JPS62299241A - X-ray beam converging apparatus - Google Patents

X-ray beam converging apparatus

Info

Publication number
JPS62299241A
JPS62299241A JP61144078A JP14407886A JPS62299241A JP S62299241 A JPS62299241 A JP S62299241A JP 61144078 A JP61144078 A JP 61144078A JP 14407886 A JP14407886 A JP 14407886A JP S62299241 A JPS62299241 A JP S62299241A
Authority
JP
Japan
Prior art keywords
ray
pipe
rays
ray beam
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61144078A
Other languages
Japanese (ja)
Other versions
JPH0740080B2 (en
Inventor
啓義 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61144078A priority Critical patent/JPH0740080B2/en
Publication of JPS62299241A publication Critical patent/JPS62299241A/en
Publication of JPH0740080B2 publication Critical patent/JPH0740080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Resistance Heating (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、例えば微小部分析用のxps(X線光電子分
光)装置や蛍光X線分析装置を実現するために試料の微
小部を照射するX線源用のX線ビーム収束装置に関する
ものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention is intended for realizing, for example, an XPS (X-ray photoelectron spectroscopy) device or a fluorescent X-ray analyzer for microscopic analysis. The present invention relates to an X-ray beam focusing device for an X-ray source that irradiates a minute part of a sample.

(従来の技術) 試料の例えば1mm、100μmオーダ、又は10μm
オーダというような微小部を選択的に照射し励起するこ
とのできるX線源で、しかも出力の高いものを実現する
ことは容易なことではない。
(Prior art) For example, the sample size is on the order of 1 mm, 100 μm, or 10 μm.
It is not easy to create an X-ray source with high output that can selectively irradiate and excite tiny parts of the order of magnitude.

出力を上げるためには、スリットや絞りを用いてX線を
微小径のものにカットする方式は有利なものではない、
また、荷電粒子の場合は電磁場で絞ることができ、光(
紫外線、可視光線、赤外線)の場合は光学レンズやミラ
ーで絞ることができるが、X線の場合はそれらと同等な
方法で絞ることはできない。
In order to increase the output, it is not advantageous to use a slit or aperture to cut the X-rays into tiny diameter ones.
In addition, charged particles can be focused using an electromagnetic field, and light (
While ultraviolet, visible, and infrared light can be narrowed down using optical lenses and mirrors, X-rays cannot be narrowed down in the same way.

X線を微小径のビームにする試みは幾つかなされている
。第5図に示されるX線ビーム収束装置では、X線源2
からの入射X線4を全反射円筒面又は全反射球面6を用
いて微小径のX線ビーム8にする。
Several attempts have been made to convert X-rays into beams with minute diameters. In the X-ray beam focusing device shown in FIG.
The incident X-rays 4 are converted into a minute diameter X-ray beam 8 using a total reflection cylindrical surface or a total reflection spherical surface 6.

第6図に示されるX線ビーム収束装置では、X線源2か
らの入射X線4を回折球面10を用いて微小径のX線ビ
ーム8とする。
In the X-ray beam focusing device shown in FIG. 6, incident X-rays 4 from an X-ray source 2 are converted into an X-ray beam 8 with a minute diameter using a diffraction spherical surface 10.

第7図に示されるX線ビーム収束装置では、X線源2か
らの入射X線4をフレネルゾーンプレート12を用いて
回折現象により微小径のX線ビーム8にする (発明が解決しようとする問題点) 第5図ないし第7図に示されるようなX線ビーム収束装
置は、分光結晶やゾーンプレートを用いて回折や反射に
よりX線を微小径に集束させようとするものであるが、
装置が大型化したり、十分なX線強度を得る上で問題が
あったり、絞られたX41ビーム径が十分に小さくない
というような問題がある。
In the X-ray beam focusing device shown in FIG. Problem) The X-ray beam focusing device shown in Figures 5 to 7 attempts to focus X-rays into a minute diameter by diffraction or reflection using a spectroscopic crystal or zone plate.
There are problems such as the equipment becomes large, there are problems in obtaining sufficient X-ray intensity, and the diameter of the focused X41 beam is not small enough.

本発明は、例えば数10μm程度以下というような微小
部を選択的に照射又は励起したりすることのできる他の
方式のX線ビーム収束装置を実現することを目的とする
ものである。
An object of the present invention is to realize another type of X-ray beam convergence device that can selectively irradiate or excite a minute part, for example, about several tens of micrometers or less.

(問題点を解決するための手段) 本発明のxgビーム収束装置は、多数の微小口径パイプ
を、一方の集合面が大きく他方の集合面が小さくなるよ
うに、かつ、前記他方の集合面がらの各パイプの中心延
長線が一点に収束するように束ねて円錐台状とし、前記
一方の集合面をX線入射面とし、前記他方の集合面をX
線出射面としたものである。
(Means for Solving the Problems) The xg beam converging device of the present invention arranges a large number of micro-diameter pipes so that one collecting surface is large and the other collecting surface is small, and the other collecting surface is The central extension lines of each pipe are bundled to form a truncated cone so that they converge to one point, the one collecting surface is the X-ray incident surface, and the other collecting surface is the X-ray incident surface.
This is a line exit surface.

(実施例) 第1図は一実施例を表わし、第2図は同実施例で使用さ
れている1本の微小口径パイプ14を表わしたものであ
る。
(Embodiment) FIG. 1 shows one embodiment, and FIG. 2 shows one micro-diameter pipe 14 used in the same embodiment.

同実施例で使用されるパイプ14は、第2図に示される
ように一端の内口径14aが大きく他端の内口径14b
が小さくなるように内壁面が傾斜したパイプである。
As shown in FIG. 2, the pipe 14 used in this embodiment has a large inner diameter 14a at one end and a larger inner diameter 14b at the other end.
This is a pipe whose inner wall surface is sloped so that the

本実施例では、このパイプ14を小口径側同士、大口径
側同士をそれぞれ揃えて束ね、全体として円錐台状にな
るようにするとともに、小口径側同士の集合面18での
各パイプ14の中心軸の延長線が一点Aで交わるように
したものである。そして、大口径同士が束ねられた集合
面16が入射X線20に対する入射面となり、小口径同
士が束ねられた集合面18がX線の出射面となるように
使用される。
In this embodiment, the pipes 14 are bundled with the small diameter sides aligned and the large diameter sides aligned, so that the whole has a truncated conical shape, and each pipe 14 is bundled with the small diameter sides aligned and the large diameter sides aligned, and the pipes 14 are bundled together so that the whole has a truncated conical shape. The extension lines of the central axis intersect at one point A. The collecting surface 16 in which the large diameters are bundled together is used as an entrance surface for the incident X-rays 20, and the collecting surface 18 in which the small diameters are bundled together is used as an exit surface for the X-rays.

一本のパイプ14については、第2図に示されるように
内口径の大きい側14aからX線20を入射すると、パ
イプ14の内壁で全反射して内口径の小さい側の出口1
4bに向う、このとき、パイプ14の内壁の傾斜角が入
射X線20に対する全反射条件を満足しているものとす
る。パイプ14の口径と長さの関係次第では、全反射を
繰り返しながら入射X線20は出口14)1へ向う。内
口径の大きい入口側14aの大きさにほぼ等しい入射X
i!20のビーム径は、出口14bから出るときは入射
X線20のビーム径より小さいビーム径のX線となる。
Regarding one pipe 14, when X-rays 20 are incident from the side 14a with a larger inner diameter as shown in FIG.
At this time, it is assumed that the inclination angle of the inner wall of the pipe 14 satisfies the total reflection condition for the incident X-ray 20. Depending on the relationship between the diameter and length of the pipe 14, the incident X-rays 20 travel toward the exit 14) 1 while undergoing repeated total reflection. The incidence X is approximately equal to the size of the entrance side 14a with a large inner diameter.
i! The beam diameter of X-rays 20 becomes smaller than the beam diameter of the incident X-rays 20 when exiting from the exit 14b.

第1図の実施例ではこのパイプ14を揃えて、かつ、出
口側では中心軸の延長線が一点で交わるようにしている
ので、−パイプ14が一本の場合より遥かに大量のX線
が、パイプ14が一本の場合と大差のない小さいX線ビ
ームとなる。つまりパワーの大きい(X線の光束密度の
高い)細いX線ビーム22となる。
In the embodiment shown in FIG. 1, the pipes 14 are aligned and the extension lines of their central axes intersect at one point on the exit side, so a much larger amount of X-rays is emitted than if there was only one pipe 14. , the X-ray beam becomes small and is not much different from the case where there is only one pipe 14. In other words, it becomes a narrow X-ray beam 22 with large power (high luminous flux density of X-rays).

パイプ14の材料としては溶融石英や金属を使用するこ
とができる。いずれもパイプ14の内壁面の表面が鏡面
に近い状態とする必要がある。
As the material of the pipe 14, fused quartz or metal can be used. In either case, the inner wall surface of the pipe 14 must have a nearly mirror-like surface.

第1図の実施例において円錐台状に束ねられるパイプと
しては、第2図のように内口径が入口側と出口画で異な
っているものに限らず、第3図に示されるように両端で
内口径の等しい円筒パイプ24を使用してもよい。この
場合、パイプ24を束ねて円錐台状とした場合、X線2
0の入射面となる面積の広い側の集合面ではパイプ24
相互の間に隙間ができるので、適当な充填剤によりそれ
らの隙間を埋めるようにすればよい。
In the embodiment shown in Fig. 1, the pipes to be bundled into a truncated cone shape are not limited to those whose inner diameters are different at the inlet and outlet sides as shown in Fig. Cylindrical pipes 24 having the same inner diameter may also be used. In this case, if the pipes 24 are bundled into a truncated cone shape, the X-ray
Pipe 24 on the collecting surface on the larger side, which is the incident surface of 0.
Since gaps are formed between them, these gaps may be filled with a suitable filler.

第4図は他の実施例の部分断面図を表わしたものである
FIG. 4 shows a partial sectional view of another embodiment.

第1図の実施例の場合、パイプの集合体の中心から離れ
たパイプ14では、入射X線20に対して全反射条件が
満たされなくなることがある。そこで1本実施例では、
)[20の入射側ではどのパイプ26−1.26−2.
・・・・・・もX線入射側が入射X線にほぼ平行になり
、しかも出射側の中心軸の延長線が一点Aで交わるよう
に、中央部のパイプと周辺部のパイプの形状を異ならせ
て集合体としている。これトこより効率のよいX線ビー
ム収束装置が得られる。
In the case of the embodiment shown in FIG. 1, the condition for total reflection may no longer be satisfied for the incident X-rays 20 in the pipes 14 that are far from the center of the pipe assembly. Therefore, in this embodiment,
) [Which pipe 26-1.26-2.
......, the shape of the central pipe and the peripheral pipe are different so that the X-ray incident side is almost parallel to the incident X-ray, and the extension of the central axis on the exit side intersects at one point A. It is a collective body. This results in a more efficient X-ray beam focusing device.

ここで、X線の全反射条件を示すと次の式のように表現
することができる。反射ミラーに対する臨界角ΦCは、
Φc=(2δ)1/8 と表わされる。
Here, the conditions for total reflection of X-rays can be expressed as in the following equation. The critical angle ΦC for the reflecting mirror is
It is expressed as Φc=(2δ)1/8.

δ= 2 、02 (m / z )ρλ”XIO’で
あり、2は原子番号、mは原子量、ρは密度、λはX線
の波長(入)である。材質が溶融石英で、X線がAQK
α(8,339人)のときは、臨界角ΦCが約1.lo
である(ジャパニーズ・ジャーナル・オブ・アプライド
・フィジックス(JapaneseJournal o
f Applied Physics)第21巻、第9
号、第1347〜1358ページ参照)。
δ=2,02(m/z)ρλ"XIO', where 2 is the atomic number, m is the atomic weight, ρ is the density, and λ is the wavelength (input) of the X-ray.The material is fused silica, and the X-ray is AQK
When α (8,339 people), the critical angle ΦC is approximately 1. lo
(Japanese Journal of Applied Physics)
f Applied Physics) Volume 21, No. 9
No. 1, pp. 1347-1358).

溶融石英などでパイプを作る場合、内口径を10μmあ
るいは数10μm程度に細くすることは可能である。そ
してパイプの長さをその内口径の例えば100倍程度以
上というようにすれば、X線の全反射の臨界角がほぼ1
〜10度程度であるので、パイプの内口径にほぼ近い位
にまでX線ビームを絞ることができる。
When a pipe is made of fused silica or the like, it is possible to reduce the inner diameter to about 10 μm or several tens of μm. If the length of the pipe is made to be, for example, 100 times or more than its inner diameter, the critical angle for total reflection of X-rays will be approximately 1.
Since the angle is approximately 10 degrees, the X-ray beam can be focused to a point almost close to the inner diameter of the pipe.

本発明の場合、入射X線の光源は点光源でもよく、又は
平行X線でもよい。
In the case of the present invention, the light source of the incident X-rays may be a point light source or a parallel X-ray source.

(発明の効果) 本発明によれば従来のX線ビーム収束装置に比べて、一
層微小なX線ビームを高パワーで得ることができる。こ
れによってこれまで待望されてきた微小部のXPS (
ESCA)分析が実現できるようになり、また、微小部
の蛍光X線分析の実現も可能になる。
(Effects of the Invention) According to the present invention, a much smaller X-ray beam can be obtained with higher power than the conventional X-ray beam focusing device. With this, the long-awaited XPS of minute parts (
This makes it possible to perform ESCA) analysis, and also to perform fluorescent X-ray analysis of minute parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す側面図、第2図は同実
施例で使用される1本のパイプを示す断面図、第3図は
同実施例で使用される他のパイプを示す断面図、第4図
は他の実施例を示す部分断面図、第5図ないし第7図は
それぞれ従来のX線ビーム収束装置の要部を示す概略斜
視図である。 14.24・・・・・・パイプ、 16・・・・・・X線入射面、 18・・・・・・X線出射面、 20・・・・・・入射X線。 22・・・・・・出射X線、 A・・・・・・X線の収束点。
Fig. 1 is a side view showing one embodiment of the present invention, Fig. 2 is a sectional view showing one pipe used in the same embodiment, and Fig. 3 is a side view showing one pipe used in the same embodiment. FIG. 4 is a partial sectional view showing another embodiment, and FIGS. 5 to 7 are schematic perspective views showing essential parts of a conventional X-ray beam focusing device. 14.24... Pipe, 16... X-ray entrance surface, 18... X-ray exit surface, 20... Incident X-ray. 22... Outgoing X-rays, A... Convergence point of the X-rays.

Claims (1)

【特許請求の範囲】[Claims] (1)多数の微小口径パイプを、一方の集合面が大きく
他方の集合面が小さくなるように、かつ、前記他方の集
合面からの各パイプの中心延長線が一点に収束するよう
に束ねて円錐台状とし、前記一方の集合面をX線入射面
とし、前記他方の集合面をX線出射面としたX線ビーム
収束装置。
(1) A large number of small-diameter pipes are bundled so that one collecting surface is large and the other collecting surface is small, and the central extension of each pipe from the other collecting surface converges to one point. An X-ray beam convergence device having a truncated cone shape, wherein the one collecting surface is an X-ray entrance surface, and the other collecting surface is an X-ray exit surface.
JP61144078A 1986-06-19 1986-06-19 X-ray beam focusing device Expired - Lifetime JPH0740080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61144078A JPH0740080B2 (en) 1986-06-19 1986-06-19 X-ray beam focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61144078A JPH0740080B2 (en) 1986-06-19 1986-06-19 X-ray beam focusing device

Publications (2)

Publication Number Publication Date
JPS62299241A true JPS62299241A (en) 1987-12-26
JPH0740080B2 JPH0740080B2 (en) 1995-05-01

Family

ID=15353756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61144078A Expired - Lifetime JPH0740080B2 (en) 1986-06-19 1986-06-19 X-ray beam focusing device

Country Status (1)

Country Link
JP (1) JPH0740080B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221299A (en) * 1988-07-08 1990-01-24 Shimadzu Corp Concentration device of x-ray
JP2002512357A (en) * 1998-04-22 2002-04-23 スミソニアン アストロフィジカル オブザーバトリ X-ray diagnostic system
EP1912061A1 (en) * 2006-10-10 2008-04-16 Rigaku Corporation X-ray optical system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715345B2 (en) * 2005-07-08 2011-07-06 株式会社島津製作所 X-ray analyzer
JP5159068B2 (en) * 2005-09-01 2013-03-06 独立行政法人科学技術振興機構 Total reflection X-ray fluorescence analyzer
JP6324060B2 (en) 2013-12-24 2018-05-16 株式会社日立ハイテクサイエンス X-ray analyzer
JP6924348B2 (en) * 2019-10-31 2021-08-25 パルステック工業株式会社 X-ray diffraction measuring device
JP6924349B2 (en) * 2019-10-31 2021-08-25 パルステック工業株式会社 X-ray diffraction measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221299A (en) * 1988-07-08 1990-01-24 Shimadzu Corp Concentration device of x-ray
JP2002512357A (en) * 1998-04-22 2002-04-23 スミソニアン アストロフィジカル オブザーバトリ X-ray diagnostic system
EP1912061A1 (en) * 2006-10-10 2008-04-16 Rigaku Corporation X-ray optical system
US7542548B2 (en) 2006-10-10 2009-06-02 Rigaku Corp. X-ray optical system

Also Published As

Publication number Publication date
JPH0740080B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
EP0322408B1 (en) Instrumentation for conditioning x-ray or neutron beams
US5022064A (en) X-ray optical system formed by multilayer reflecting mirrors for reflecting X-rays of different wavelengths
US3905675A (en) Optical systems having stop means for preventing passage of boundary wave radiation
JP2011516892A (en) X-ray generator having polycapillary optical system
Padgett et al. Optical tweezers and spanners
CN111123435A (en) Self-assembly type super-resolution optical probe based on optical fiber tweezers
JPS62299241A (en) X-ray beam converging apparatus
JP3597044B2 (en) Cold neutron focusing device
Thiel et al. Production of intense micrometer‐sized x‐ray beams with tapered glass monocapillaries
EP0342523B1 (en) Generation of parallel second harmonic light rays using an optical fiber
JPH0242422B2 (en)
US6738552B2 (en) Pressed capillary optics
WO2001075488A1 (en) Optical assembly for increasing the intensity of a formed x-ray beam
Howells et al. Design considerations for an X-ray microprobe
Mildner et al. Focused neutrons: a point to be made
Pask et al. Photoreceptor optics I: Introduction to formalism and excitation in a lens-photoreceptor system
US20040012864A1 (en) Laser Beam Focusing Apparatus and Method for Focusing a Laser Beam
JPH0231817B2 (en)
JPH0711600B2 (en) X-ray concentrator
Ullrich et al. Development of monolithic capillary optics for x-ray diffraction applications
JPH0443998A (en) X-ray analyzer, fine part x-ray diffracting device, fluorescent x-ray analyzer, and x-ray photoelectron analyzer
Misconi et al. Light scattering by laser levitated particles
Shealy et al. Development of a normal incidence multilayer, imaging X-ray microscope
Workman et al. One-dimensional X-ray microscope for shock measurements in high-density aluminum plasmas
JPH02500141A (en) Optical device for condensing light that forms the objective lens

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term