JPH0711600B2 - X-ray concentrator - Google Patents

X-ray concentrator

Info

Publication number
JPH0711600B2
JPH0711600B2 JP63171175A JP17117588A JPH0711600B2 JP H0711600 B2 JPH0711600 B2 JP H0711600B2 JP 63171175 A JP63171175 A JP 63171175A JP 17117588 A JP17117588 A JP 17117588A JP H0711600 B2 JPH0711600 B2 JP H0711600B2
Authority
JP
Japan
Prior art keywords
tube
ray
rays
point
center line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63171175A
Other languages
Japanese (ja)
Other versions
JPH0221299A (en
Inventor
啓義 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63171175A priority Critical patent/JPH0711600B2/en
Publication of JPH0221299A publication Critical patent/JPH0221299A/en
Publication of JPH0711600B2 publication Critical patent/JPH0711600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • X-Ray Techniques (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はX線ビームを微小領域に集中させるための装置
に関する。
Description: FIELD OF THE INVENTION The present invention relates to an apparatus for focusing an X-ray beam on a microscopic area.

(従来の技術) X線を励起線として試料を照射し、試料から放射される
二次放射線を検出する型の分析法例えばX線光電子分光
分析法とか蛍光X線分析法等を用いて試料面の微小領域
(例えば100μm〜1mm径)の分析を行う場合、X線に対
しては簡単な集中手段がないため通常は絞りとかマスク
を用いて、試料面のX線照射領域を制限する方法が用い
られているが、この方法ではX線が収束できないため充
分な照射強度を得ることが困難である。
(Prior Art) A sample surface is irradiated with a sample using X-rays as excitation rays and a secondary radiation emitted from the sample is detected by an analysis method such as X-ray photoelectron spectroscopy or fluorescent X-ray analysis. When analyzing a very small area (for example, a diameter of 100 μm to 1 mm), there is no simple means for concentrating X-rays, so a method such as a diaphragm or mask is usually used to limit the X-ray irradiation area on the sample surface. Although used, it is difficult to obtain sufficient irradiation intensity because X-rays cannot be converged by this method.

X線を収束させる手段としては原理的には結晶格子によ
る回折を利用するもの、物質表面に低い入射角でX線を
入射させたとき物質表面で起るX線全反射を利用するも
の、或はフレネルゾーンプレートによる回折を利用する
もの等が可能であり、幾つかの提案がなされている。
As a means for converging X-rays, in principle, diffraction by a crystal lattice is used, X-ray total reflection that occurs on the material surface when X-rays are incident on the material surface at a low incident angle, or Can utilize diffraction by a Fresnel zone plate, and several proposals have been made.

(発明が解決しようとする課題) 上述した結晶面によるX線回折を利用する方法は湾曲結
晶を用いるX線分光器と同様の構成であるが、結晶を球
面に湾曲させることが困難であり、結晶面がX線源に対
して張る立体角は余り大きくできないので、X線の利用
効率は充分でない。全反射を利用する方法もX線を反射
面にすれすれに入射させる必要があるため、反射面がX
線源に対して張る立体角を大きくするのが困難で、X線
利用効率が充分でなく、利用効率を高めようとすると反
射面が非常に大型となる。フレネルゾーンプレートを使
う方法は理論上優れたX線集束能力を有するが、作るこ
とができるゾーンプレートの直径に技術的な限度があっ
て、明るさが充分でなく、X線源の利用効率が低い。
(Problem to be Solved by the Invention) The above-described method of utilizing X-ray diffraction by a crystal plane has the same configuration as an X-ray spectrometer using a curved crystal, but it is difficult to bend the crystal into a spherical surface, Since the solid angle formed by the crystal plane with respect to the X-ray source cannot be made very large, the utilization efficiency of X-rays is not sufficient. In the method using total reflection, it is necessary to make X-rays incident on the reflecting surface smoothly, so
It is difficult to increase the solid angle formed with respect to the radiation source, the X-ray utilization efficiency is not sufficient, and if the utilization efficiency is to be increased, the reflecting surface becomes very large. The method using the Fresnel zone plate theoretically has an excellent X-ray focusing ability, but there is a technical limit to the diameter of the zone plate that can be produced, the brightness is not sufficient, and the utilization efficiency of the X-ray source is low. Low.

上述したように何れの収束方法を用いても、X線の収束
状態は良く、微小点の集中照射は可能だが、X線源から
放射されるX線のうち極く一部が収束手段に入射できる
だけでX線のX線の利用効率が低く、充分な照射X線強
度を得ることは困難である。
As described above, whichever focusing method is used, the X-rays are well converged, and focused irradiation of minute points is possible, but only a part of the X-rays emitted from the X-ray source is incident on the focusing means. The use efficiency of X-rays is low as much as possible, and it is difficult to obtain a sufficient irradiation X-ray intensity.

本発明はこのような点に鑑み、微小領域に効率的にX線
を集中させることができる簡単で比較的な小型な手段を
得ようとするものである。
In view of such a point, the present invention seeks to obtain a simple and comparatively small means capable of efficiently concentrating X-rays in a minute area.

(課題を解決するための手段) 各管の中心線の一方の管端から外方への延長が一点で交
わり、上記各管の他方の端における中心線の管端外方へ
の延長が上記一点とは別の一点に会合するように、多数
の管を相互結合し、この管群の一端側の各管中心線延長
の会合点にX線源を位置させ、他端側の各管中心線延長
の会合点に試料の被照射点を位置させるようにした。
(Means for Solving the Problem) The extension of the center line of each pipe from one pipe end to the outside intersects at one point, and the extension of the center line at the other end of each pipe to the outside of the pipe end is the above. A large number of tubes are interconnected so that they will meet at a point different from one point, the X-ray source is located at the meeting point of the tube center line extension on one end side of this tube group, and each tube center at the other end side The irradiated point of the sample was positioned at the meeting point of the line extension.

(作用) 上述実施例において、各管の一方の端はX線源に向って
おり、一つの管の管端開口がX線源に対して張る立体角
は小さいから、各管内面に対してX線はすれすれの入射
角で入射することになり、管内面で全反射が行われる。
このため管が曲っていても、X線は全反射を繰返して他
の端から出射することができる。X線の全反射角は小さ
いから可視光におけるオプチカルファイバーと異り、管
端からの出射X線の広がり角は小さく平行線束に近い。
各管はX線の出射端においても管中心線の延長が一点に
会合するようにしてあるので、各管から出射したX線束
の中心は全て上記会合点を通ることになり、各管からの
出射X線束の広り角が小さいので、X線の集中が行われ
る。一本の管の管端開口がX線源に対して張る立体角が
小さくても、多数の管を束ねることにより、X線源に対
して張る立体角の総和は容易に大きくすることができ、
従来に比し、X線集中の効率が著しく高められることに
なる。
(Operation) In the above-described embodiment, one end of each tube is directed toward the X-ray source, and the solid angle formed by the tube end opening of one tube with respect to the X-ray source is small. The X-rays are incident at a grazing incidence angle, and total internal reflection is performed on the inner surface of the tube.
Therefore, even if the tube is bent, the X-rays can be emitted from the other end by repeating total reflection. Since the total reflection angle of X-rays is small, unlike the optical fiber in visible light, the divergence angle of the X-rays emitted from the tube end is small and it is close to a parallel ray bundle.
Since the extension of the center line of each tube is associated with one point even at the X-ray emission end, all the centers of the X-ray flux emitted from each tube pass through the above-mentioned association point, and Since the spread angle of the emitted X-ray flux is small, X-rays are concentrated. Even if the tube end opening of one tube has a small solid angle with respect to the X-ray source, the total solid angle with respect to the X-ray source can be easily increased by bundling multiple tubes. ,
The efficiency of X-ray concentration is significantly improved as compared with the conventional case.

(実施例) 第1図は本発明の一実施例を示す。図で1は石英ガラス
(SiO2)の管で内径10μmである。各管は一端側が一つ
の球面S1に垂直になるように集結され、他端側が別の球
面S2に垂直になるように集結されており、球面S1の中心
O1にX線管XのターゲットTにおける電子照射点が位置
せしめられ、他方の球面S2の中心O2を中心に微小範囲に
X線が集中される。各管1は両端において互いに結合固
定されているが途中は自由であり、相当の可撓性があっ
て、球面S1,S2の相互位置関係には多少の自由度が存在
する。
(Embodiment) FIG. 1 shows an embodiment of the present invention. In the figure, reference numeral 1 is a quartz glass (SiO 2 ) tube having an inner diameter of 10 μm. The tubes are assembled so that one end side is perpendicular to one spherical surface S1 and the other end side is perpendicular to another spherical surface S2.
An electron irradiation point on the target T of the X-ray tube X is located at O1, and X-rays are concentrated in a minute range around the center O2 of the other spherical surface S2. Each tube 1 is connected and fixed to each other at both ends, but is free in the middle, has a considerable flexibility, and there is some degree of freedom in the mutual positional relationship between the spherical surfaces S1 and S2.

管1の端は球面に揃える必要はない。第2図の実施例は
管1の端を平面に揃えたものである。この場合でも各管
の管端中心線の延長が一点に交わるように、各管は管端
部で円錐状に集結してある。各管は端は中心線が一点に
会合しておればよく、管群の一部のものが周囲に対して
入射X線による陰影を作る程突出しない範囲で任意の形
状に揃えればよい。
The ends of tube 1 do not have to be spherically aligned. In the embodiment shown in FIG. 2, the ends of the tube 1 are aligned in a plane. Even in this case, the tubes are conically assembled at the tube ends so that the extensions of the tube center lines of the tubes intersect at one point. It suffices that the ends of the respective tubes have their center lines meeting at one point, and they may be formed in any shape within a range in which a part of the tubes does not project to the surroundings so as to be shaded by incident X-rays.

この構成におけるX線利用効率は管群のX線源に向う側
の端面の各管内腔端面の立体角の総和で決まり、同じ効
率でも管の肉厚が薄い程管集合の外径は小さくできる。
石英管は太い管の溶融延伸によって形成され、その場合
断面形状は相似形で縮小するので、内径10μm,外径12μ
m程度の石英管は容易に得られる。このような毛細管を
第1図或は第2図のように結束するには次のようにす
る。第3図において、Fはプラスチックの可撓性シート
で、その表面にビニール系接着剤のような熱可塑性プラ
スチック接着剤を塗布してこれを平盤C上に置き、その
上に管1の束を垂直にしてその下端を当接させ、管端を
シートF上で平面に揃えてシートFに接着する。接着剤
が乾繰した所で、第4図に示すようにシートFを多数の
孔のあいた球殻B上に乗せ、球殻B内を真空にするとシ
ートFが球殻表面に吸着されて球面に曲る。各管1はシ
ート面に垂直に接着されているので、管端の中心線が球
殻Bの中心に向うようになる。この状態でポリエステル
のような注型用の樹脂Pを管1の間に注入して硬化させ
る。樹脂Pが硬化した後加温してシートFと管1との間
の接着剤を軟化させシートFを管1の束から剥離する。
その後管1の端面を適宜形状に研摩し、真空装置で研摩
面を吸引清掃する。管束の他方の端も同様にして一定の
形に結束固化する。
The X-ray utilization efficiency in this configuration is determined by the sum of the solid angles of the tube lumen end faces of the end faces of the tube group facing the X-ray source. Even with the same efficiency, the thinner the wall thickness of the tube, the smaller the outer diameter of the tube assembly can be.
The quartz tube is formed by melt drawing of a thick tube, and in that case the cross-sectional shape shrinks in a similar shape, so the inner diameter is 10 μm and the outer diameter is 12 μm.
A quartz tube of about m can be easily obtained. To bind such a capillary tube as shown in FIG. 1 or FIG. 2, the following is done. In FIG. 3, F is a flexible sheet of plastic, on the surface of which a thermoplastic adhesive such as a vinyl adhesive is applied and placed on a flat plate C, and a bundle of tubes 1 is placed on it. Is made vertical and the lower end thereof is brought into contact with the sheet F, and the tube end is aligned on a flat surface on the sheet F and bonded to the sheet F. When the adhesive is dried, the sheet F is placed on the spherical shell B having many holes as shown in FIG. 4, and when the inside of the spherical shell B is evacuated, the sheet F is adsorbed on the spherical shell surface and spherical. Turn to. Since each tube 1 is bonded vertically to the sheet surface, the center line of the tube end faces the center of the spherical shell B. In this state, a casting resin P such as polyester is injected between the tubes 1 and cured. After the resin P is hardened, it is heated to soften the adhesive between the sheet F and the tube 1 and peel the sheet F from the bundle of tubes 1.
After that, the end surface of the tube 1 is polished into an appropriate shape, and the polished surface is suction-cleaned by a vacuum device. The other end of the tube bundle is similarly bundled and solidified into a certain shape.

X線が全反射するときの臨界角φは次式で与えられる。The critical angle φ when the X-rays are totally reflected is given by the following equation.

δ=2.02(m/z)ρλ×106 こゝでzは原子番号、mは原子量、ρは密度、λはX線
の波長である。従って使用する管の材質はX線の波長範
囲,要求される管内径によって適当に選ぶ必要がある。
材質が石英ガラスでX線がAlのKα線8、339Åである
とき、臨界角φは約1,1゜となる。管1の内径が10μm
のとき、管内面への入射角が1,1゜程度となるようにす
るには第1図の球面S1の半径は約0.6mmとなる。実際のS
1の半径は数cmの程度になるので、管1内面へのX線の
入射角は1,1゜の1/100程度になる。管1からの出射X線
の広がり角は管内面への入射角の2倍程度となるから、
広り角もきわめて小さく、第1図の球面S2の半径S1の半
径と等しくすると、X線の集中範囲は管1の内径程度、
即ち約10μmとなる。
δ = 2.02 (m / z) ρλ 2 × 10 6 where z is atomic number, m is atomic weight, ρ is density, and λ is X-ray wavelength. Therefore, the material of the tube to be used must be properly selected according to the wavelength range of X-rays and the required tube inner diameter.
When the material is quartz glass and X-rays are Al Kα rays of 8,339Å, the critical angle φ is about 1,1 °. Inner diameter of tube 1 is 10 μm
At this time, the radius of the spherical surface S1 in FIG. 1 is about 0.6 mm so that the angle of incidence on the inner surface of the tube is about 1,1 °. Actual S
Since the radius of 1 is about several cm, the incident angle of X-rays on the inner surface of the tube 1 is about 1/100 of 1,1 °. Since the spread angle of the X-ray emitted from the tube 1 is about twice the angle of incidence on the inner surface of the tube,
If the divergence angle is also extremely small and is equal to the radius of the radius S1 of the spherical surface S2 in FIG. 1, the X-ray concentration range is about the inner diameter of the tube 1,
That is, it becomes about 10 μm.

(発明の効果) 本発明によればX線集中手段のX線入射側がX線源に対
して張る立体角を容易に大きくすることができ、かつこ
のX線入射端面が従来の全反射型とか凹面結晶型と異り
入射X線に対して垂直になっているので、X線源に向う
立体角が大きいにもかゝわらず、装置としては小型にで
き、X線の利用効率が高く、試料の微小領域にX線を集
中照射できるので、容易に試料の微小領域分析の感度向
上が得られる。また装置に若干の可撓性があるので、X
線源と試料のX線照射点の位置関係が或る程度自由に調
節できる利点がある。
(Effects of the Invention) According to the present invention, the solid angle formed by the X-ray incidence side of the X-ray concentrating means with respect to the X-ray source can be easily increased, and the X-ray incidence end face is of the conventional total reflection type. Unlike the concave crystal type, it is perpendicular to the incident X-rays, so the device can be made compact and the utilization efficiency of X-rays is high, despite the large solid angle toward the X-ray source. Since X-rays can be intensively applied to the micro area of the sample, the sensitivity of the micro area analysis of the sample can be easily improved. Also, since the device has some flexibility, X
There is an advantage that the positional relationship between the radiation source and the X-ray irradiation point of the sample can be freely adjusted to some extent.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の側面図、第2図は他の実施
例の側面図、第3図は上記実施例における管1を結束す
る手順の第1段階を示す側面図、第4図は同じく第2段
階を示す側面図である。 1……管、T……X線管のターゲット、O2……X線集中
点、F……可撓性シート、C……平盤、B……球殻。
FIG. 1 is a side view of an embodiment of the present invention, FIG. 2 is a side view of another embodiment, and FIG. 3 is a side view showing a first stage of the procedure for binding the pipes 1 in the above embodiment. Similarly, FIG. 4 is a side view showing the second stage. 1 ... Tube, T ... X-ray tube target, O2 ... X-ray concentration point, F ... Flexible sheet, C ... Flat plate, B ... Spherical shell.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】可撓性のある各管の中心線の一方の管端か
ら外方への延長が一点で会合し、上記各管の中心線の他
方の管端から外方への延長が上記一点とは別の一点に会
合するように多数の管を相互結合し、この管群の一端側
の各管中心線の上記延長会合点にX線源を位置させ、他
端側からX線を出射させるようにしたX線集中装置。
1. A flexible tube has a center line extending outward from one end of the tube at one point, and a center line extending from the other end of the center line of each tube extending outward. A large number of tubes are mutually connected so as to be associated with another point different from the above-mentioned one point, an X-ray source is located at the extension meeting point of each tube center line on one end side of this tube group, and an X-ray is emitted from the other end side. X-ray concentrator designed to emit light.
JP63171175A 1988-07-08 1988-07-08 X-ray concentrator Expired - Lifetime JPH0711600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63171175A JPH0711600B2 (en) 1988-07-08 1988-07-08 X-ray concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63171175A JPH0711600B2 (en) 1988-07-08 1988-07-08 X-ray concentrator

Publications (2)

Publication Number Publication Date
JPH0221299A JPH0221299A (en) 1990-01-24
JPH0711600B2 true JPH0711600B2 (en) 1995-02-08

Family

ID=15918391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63171175A Expired - Lifetime JPH0711600B2 (en) 1988-07-08 1988-07-08 X-ray concentrator

Country Status (1)

Country Link
JP (1) JPH0711600B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017350A (en) * 2005-07-08 2007-01-25 Shimadzu Corp X-ray analyzer
DE102014119282A1 (en) 2013-12-24 2015-06-25 Hitachi High-Tech Science Corporation X-ray fluorescence analyzer
US11467103B2 (en) 2019-03-29 2022-10-11 Applied Science Laboratory Co., Ltd. X-ray analyzer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094471A (en) * 1998-04-22 2000-07-25 Smithsonian Astrophysical Observatory X-ray diagnostic system
JP5338483B2 (en) * 2009-05-27 2013-11-13 株式会社島津製作所 X-ray focusing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740080B2 (en) * 1986-06-19 1995-05-01 株式会社島津製作所 X-ray beam focusing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017350A (en) * 2005-07-08 2007-01-25 Shimadzu Corp X-ray analyzer
DE102014119282A1 (en) 2013-12-24 2015-06-25 Hitachi High-Tech Science Corporation X-ray fluorescence analyzer
US11467103B2 (en) 2019-03-29 2022-10-11 Applied Science Laboratory Co., Ltd. X-ray analyzer

Also Published As

Publication number Publication date
JPH0221299A (en) 1990-01-24

Similar Documents

Publication Publication Date Title
US5022064A (en) X-ray optical system formed by multilayer reflecting mirrors for reflecting X-rays of different wavelengths
JP5531009B2 (en) X-ray generator having polycapillary optical system
US6249566B1 (en) Apparatus for x-ray analysis
JPS6098399A (en) Point source x-ray focusing device
JPH0373094B2 (en)
JPH10339798A (en) Mirror for condensing x rays
US5479469A (en) Micro-channel plates
JPH0711600B2 (en) X-ray concentrator
WO2001075488A1 (en) Optical assembly for increasing the intensity of a formed x-ray beam
JPS62299241A (en) X-ray beam converging apparatus
JP2884583B2 (en) X-ray collector
CA2725521C (en) High intensity x-ray beam system
JP3392528B2 (en) Line focusing lens
JP3380877B2 (en) Parallel radiation element and convergent element for X-ray and synchrotron radiation
WO2000063922A1 (en) Neutron lens
JP2001516888A (en) Scintillation detector, refractive coating for scintillator, and process for producing the coating
JPH02139802A (en) Solar beam collecting device
JP3285961B2 (en) Light guide means
JPS63157123A (en) Linear beam optical system
JPH0342642B2 (en)
JPH08247967A (en) Fine area parallel beam irradiator
JPH08146199A (en) Parallel x-ray irradiation device
JPS6040602B2 (en) light focusing device
WO2000016148A1 (en) Lens for converting optical axis
JPH06300897A (en) X-ray optical device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080208

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 14