JP2006275621A (en) Analyzer
JP5646147B2 (en) Method and apparatus for measuring a two-dimensional distribution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R151 Written notification of patent or utility model registration

Ref document number: 4483754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4