JP4492507B2 - X-ray focusing device - Google Patents

X-ray focusing device Download PDF

Info

Publication number
JP4492507B2
JP4492507B2 JP2005281022A JP2005281022A JP4492507B2 JP 4492507 B2 JP4492507 B2 JP 4492507B2 JP 2005281022 A JP2005281022 A JP 2005281022A JP 2005281022 A JP2005281022 A JP 2005281022A JP 4492507 B2 JP4492507 B2 JP 4492507B2
Authority
JP
Japan
Prior art keywords
ray
lens
rays
multicapillary
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005281022A
Other languages
Japanese (ja)
Other versions
JP2007093316A (en
Inventor
啓義 副島
壽朗 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005281022A priority Critical patent/JP4492507B2/en
Publication of JP2007093316A publication Critical patent/JP2007093316A/en
Application granted granted Critical
Publication of JP4492507B2 publication Critical patent/JP4492507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子線プローブ微小分析装置(EPMA)や走査電子顕微鏡(SEM)、透過電子顕微鏡、蛍光X線分析装置など、X線を利用して分析を行うX線分析装置、XRD、X線CT、レントゲン装置等においてX線を集束するために利用されるX線集束装置に関する。   The present invention relates to an X-ray analyzer, an XRD, and an X-ray that perform analysis using X-rays, such as an electron probe microanalyzer (EPMA), a scanning electron microscope (SEM), a transmission electron microscope, and a fluorescent X-ray analyzer. The present invention relates to an X-ray focusing apparatus used for focusing X-rays in a CT, an X-ray apparatus or the like.

電子線プローブ微小分析装置(EPMA)では、高エネルギーを有する微小径の電子線を励起線として試料に照射し、それによって試料の含有成分の内側電子が励起された際に外部に放出される固有X線(特性X線)を分析することにより、元素の同定や定量を行ったり、元素の分布を調べたりする。また、走査電子顕微鏡(SEM)では一般的には電子線の照射位置から発生した二次電子や反射電子を検出するが、最近は、エネルギー分散型X線検出部を併設することでX線分析を可能とした装置も開発されている。   The electron beam probe microanalyzer (EPMA) irradiates a sample with an electron beam with a small diameter having high energy as an excitation ray, and thereby the intrinsic electron emitted to the outside when the inner electrons of the components contained in the sample are excited. By analyzing X-rays (characteristic X-rays), elements are identified and quantified, and the distribution of elements is examined. In addition, the scanning electron microscope (SEM) generally detects secondary electrons and reflected electrons generated from the irradiation position of the electron beam, but recently, an X-ray analysis is performed by adding an energy dispersive X-ray detector. A device that enables this is also being developed.

この種のX線分析装置においてX線を集光したり平行化したりするために、従来より、マルチキャピラリ(ポリキャピラリと呼ばれることもある)X線レンズと呼ばれる一種のX線集束装置が知られている(特許文献1、2など参照)。図6はマルチキャピラリX線レンズの形態例を示す図、図7はマルチキャピラリX線レンズにおけるX線の伝達の原理図である。   In order to collect and collimate X-rays in this type of X-ray analyzer, a kind of X-ray focusing device called a multi-capillary (sometimes called polycapillary) X-ray lens has been known. (See Patent Documents 1 and 2, etc.). FIG. 6 is a diagram showing an example of a multi-capillary X-ray lens, and FIG. 7 is a principle diagram of X-ray transmission in the multi-capillary X-ray lens.

マルチキャピラリX線レンズは例えば内径が2〜十数μm程度の微小径の硼珪酸ガラスから成る細管(キャピラリ)を多数(数百〜100万本程度)束ねた基本構造を有しており、図7に示すように、1本のキャピラリ22の内側に入射されたX線がそのガラス壁の内周面を臨界角以下の角度で以て全反射しながら進行してゆく原理を利用して、X線を効率良く案内するものである。図7(a)に示すようにキャピラリ22が直線状でも、図7(b)に示すようにキャピラリ22が湾曲状であっても、同じようにしてX線を案内することができる。   A multi-capillary X-ray lens has a basic structure in which a large number of capillaries (about several hundred to one million) made of borosilicate glass having a small diameter of, for example, an inner diameter of about 2 to about 10 μm are bundled. As shown in FIG. 7, by using the principle that X-rays incident on the inside of one capillary 22 travel while totally reflecting the inner peripheral surface of the glass wall at an angle less than the critical angle, X-rays are guided efficiently. Even if the capillary 22 is linear as shown in FIG. 7A or the capillary 22 is curved as shown in FIG. 7B, X-rays can be guided in the same manner.

マルチキャピラリX線レンズには種々の形態があり、例えば図6(a)に示すマルチキャピラリX線レンズ20は、殆ど点とみなし得るX線源から出たX線を入射側端面で大きな立体角で以て取り込み、反対側の出射側端面から出たX線を一点に集束させる点/点型のものである。また図6(b)に示すマルチキャピラリX線レンズ21は、同様に入射側端面の略一点から出たX線を大きな立体角で以て取り込んだ後、出射側端面から平行ビームを出射する、或いはその逆の経路とする点/平行型のものである。こうしたマルチキャピラリX線レンズを用いれば、例えばシンクロトロン放射光(SR光)のような強力なX線源を用いなくても、X線源により発生した励起用のX線を効率的に収集してその照射面積を絞って試料に照射することができる。   There are various forms of multicapillary X-ray lenses. For example, the multicapillary X-ray lens 20 shown in FIG. 6A has a large solid angle at the incident side end face for X-rays emitted from an X-ray source that can be regarded as almost a point. Thus, it is a point / point type that focuses and collects X-rays emitted from the opposite emission side end face at one point. Similarly, the multicapillary X-ray lens 21 shown in FIG. 6B takes out X-rays emitted from substantially one point on the incident side end face with a large solid angle, and then emits a parallel beam from the emission side end face. Or it is a point / parallel type as the reverse path. By using such a multicapillary X-ray lens, it is possible to efficiently collect excitation X-rays generated by the X-ray source without using a powerful X-ray source such as synchrotron radiation (SR light). The sample can be irradiated with a reduced irradiation area.

上述したようにマルチキャピラリX線レンズはX線を高い効率で収集し案内することができるものの、こうして集めたX線を照射する面積を小さく絞るという点では必ずしも十分な性能が得られない。その大きな理由は、マルチキャピラリX線レンズでは原理的な焦点ボケが生じることによる。即ち、図8に示すように、X線は1本のキャピラリ22の内壁面を全反射しながら進行するが、その反射角の最大は臨界角である。そのため、キャピラリ22からX線が出射する際に、光軸(キャピラリ22の中心軸)Sに対し臨界角θの開き角度を有してX線が拡がる可能性がある。その結果、図9に示すように、マルチキャピラリX線レンズ21の点焦点側の端面から出射したX線の照射領域は、理想的な点とはならず、或る程度のサイズを持つ領域23となってしまう。   As described above, the multicapillary X-ray lens can collect and guide X-rays with high efficiency, but sufficient performance is not necessarily obtained in terms of reducing the area to which the collected X-rays are irradiated. The main reason for this is that the principle defocusing occurs in the multicapillary X-ray lens. That is, as shown in FIG. 8, X-rays travel while totally reflecting the inner wall surface of one capillary 22, but the maximum reflection angle is a critical angle. Therefore, when X-rays are emitted from the capillary 22, the X-rays may spread with an opening angle of the critical angle θ with respect to the optical axis (center axis of the capillary 22) S. As a result, as shown in FIG. 9, the irradiation region of the X-rays emitted from the end surface on the point focal point side of the multicapillary X-ray lens 21 is not an ideal point, but a region 23 having a certain size. End up.

また、上記のようなキャピラリを出た後の光の拡がりがないものとして各キャピラリの光軸のみを考えた場合でも、マルチキャピラリX線レンズの製造上の限界により、膨大な数のキャピラリの全ての光軸を完全に1点に収束させることは実際に不可能であるから、そうした要因による焦点ボケも存在する。このように理論上回避できない要因と製造の限界による要因との両方によって、従来のマルチキャピラリX線レンズでの最小焦点サイズはせいぜい20〜30μm程度が限界であり、これより焦点サイズを小さくすることは困難であった。   Even when only the optical axis of each capillary is considered as having no light spread after exiting the capillaries as described above, all of the enormous number of capillaries are limited due to the manufacturing limitations of the multicapillary X-ray lens. Since it is actually impossible to make the optical axis of the lens completely converge to one point, there is a defocusing due to such factors. Due to both theoretically unavoidable factors and factors due to manufacturing limitations, the minimum focal size of a conventional multicapillary X-ray lens is limited to about 20 to 30 μm at most. Was difficult.

特公平7−11600号公報Japanese Examined Patent Publication No. 7-11600 特公平7−40080号公報Japanese Patent Publication No. 7-40080

本発明は上記課題を解決するために成されたものであり、その目的とするところは、X線を効率良く収集するのみならず、X線強度を大きく減衰させることなく焦点サイズを小さく絞ることができるX線集束装置を提供することである。   The present invention has been made to solve the above-mentioned problems, and its object is not only to collect X-rays efficiently, but also to reduce the focal spot size without greatly reducing the X-ray intensity. It is to provide an X-ray focusing apparatus capable of

上述したようにマルチキャピラリX線レンズはX線を効率良く収集して、或る程度の径に絞るのには非常に有効な素子である。そこで、本願発明者はこうしたマルチキャピラリX線レンズの特性を利用し、特にX線の絞り特性に優れるフレネルゾーンプレート(FZP)とマルチキャピラリX線レンズとを組み合わせることに想到した。   As described above, the multicapillary X-ray lens is a very effective element for efficiently collecting X-rays and narrowing down to a certain diameter. Accordingly, the present inventor has come up with a combination of a Fresnel zone plate (FZP) and a multicapillary X-ray lens, which are particularly excellent in X-ray aperture characteristics, utilizing such characteristics of the multicapillary X-ray lens.

即ち、本発明に係るX線集束装置は、両端面が形成されるように同じ方向に束ねられた多数のX線案内用の細管から成り、少なくとも一方の端その端面から光軸方向の外方において該光軸上の点焦点である微小領域にX線を集中的に照射する集束端となっている細管集合体と、該細管集合体の集束端の端面と該集束端による前記点焦点との間に、該集束端の光軸と光軸が一致するように配置された1個のフレネルゾーンプレートによる集光レンズと、を備えることを特徴としている。 Ie, X-ray focusing device according to the present invention comprises a plurality of capillary X-ray guiding bundled in the same direction as both end faces are formed, at least one end, the optical axis direction from the end face Of the narrow tube assembly which is a focusing end for irradiating X-rays intensively to a minute region which is a point focal point on the optical axis, and the end surface of the focusing end of the thin tube assembly and the focusing end It is characterized by comprising a condensing lens by one Fresnel zone plate arranged so that the optical axis of the focusing end coincides with the optical axis at the focal point .

周知のようにフレネルゾーンプレートはニュートンリングの回折及び干渉を利用したレンズであり、加工精度を高めることで絞り径を非常に小さくすることができる反面、それ自体を大きなサイズとすることが難しく光(X線)を取り込む立体角が小さいという特性を持つ。しかしながら、上述したようにマルチキャピラリX線レンズでは、ごく小径にX線を絞ることは難しくても、フレネルゾーンプレートのサイズ(例えば1mm程度以下)以下にX線を絞ることは容易であるので、上記のようなフレネルゾーンプレートの欠点は問題とならない。即ち、マルチキャピラリX線レンズとフレネルゾーンプレートとの組み合わせは、両者のそれぞれの長所を活かし、逆に欠点をそれぞれが補い合う優れた組み合わせである。   As is well known, the Fresnel zone plate is a lens that uses Newton's ring diffraction and interference. By increasing the processing accuracy, the aperture diameter can be made very small, but it is difficult to make the size itself large and light. The solid angle for taking in (X-rays) is small. However, as described above, in the multicapillary X-ray lens, even if it is difficult to reduce the X-ray to a very small diameter, it is easy to reduce the X-ray below the size of the Fresnel zone plate (for example, about 1 mm or less). The disadvantages of the Fresnel zone plate as described above do not matter. That is, the combination of the multi-capillary X-ray lens and the Fresnel zone plate is an excellent combination that makes use of the advantages of both and conversely compensates the defects.

したがって本発明に係るX線集束装置によれば、例えばX線源から出射されたX線を効率良く収集することでX線強度を高め、それをごく微小な領域に集中的に照射することができる。それにより、例えば同じX線源を用いてもX線照射領域における単位面積当たりのX線強度を従来に比べてかなり大きくすることができ、その微小領域に存在する物質とX線との相互作用(透過、反射、吸収等)による情報を高い感度及び精度で検出することができるようになる。或いは、その分だけX線源のX線強度を下げることができ、小型で低価格のX線源の利用が可能となる。   Therefore, according to the X-ray focusing apparatus according to the present invention, for example, X-ray intensity emitted by an X-ray source can be efficiently collected to increase the X-ray intensity and irradiate it to a very small area intensively. it can. Thereby, for example, even if the same X-ray source is used, the X-ray intensity per unit area in the X-ray irradiation region can be considerably increased as compared with the conventional case, and the interaction between the substance existing in the minute region and X-rays can be achieved. Information by (transmission, reflection, absorption, etc.) can be detected with high sensitivity and accuracy. Alternatively, the X-ray intensity of the X-ray source can be reduced by that amount, and a small and inexpensive X-ray source can be used.

以下、本発明に係るX線集束装置の一実施例について、図1〜図5を参照しながら説明する。   Hereinafter, an embodiment of an X-ray focusing apparatus according to the present invention will be described with reference to FIGS.

図1は本実施例のX線集束装置の要部の構成図、図2はフレネルゾーンプレートの一例である多層膜フレネルゾーンプレート単体による集光動作を示す光路構成図、図3は図1中の集束端付近の光路構成図、図4は本実施例のX線集束装置の応用例であるX線検査装置の概略構成図、図5は本実施例のX線集束装置の効果を説明するための図である。   FIG. 1 is a configuration diagram of a main part of the X-ray focusing apparatus of the present embodiment, FIG. 2 is an optical path configuration diagram showing a light condensing operation by a multilayer Fresnel zone plate as an example of a Fresnel zone plate, and FIG. FIG. 4 is a schematic configuration diagram of an X-ray inspection apparatus which is an application example of the X-ray focusing apparatus of this embodiment, and FIG. 5 explains the effect of the X-ray focusing apparatus of this embodiment. FIG.

図4に示すように、本実施例のX線集束装置1を用いたX線検査装置では、X線源12と製造ライン10上を移動する検査対象物11との間にX線集束装置1が設置され、X線源12から出射した一次X線はこのX線集束装置1により検査対象物11に効率良く且つごく小径に絞って照射される。これに応じて検査対象物11から放出された二次X線はX線検出器13により検出され、その検出信号に応じて検査対象物11上のX線照射部位の情報(例えば画像)が得られる。もちろん、検出側にもマルチキャピラリX線レンズなどを設けてもよい。   As shown in FIG. 4, in the X-ray inspection apparatus using the X-ray focusing apparatus 1 of this embodiment, the X-ray focusing apparatus 1 is interposed between the X-ray source 12 and the inspection object 11 moving on the production line 10. The primary X-rays emitted from the X-ray source 12 are efficiently irradiated to the inspection object 11 with a very small diameter by the X-ray focusing apparatus 1. In response, secondary X-rays emitted from the inspection object 11 are detected by the X-ray detector 13, and information (for example, an image) of the X-ray irradiation site on the inspection object 11 is obtained according to the detection signal. It is done. Of course, a multicapillary X-ray lens or the like may be provided on the detection side.

図1に示すように、この実施例によるX線集束装置1は、一方の端部が各キャピラリから出射した後の光の拡がりを考慮しない場合に1点とみなし得る点焦点を有する集束端2aであり、他方の端部が平行端2bである点/平行型のマルチキャピラリX線レンズ(本発明における細管集合体)2の集束端2aの外側に、多層膜フレネルゾーンプレートによるX線レンズ(以下、FZPレンズと呼ぶ)3が配置された構成を有している。マルチキャピラリX線レンズ2の集束端2aの光軸(多数のキャピラリの束の中心部に位置するキャピラリの光軸と考えることができる)とFZPレンズ3の光軸とが一致するように、両者は配置されている。例えばFZPレンズ3は外径が1mmであり、マルチキャピラリX線レンズ2はその集束端2aの集光径が1mm未満となる構成を有したものである。マルチキャピラリX線レンズ2において、この程度のサイズに集光径を絞ることは非常に容易である。   As shown in FIG. 1, the X-ray focusing apparatus 1 according to this embodiment has a focusing end 2a having a point focal point that can be regarded as one point when one end portion does not consider the spread of light after exiting from each capillary. And an X-ray lens formed of a multilayer Fresnel zone plate outside the focusing end 2a of a point / parallel type multicapillary X-ray lens (capillary tube assembly in the present invention) 2 whose other end is a parallel end 2b. (Hereinafter referred to as an FZP lens) 3 is provided. Both so that the optical axis of the converging end 2a of the multicapillary X-ray lens 2 (which can be considered as the optical axis of a capillary located at the center of a bundle of many capillaries) matches the optical axis of the FZP lens 3. Is arranged. For example, the FZP lens 3 has an outer diameter of 1 mm, and the multicapillary X-ray lens 2 has a configuration in which the condensing diameter of the converging end 2a is less than 1 mm. In the multicapillary X-ray lens 2, it is very easy to reduce the light collection diameter to such a size.

FZPレンズ3は、周知のように、その中心の光軸の周囲に、X線を通過させる物質と遮断する物質とを交互に同心円状に配した透過型の回折格子の一種であり、図2に示すように、平行に((a)参照)、集束しながら((b)参照)、或いは拡がりながら((c)参照)入射したX線をそれぞれ或る1点Fに集光する作用を有する。焦点のサイズや焦点距離はFZPレンズ3を構成する物質の種類や輪帯パターンの間隔などに依存して任意に決めることができるが、通過するX線の波長にも依存するため、使用するX線の波長帯域を考慮して適切に定めればよい。   As is well known, the FZP lens 3 is a type of transmissive diffraction grating in which a substance that allows X-rays to pass through and a substance that blocks the X-ray are alternately arranged concentrically around the center optical axis. As shown in FIG. 3, the X-rays that are incident in parallel (see (a)), focused (see (b)), or spread (see (c)) are each focused on a certain point F. Have. The size and focal length of the focal point can be arbitrarily determined depending on the type of substance constituting the FZP lens 3 and the interval of the annular zone pattern, but since it also depends on the wavelength of the X-ray passing therethrough, It may be determined appropriately in consideration of the wavelength band of the line.

本実施例のX線集束装置1の構成では、例えば図4に示すように、X線源12から出射したX線はマルチキャピラリX線レンズ2の例えば平行端2bから各キャピラリに効率良く取り込まれ、各キャピラリの内部を全反射しながら集束端2aに案内される。そして集束端2aにおいて各キャピラリから出射されたX線は全体として集束して小径のFZPレンズ3に当たる。この際、詳細に見れば、理論的に、各キャピラリから出射するX線は図8に示したように光軸Sを中心として臨界角θが成す角度を示す線を回転させたような立体角の範囲に拡がる可能性がある。しかしながら、こうして拡がろうとするX線は、図3に示すようにFZPレンズ3を通過する際に集束されるため、各キャピラリから出たX線はほぼ1点とみなし得るようなごく微小な領域4を通過することとなる。もちろん、既述のように、理論的な焦点ボケだけでなくマルチキャピラリX線レンズの製造上の限界による焦点ボケの要因もあるが、その影響も同様に軽減されることになる。   In the configuration of the X-ray focusing apparatus 1 of the present embodiment, for example, as shown in FIG. 4, X-rays emitted from the X-ray source 12 are efficiently taken into each capillary from, for example, the parallel end 2b of the multicapillary X-ray lens 2. , The inside of each capillary is guided to the focusing end 2a while being totally reflected. The X-rays emitted from the capillaries at the focusing end 2a are focused as a whole and hit the small-diameter FZP lens 3. At this time, in detail, theoretically, the X-rays emitted from the capillaries are solid angles obtained by rotating a line indicating the angle formed by the critical angle θ about the optical axis S as shown in FIG. May extend to However, since the X-rays to be expanded in this way are focused when passing through the FZP lens 3 as shown in FIG. 3, the X-ray emitted from each capillary is a very small area that can be regarded as almost one point. 4 will be passed. Of course, as described above, there are not only theoretical defocusing but also defocusing factors due to manufacturing limitations of the multicapillary X-ray lens, but the influence is also reduced.

上記のような作用・効果は図5により容易に理解できる。図5は横軸に照射X線の横への拡がり、縦軸にX線光量子数(つまりX線強度)をとったグラフであり、図中に示すようなカーブで囲まれる領域の面積が照射全X線光量子数を表す。即ち、マルチキャピラリX線レンズ2の集束端2aの外側にフレネルゾーンプレートを配置しない、つまり従来の構成では、図中のAに示すようになり、既述の理由により照射X線をあまり絞ることができず照射X線の拡がりは相対的に大きい(最小でも20〜30μm程度)が、集束端2aを出たX線は殆ど損失しないので多量のX線を照射することができる。一方、フレネルゾーンプレート単体では図中のBに示すように、照射X線の拡がりは非常に小さくすることができるが、光の取り込みが少ないので照射全X線光量子数は少ない。   The above operations and effects can be easily understood with reference to FIG. FIG. 5 is a graph in which the abscissa indicates the width of the irradiated X-ray and the ordinate indicates the X-ray photon number (that is, the X-ray intensity), and the area of the region surrounded by the curve as shown in FIG. Represents the total X-ray photon number. That is, the Fresnel zone plate is not disposed outside the converging end 2a of the multicapillary X-ray lens 2, that is, in the conventional configuration, as shown in FIG. However, the spread of the irradiated X-ray is relatively large (at least about 20 to 30 μm), but the X-ray emitted from the converging end 2a is hardly lost, so that a large amount of X-ray can be irradiated. On the other hand, with the Fresnel zone plate alone, as shown by B in the figure, the spread of irradiated X-rays can be made extremely small, but the total X-ray photon number of irradiation is small because of less light intake.

これに対し、本発明のようにマルチキャピラリX線レンズとフレネルゾーンプレートとを組み合わせた構成では、効率良く収集したX線を小さく絞って照射することができるので、図中のCに示すようになる。即ち、従来に比べて照射X線を小さく絞ることができるとともに照射全X線光量子数も多くなるので、高い空間分解能と高い感度とを両立させることができる。   On the other hand, in the configuration in which the multi-capillary X-ray lens and the Fresnel zone plate are combined as in the present invention, the collected X-rays can be efficiently focused with a small size, and as shown in C in the figure. Become. That is, the irradiation X-rays can be reduced as compared with the conventional case, and the total number of irradiation X-ray photons is increased, so that both high spatial resolution and high sensitivity can be achieved.

即ち、本実施例のX線集束装置によれば、マルチキャピラリX線レンズ2によりX線を効率よく収集してその集光径を或る程度絞って小径のFZPレンズ3に無駄なく導入し、FZPレンズ3によりX線をさらに絞って例えば検査対象物11上のごく微小な領域4に照射することができる。X線はFZPレンズ3を通過する際にその一部が吸収されたり散乱されたりして減衰するが、その減衰の程度はX線の絞りの程度に比較すれば小さく、実質的に無視できる程度である。このようにして、本実施例によるX線集束装置によれば、X線源で発生するX線の強度がそれほど大きくなくても、ごく微小な領域に高い強度のX線を照射することができる。   That is, according to the X-ray focusing apparatus of the present embodiment, X-rays are efficiently collected by the multi-capillary X-ray lens 2, and the condensed diameter thereof is reduced to some extent and introduced into the small-diameter FZP lens 3 without waste. X-rays can be further narrowed down by the FZP lens 3 to irradiate, for example, a very small region 4 on the inspection object 11. When X-rays pass through the FZP lens 3, a part of the X-rays are absorbed or scattered and attenuated. However, the degree of attenuation is small compared to the degree of the X-ray aperture and can be substantially ignored. It is. As described above, according to the X-ray focusing apparatus according to the present embodiment, even if the intensity of the X-ray generated by the X-ray source is not so high, it is possible to irradiate a very small region with a high intensity X-ray. .

なお、上記実施例は本発明の一例であるから、本発明の趣旨の範囲で適宜変形、修正又は追加を行っても本願特許請求の範囲に包含されることは当然である。   It should be noted that the above embodiment is an example of the present invention, and it is obvious that any modification, correction, or addition as appropriate within the scope of the present invention is included in the scope of the claims of the present application.

本発明の一実施例であるX線集束装置の要部の構成図。The block diagram of the principal part of the X-ray focusing apparatus which is one Example of this invention. 多層膜フレネルゾーンプレート単体による集光動作を示す光路構成図。The optical path block diagram which shows the condensing operation | movement by a multilayer film Fresnel zone plate single-piece | unit. 図1中の集束端付近の光路構成図。FIG. 2 is an optical path configuration diagram in the vicinity of a focusing end in FIG. 1. 本実施例のX線集束装置の応用例であるX線検査装置の概略構成図。The schematic block diagram of the X-ray inspection apparatus which is an application example of the X-ray focusing apparatus of a present Example. 本実施例のX線集束装置の効果を説明するための図。The figure for demonstrating the effect of the X-ray focusing apparatus of a present Example. 従来知られているマルチキャピラリX線レンズの形態例を示す図。The figure which shows the example of a form of the conventionally known multicapillary X-ray lens. マルチキャピラリX線レンズにおけるX線の伝達の原理図。The principle figure of transmission of X-rays in a multicapillary X-ray lens. 従来のマルチキャピラリX線レンズの問題点を説明するための図。The figure for demonstrating the problem of the conventional multicapillary X-ray lens. 従来のマルチキャピラリX線レンズの問題点を説明するための図。The figure for demonstrating the problem of the conventional multicapillary X-ray lens.

符号の説明Explanation of symbols

1…X線集束装置
2…マルチキャピラリX線レンズ
2a…集束端
2b…平行端
3…多層膜フレネルゾーンプレート(FZP)X線レンズ

DESCRIPTION OF SYMBOLS 1 ... X-ray focusing apparatus 2 ... Multicapillary X-ray lens 2a ... Converging end 2b ... Parallel end 3 ... Multilayer Fresnel zone plate (FZP) X-ray lens

Claims (1)

両端面が形成されるように同じ方向に束ねられた多数のX線案内用の細管から成り、少なくとも一方の端その端面から光軸方向の外方において該光軸上の点焦点である微小領域にX線を集中的に照射する集束端となっている細管集合体と、
該細管集合体の集束端の端面と該集束端による前記点焦点との間に、該集束端の光軸と光軸が一致するように配置された1個のフレネルゾーンプレートによる集光レンズと、
を備えることを特徴とするX線集束装置。
Consists of a number of tubules X-ray guidance in bundled in the same direction as both end faces are formed, at least one end, at the focal point on the optical axis in the outside of the optical axis direction from the end face A tubule assembly serving as a focusing end for irradiating X-rays intensively to a minute region;
A condensing lens composed of one Fresnel zone plate arranged so that the optical axis of the converging end coincides with the optical axis between the end face of the converging end of the capillary tube assembly and the point focus formed by the converging end; ,
An X-ray focusing apparatus comprising:
JP2005281022A 2005-09-28 2005-09-28 X-ray focusing device Active JP4492507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281022A JP4492507B2 (en) 2005-09-28 2005-09-28 X-ray focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281022A JP4492507B2 (en) 2005-09-28 2005-09-28 X-ray focusing device

Publications (2)

Publication Number Publication Date
JP2007093316A JP2007093316A (en) 2007-04-12
JP4492507B2 true JP4492507B2 (en) 2010-06-30

Family

ID=37979221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281022A Active JP4492507B2 (en) 2005-09-28 2005-09-28 X-ray focusing device

Country Status (1)

Country Link
JP (1) JP4492507B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202730A1 (en) 2019-03-29 2020-10-08 株式会社応用科学研究所 X-ray analysis apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705606B2 (en) * 2007-05-10 2011-06-22 日本電信電話株式会社 X-ray condenser lens
JP4700034B2 (en) * 2007-08-13 2011-06-15 日本電信電話株式会社 X-ray condenser lens
JP4659015B2 (en) * 2007-11-14 2011-03-30 日本電信電話株式会社 X-ray condenser lens
JP5341416B2 (en) * 2008-07-17 2013-11-13 日本電信電話株式会社 X-ray condenser lens
JP5338483B2 (en) * 2009-05-27 2013-11-13 株式会社島津製作所 X-ray focusing device
JP5326987B2 (en) 2009-10-20 2013-10-30 株式会社島津製作所 X-ray focusing device
JP5684032B2 (en) 2011-04-08 2015-03-11 株式会社日立製作所 Charged particle beam analyzer and analysis method
JP5759257B2 (en) * 2011-05-17 2015-08-05 浜松ホトニクス株式会社 X-ray equipment
CN108627530A (en) * 2018-05-24 2018-10-09 北京师范大学 A kind of Wavelength Dispersive X-Ray Fluorescence Analysis instrument
CN115389538B (en) * 2022-08-09 2023-12-29 深圳市埃芯半导体科技有限公司 X-ray analysis device and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2884583B2 (en) * 1989-02-16 1999-04-19 株式会社島津製作所 X-ray collector
JPH0666997A (en) * 1992-08-21 1994-03-11 Olympus Optical Co Ltd Lighting optical system
JPH0784096A (en) * 1993-09-13 1995-03-31 Nikon Corp Zone plate for x-ray illumination

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202730A1 (en) 2019-03-29 2020-10-08 株式会社応用科学研究所 X-ray analysis apparatus
US11467103B2 (en) 2019-03-29 2022-10-11 Applied Science Laboratory Co., Ltd. X-ray analyzer

Also Published As

Publication number Publication date
JP2007093316A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4492507B2 (en) X-ray focusing device
JP5326987B2 (en) X-ray focusing device
RU2339974C2 (en) Wave dispersive x-ray fluorescence system using focusing optics for stimulation and focusing monochromator for collection
JP6851107B2 (en) X-ray analyzer
JP5100063B2 (en) X-ray analyzer
JP4470816B2 (en) X-ray focusing device
JP4837964B2 (en) X-ray focusing device
JP4540509B2 (en) Fluorescence detection method, flow cell unit and flow cytometer
JP4900660B2 (en) X-ray focusing element and X-ray irradiation apparatus
JP4483754B2 (en) X-ray focusing device
JP4715345B2 (en) X-ray analyzer
JP5338483B2 (en) X-ray focusing device
JP2009236622A (en) High-resolution x-ray microscopic apparatus with fluorescent x-ray analysis function
JP4133923B2 (en) Polycapillary lens
JP4639971B2 (en) X-ray analyzer
JP4706554B2 (en) X-ray spectrometer
JP5347559B2 (en) X-ray analyzer
JP6430208B2 (en) X-ray irradiation equipment
JP2005249559A (en) X-ray concentrator
JP5646147B2 (en) Method and apparatus for measuring a two-dimensional distribution
JPH0357928A (en) Light information detector
JP2010190679A (en) X-ray analysis apparatus and method
JP2001297726A (en) High-brightness x-ray source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

R151 Written notification of patent or utility model registration

Ref document number: 4492507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4