JPS6040602B2 - light focusing device - Google Patents

light focusing device

Info

Publication number
JPS6040602B2
JPS6040602B2 JP777382A JP777382A JPS6040602B2 JP S6040602 B2 JPS6040602 B2 JP S6040602B2 JP 777382 A JP777382 A JP 777382A JP 777382 A JP777382 A JP 777382A JP S6040602 B2 JPS6040602 B2 JP S6040602B2
Authority
JP
Japan
Prior art keywords
light
focal point
mirror
retroreflector
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP777382A
Other languages
Japanese (ja)
Other versions
JPS58125001A (en
Inventor
仁三郎 浜田
兼栄 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP777382A priority Critical patent/JPS6040602B2/en
Publication of JPS58125001A publication Critical patent/JPS58125001A/en
Publication of JPS6040602B2 publication Critical patent/JPS6040602B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 本発明は光集東装置に関し、より詳細には特に微弱な発
光体あるいは微少な発光体からの光を効率良く分光系に
導くことができる光集東装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light concentrating device, and more particularly to a light concentrating device that can efficiently guide light from a weak light emitter or a very small light emitter to a spectroscopic system.

従来、発光体、たとえば蜜光物質や化学反応物質からの
光を側光、分光測定する場合には、第1図に示すように
球面鏡1の中心に光源Pを置き、凸レンズ2を介して集
光させて分光器3に導いたり、第2図に示すようなだ円
面鏡5のレンズ作用を兼ねて集光させていた。
Conventionally, when performing side-light or spectroscopic measurements of light from a luminescent substance, such as a luminous substance or a chemically reactive substance, a light source P is placed at the center of a spherical mirror 1 and focused through a convex lens 2, as shown in FIG. The light was guided to a spectrometer 3, and the ellipsoidal mirror 5 as shown in FIG. 2 also served as a lens to condense the light.

しかしながらかかる方法では、光源Pからの光量を効率
良く分光器3に導くことは到底不可能であり、大量の無
効光4を生じていた。
However, with this method, it is completely impossible to efficiently guide the amount of light from the light source P to the spectroscope 3, and a large amount of invalid light 4 is generated.

しかがって光源が微弱あるいは微小な場合には分光器に
よる分光測定が極めて困難になる欠点があった。一方、
第3図に示すように励起用光源Qと蟹光物質6と回転だ
円体7の中にとじ込め、励起された蟹光8を凸レンズ2
を介して入射スリット8に取り出す方法が提案された。
この場合には励起用光源Qは蟹光物質6を有効に励起す
るが、蟹光波長と励起波長がまじり合って入射スリット
に入る問題点があり、また自発発光である化学発光や生
物発光等の微弱発光には考慮が払われていない欠点があ
った。そこで本発明はかかる現状にかんがみなされたも
のであり、光源からの光をほぼ定量的に外部に導き出す
ことができ、従って特に微弱あるいは微小光源からの光
の集東装置として極めて有効であるなどの特長を有する
ものである。
However, if the light source is weak or minute, there is a drawback that spectroscopic measurements using a spectrometer are extremely difficult. on the other hand,
As shown in FIG. 3, the excitation light source Q, the crab light substance 6, and the rotating ellipsoid 7 are confined, and the excited crab light 8 is transmitted to the convex lens 2.
A method has been proposed in which the light is taken out through the entrance slit 8.
In this case, the excitation light source Q effectively excites the crab photosubstance 6, but there is a problem in that the crab light wavelength and the excitation wavelength mix and enter the entrance slit. There was a drawback to the weak emission of light that was not taken into account. The present invention has been developed in view of the current situation, and is capable of guiding light from a light source to the outside almost quantitatively, and is therefore extremely effective as a concentrating device for light particularly from weak or minute light sources. It has certain characteristics.

すなわち本発明の光集東装置は、内面を鏡面にした回転
だ円鏡の一つの焦点を通る再帰性反射鏡,を設け、該焦
点‘こは前記再帰性反射鏡を貫いて導光部材を設けたこ
とを特徴とするものである。
That is, the light concentrating device of the present invention is provided with a retroreflector that passes through one focal point of a rotating elliptical mirror whose inner surface is mirror-finished, and the light guide member is passed through the focal point through the retroreflector. It is characterized by the fact that it has been provided.

以下、本発明を図面に示した実施例にもとづき説明する
。第4図は本発明の第1実施例を示し、回転だ円面鏡1
1は、内面12が鏡面になっており、第2焦点F2を通
り、かつ回転だ円面鏡1 1の長藤Aに垂直に再帰性反
射鏡13が設けてある。
The present invention will be described below based on embodiments shown in the drawings. FIG. 4 shows a first embodiment of the present invention, in which a rotating ellipsoidal mirror 1
1, the inner surface 12 is a mirror surface, and a retroreflector 13 is provided passing through the second focal point F2 and perpendicular to the long rattan A of the rotating ellipsoidal mirror 11.

また、第2焦点F2には再帰性反射鏡13を貫いて導光
部材14が取付けてある。ここで回転だ円面鏡11とは
、平面上にえがかれただ門曲線を長藤のまわりに360
o回転させて形成された立体を云い、本発明ではこの立
体の内面が鏡面になっている。
Further, a light guide member 14 is attached to the second focal point F2 through the retroreflector 13. Here, the rotating ellipsoidal mirror 11 means that the gate curve drawn on a plane can be rotated 360 degrees around Nagafuji.
It refers to a solid body formed by rotating the solid body, and in the present invention, the inner surface of this solid body is a mirror surface.

また、本発明で用いる再帰性反射鏡13とは、第5図A
に示すように、反射面15は直交する鏡面の集合体状を
なしており、第5図Bに示すように入射光16は入射方
向の如何にかかわらず、直交する鏡面で3回反射し18
0o方向変換して入射方向と同一方向に反射光17を反
射させることができるものである。
Furthermore, the retroreflector 13 used in the present invention is shown in FIG.
As shown in FIG. 5B, the reflecting surface 15 is a collection of orthogonal mirror surfaces, and as shown in FIG.
The reflected light 17 can be reflected in the same direction as the incident direction by changing the 0o direction.

具体的には交通標識、自動車、自転車のテールミラーな
どに用いられるコーナーキューブや微小なガラス玉をバ
インダーでテープ状に接合したスコッチライトなどがこ
れに属し、本発明ではこれらを適宜用いることができる
Specifically, corner cubes used for traffic signs, automobiles, bicycle tail mirrors, etc., and Scotchlite made by bonding minute glass beads into a tape shape with a binder belong to this category, and these can be used as appropriate in the present invention. .

導光部村14は第2焦点F2に集光された光を回転だ円
面鏡11の外に導くためのものであり、ガラス棒、ガラ
ス繊維、内面を鏡面にした管などを用いることができる
The light guiding section 14 is for guiding the light focused at the second focal point F2 to the outside of the rotating ellipsoidal mirror 11, and can be made of a glass rod, glass fiber, a tube with a mirrored inner surface, or the like. can.

これら導光部材14は第1焦点F,に置かれる光源から
発する光の性質に応じて適宜、選択して使用される。た
とえば導光部材14として導光繊維と用いたときには第
2焦点F2に集光された光は導光繊維の界面で全反射を
繰り返しながら取り出され、目的に応じてたとえば分光
器に導かれる。なお、この第1実施例では再帰性反射鏡
13はその背面側のだ円部15と共に取りはずすことが
でき、後述するように第1焦点F,に測定対象の光源を
設置したのち、密閉できるようになっている。
These light guiding members 14 are appropriately selected and used depending on the nature of the light emitted from the light source placed at the first focal point F. For example, when a light guide fiber is used as the light guide member 14, the light focused at the second focal point F2 is extracted while undergoing repeated total reflection at the interface of the light guide fiber, and is guided to, for example, a spectrometer depending on the purpose. In this first embodiment, the retroreflector 13 can be removed together with the elliptical part 15 on the back side, and after installing the light source to be measured at the first focal point F, as will be described later, it can be sealed tightly. It has become.

また、だ円体部15の如何なる形状であっても良く、再
帰性反射鏡13のみで、外部からの光の侵入を防止する
ことができればだ円体部15は無くても良い。第6図は
本発明の第2実施例を示し、再帰性反射鏡13は円錐形
状をなし、長軸Aに対して上下対称であると同時に、円
錐形の頂点が第2焦点F2に位置する如く設けられてい
る。
Further, the ellipsoidal part 15 may have any shape, and the ellipsoidal part 15 may be omitted as long as the retroreflector 13 alone can prevent light from entering from the outside. FIG. 6 shows a second embodiment of the present invention, in which the retroreflector 13 has a conical shape, is vertically symmetrical with respect to the long axis A, and at the same time, the apex of the conical shape is located at the second focal point F2. It is set up as follows.

再帰一性反射鏡13をこのように円錐形状とすることに
よって、導光部材14への高い入射角をもたらす回転だ
円鏡部分が円錐形状の再帰性反射鏡に置き換えられるの
で第1焦点F,に置かれた光源から、後述の如く第2焦
点F2に集光される反射光の導光部材14への入射角を
一定の範囲内に制御することができ、効果的に外部へ導
びくことができる。
By making the retrouniform reflection mirror 13 conical in this way, the rotating elliptical mirror portion that provides a high incident angle to the light guiding member 14 is replaced with a conical retroreflection mirror, so that the first focal point F, The angle of incidence of the reflected light condensed at the second focal point F2 from the light source placed at the second focal point F2 as described later on the light guide member 14 can be controlled within a certain range, and the reflected light can be effectively guided to the outside. I can do it.

したがって、導光部材14として、たとえばガラスファ
イバーを用いたときのガラスファイバーの第2焦点F2
における閉口数、すなわち第2焦点F2において受け入
れることができ入射角の限界に応じて再帰性反射鏡13
の円錐形状を適宜選択、決定すれば良いことになる。次
に本発明の光集東装置の機能を第4図にもとづき説明す
る。
Therefore, when a glass fiber is used as the light guide member 14, the second focal point F2 of the glass fiber is
, i.e. depending on the limit of the angle of incidence that can be accepted at the second focal point F2, the retroreflector 13
It is only necessary to appropriately select and determine the conical shape of . Next, the functions of the optical concentrating device of the present invention will be explained based on FIG. 4.

まず第1焦点F,に光源が置かれたとする。First, assume that a light source is placed at the first focal point F.

すると、この光源から出て回転だ円面鏡11の鏡面12
で反射された光Lは第2焦点F2に集光する。同様に鏡
面12で反射された光はすべて同様にF2に進光する。
一方、光源から出た光のうち、再帰性反射鏡13に入射
された光は、前述のように再帰性反射鏡13は反射光を
入射光と同一方向に反射させる性質を有するので第1焦
点F,の方向に戻され、第1焦点F,を通りF2の背面
側の鏡面で反射されて矢印−のように光源F2に集光す
る。
Then, the mirror surface 12 of the rotating ellipsoidal mirror 11 emits from this light source.
The reflected light L is focused on the second focal point F2. Similarly, all the light reflected by the mirror surface 12 similarly travels to F2.
On the other hand, among the light emitted from the light source, the light incident on the retroreflector 13 is at the first focal point because the retroreflector 13 has the property of reflecting the reflected light in the same direction as the incident light as described above. The light is returned in the direction of F, passes through the first focal point F, is reflected by the mirror surface on the back side of F2, and is focused on the light source F2 as indicated by the arrow -.

このようにして光源正,からの光は回転だ円面鏡の鏡面
で直接反射されて光源F2に集光するか、或は再帰性反
射鏡13で反射されて光源F,にもどり、光源F,の背
面側の回転だ円面鏡の鏡面で反射されて光源F2に集光
するかのいずれかの経路をたどり、結局、光源F,から
の光はほとんど実質的にすべてがF2に集光されるよう
になる。
In this way, the light from the light source F is either directly reflected by the mirror surface of the rotating ellipsoidal mirror and focused on the light source F2, or it is reflected by the retroreflector 13 and returned to the light source F, and the light is focused on the light source F. , is reflected by the mirror surface of the rotating ellipsoidal mirror on the back side of the light source F2, and in the end, almost all of the light from the light source F is focused on F2. will be done.

そして前述のように集光された光は導光部材14によっ
て取り出され、他に導かれるのである。第7図は本発明
の第3実施例を示し、本発明の光集東装置の分光計と粗
合せて使用する状態を示すものである。
Then, as described above, the focused light is extracted by the light guide member 14 and guided elsewhere. FIG. 7 shows a third embodiment of the present invention, in which the optical concentrating device of the present invention is used in combination with a spectrometer.

すなわち前述の如く、回転だ円面鏡の第1総点F,に置
かれた光源Pからの光は、鏡面12で反射される光斗,
および再帰性反射鏡1 3で反射される光−たるを問わ
ず、すべて第2焦点F2に集光され、導光部材14によ
って導びかれたのち、凸レンズ18によって集光されて
分光計19に入り、ここで分光された測定値は光子計数
装置20に表示される。なお、第7図において21は励
起光東を示し、光源Pを励起せしめる場合に用いるもの
であり、必要に応じて設けることができる。
That is, as mentioned above, the light from the light source P placed at the first total point F of the rotating ellipsoidal mirror is reflected by the mirror surface 12,
All of the light reflected by the retroreflector 13 is focused on the second focal point F2, guided by the light guide member 14, and then focused by the convex lens 18 and sent to the spectrometer 19. The measured values are displayed on the photon counting device 20. In FIG. 7, reference numeral 21 indicates an excitation light east, which is used to excite the light source P, and can be provided as necessary.

また、光源Pは第1焦点F,の背面側に設けた挿入部2
2に取付けて挿入するようになっており、この挿入部2
2の内面側は回転だ円面鏡11の一部の鏡面を形成する
ようにしても良いし、或は第7図に示すように再帰性反
射鏡とすることもできる。L久上述べた如く、本発明に
おいては内面を鏡面にした回転だ円面鏡の第2焦点を通
る再帰性反射鏡を設け、かつ第2焦点には再帰性反射鏡
を貫いて導光部材を取付けたことに特徴がある。
In addition, the light source P is an insertion part 2 provided on the back side of the first focal point F.
It is designed to be inserted by attaching it to the insertion part 2.
The inner surface of the mirror 2 may form a part of the mirror surface of the rotating ellipsoidal mirror 11, or it may be a retroreflector as shown in FIG. As mentioned above, in the present invention, a retroreflector is provided that passes through the second focal point of a rotating ellipsoidal mirror whose inner surface is mirror-finished, and a light guiding member is provided at the second focal point by passing through the retroreflector. It is distinctive in that it has been installed.

この結果、回転だ円面鏡の第1焦点に光源を層研ぎ、こ
の光源から出た光は回転だ円面鏡の鏡面で反射された光
であろうと、或は再帰性反射鏡で反射された光であろう
とも、わずかな反射ロスを除けばほとんどすべてが第2
焦点に集光される。すなわち、本発明の光集東装置では
従釆のように大量の無効光を生ずることがなくなり、1
00%に近い光量効率が達成される。
As a result, a light source is layered at the first focus of the rotating ellipsoidal mirror, and the light emitted from this light source is either reflected by the mirror surface of the rotating ellipsoidal mirror or reflected by a retroreflector. Even if the light is
The light is focused on the focal point. In other words, the light concentrating device of the present invention does not generate a large amount of invalid light unlike the secondary device, and
A light efficiency close to 0.00% is achieved.

従って本発明の装置は微弱、あるいは微小光源からの発
散光東を定量的に集光し、外部に導くことができ、特に
微弱あるいは微小光源からの光を分光装置、または測定
装置へ導くための最適の菱贋と云える。
Therefore, the device of the present invention is capable of quantitatively focusing the diverging light from a weak or minute light source and guiding it to the outside, and is particularly useful for guiding light from a weak or minute light source to a spectrometer or a measuring device. It can be said to be the most suitable forgery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図は従来の光集東装置の原理
を示し、第1図は球面鏡、第2図はだ円面鏡、第3図は
回転だ円体を用いた場合の説明図、第4図は本発明の第
1実施例を示す概要図、第5図AおよびBは本発明で用
いる再帰性反射鏡の機能を示す原理図、第6図は本発明
の第2実施例を示す概要図、第7図は本発明の第3実施
例を示す概要図である。 11……回転だ円面鏡、13…・・・再帰性反射鏡、1
4・・・・・・導光部村、F.・・・…第1焦点、F2
・・・・・・第2焦点。 第1図 第3図 第4図 第5図(8) 第5図(A) 第2図 第6図 第7図
Figures 1, 2, and 3 show the principle of a conventional optical concentrator. Figure 1 uses a spherical mirror, Figure 2 uses an ellipsoidal mirror, and Figure 3 uses a rotating ellipsoid. FIG. 4 is a schematic diagram showing the first embodiment of the present invention, FIGS. 5A and B are principle diagrams showing the function of the retroreflector used in the present invention, and FIG. FIG. 7 is a schematic diagram showing a second embodiment of the present invention, and FIG. 7 is a schematic diagram showing a third embodiment of the present invention. 11... Rotating ellipsoidal mirror, 13... Retroreflector, 1
4... Light guide village, F. ...First focal point, F2
...Second focus. Figure 1 Figure 3 Figure 4 Figure 5 (8) Figure 5 (A) Figure 2 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1 内面を鏡面にした回転だ円面鏡の一つの焦点を通る
再帰性反射鏡を設け、該焦点には前記再帰性反射鏡を貫
いて導光部材を取付けたことを特徴とする光集束装置。
1. A light converging device characterized in that a retroreflector passing through one focal point of a rotating ellipsoidal mirror whose inner surface is mirror-finished is provided, and a light guide member is attached to the focal point by penetrating said retroreflector. .
JP777382A 1982-01-21 1982-01-21 light focusing device Expired JPS6040602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP777382A JPS6040602B2 (en) 1982-01-21 1982-01-21 light focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP777382A JPS6040602B2 (en) 1982-01-21 1982-01-21 light focusing device

Publications (2)

Publication Number Publication Date
JPS58125001A JPS58125001A (en) 1983-07-25
JPS6040602B2 true JPS6040602B2 (en) 1985-09-11

Family

ID=11674989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP777382A Expired JPS6040602B2 (en) 1982-01-21 1982-01-21 light focusing device

Country Status (1)

Country Link
JP (1) JPS6040602B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488415A (en) * 1987-09-29 1989-04-03 Canon Kk Lighting optical system
JPH03168629A (en) * 1989-11-28 1991-07-22 Nippon Sheet Glass Co Ltd Illuminating device
DE19708424B4 (en) * 1997-03-01 2006-09-28 Moeller Gmbh Test device and test method for arc fault sensors

Also Published As

Publication number Publication date
JPS58125001A (en) 1983-07-25

Similar Documents

Publication Publication Date Title
US6795177B2 (en) Multipass sampling system for Raman spectroscopy
JP4290181B2 (en) Fluorescence detector structure
EP0851230B1 (en) Method and Apparatus for Immunoassay using Fluorescent Induced Surface Plasma Emission
US5478755A (en) Long range surface plasma resonance immunoassay
JP4259762B2 (en) Optical configuration for detecting light
JPS60111634A (en) Radiation image information reading apparatus
JP2969177B2 (en) Analysis method
JPS60198532A (en) Reader of radiation picture information
JPS6040602B2 (en) light focusing device
JPH1096862A (en) Down lighting fluorescence microscope
CN106198951B (en) A kind of bio-sensing scaling method, calibration system and disease detecting system
US3715585A (en) Fluorescence spectrophotometry using multiple reflections to enhance sample absorption and fluorescence collection
US20020080349A1 (en) Sample chamber for use in analytical instrumentation
US4707131A (en) Optical arrangement for photometrical analysis measuring devices
JPH0137689B2 (en)
JPH1019779A (en) Weak fluorescence measuring apparatus
US3704955A (en) Radiation entrapping, multi-reflection raman sample cell employing a single concave mirror
US9448158B2 (en) Lightguides to simplify total emission detection for multiphoton microscopy
JPS59201350A (en) Fluorescent screen
JPH0755490Y2 (en) Device for measuring fine particles in liquid
JPS6247536A (en) Fluorometrically analyzing cell
JPH0736051U (en) Gas analyzer
JPH0882677A (en) Reflection measuring apparatus
JPH10267846A (en) Laser emission/fetching optical apparatus
JP3039569B2 (en) Prism for total internal reflection measurement