JPH0666997A - Lighting optical system - Google Patents

Lighting optical system

Info

Publication number
JPH0666997A
JPH0666997A JP22300292A JP22300292A JPH0666997A JP H0666997 A JPH0666997 A JP H0666997A JP 22300292 A JP22300292 A JP 22300292A JP 22300292 A JP22300292 A JP 22300292A JP H0666997 A JPH0666997 A JP H0666997A
Authority
JP
Japan
Prior art keywords
optical system
light
light source
zone plate
incidence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22300292A
Other languages
Japanese (ja)
Inventor
Yoshiaki Horiuchi
嘉明 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP22300292A priority Critical patent/JPH0666997A/en
Publication of JPH0666997A publication Critical patent/JPH0666997A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a lighting optical system effectively applicable to object lens with large numerical aperture corresponding to a light source with strong directivity without bending the light axis of the optical system. CONSTITUTION:In a lighting optical system of a focusing optical system, a secondary light source is formed with a zone plate. The light from this secondary light source is cast on a sample through a slanting incidence mirror 3 having a curved surface of revolution formed by revolving a non-spherical surface. For example, a small-diameter beam 1 from a light source with strong directivity is transmitted in the zone plate 2 and the light beam is converged with the zone plate 2 and then transmitted to a slanting incidence mirror 3 formed with an ellipsoidal or revolution. By placing a light shield plate 6 having a pin hole through which the light beam is penetratable, at the convergence point in this case, the incidence light can be separated into spectrum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シンクロトロン放射
(SR)のビームライン及びX線レーザ等の指向性が強
い光源と組み合わせて用いる場合に好適な照明光学系に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illumination optical system suitable for use in combination with a directional light source such as a synchrotron radiation (SR) beam line and an X-ray laser.

【0002】[0002]

【従来の技術】一般に、軟X線領域では物質の屈折率が
ほぼ1に近い値になるため、可視光領域において用いら
れている屈折光学系や通常の反射光学系を用いることが
できない。このため、全反射を利用した斜入射反射光学
系,回折現象を利用したゾーンプレート又は多層膜によ
って反射率を増大させる多層膜反射光学系等が用いられ
ている。
2. Description of the Related Art Generally, in a soft X-ray region, the refractive index of a substance is close to 1, so that a refracting optical system or a normal reflecting optical system used in a visible light region cannot be used. Therefore, an oblique-incidence reflection optical system utilizing total reflection, a zone plate utilizing a diffraction phenomenon, or a multilayer film reflection optical system for increasing reflectance by a multilayer film is used.

【0003】図6はこれらの光学系の構成例を示してい
るが、斜入射反射鏡の一つであるウォルター型反射鏡を
コンデンサとした例(図6(a))では、コンデンサ2
1及び対物レンズ22の双方ともウォルター型反射鏡で
あり、両方の光学系の開口数を一致させることができ
る。なお、図6(a)において、23は光源,24は遮
光板、25は試料、26は像である。また、ゾーンプレ
ートをコンデンサとした例(図6(b))においても、
コンデンサ27及び対物レンズ28の双方ともゾーンプ
レートであり、両方の光学系の開口数を一致させること
ができる。なお、図6(b)において、29は光源、3
0はピンホール・試料、31は像である。
FIG. 6 shows an example of the configuration of these optical systems. In the example in which a Walter type reflecting mirror, which is one of the grazing incidence reflecting mirrors, is used as a condenser (FIG. 6A), the condenser 2 is used.
Both 1 and the objective lens 22 are Walter-type reflecting mirrors, and the numerical apertures of both optical systems can be matched. In FIG. 6A, 23 is a light source, 24 is a light shielding plate, 25 is a sample, and 26 is an image. Also, in the example in which the zone plate is a capacitor (FIG. 6B),
Both the condenser 27 and the objective lens 28 are zone plates, and the numerical apertures of both optical systems can be matched. In FIG. 6B, 29 is a light source, 3
0 is a pinhole sample and 31 is an image.

【0004】同様にして、開口数が上記二つの光学系の
場合よりも大きい(ほぼ0.25程度)シュヴァルツシ
ルト型の多層膜反射光学系の対物レンズを用いる場合で
も、シュヴァルツシルト型のコンデンサを用いれば、両
者の開口数を一致させることにより、結像光学系を構成
することができる。図6(c)はかかる多層膜光学系の
構成例を示しており、図において32はシュヴァルツシ
ルト型のコンデンサ、33はシュヴァルツシルト型の対
物レンズ、34は光源、35は像である。
Similarly, even when an objective lens of a Schwarzschild type multilayer film reflection optical system having a numerical aperture larger than that of the above two optical systems (approximately 0.25) is used, a Schwarzschild type condenser is used. If used, the imaging optical system can be constructed by matching the numerical apertures of both. FIG. 6C shows a configuration example of such a multilayer optical system, in which 32 is a Schwarzschild type condenser, 33 is a Schwarzschild type objective lens, 34 is a light source, and 35 is an image.

【0005】ところが、多層膜光学系では、極めて薄い
層で形成される多層膜を曲面に成形する必要があり、そ
の層の厚さを、結像光学系を構成するために必要な4枚
分均一に揃えることは困難である。特に生物応用分野に
おける所謂水の窓領域の波長、例えば40Åの場合、製
作誤差が1%程度でも反射のピークが多層膜反射鏡の半
値幅を越えてしまい、総合的な光学系の透過率は著しく
減少する(図7参照)。従って、シュヴァルツシルト型
の対物レンズに対するコンデンサとして、シュヴァルツ
シルト光学系を用いることは適切でない。
However, in a multilayer optical system, it is necessary to mold a multilayer film formed of extremely thin layers into a curved surface, and the thickness of the layer is equivalent to that of four sheets required for constructing an imaging optical system. Uniform alignment is difficult. Especially in the case of a so-called water window wavelength in biological applications, for example, 40 Å, the peak of reflection exceeds the half-value width of the multilayer film reflecting mirror even if the manufacturing error is about 1%, and the total transmittance of the optical system is It is significantly reduced (see FIG. 7). Therefore, it is not appropriate to use the Schwarzschild optical system as a condenser for the Schwarzschild type objective lens.

【0006】ところで、ゾーンプレートの場合、その最
外殻ゾーン幅d,波長λ及び開口数NAの関係は次の式
により表される。
By the way, in the case of a zone plate, the relationship between the outermost shell zone width d, the wavelength λ and the numerical aperture NA is expressed by the following equation.

【0007】NA=λ/2dNA = λ / 2d

【0008】形成可能なゾーンプレートの最小線幅は約
300Åであり、波長40Åに対しては最大の開口数は
NA=0.07程度に制限される。なお、因みにウォル
ター型反射鏡の場合でも、開口数はNA=0.1程度が
限界である。このような理由から、開口数が大きい対物
レンズの仕様に対して、斜入射型のコンデンサを用いる
方法が提案されている(特願平3−97414号)。そ
してこの場合、例えば回転放物面が採用される。
The minimum line width of the zone plate that can be formed is about 300Å, and the maximum numerical aperture is limited to about NA = 0.07 for a wavelength of 40Å. Incidentally, even in the case of the Walter type reflecting mirror, the numerical aperture is limited to about NA = 0.1. For this reason, a method using an oblique-incidence type condenser has been proposed for specifications of an objective lens having a large numerical aperture (Japanese Patent Application No. 3-97414). In this case, for example, a paraboloid of revolution is adopted.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、指向性
が強い光源を用いた場合、光束の径が小さいため、斜入
射型のコンデンサの製作の容易性を考慮すると、円筒状
の形状は適当ではなく、図8に示したように回転放物面
の一部を用いた形状となる。しかし、この場合、光軸が
曲がってしまい、光学系のアライメントや装置化が極め
て困難になる。また、光線高の相違による入射角変化に
伴う反射率の相違や光束密度の相違により、図9に示し
たような瞳の光量分布を引き起こす。なお、かかる瞳の
光量分布は図10に示したように、伝達関数の向上に寄
与し得るが、偏射照明的になって厚い試料の場合には像
が立体的に見える危険があり、その像の解析にはかなり
の注意が必要になる。このように、指向性が強い光源と
開口数が大きい対物レンズの仕様に適した斜入射型のコ
ンデンサを用いようとすると、光学系の光軸の曲がりや
アライメントの困難性を来す等の問題があった。
However, when a light source having a strong directivity is used, the diameter of the light beam is small, so that the cylindrical shape is not appropriate in view of the ease of manufacturing the oblique incidence type capacitor. As shown in FIG. 8, the shape is such that a part of the paraboloid of revolution is used. However, in this case, the optical axis is bent, which makes alignment of the optical system and deviceization extremely difficult. Further, due to the difference in reflectance and the difference in luminous flux density due to the change in incident angle due to the difference in ray height, the light amount distribution in the pupil as shown in FIG. 9 is caused. It should be noted that such a light amount distribution of the pupil can contribute to the improvement of the transfer function as shown in FIG. 10, but in the case of a thick sample due to an oblique illumination, there is a risk that the image looks stereoscopic. Consideration must be given to image analysis. In this way, when using an oblique-incidence type condenser suitable for the specifications of a light source with strong directivity and a large numerical aperture, problems such as bending of the optical axis of the optical system and difficulty of alignment occur. was there.

【0010】本発明はかかる実情に鑑み、開口数が大き
い対物レンズに対して有効に適用することができ、しか
も光学系の光軸を曲げることなく且つ指向性が強い光源
に対応し得る照明光学系を提供することを目的とする。
In view of the above situation, the present invention can be effectively applied to an objective lens having a large numerical aperture, and further, it can be applied to a light source having a strong directivity without bending the optical axis of the optical system. The purpose is to provide a system.

【0011】[0011]

【課題を解決するための手段】本発明の照明光学系は、
結像光学系の照明光学系において、ゾーンプレートによ
って二次光源を形成し、この二次光源からの光を、非球
面を回転させて成る回転曲面を有する斜入射鏡により、
試料上に照射するようにしたものである。即ち、図1は
本発明の概要を示しているが、指向性が強い光源からの
細い径のビーム1をゾーンプレート2に入射させる。ゾ
ーンプレート2によって、光束を収束(1次回折光)又
は発散(−1次回折光)させるが、ここでは回転楕円面
で成る斜入射反射鏡3に入射する場合とする。
The illumination optical system of the present invention comprises:
In the illumination optical system of the imaging optical system, a secondary light source is formed by a zone plate, and light from this secondary light source is formed by an oblique incidence mirror having a rotating curved surface formed by rotating an aspherical surface.
Irradiation is performed on the sample. That is, although FIG. 1 shows the outline of the present invention, a beam 1 having a small diameter from a light source having a strong directivity is made incident on the zone plate 2. Although the light flux is converged (first-order diffracted light) or diverged (−1st-order diffracted light) by the zone plate 2, it is assumed here that it is incident on the oblique incidence reflecting mirror 3 formed of a spheroidal surface.

【0012】図1は光束を収束させる場合の例である
が、この場合その収束点4に、光線が通過する程度のピ
ンホール5を有する遮光板6を設置することにより、入
射光を分光することができる。また、放射光のように波
長が連続する光の場合、不必要な光を遮断することがで
きるので、試料に入射する光量を減少させることがで
き、試料の損傷を軽減することができる等の利点があ
る。
FIG. 1 shows an example in which a light beam is converged. In this case, a light shielding plate 6 having a pinhole 5 through which a light beam passes is installed at the convergence point 4 to disperse the incident light. be able to. Further, in the case of light having a continuous wavelength such as emitted light, unnecessary light can be blocked, so that the amount of light incident on the sample can be reduced and damage to the sample can be reduced. There are advantages.

【0013】[0013]

【作用】本発明によれば、光束が十分に拡がった位置
に、斜入射反射鏡3を設置すればよいので、この斜入射
反射鏡3として回転楕円鏡を用いることができ、これに
より光軸を真直に保持することが可能になる。かかる回
転楕円鏡を用いた場合、光線高の相違による入射角変化
に伴う反射率の相違や光束密度の相違に基づき、図2に
示したような瞳の光量分布を引き起こし、これは図3に
示したように伝達関数の変化を生じさせる。なお、上記
のような伝達関数を許容することができない場合には、
回転楕円面に対する入射角が小さな部分を基準にして設
計された多層膜を、該回転楕円面上に形成することによ
り、入射角が小さな部分の反射率を向上させて瞳の光量
分布の変化を軽減することができる。
According to the present invention, since the oblique-incidence reflecting mirror 3 may be installed at a position where the luminous flux is sufficiently spread, a spheroidal mirror can be used as the oblique-incident reflecting mirror 3, whereby the optical axis can be improved. Can be held straight. When such a spheroidal mirror is used, the light quantity distribution of the pupil as shown in FIG. 2 is caused based on the difference in reflectance and the difference in luminous flux density due to the change in incident angle due to the difference in ray height. It causes a change in the transfer function as shown. If the above transfer function cannot be accepted,
By forming a multi-layered film designed on the basis of a portion having a small incident angle with respect to the spheroidal surface on the spheroidal surface, the reflectance of the portion having a small incident angle is improved and the change in the light amount distribution of the pupil is changed. Can be reduced.

【0014】[0014]

【実施例】次に図4及び図5に基づき、本発明の照明光
学系の一実施例を説明する。この実施例は、シュヴァル
ツシルト型の対物レンズ用に構成した照明光学系の例で
ある。図において、10は放射光源、11はゾーンプレ
ート、12は回転楕円鏡、13はピンホールを有する遮
光板、14はシュヴァルツシルト型の対物レンズであ
る。
EXAMPLE An example of the illumination optical system of the present invention will be described below with reference to FIGS. This example is an example of an illumination optical system configured for a Schwarzschild type objective lens. In the figure, 10 is a radiation light source, 11 is a zone plate, 12 is a spheroidal mirror, 13 is a light shielding plate having a pinhole, and 14 is a Schwarzschild type objective lens.

【0015】放射光源10からの光は、ゾーンプレート
11で集光される。この場合、ゾーンプレート11は可
能な限り大きいことが好ましいが、これは一般に放射光
源のビームの直径が10mm以上あるのに対して、軟X
線用のゾーンプレートの場合は数mm程度に過ぎないか
らである。そして、最外殻ゾーンの幅を大きくしてで
も、ビームの直径を大きくすることを優先して光量損失
を少なくすることが得策である。この結果、ビームの収
束角θが小さくなっても(なお、これは開口数が小さく
なるためである)、ゾーンプレート11と回転楕円鏡1
2の間隔を大きくすることにより、製作可能な程度に十
分大きくすることができる。
The light from the radiation source 10 is collected by the zone plate 11. In this case, the zone plate 11 is preferably as large as possible, which generally means that the beam of the radiation source has a diameter of 10 mm or more, while the soft X
This is because the zone plate for wire is only a few mm. Even if the width of the outermost shell zone is increased, it is a good idea to give priority to increasing the diameter of the beam and reduce the light quantity loss. As a result, even if the beam convergent angle θ becomes small (this is because the numerical aperture becomes small), the zone plate 11 and the spheroidal mirror 1 are arranged.
By increasing the interval of 2, it can be made sufficiently large so that it can be manufactured.

【0016】上記回転楕円鏡12は、図5に示したよう
にその回転曲面上に入射角が小さい(θ1 )部分で最適
設計された多層膜を形成することにより、瞳の光量分布
の変化を軽減することができる。この場合、製作誤差の
許容量は、直入射のときよりも大きいので、シュヴァル
ツシルト光学系をコンデンサに用いる場合のような不都
合を回避することができる。
In the spheroidal mirror 12, as shown in FIG. 5, a multilayer film optimally designed in a portion having a small incident angle (θ 1 ) is formed on the curved surface of the spheroidal mirror to change the light amount distribution of the pupil. Can be reduced. In this case, since the allowable amount of manufacturing error is larger than that in the case of direct incidence, it is possible to avoid the inconvenience of using the Schwarzschild optical system for the condenser.

【0017】[0017]

【発明の効果】上述したように本発明によれば、この種
結像光学系において、開口数が大きい対物レンズに対し
て有効に適用することができ、しかも光学系の光軸を曲
げることなく且つ指向性が強い光源に対応し得る照明光
学系を有効に実現することができる。
As described above, according to the present invention, in this type of imaging optical system, it can be effectively applied to an objective lens having a large numerical aperture, and further, the optical axis of the optical system can be prevented from being bent. Moreover, it is possible to effectively realize an illumination optical system that can cope with a light source having a strong directivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による照明光学系の構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of an illumination optical system according to the present invention.

【図2】本発明の上記照明光学系に係る瞳における光量
分布を示す図である。
FIG. 2 is a diagram showing a light amount distribution in a pupil according to the illumination optical system of the present invention.

【図3】本発明の上記照明光学系に係る伝達関数の変化
を示す図である。
FIG. 3 is a diagram showing a change in a transfer function according to the illumination optical system of the present invention.

【図4】本発明の照明光学系の一実施例による構成を示
す図である。
FIG. 4 is a diagram showing a configuration according to an embodiment of an illumination optical system of the present invention.

【図5】本発明の照明光学系の一実施例における回転楕
円鏡の部分拡大図である。
FIG. 5 is a partial enlarged view of a spheroidal mirror in an embodiment of the illumination optical system of the present invention.

【図6】従来の照明光学系の構成例を示す図である。FIG. 6 is a diagram showing a configuration example of a conventional illumination optical system.

【図7】従来の多層膜光学系における波長及び反射率の
関係を示す図である。
FIG. 7 is a diagram showing a relationship between wavelength and reflectance in a conventional multilayer optical system.

【図8】従来の回転放物面を有する斜入射型コンデンサ
を用いた光学系の構成例を示す図である。
FIG. 8 is a diagram showing a configuration example of an optical system using a conventional oblique incidence type condenser having a paraboloid of revolution.

【図9】従来の上記斜入射型コンデンサを用いた光学系
に係る瞳における光量分布を示す図である。
FIG. 9 is a diagram showing a light amount distribution in a pupil relating to an optical system using the conventional grazing incidence type condenser.

【図10】従来の上記斜入射型コンデンサを用いた光学
系に係る伝達関数の変化を示す図である。
FIG. 10 is a diagram showing changes in the transfer function of an optical system using the conventional grazing incidence type condenser.

【符号の説明】[Explanation of symbols]

1 ビーム 2,11 ゾーンプレート 3 斜入射反射鏡 4 収束点 5 ピンホール 6,13 遮光板 10 放射光源 12 回転楕円鏡 13 遮光板 14 対物レンズ 1 Beam 2,11 Zone Plate 3 Oblique Incident Reflector 4 Convergence Point 5 Pinhole 6,13 Light-Shielding Plate 10 Radiation Light Source 12 Spherical Mirror 13 Light-Shielding Plate 14 Objective Lens

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年1月26日[Submission date] January 26, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】図6(b)にゾーンプレートをコンデンサ
とした例、図6(a)に斜入射反射鏡の一つウォルター
型反射鏡をコンデンサとした例を示す。ゾーンプレート
をコンデンサとした例の対物レンズは、同じくゾーンプ
レートであり、両方の光学系の開口数を一致させること
ができる。ウォルター型反射鏡をコンデンサにした例も
対物レンズは同じウォルター型反射鏡であり、両方の光
学系の開口数を一致させることができる。
FIG. 6B shows an example in which the zone plate is a condenser, and FIG. 6A shows an example in which one of the grazing incidence reflecting mirrors is a Walter type reflecting mirror. The objective lens of the example in which the zone plate is a condenser is also a zone plate, and the numerical apertures of both optical systems can be matched. In the example in which the Walter type reflecting mirror is used as a condenser, the objective lens is also the same Walter type reflecting mirror, and the numerical apertures of both optical systems can be matched.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】この様に考えると開口数が前2者よりも大
きい(おおよそ0.25程度)シュヴァルツシルト型の
多層膜反射光学系の対物レンズを用いる場合、同じシュ
ヴァルツシルト型のコンデンサを用いれば開口数を一致
させることができ結像光学系を構成できることは容易に
考えられる。図6(c)はかかる多層膜光学系の構成例
を示しており、図において32はシュヴァルツシルト型
のコンデンサ、33はシュヴァルツシルト型の対物レン
ズ、34は光源、35は像である。
Considering in this way, when using a Schwarzschild type objective lens of a multilayer reflection optical system having a numerical aperture larger than the former two (about 0.25), the same Schwarzschild type condenser is used to open the aperture. It is easily conceivable that the numbers can be matched and the imaging optical system can be constructed. FIG. 6C shows a configuration example of such a multilayer optical system, in which 32 is a Schwarzschild type condenser, 33 is a Schwarzschild type objective lens, 34 is a light source, and 35 is an image.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】[0009]

【発明が解決しようとする課題】しかしながら、指向性
が強い光源を用いた場合、光束の径が小さいため、斜入
射型のコンデンサの製作の容易性を考慮すると、円筒状
の形状は適当ではなく、図8に示したように回転放物面
の一部を用いた形状となる。しかし、この場合、光軸が
曲がってしまい、光学系のアライメントや装置化が極め
て困難になる。また、光線高の相違による入射角変化に
伴う反射率の相違や光束密度の違いにより、図9に示し
たような瞳の光量分布を引き起こす。なお、かかる瞳の
光量分布は図10に示したように、伝達関数の向上に寄
与し得るが、偏射照明的になって厚い試料の場合には像
が立体的に見える危険があり、その像の解析にはかなり
の注意が必要になる。このように、指向性が強い光源と
開口数が大きい対物レンズの仕様に適した斜入射型のコ
ンデンサを用いようとすると、光学系の光軸の曲がりや
アライメントの困難性を来す等の問題があった。
However, when a light source having a strong directivity is used, the diameter of the light beam is small, so that the cylindrical shape is not appropriate in view of the ease of manufacturing the oblique incidence type capacitor. As shown in FIG. 8, the shape is such that a part of the paraboloid of revolution is used. However, in this case, the optical axis is bent, which makes alignment of the optical system and deviceization extremely difficult. Further, due to the difference in reflectance and the difference in luminous flux density due to the change in incident angle due to the difference in ray height, the light quantity distribution of the pupil as shown in FIG. 9 is caused. It should be noted that such a light amount distribution of the pupil can contribute to the improvement of the transfer function as shown in FIG. 10, but in the case of a thick sample due to an oblique illumination, there is a risk that the image looks stereoscopic. Consideration must be given to image analysis. In this way, when using an oblique-incidence type condenser suitable for the specifications of a light source with strong directivity and a large numerical aperture, problems such as bending of the optical axis of the optical system and difficulty of alignment occur. was there.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】[0011]

【課題を解決するための手段】本発明は、結像光学系の
照明光学系において、ゾーンプレートによって二次光源
を形成し、この二次光源からの光を、回転曲面を有する
斜入射鏡により、試料上に照射するようにしたものであ
る。即ち、図1は本発明の概要を示しているが、指向性
が強い光源からの細い径のビーム1をゾーンプレート2
に入射させる。ゾーンプレート2によって、光束を収束
(1次回折光)又は発散(−1次回折光)させるが、こ
こでは回転楕円面で成る斜入射反射鏡3に入射する場合
とする。
According to the present invention, in an illumination optical system of an image forming optical system, a secondary light source is formed by a zone plate, and the light from this secondary light source is formed by an oblique incidence mirror having a rotating curved surface. , The sample is irradiated. That is, FIG. 1 shows an outline of the present invention, in which a small-diameter beam 1 from a light source having a strong directivity is applied to a zone plate 2
Incident on. Although the light flux is converged (first-order diffracted light) or diverged (−1st-order diffracted light) by the zone plate 2, it is assumed here that it is incident on the oblique incidence reflecting mirror 3 formed of a spheroidal surface.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 結像光学系の照明光学系において、ゾー
ンプレートによって二次光源を形成し、その二次光源か
らの光を、非球面を回転させて成る回転曲面を有する斜
入射鏡により、試料上に照射するようにしたことを特徴
とする照明光学系。
1. An illumination optical system of an imaging optical system, wherein a secondary light source is formed by a zone plate, and light from the secondary light source is formed by an oblique incidence mirror having a rotating curved surface formed by rotating an aspherical surface, An illumination optical system characterized in that a sample is irradiated.
【請求項2】 上記回転曲面における入射角が最も小さ
い部分を基準にして最適化された多層膜を形成し、この
部分の反射率が大きくなるようにしたことを特徴とする
請求項1に記載の照明光学系。
2. The multilayer film optimized with reference to a portion having the smallest incident angle on the rotation curved surface, and the reflectance of this portion is increased. Illumination optics.
【請求項3】 上記多層膜を形成した回転曲面を、上記
斜入射鏡として用いることを特徴とする請求項1に記載
の照明光学系。
3. The illumination optical system according to claim 1, wherein the rotating curved surface on which the multilayer film is formed is used as the oblique incidence mirror.
JP22300292A 1992-08-21 1992-08-21 Lighting optical system Withdrawn JPH0666997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22300292A JPH0666997A (en) 1992-08-21 1992-08-21 Lighting optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22300292A JPH0666997A (en) 1992-08-21 1992-08-21 Lighting optical system

Publications (1)

Publication Number Publication Date
JPH0666997A true JPH0666997A (en) 1994-03-11

Family

ID=16791287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22300292A Withdrawn JPH0666997A (en) 1992-08-21 1992-08-21 Lighting optical system

Country Status (1)

Country Link
JP (1) JPH0666997A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093316A (en) * 2005-09-28 2007-04-12 Shimadzu Corp X-ray focusing arrangement
JP2008164503A (en) * 2006-12-28 2008-07-17 Horiba Ltd X-rays beam-condensing unit and x-ray analyzer
WO2009067305A1 (en) * 2007-11-20 2009-05-28 Rigaku Innovative Technologies, Inc. X-ray optic with varying focal points

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093316A (en) * 2005-09-28 2007-04-12 Shimadzu Corp X-ray focusing arrangement
JP2008164503A (en) * 2006-12-28 2008-07-17 Horiba Ltd X-rays beam-condensing unit and x-ray analyzer
WO2009067305A1 (en) * 2007-11-20 2009-05-28 Rigaku Innovative Technologies, Inc. X-ray optic with varying focal points
US7706503B2 (en) 2007-11-20 2010-04-27 Rigaku Innovative Technologies, Inc. X-ray optic with varying focal points

Similar Documents

Publication Publication Date Title
US6469827B1 (en) Diffraction spectral filter for use in extreme-UV lithography condenser
JP4990287B2 (en) Concentrator for illumination system with a wavelength of 193 nm or less
US7319509B2 (en) Attenuator for attenuating wavelengths unequal to a used wavelength
US6927403B2 (en) Illumination system that suppresses debris from a light source
KR101166658B1 (en) Projection objective and projection exposure apparatus with negative back focus of the entry pupil
TWI782331B (en) Illumination optical unit for projection lithography, pupil facet mirror, optical system, illumination system, projection exposure apparatus, method for producing a microstructured component, and microstructured component
US6885502B2 (en) Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement
US5204887A (en) X-ray microscope
JP2007523383A (en) Catadioptric imaging optics for large numerical aperture imaging with deep ultraviolet light
JPS6191662A (en) Projecting and exposing device
JP5576938B2 (en) Illumination optics unit for microlithography
IL106092A (en) Illumination system having an aspherical lens and a method of manufacturing such a system
JPH09500453A (en) Spherical mirror grazing incidence X-ray optical system
JP2003515733A (en) Concentric spectrometer to reduce internal specular reflection
EP0459833A2 (en) X-ray microscope
JPH05326370A (en) Projection aligner
US6210865B1 (en) Extreme-UV lithography condenser
JP4212721B2 (en) Wide-angle reflective optics
US4878745A (en) Optical system for effecting increased irradiance in peripheral area of object
JPH0666997A (en) Lighting optical system
JPH0782117B2 (en) Reflective imaging optics
US6231198B1 (en) Reflective optical integrator
US5241426A (en) Condenser optical system
JP3371512B2 (en) Illumination device and exposure device
JP3336514B2 (en) X-ray reflection mask and X-ray projection exposure apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102