JP5338483B2 - X-ray focusing device - Google Patents

X-ray focusing device Download PDF

Info

Publication number
JP5338483B2
JP5338483B2 JP2009128070A JP2009128070A JP5338483B2 JP 5338483 B2 JP5338483 B2 JP 5338483B2 JP 2009128070 A JP2009128070 A JP 2009128070A JP 2009128070 A JP2009128070 A JP 2009128070A JP 5338483 B2 JP5338483 B2 JP 5338483B2
Authority
JP
Japan
Prior art keywords
ray
parallel
rays
side end
capillary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009128070A
Other languages
Japanese (ja)
Other versions
JP2010276423A (en
Inventor
啓義 副島
壽朗 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2009128070A priority Critical patent/JP5338483B2/en
Publication of JP2010276423A publication Critical patent/JP2010276423A/en
Application granted granted Critical
Publication of JP5338483B2 publication Critical patent/JP5338483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To irradiate a micro-region on a sample with intense X-rays by improving focus blur at a focusing end of an MCX. <P>SOLUTION: In the MCX2, an X-ray incident edge 2a forms a parallel edge, an X-ray emitting edge 2c forms a parallel edge with the face area smaller than that of the X-ray incident edge 2a, and a bottleneck shape 2b on the way. Thereby, X-rays directed to the X-ray incident edge 2a from an X-ray source with a larger size exit from the X-ray emitting edge 2c as a parallel flux with a higher energy density and are directed to FZP3 arranged to share the same center axis. X rays from the X-ray source are effectively collected by the MCX2 to somewhat reduce the diameter and directed to FZP3 of a smaller diameter, and the convergence diameter of the X- rays is further reduced by the FZP3. Thereby, the X-rays is focused on an extremely narrow region. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、蛍光X線分析装置、XRD、X線CT、レントゲン装置などのX線を利用した装置においてX線を集束するために利用されるX線集束装置に関する。   The present invention relates to an X-ray focusing apparatus used for focusing X-rays in an apparatus using X-rays such as an X-ray fluorescence analyzer, XRD, X-ray CT, and X-ray apparatus.

試料上の微小領域の成分分析を行うために利用される微小部蛍光X線分析装置では、X線源から出射されたX線をごく小径に絞って試料に照射する必要がある。非特許文献1に記載の微小部蛍光X線分析装置では、上記目的のために、マルチキャピラリ(この文献では「ポリキャピラリ」と呼ばれているが、本明細書中ではより一般的な「マルチキャピラリ」との用語を用いる)X線レンズが使用されている。   In a micro fluorescent X-ray analyzer used for analyzing components in a micro area on a sample, it is necessary to irradiate the sample with X-rays emitted from an X-ray source with a very small diameter. In the micro fluorescent X-ray analyzer described in Non-Patent Document 1, for the above purpose, a multicapillary (referred to as “polycapillary” in this document, X-ray lenses are used (using the term “capillary”).

簡単にマルチキャピラリX線レンズ(以下「MCX」と略す)について説明する(特許文献1、2など参照)。図5はMCXの形態例を示す図、図6はMCXにおけるX線の伝達の原理図である。MCXは、内径が2〜十数μm程度の微小径の、例えば硼珪酸ガラスから成る細管(キャピラリ)を多数(数百〜100万本程度)束ねた基本構造を有しており、図6に示すように、1本のキャピラリ32の内側に入射されたX線がそのガラス壁の内周面を臨界角以下の角度で以て全反射しながら進行してゆく原理を利用して、X線を効率良く案内するものである。図6(a)に示すようにキャピラリ32が直線状でも、図6(b)に示すようにキャピラリ32が湾曲状であっても、同様にX線を案内することができる。   A multi-capillary X-ray lens (hereinafter abbreviated as “MCX”) will be briefly described (see Patent Documents 1 and 2, etc.). FIG. 5 is a diagram showing a form example of MCX, and FIG. 6 is a principle diagram of X-ray transmission in MCX. The MCX has a basic structure in which a large number of tubules (capillaries) made of, for example, borosilicate glass having an inner diameter of about 2 to several tens of μm are bundled. As shown in the figure, the X-rays that enter the inside of one capillary 32 travel on the inner peripheral surface of the glass wall while being totally reflected at an angle less than the critical angle. Is an efficient guide. Even if the capillary 32 is linear as shown in FIG. 6 (a) or the capillary 32 is curved as shown in FIG. 6 (b), X-rays can be guided in the same manner.

MCXには種々の形態があり、図5(a)に示すものは、殆ど点とみなし得るX線源から出たX線を入射側端面で大きな立体角で以て取り込み、反対側の出射側端面から出たX線を一点に集束させる点/点型のMCX30である。また図5(b)に示すものは、同様に入射側端面の略一点から出たX線を大きな立体角で以て取り込んだ後、出射側端面から平行ビームを出射する、或いはその逆の経路とする点/平行型のMCX31である。   There are various forms of MCX, and the one shown in FIG. 5 (a) captures X-rays emitted from an X-ray source that can be regarded as almost a point with a large solid angle at the incident side end face, and the opposite emission side. This is a point / point type MCX 30 that focuses X-rays emitted from the end face to one point. In the same way as shown in FIG. 5 (b), a parallel beam is emitted from the exit-side end face after taking in X-rays emitted from substantially one point on the entrance-side end face with a large solid angle, or vice versa. This is a point / parallel type MCX31.

上述したようにMCXはX線を高い効率で収集し案内することができるものの、こうして集めたX線を照射する面積を小さく絞るという点では必ずしも十分な性能が得られない。これは、1本のキャピラリ32の端面からX線が出射する際に、そのX線が最大、全反射臨界角の開き角度を有して拡がるためである。また、MCXの製造上の限界により、膨大な数のキャピラリの全ての光軸を完全に1点に収束させることは実際に不可能であるから、そうした要因による焦点ボケも起こる。このように理論上の要因と製造の限界による要因との両方によって、従来のMCXでの最小焦点サイズはせいぜい20〜30μm程度が限界であり、これより焦点サイズを小さくすることは困難であった。   As described above, although MCX can collect and guide X-rays with high efficiency, sufficient performance cannot always be obtained in terms of reducing the area to which the collected X-rays are irradiated. This is because, when X-rays are emitted from the end face of one capillary 32, the X-rays spread with a maximum opening angle of the total reflection critical angle. In addition, due to the manufacturing limitations of MCX, it is actually impossible to completely converge all the optical axes of a huge number of capillaries to one point. Thus, due to both theoretical factors and factors due to manufacturing limitations, the minimum focal spot size in the conventional MCX is limited to about 20 to 30 μm at most, and it is difficult to make the focal spot size smaller than this. .

こうした問題に対し、本願出願人は特許文献3において、MCXと絞り特性に優れたフレネルゾーンプレート(以下「FZP」と略す)との組み合わせによる新しいX線集束装置を提案している。FZPはニュートンリングの回折及び干渉を利用したレンズであり、加工精度を高めることで絞り径を非常に小さくすることができる反面、それ自体を大きなサイズとすることが難しく光(X線)を取り込む立体角が小さいという特性を持つ。これに対し、MCXでは、ごく小径にX線を絞ることは難しくても、FZPの外径サイズ(例えば1mm程度)以下にX線を絞ることは容易である。こうしたことから、MCXとFZPとの組み合わせは、両者のそれぞれの長所を活かし、逆に欠点をそれぞれが補い合う優れた組み合わせであると言える。   In order to solve these problems, the applicant of the present application has proposed a new X-ray focusing apparatus using a combination of MCX and a Fresnel zone plate (hereinafter abbreviated as “FZP”) having excellent aperture characteristics in Patent Document 3. FZP is a lens that uses Newton's ring diffraction and interference, and the aperture diameter can be made very small by increasing the processing accuracy, but it is difficult to make the size itself large, and light (X-rays) is captured. It has the characteristic that the solid angle is small. On the other hand, with MCX, it is easy to focus X-rays to an FZP outer diameter size (for example, about 1 mm) or less even if it is difficult to focus X-rays to a very small diameter. For these reasons, it can be said that the combination of MCX and FZP is an excellent combination that makes use of the advantages of both and conversely compensates for the defects.

特公平7−11600号公報Japanese Examined Patent Publication No. 7-11600 特公平7−40080号公報Japanese Patent Publication No. 7-40080 特開2007−93316号公報JP 2007-93316 A

「エネルギー分散型微小部蛍光X線分析装置μEDXシリーズ」、[online]、株式会社島津製作所、[平成21年4月26日検索]、インターネット<URL: http://www.shimadzu.co.jp/surface/products/m_edx/index.html>"Energy dispersive micro fluorescent X-ray analyzer μEDX series", [online], Shimadzu Corporation, [Search April 26, 2009], Internet <URL: http://www.shimadzu.co.jp /surface/products/m_edx/index.html>

しかしながら、実際に入手が容易なFZPでは、図7(a)に示すように、中心軸に平行に入射するX線は効率良く焦点Fに集束されるものの、X線が中心軸に対して或る程度以上の角度をもって入射する場合、その集光効率はかなり低い。そのため、MCXでX線をいかに効率良く導いても、所望の焦点Fに照射されるX線の強度は低くなる。   However, in FZP that is actually easy to obtain, as shown in FIG. 7A, although X-rays incident parallel to the central axis are efficiently focused on the focal point F, When the light is incident at an angle of a certain degree or more, the light collection efficiency is considerably low. Therefore, no matter how efficiently the X-rays are guided by MCX, the intensity of the X-rays irradiated to the desired focal point F becomes low.

入射X線の許容入射角度を拡げるにはFZPを薄くすることが有効である。ところが、FZPを薄くした場合、大きなエネルギーを持つX線は輪帯パターンで干渉を生ずることなくそのまま透過してしまうため、焦点FにX線が集まらず、大きなサイズのX線スポットが形成されてしまう(図7(b)参照)。もちろん、FZPを用いたことにより焦点FにおけるX線強度はその周囲よりも大きくなるから、焦点Fの周囲にX線が照射されても問題がない用途であれば上記のような構成は有用であるが、微小部蛍光X線分析装置などの用途では、目的とする微小領域の外側にX線が当たらないようにする必要があり、アパーチャなどにより不要なX線を遮蔽する必要が生じ、X線の利用効率も悪い。   It is effective to make the FZP thinner in order to increase the allowable incident angle of incident X-rays. However, when the FZP is made thin, X-rays having large energy are transmitted as they are without causing interference in the zonal pattern, so that X-rays are not collected at the focal point F, and a large-sized X-ray spot is formed. (See FIG. 7B). Of course, the use of FZP makes the X-ray intensity at the focal point F larger than the surrounding area. Therefore, the above configuration is useful for applications where there is no problem even if the X-ray is irradiated around the focal point F. However, in applications such as a micro fluorescent X-ray analyzer, it is necessary to prevent the X-ray from hitting the outside of the target micro area, and it is necessary to shield unnecessary X-rays with an aperture or the like. The efficiency of wire use is also poor.

本発明は上記課題を解決するために成されたものであり、MCXとFZPとを用いたX線集束装置において、X線の焦点サイズを小さく絞り、且つ高い集光効率を達成することを目的としている。   The present invention has been made to solve the above-described problems, and aims to achieve a high light collection efficiency while reducing the X-ray focal spot size in an X-ray focusing apparatus using MCX and FZP. It is said.

上記課題を解決するためになされた第1発明に係るX線集束装置は、
a)多数の束ねられたX線案内用の細管から成り、X線入射側端部とX線出射側端部との間の少なくとも一部に各細管が平行に配置された平行部を有するとともに、前記X線出射側端部は各細管が平行に配置され且つその端面の面積が前記平行部の断面積よりも小さい平行端となっており、前記平行部と前記X線出射側端部との間で各細管の内径が徐々に縮小するように形成されてなる細管集合体と、
b)前記細管集合体のX線出射側端部の外側に、該細管集合体の中心軸と中心軸が一致するように配置されたフレネルゾーンプレートと、
を備えることを特徴としている。
An X-ray focusing apparatus according to the first invention made to solve the above problems is
a) a plurality of bundled X-ray guiding thin tubes having a parallel portion in which each thin tube is arranged in parallel at least at a part between the X-ray incident side end portion and the X-ray emission side end portion; The X-ray emission side end portion is a parallel end in which the thin tubes are arranged in parallel and the area of the end surface is smaller than the cross-sectional area of the parallel portion, and the parallel portion and the X-ray emission side end portion a capillary assembly inner diameter of the capillary is formed so as to reduce gradually between,
b) A Fresnel zone plate disposed outside the X-ray emission side end of the capillary assembly so that the central axis of the capillary assembly coincides with the central axis;
It is characterized by having.

また上記課題を解決するためになされた第2発明に係るX線集束装置は、
a)多数の束ねられたX線案内用の細管から成り、X線出射側端部はその外方の一点又は点とみなし得る微小領域に焦点を持つ集束端である細管集合体であって、且つ前記集束端にあって最外周に位置する細管の軸と当該細管集合体の中心軸とのなす角度が1°以下である超長焦点の細管集合体と、
b)前記細管集合体のX線出射側端部の外側に該細管集合体の中心軸と中心軸が一致するように配置されたフレネルゾーンプレートと、
を備えることを特徴としている。
An X-ray focusing apparatus according to the second invention, which has been made to solve the above problems,
a) It is composed of a large number of bundled X-ray guiding thin tubes, and the X-ray emission side end portion is a tube tube assembly that is a focusing end having a focal point at a minute region that can be regarded as one point or a point outside thereof. And an ultra-long focal tube assembly having an angle of 1 ° or less between the axis of the tube located on the outermost periphery at the focusing end and the center axis of the tube assembly;
b) a Fresnel zone plate disposed outside the X-ray emission side end of the capillary tube assembly so that the central axis of the capillary tube assembly coincides with the central axis;
It is characterized by having.

細管集合体(マルチキャピラリX線レンズ)では、上述したように、1本の細管(キャピラリ)の内壁面をX線が全反射を繰り返すことで進行する。細管内壁へX線が当たる角度が全反射臨界角以下でありさえすれば、細管は屈曲した形状であってもよく、その内径が徐々に縮小するものであってもよい。   In the capillary tube assembly (multi-capillary X-ray lens), as described above, the X-ray proceeds on the inner wall surface of one capillary tube (capillary) by repeating total reflection. As long as the angle at which X-rays hit the inner wall of the thin tube is equal to or less than the total reflection critical angle, the thin tube may be bent or the inner diameter thereof may be gradually reduced.

そこで、第1発明に係るX線集束装置では、少なくとも途中に平行部を有するとともに一方の端部が平行端であって、その平行端の端面の面積が上記平行部の断面積よりも小さく、且つその平行端における各細管の内径が上記平行部における各細管の内径よりも小さく形成されている細管集合体を用い、その断面積の小さな平行端をX線出射端部とする。この細管集合体の他方の端部、つまりX線入射端部は、集束端、平行端のいずれでもよい。特にX線源のサイズが或る程度大きい場合には、X線入射側端部を上記平行部が延伸された平行端としておくことにより、X線源から出射されたX線を効率良く受けることができる。   Therefore, in the X-ray focusing apparatus according to the first aspect of the invention, at least in the middle there is a parallel part and one end is a parallel end, and the area of the end face of the parallel end is smaller than the cross-sectional area of the parallel part, A narrow tube assembly in which the inner diameter of each thin tube at the parallel end is smaller than the inner diameter of each thin tube at the parallel portion is used, and the parallel end having a small cross-sectional area is defined as an X-ray emission end portion. The other end of this capillary tube assembly, that is, the X-ray incident end may be either a focusing end or a parallel end. In particular, when the size of the X-ray source is somewhat large, the X-ray incident side end portion is set as the parallel end where the parallel portion is extended so that X-rays emitted from the X-ray source can be received efficiently. Can do.

例えば、或る程度大きなサイズのX線源から出射されたX線が平行端であるX線入射端部から各細管に導入されると、X線は各細管内を効率よく(少ない損失で)案内され、平行端であるX線出射端部の端面から略平行なX線束として出射する。X線出射端部の端面面積はX線入射端部の端面面積よりも小さいから、X線出射端部から出射するX線の光束密度はX線入射端部に入射したX線の光束密度よりも大きくなる。X線出射端部の外側に配設されたフレネルゾーンプレートにはほぼ平行で且つ光束密度が高いX線束が入射するので、少ない損失でフレネルゾーンプレートの構造などに依存する焦点に効率よくX線が集束される。   For example, when X-rays emitted from an X-ray source having a certain size are introduced into each capillary tube from an X-ray incident end that is a parallel end, the X-rays are efficiently (with little loss) in each capillary tube. The light is guided and emitted as a substantially parallel X-ray bundle from the end face of the X-ray emission end which is a parallel end. Since the end face area of the X-ray exit end is smaller than the end face area of the X-ray entrance end, the X-ray flux density emitted from the X-ray exit end is greater than the X-ray flux density incident on the X-ray entrance end. Also grows. Since the X-ray flux that is almost parallel and has high luminous flux is incident on the Fresnel zone plate arranged outside the X-ray emission end, X-rays can be efficiently focused on the focal point that depends on the structure of the Fresnel zone plate with little loss. Are focused.

一方、第2発明に係るX線集束装置では、X線出射端が集束端である細管集合体が用いられるが、その集束端の焦点は端面から非常に離れた位置にある。そのため、X線出射端の外側に配設されたフレネルゾーンプレートに入射するX線はほぼ平行束であるとみなせ、第1発明と同様に、少ない損失でフレネルゾーンプレートの構造などに依存する焦点に効率よくX線が集束される。   On the other hand, in the X-ray focusing apparatus according to the second aspect of the invention, a capillary tube assembly whose X-ray emission end is the focusing end is used, but the focal point of the focusing end is at a position very far from the end face. Therefore, the X-rays incident on the Fresnel zone plate disposed outside the X-ray emission end can be regarded as a substantially parallel bundle, and the focal point depends on the structure of the Fresnel zone plate with a small loss, as in the first invention. X-rays are efficiently focused.

したがって第1及び第2発明に係るX線集束装置によれば、例えばX線源から出射されたX線を効率良く収集することでX線強度を高め、それをごく微小な領域に集中的に照射することができる。それにより、例えば同じX線源を用いてもX線照射領域における単位面積当たりのX線強度を従来に比べてかなり大きくすることができ、その微小領域に存在する物質とX線との相互作用(透過、反射、吸収等)による情報を高い感度及び精度で検出することができるようになる。   Therefore, according to the X-ray focusing apparatus according to the first and second inventions, for example, X-ray intensity emitted from an X-ray source is efficiently collected to increase the X-ray intensity and concentrated in a very small area. Can be irradiated. Thereby, for example, even if the same X-ray source is used, the X-ray intensity per unit area in the X-ray irradiation region can be considerably increased as compared with the conventional case, and the interaction between the substance existing in the minute region and X-rays can be achieved. Information by (transmission, reflection, absorption, etc.) can be detected with high sensitivity and accuracy.

また、フレネルゾーンプレートに入射するX線はほぼ平行束となるので、フレネルゾーンプレートを或る程度厚くすることができる。そのため、X線のエネルギーが高くてもフレネルゾーンプレートをそのまま透過してしまうことを防止でき、所望の微小領域の外側にX線が当たることを回避することができる。それによって、例えばこのX線集束装置を微小部蛍光X線分析装置に用いることで、微小領域以外の部位の不所望の蛍光X線や二次電子などの発生を防止することができ、成分分布の空間分解能の向上などを達成することができる。   Further, since the X-rays incident on the Fresnel zone plate are substantially parallel bundles, the Fresnel zone plate can be made somewhat thick. Therefore, even if the energy of the X-ray is high, it can be prevented from being transmitted through the Fresnel zone plate as it is, and it can be avoided that the X-ray hits outside a desired minute region. Thereby, for example, by using this X-ray focusing apparatus for a micro fluorescent X-ray analyzer, generation of undesired fluorescent X-rays and secondary electrons in parts other than the micro area can be prevented, and the component distribution Improvement of the spatial resolution can be achieved.

本発明の第1実施例であるX線集束装置の要部の構成図。The block diagram of the principal part of the X-ray focusing apparatus which is 1st Example of this invention. 第1実施例のX線集束装置を用いたX線検査装置の概略構成図。The schematic block diagram of the X-ray inspection apparatus using the X-ray focusing apparatus of 1st Example. 本発明の第2実施例であるX線集束装置の要部の構成図。The block diagram of the principal part of the X-ray focusing apparatus which is 2nd Example of this invention. 第1及び第2実施例のX線集束装置の効果を説明するための図。The figure for demonstrating the effect of the X-ray focusing apparatus of 1st and 2nd Example. 一般的なマルチキャピラリX線レンズの形態例を示す図。The figure which shows the example of a form of a general multicapillary X-ray lens. マルチキャピラリX線レンズにおけるX線の伝達の原理図。The principle figure of transmission of X-rays in a multicapillary X-ray lens. 従来のX線集束装置の問題点を説明するための図。The figure for demonstrating the problem of the conventional X-ray focusing apparatus.

[第1実施例]
本発明に係るX線集束装置の一実施例(第1実施例)について、図1、図2、及び図4を参照しながら説明する。
[First embodiment]
An embodiment (first embodiment) of an X-ray focusing apparatus according to the present invention will be described with reference to FIGS. 1, 2, and 4. FIG.

図1は第1実施例のX線集束装置の要部の構成図、図2は第1実施例のX線集束装置を用いたX線検査装置の概略構成図、図4は第1実施例(及び後述の第2実施例)のX線集束装置の効果を説明するための図である。   FIG. 1 is a configuration diagram of a main part of an X-ray focusing apparatus of the first embodiment, FIG. 2 is a schematic configuration diagram of an X-ray inspection apparatus using the X-ray focusing apparatus of the first embodiment, and FIG. 4 is a first embodiment. It is a figure for demonstrating the effect of the X-ray focusing apparatus of (and 2nd Example mentioned later).

図1に示すように、第1実施例によるX線集束装置1は、両端部2a、2cが平行端である平行/平行型のMCX(本発明における細管集合体)2と、FZP3と、を含む。MCX2のX線入射側の端部(第1平行端)2aの端面の直径はφ1、X線出射側の端部(第2平行端)2cの端面の直径はφ1よりも小さいφ2であり、X線入射側端部2aからX線出射側端部2cに向かう途中で連続的に外径が縮小するボトルネック形状部2bとなっている。このボトルネック形状部2bでは、各キャピラリの内径は徐々に縮小しており、且つ、外周側に位置するキャピラリはMCX2の中心軸に向かうように徐々に屈曲している。   As shown in FIG. 1, the X-ray focusing apparatus 1 according to the first embodiment includes a parallel / parallel type MCX (capillary tube assembly in the present invention) 2 having both ends 2a and 2c being parallel ends, and an FZP3. Including. The diameter of the end face of MCX2 on the X-ray incident side (first parallel end) 2a is φ1, and the diameter of the end face of the X-ray emission side end (second parallel end) 2c is φ2 smaller than φ1, The bottle neck shape portion 2b has an outer diameter that continuously decreases from the X-ray incident side end portion 2a toward the X-ray emission side end portion 2c. In the bottleneck shape portion 2b, the inner diameter of each capillary is gradually reduced, and the capillary located on the outer peripheral side is gradually bent toward the central axis of the MCX2.

FZP3の外径(厳密にはX線を集束可能な有効外径)はMCX2のX線出射側端部2cの外径(厳密には最外周に位置するキャピラリの外側の径)よりも大きく、MCX2のX線出射側端部2cの中心軸(多数のキャピラリの束の中心部に位置するキャピラリの光軸と考えることができる)と中心軸が一致するようにFZP3は配置されている。   The outer diameter of FZP3 (strictly speaking, the effective outer diameter capable of focusing X-rays) is larger than the outer diameter of the X-ray emission side end portion 2c of MCX2 (strictly speaking, the outer diameter of the capillary located at the outermost periphery) The FZP 3 is arranged so that the central axis coincides with the central axis of the X-ray emission side end 2c of the MCX 2 (which can be considered as the optical axis of the capillary located at the central part of a bundle of many capillaries).

図2に示すように、第1実施例のX線集束装置1を用いたX線検査装置では、大きなサイズのX線源12と試料台10上に載置された検査対象物11との間にX線集束装置1が設置され、X線源12から出射した一次X線はこのX線集束装置1により検査対象物11に効率良く且つごく小径に絞って照射される。これに応じて検査対象物11から放出された二次X線(蛍光X線)はX線検出器13により検出され、その検出信号に応じて検査対象物11上のX線照射部位の情報(例えば画像)が得られる。もちろん、検出側にもMCXなどを設けてもよい。   As shown in FIG. 2, in the X-ray inspection apparatus using the X-ray focusing apparatus 1 of the first embodiment, between the X-ray source 12 having a large size and the inspection object 11 placed on the sample stage 10. The X-ray focusing apparatus 1 is installed, and the primary X-rays emitted from the X-ray source 12 are efficiently irradiated to the inspection object 11 with a very small diameter by the X-ray focusing apparatus 1. In response to this, secondary X-rays (fluorescence X-rays) emitted from the inspection object 11 are detected by the X-ray detector 13, and information on the X-ray irradiation site on the inspection object 11 according to the detection signal ( For example, an image) is obtained. Of course, an MCX or the like may be provided on the detection side.

X線源12から出射したX線はMCX2のX線入射側端部2aから各キャピラリに効率良く取り込まれ、各キャピラリの内部を全反射しながらX線出射側端部2cに案内される。この間、各キャピラリの内径は途中で徐々に小さくなるほか、多くのキャピラリは徐々に屈曲するが、キャピラリの内壁面にX線が当たる角度が全反射臨界角以下になるようにMCX2の構造を定めておくことにより、殆ど損失なくX線をX線出射側端部2cまで案内することができる。損失が殆どない場合、X線入射側端部2aで各キャピラリに導入されたX線は、X線入射側端部2aの断面面積とX線出射側端部2cの断面面積との比に応じて密度が上がる。つまり、前者の面積がA1、後者の面積がA2であれば、X線出射側端部2cから出射するX線の光束密度は入射時の光束密度のA1/A2倍になる。   X-rays emitted from the X-ray source 12 are efficiently taken into the capillaries from the X-ray incident side end 2a of MCX2, and are guided to the X-ray emission side end 2c while totally reflecting the inside of each capillary. During this time, the inside diameter of each capillary gradually decreases along the way, and many capillaries gradually bend, but the MCX2 structure is determined so that the angle at which the X-ray hits the inner wall of the capillary is less than the total reflection critical angle. By doing so, the X-ray can be guided to the X-ray emission side end portion 2c with almost no loss. When there is almost no loss, the X-rays introduced into the capillaries at the X-ray incident side end 2a depend on the ratio between the cross-sectional area of the X-ray incident side end 2a and the cross-sectional area of the X-ray emission side end 2c. Increase the density. That is, if the former area is A1 and the latter area is A2, the X-ray beam density emitted from the X-ray emission side end 2c is A1 / A2 times the beam density at the time of incidence.

そしてX線出射側端部2cにおいて各キャピラリから出射されたX線は、略平行なX線束としてそのほぼ全てが小径のFZP3に入射する。上述したように高い光束密度でFZP3に略平行入射したX線はFZP3で回折されて焦点Fに効率良く集束される。   Then, almost all of the X-rays emitted from the capillaries at the X-ray emission side end 2c are incident on the small-diameter FZP 3 as a substantially parallel X-ray bundle. As described above, the X-rays incident on the FZP 3 at a high luminous flux density substantially in parallel are diffracted by the FZP 3 and are efficiently focused on the focal point F.

上記のような作用・効果は図4により容易に理解できる。図4は横軸に照射X線の横への拡がり、縦軸にX線強度をとった模式的なグラフである。即ち、図5(b)に示したような一般的なMCXの集束端から出射された場合には、図4中のAに示すようになり、X線をあまり絞ることができず照射X線の拡がりは相対的に大きい(最小でも20〜30μm程度)。これに対し、第1実施例の構成では、効率良く収集したX線を小さく絞って照射することができるので、図4中のBに示すようになる。即ち、従来に比べて照射X線を小さく絞ることができるとともに照射全X線エネルギーも多くなるので、高い空間分解能と高い感度とを両立させることができる。   The above operations and effects can be easily understood with reference to FIG. FIG. 4 is a schematic graph in which the horizontal axis indicates the lateral spread of irradiated X-rays and the vertical axis indicates the X-ray intensity. That is, when the light is emitted from a general MCX focusing end as shown in FIG. 5B, it becomes as shown by A in FIG. Is relatively large (at least about 20-30 μm). On the other hand, in the configuration of the first embodiment, the X-rays collected efficiently can be irradiated while being narrowed down, and therefore, as shown in B in FIG. That is, the irradiation X-rays can be reduced to a smaller size than before, and the total irradiation X-ray energy can be increased, so that both high spatial resolution and high sensitivity can be achieved.

なお、上記実施例ではMCXのX線入射端部を平行端としたが、これはX線源が或る程度以上のサイズを有する場合に有用である。X線源がほぼ1点とみなせる程度の大きさを有するもので、そこから放射状にX線が出射するような場合には、X線入射端部が点焦点を有する集束端であるMCXを用いてもよい。即ち、ここで用いるMCXは平行/平行型、又は点/平行型であり、且つ両端部の途中で連続的に外径がボトルネック状に絞られた形状を有するものである。   In the above embodiment, the X-ray incident end of the MCX is a parallel end, but this is useful when the X-ray source has a certain size or more. When the X-ray source has a size that can be regarded as one point, and X-rays are emitted radially from the X-ray source, MCX, which is a converging end having a point focus at the X-ray incident end, is used. May be. That is, the MCX used here is a parallel / parallel type or a point / parallel type, and has a shape in which the outer diameter is continuously reduced to a bottleneck shape in the middle of both ends.

[第2実施例]
本発明に係るX線集束装置の他の実施例(第2実施例)について、図3を参照しながら説明する。図3は第2実施例のX線集束装置の要部の構成図である。
[Second Embodiment]
Another embodiment (second embodiment) of the X-ray focusing apparatus according to the present invention will be described with reference to FIG. FIG. 3 is a configuration diagram of a main part of the X-ray focusing apparatus of the second embodiment.

この実施例のX線集束装置において第1実施例と異なるのは、FZP3の手前に配置されるMCX20の構造である。即ち、第1実施例におけるMCX2はX線出射端部が平行端であったのに対し、この実施例におけるMCX20ではX線出射端部20cが集束端である。但し、そのX線出射側端部20cの焦点距離は非常に長い。各キャピラリから出射するX線の中心軸とMCX20自体の中心軸とのなす角度はキャピラリの位置(中心軸からの距離)により相違するが、最大でも(つまり最外周に位置するキャピラリから出射するX線の中心軸に対する角度は)1°以下となっている。そのため、X線出射側端部20cは集束端ではあるものの、その端面から出射してFZP3に入射するX線はほぼ平行束であるとみなせる。それにより、第1実施例と同様に、FZP3で高い効率でX線を焦点Fに集束させることができ、しかもその周りにX線の漏れを殆ど生じない。   The X-ray focusing apparatus of this embodiment differs from the first embodiment in the structure of the MCX 20 that is arranged in front of the FZP 3. That is, the MCX2 in the first embodiment has a parallel end at the X-ray exit end, whereas the MCX20 in this embodiment has the X-ray exit end 20c as the focusing end. However, the focal length of the X-ray emission side end 20c is very long. The angle formed between the central axis of the X-rays emitted from each capillary and the central axis of the MCX 20 itself varies depending on the position of the capillary (distance from the central axis), but at most (that is, X emitted from the capillary located on the outermost periphery) The angle with respect to the central axis of the line is 1 ° or less. Therefore, although the X-ray emission side end portion 20c is a converging end, the X-rays emitted from the end face and entering the FZP 3 can be regarded as a substantially parallel bundle. Thereby, as in the first embodiment, X-rays can be focused on the focal point F with high efficiency by FZP3, and leakage of X-rays hardly occurs around the X-rays.

即ち、第1及び第2実施例のX線集束装置によれば、MCX2、20によりX線を効率よく収集してその集光径を或る程度絞って実質的に平行束として小径のFZP3に無駄なく導入し、FZP3によりX線をさらに絞って例えば検査対象物11上のごく微小な領域に照射することができる。このようにして、X線源12で発生するX線の強度がそれほど大きくなくても、ごく微小な領域に高い強度のX線を照射することができる。   That is, according to the X-ray focusing apparatus of the first and second embodiments, the X-rays are efficiently collected by the MCX 2 and 20, and the condensed diameter is reduced to a certain extent to form a substantially parallel bundle into a small-diameter FZP3. It can be introduced without waste, and the X-ray can be further focused by FZP3, for example, to irradiate a very small area on the inspection object 11. In this way, even if the intensity of X-rays generated by the X-ray source 12 is not so high, it is possible to irradiate a very small area with high-intensity X-rays.

なお、上記実施例はいずれも本発明の一例であるから、本発明の趣旨の範囲で適宜変形、修正又は追加を行っても本願特許請求の範囲に包含されることは当然である。   In addition, since the said Example is an example of this invention, even if it changes suitably in the range of the meaning of this invention, correction, or addition, it is natural that it is included in the claim of this application.

1…X線集束装置
10…試料台
11…検査対象物
12…X線源
13…X線検出器
2、20…マルチキャピラリX線レンズ(MCX)
2a、20a…X線入射側端部
2c、20c…X線出射側端部
2b…ボトルネック形状部
3…フレネルゾーンプレート(FZP)
DESCRIPTION OF SYMBOLS 1 ... X-ray focusing apparatus 10 ... Sample stand 11 ... Test object 12 ... X-ray source 13 ... X-ray detector 2, 20 ... Multicapillary X-ray lens (MCX)
2a, 20a ... X-ray incident side end 2c, 20c ... X-ray emission side end 2b ... Bottleneck shape part 3 ... Fresnel zone plate (FZP)

Claims (3)

a)多数の束ねられたX線案内用の細管から成り、X線入射側端部とX線出射側端部との間の少なくとも一部に各細管が平行に配置された平行部を有するとともに、前記X線出射側端部は各細管が平行に配置され且つその端面の面積が前記平行部の断面積よりも小さい平行端となっており、前記平行部と前記X線出射側端部との間で各細管の内径が徐々に縮小するように形成されてなる細管集合体と、
b)前記細管集合体のX線出射側端部の外側に、該細管集合体の中心軸と中心軸が一致するように配置されたフレネルゾーンプレートと、
を備えることを特徴とするX線集束装置。
a) a plurality of bundled X-ray guiding thin tubes having a parallel portion in which each thin tube is arranged in parallel at least at a part between the X-ray incident side end portion and the X-ray emission side end portion; The X-ray emission side end portion is a parallel end in which the thin tubes are arranged in parallel and the area of the end surface is smaller than the cross-sectional area of the parallel portion, and the parallel portion and the X-ray emission side end portion a capillary assembly inner diameter of the capillary is formed so as to reduce gradually between,
b) A Fresnel zone plate disposed outside the X-ray emission side end of the capillary assembly so that the central axis of the capillary assembly coincides with the central axis;
An X-ray focusing apparatus comprising:
請求項1に記載のX線集束装置であって、
前記細管集合体のX線入射側端部は前記平行部が延伸された平行端であることを特徴とするX線集束装置。
The X-ray focusing apparatus according to claim 1,
The X-ray focusing apparatus is characterized in that the X-ray incident side end portion of the narrow tube assembly is a parallel end obtained by extending the parallel portion.
a)多数の束ねられたX線案内用の細管から成り、X線出射側端部はその外方の一点又は点とみなし得る微小領域に焦点を持つ集束端である細管集合体であって、且つ前記集束端にあって最外周に位置する細管の軸と当該細管集合体の中心軸とのなす角度が1°以下である超長焦点の細管集合体と、
b)前記細管集合体のX線出射側端部の外側に該細管集合体の中心軸と中心軸が一致するように配置されたフレネルゾーンプレートと、
を備えることを特徴とするX線集束装置。
a) It is composed of a large number of bundled X-ray guiding thin tubes, and the X-ray emission side end portion is a tube tube assembly that is a focusing end having a focal point at a minute region that can be regarded as one point or a point outside thereof. And an ultra-long focal tube assembly having an angle of 1 ° or less between the axis of the tube located on the outermost periphery at the focusing end and the center axis of the tube assembly;
b) a Fresnel zone plate disposed outside the X-ray emission side end of the capillary tube assembly so that the central axis of the capillary tube assembly coincides with the central axis;
An X-ray focusing apparatus comprising:
JP2009128070A 2009-05-27 2009-05-27 X-ray focusing device Active JP5338483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009128070A JP5338483B2 (en) 2009-05-27 2009-05-27 X-ray focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009128070A JP5338483B2 (en) 2009-05-27 2009-05-27 X-ray focusing device

Publications (2)

Publication Number Publication Date
JP2010276423A JP2010276423A (en) 2010-12-09
JP5338483B2 true JP5338483B2 (en) 2013-11-13

Family

ID=43423526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009128070A Active JP5338483B2 (en) 2009-05-27 2009-05-27 X-ray focusing device

Country Status (1)

Country Link
JP (1) JP5338483B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11467103B2 (en) 2019-03-29 2022-10-11 Applied Science Laboratory Co., Ltd. X-ray analyzer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881347B (en) * 2012-10-15 2015-05-20 中国科学院上海应用物理研究所 Method for focusing cylindrical wave line source into point light spot by using zone plate
CN105759298B (en) * 2016-03-28 2018-10-09 北京师范大学 Combined type is sliced X-ray and regulates and controls device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711600B2 (en) * 1988-07-08 1995-02-08 株式会社島津製作所 X-ray concentrator
JP2001083112A (en) * 1999-09-14 2001-03-30 Jeol Ltd Photoelectron spectroscopic device
JP4492507B2 (en) * 2005-09-28 2010-06-30 株式会社島津製作所 X-ray focusing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11467103B2 (en) 2019-03-29 2022-10-11 Applied Science Laboratory Co., Ltd. X-ray analyzer

Also Published As

Publication number Publication date
JP2010276423A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP5326987B2 (en) X-ray focusing device
JP4492507B2 (en) X-ray focusing device
JP2013528804A (en) Hybrid X-ray optical instrument and method
EP3790025B1 (en) X-ray analyzer
JPH11502933A (en) Diversity controllable multi-channel total internal reflection optics
CN106996941B (en) X-ray fluorescence analysis device and analysis and detection method thereof
JP5338483B2 (en) X-ray focusing device
JP4470816B2 (en) X-ray focusing device
JP4900660B2 (en) X-ray focusing element and X-ray irradiation apparatus
JP4837964B2 (en) X-ray focusing device
JP4483754B2 (en) X-ray focusing device
JP2009236622A (en) High-resolution x-ray microscopic apparatus with fluorescent x-ray analysis function
JP4133923B2 (en) Polycapillary lens
JP2010197229A (en) Fluorescent x-ray analyzer
JP4639971B2 (en) X-ray analyzer
JP2005249559A (en) X-ray concentrator
JP2007309649A (en) X-ray spectrometer
JP2016080607A (en) X-ray irradiation device
JP2011053096A (en) Neutron optical element
JP2010197187A (en) X-ray analyzer
JP2006126045A (en) Poly-capillary
JP2010025740A (en) X-ray condensing device
KR100789385B1 (en) X-ray optical device with micro-capillary tube
RU26678U1 (en) DEVICE FOR OBTAINING X-RAY RADIATION OF INCREASED INTENSITY
JP2020095003A (en) X-ray analysis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R151 Written notification of patent or utility model registration

Ref document number: 5338483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151