JP2000206061A - Fluorescent x-ray measuring device - Google Patents

Fluorescent x-ray measuring device

Info

Publication number
JP2000206061A
JP2000206061A JP11009187A JP918799A JP2000206061A JP 2000206061 A JP2000206061 A JP 2000206061A JP 11009187 A JP11009187 A JP 11009187A JP 918799 A JP918799 A JP 918799A JP 2000206061 A JP2000206061 A JP 2000206061A
Authority
JP
Japan
Prior art keywords
ray
sample
rays
fluorescent
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11009187A
Other languages
Japanese (ja)
Other versions
JP3982732B2 (en
Inventor
Takeyoshi Taguchi
武慶 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Denki Co Ltd
Priority to JP00918799A priority Critical patent/JP3982732B2/en
Publication of JP2000206061A publication Critical patent/JP2000206061A/en
Application granted granted Critical
Publication of JP3982732B2 publication Critical patent/JP3982732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fluorescent X-ray measuring device for reliably obtaining fluorescent X-ray information from the small region of a sample with high resolution and without any leakage. SOLUTION: A device is provided with an X-ray source F for generating X rays that are applied to a sample S, a capillary optical element 6 that is arranged at a position for taking in fluorescent X rays being generated from the sample S, a spectral crystal 3 that is arranged at a position where X rays being emitted from the capillary optical element 6 enter, and an X-ray detector 4 for detecting X rays being dispersed by the spectral crystal 3. The capillary optical element 6 is formed by bundling a plurality of capillary tubes 10, and its X-ray incidence port 6a is formed to be smaller than an X-ray emission port 6b so that it anticipates the small region of the sample S.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料から発生する
蛍光X線を検出し、その蛍光X線に基づいて試料の内部
に存在する元素の種類等を測定する蛍光X線測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescent X-ray measuring apparatus for detecting fluorescent X-rays generated from a sample and measuring the types of elements present inside the sample based on the fluorescent X-rays.

【0002】[0002]

【従来の技術】X線を試料に照射したときに発生する現
象として、回折X線の発生及び蛍光X線の発生がある。
回折X線は、試料の結晶格子面で反射したX線のうちの
特定条件、いわゆるブラッグの回折条件を満たすものが
増大して、それ以外のものは互いにうち消し合って観測
されなくなることによって発生するX線である。この回
折X線は、結晶等といった元素の配列構造に関連して発
生するものである。
2. Description of the Related Art Phenomena that occur when a sample is irradiated with X-rays include the generation of diffracted X-rays and the generation of fluorescent X-rays.
Diffracted X-rays are generated by increasing the number of X-rays reflected on the crystal lattice plane of the sample that meet specific conditions, so-called Bragg's diffraction conditions, and the other ones cancel each other out and are no longer observed. X-ray. This diffracted X-ray is generated in association with the arrangement of elements such as crystals.

【0003】一方、試料を構成する元素はそれぞれに固
有の殻電子順位を持っている。このような物質にX線、
γ線、電子線等といった放射線を照射すると、その物質
から元素特有の性質を持つX線、通常は特性X線が発生
する。このX線が、通常、蛍光X線と呼ばれるものであ
る。この蛍光X線は、試料の結晶構造とは関係なく、そ
の試料の内部に存在する元素の種類及び量に関連して発
生するものである。
On the other hand, the elements constituting the sample have their own shell electron ranks. X-ray,
When irradiated with radiation such as γ-rays and electron beams, the substance generates X-rays having properties peculiar to the element, usually characteristic X-rays. This X-ray is generally called fluorescent X-ray. This fluorescent X-ray is generated irrespective of the crystal structure of the sample, but in relation to the type and amount of elements present inside the sample.

【0004】試料から発生する蛍光X線を検出してその
蛍光X線のエネルギ分布又は波長分布を求めれば、その
試料に含まれる元素の種類及び含有量を知ることができ
る。このような測定を行うために用いられる装置が蛍光
X線測定装置であり、この装置には大別して、波長分散
型とエネルギ分散型の2種類が考えられる。
[0004] By detecting the fluorescent X-rays generated from the sample and obtaining the energy distribution or wavelength distribution of the fluorescent X-rays, it is possible to know the types and contents of the elements contained in the sample. An apparatus used for performing such a measurement is an X-ray fluorescence measuring apparatus. This apparatus is roughly classified into two types, a wavelength dispersion type and an energy dispersion type.

【0005】波長分散型は、X線回折の原理に基づいて
分光結晶とスリットとを組み合わせたX線分光器を用い
て波長を選別する。これに対し、エネルギ分散型は例え
ば、SSD(Solid-state Detector:半導体検出器)を
用いてX線を直接に検出し、そのSSDの出力を例えば
MCA(Multi-Channel Pulse Height Analyzer)へ導
入してエネルギごとに選別する。
[0005] In the wavelength dispersion type, the wavelength is selected using an X-ray spectrometer combining a spectral crystal and a slit based on the principle of X-ray diffraction. On the other hand, the energy dispersive type directly detects X-rays using, for example, an SSD (Solid-state Detector: semiconductor detector) and introduces the output of the SSD into, for example, an MCA (Multi-Channel Pulse Height Analyzer). And sort by energy.

【0006】波長分散型の蛍光X線測定装置は、高価な
SSDを用いないので装置を安価に形成できるという利
点を有する。また、SSDはエネルギ分解能を維持する
ためにその口径を余り大きくできず、よって、取り込む
ことができるX線量が制限されるという問題があるが、
SSDを用いない波長分散型の蛍光X線測定装置に関し
てはそのような問題点がなく、X線検出手段の口径を大
きく設定することにより蛍光X線を広い範囲から漏れな
く検出できるという利点を有する。
The wavelength-dispersive X-ray fluorescence measuring apparatus has an advantage that the apparatus can be formed at low cost because an expensive SSD is not used. In addition, the SSD cannot increase its caliber to maintain the energy resolution, so that there is a problem that the amount of X-ray that can be captured is limited.
The wavelength-dispersive X-ray fluorescence measuring apparatus that does not use an SSD does not have such a problem, and has an advantage that X-ray fluorescence can be detected from a wide range without leakage by setting the aperture of the X-ray detection means large. .

【0007】今、波長分散型の蛍光X線測定装置を考え
ると、従来は、例えば図4のように構成されていた。こ
れを簡単に説明すれば、X線源Fから発生したX線は試
料Sに照射され、そのときにその試料Sで発生する蛍光
X線がソーラスリット56aによって平行X線ビームに
成形されて分光結晶53に入射する。この蛍光X線は分
光結晶53に対する入射角度θに応じて分光されて出力
側に特定波長の蛍光X線が取り出され、その取り出され
た蛍光X線がソーラスリット56bを通してX線カウン
タ54に取り込まれる。そして、そのX線カウンタ54
の出力端子に接続されたX線強度演算回路59によって
その蛍光X線の強度が求められる。
[0007] Considering a wavelength-dispersive X-ray fluorescence measuring apparatus, it has been conventionally configured as shown in FIG. 4, for example. In brief, the X-rays generated from the X-ray source F are applied to the sample S, and at that time, the fluorescent X-rays generated from the sample S are shaped into parallel X-ray beams by the solar slit 56a and spectrally separated. The light enters the crystal 53. The fluorescent X-rays are separated according to the incident angle θ with respect to the spectral crystal 53, and fluorescent X-rays of a specific wavelength are extracted on the output side, and the extracted fluorescent X-rays are captured by the X-ray counter 54 through the solar slit 56b. . Then, the X-ray counter 54
The intensity of the fluorescent X-rays is obtained by an X-ray intensity calculation circuit 59 connected to the output terminal of (1).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来の蛍光X線測定装置に関しては、試料Sの広い面にX
線が照射され、その広い面から発生する蛍光X線がX線
カウンタ54に取り込まれる構造になっているので、試
料Sの微小領域についての蛍光X線情報を得ることがで
きないという問題があった。
However, with respect to the above-mentioned conventional fluorescent X-ray measuring apparatus, the X-ray
Since the X-ray counter 54 has a structure in which the X-rays are irradiated and the fluorescent X-rays generated from a wide surface thereof are taken in by the X-ray counter 54, there is a problem that the fluorescent X-ray information on the minute area of the sample S cannot be obtained. .

【0009】本発明は、従来の蛍光X線測定装置におけ
る上記の問題点に鑑みて成されたものであって、試料の
微小領域からの蛍光X線情報を漏れなく確実にしかも高
分解能で得ることができる蛍光X線測定装置を提供する
ことを目的とする。
The present invention has been made in view of the above-mentioned problems in the conventional X-ray fluorescence measuring apparatus, and obtains X-ray fluorescence information from a minute area of a sample without fail and with high resolution. It is an object of the present invention to provide a fluorescent X-ray measuring device capable of performing the above-mentioned.

【0010】[0010]

【課題を解決するための手段】(1) 上記の目的を達
成するため、本発明に係る蛍光X線測定装置は、試料か
ら発生する蛍光X線を測定する蛍光X線測定装置におい
て、試料に照射するX線を発生するX線源と、試料から
発生する蛍光X線を取り込む位置に配設されたキャピラ
リ光学素子と、そのキャピラリ光学素子から出射するX
線が入射する位置に配設された分光結晶と、そしてその
分光結晶によって分光されたX線を検出するX線検出手
段とを有する。そして、前記キャピラリ光学素子は、複
数のキャピラリチューブを束ねることによって形成さ
れ、そのX線入射口は前記試料の微小領域を見込むよう
にX線出射口に比べて小さいことを特徴とする。
Means for Solving the Problems (1) In order to achieve the above-mentioned object, an X-ray fluorescence measuring apparatus according to the present invention is an X-ray fluorescence measuring apparatus for measuring X-ray fluorescence generated from a sample. An X-ray source for generating X-rays to be irradiated, a capillary optical element disposed at a position for capturing fluorescent X-rays generated from a sample, and an X-ray emitted from the capillary optical element
It has a dispersive crystal arranged at a position where a line is incident, and X-ray detection means for detecting X-rays separated by the dispersive crystal. The capillary optical element is formed by bundling a plurality of capillary tubes, and the X-ray entrance is smaller than the X-ray exit so as to look at the minute area of the sample.

【0011】この蛍光X線測定装置によれば、X線源か
ら放射されたX線が試料に入射したときにその試料から
蛍光X線が発生し、その蛍光X線はキャピラリ光学素子
によって取り込まれて分光結晶へ導かれ、その分光結晶
で分光された波長成分のものがX線検出手段によってカ
ウントされる。ここで用いるX線検出手段は、SSDの
ようなそれ自身がエネルギ分解能を備えるX線検出手段
を用いる必要はなく、エネルギ分解能の低いカウンタで
あるPC(Proportional Counter:比例計数管)やSC
(Scintillation Counter:シンチレーションカウン
タ)等を用いることができる。
According to this fluorescent X-ray measuring apparatus, when X-rays emitted from an X-ray source are incident on a sample, the sample generates fluorescent X-rays, which are captured by a capillary optical element. The light is guided to the spectral crystal by the X-ray detector, and the wavelength component of the wavelength component separated by the spectral crystal is counted by the X-ray detector. The X-ray detection means used here does not need to use an X-ray detection means having its own energy resolution such as an SSD, and a PC (Proportional Counter: proportional counter) or SC which is a low energy resolution counter is used.
(Scintillation Counter) can be used.

【0012】本発明の蛍光X線測定装置によれば、キャ
ピラリ光学素子のX線入射口をX線出射口に比べて小さ
く形成したので、キャピラリ光学素子が試料の微小領域
を見込むように配置でき、従って、試料の微小領域又は
微小試料に関する蛍光X線情報を測定できる。また、試
料から発生した蛍光X線を平行化した上で分光結晶で分
光する構造であるので、SSDを用いて蛍光X線をエネ
ルギ分解する場合に比べて、より高分解能で測定を行う
ことができる。
According to the fluorescent X-ray measuring apparatus of the present invention, the X-ray entrance of the capillary optical element is formed to be smaller than the X-ray exit, so that the capillary optical element can be arranged so as to see a minute area of the sample. Therefore, it is possible to measure the fluorescent X-ray information on the minute region of the sample or the minute sample. In addition, since the structure is such that the fluorescent X-rays generated from the sample are collimated and then separated by a spectral crystal, the measurement can be performed with higher resolution than when the fluorescent X-rays are energy-decomposed using an SSD. it can.

【0013】さらに、X線検出手段それ自体を分解能の
低いものを用いることができるのでそのX線検出手段の
X線取込み口を大口径に設定することができる。そし
て、X線検出手段のX線取込み口をキャピラリ光学素子
のX線出射口の口径に合わせて大口径に設定することに
より、蛍光X線を漏れなく確実に取り込むこと、すなわ
ち検出効率を上げることができる。
Furthermore, since the X-ray detecting means itself can be of low resolution, the X-ray inlet of the X-ray detecting means can be set to a large diameter. By setting the X-ray inlet of the X-ray detection means to a large diameter in accordance with the diameter of the X-ray emission port of the capillary optical element, it is possible to reliably capture the fluorescent X-ray without leakage, that is, to increase the detection efficiency. Can be.

【0014】(2) 上記構成の蛍光X線測定装置にお
いて、前記X線検出手段のX線取込み口の大きさは、前
記キャピラリ光学素子のX線出射口と等しいか又はそれ
よりも大きく設定できる。こうすれば、より強度の高い
蛍光X線をX線検出手段に取り込むことができ、その結
果、信頼性の高い測定を行うことができる。
(2) In the X-ray fluorescence measuring apparatus having the above structure, the size of the X-ray intake of the X-ray detecting means can be set to be equal to or larger than the X-ray exit of the capillary optical element. . In this case, the fluorescent X-rays having higher intensity can be taken into the X-ray detecting means, and as a result, highly reliable measurement can be performed.

【0015】(3) 上記構成の蛍光X線測定装置にお
いて、前記キャピラリ光学素子、前記分光結晶及び前記
X線検出手段は一体状態で前記試料に対して相対的に平
行移動可能に構成することが望ましい。この構成によれ
ば、キャピラリ光学素子によって見込む試料上の微小領
域を希望に応じて変化させることができるので、試料内
の種々の位置における蛍光X線情報を測定すること、い
わゆるマッピング測定を行うことが可能となる。
(3) In the X-ray fluorescence measuring apparatus having the above-mentioned configuration, the capillary optical element, the spectral crystal, and the X-ray detecting means may be integrally movable relative to the sample in an integrated state. desirable. According to this configuration, it is possible to change the minute area on the sample to be viewed by the capillary optical element as desired, so that it is possible to measure the fluorescent X-ray information at various positions in the sample, that is, perform so-called mapping measurement. Becomes possible.

【0016】[0016]

【発明の実施の形態】図1は、本発明に係る蛍光X線測
定装置の一実施形態を示している。この蛍光X線測定装
置は、測定対象物である試料Sを支持するための試料台
1と、試料Sに照射するためのX線を発生するX線源と
してのX線焦点Fを含むX線管2と、そして光学台7と
を有する。X線焦点Fは、例えば2mm×2mmの大き
さに設定される。また、X線焦点Fと試料Sとの間の距
離D0は数mm程度に設定される。
FIG. 1 shows an embodiment of an X-ray fluorescence measuring apparatus according to the present invention. The X-ray fluorescence measurement apparatus includes an X-ray including a sample table 1 for supporting a sample S which is an object to be measured, and an X-ray focus F as an X-ray source for generating X-rays for irradiating the sample S. It has a tube 2 and an optical bench 7. The X-ray focal point F is set to, for example, a size of 2 mm × 2 mm. The distance D0 between the X-ray focal point F and the sample S is set to about several mm.

【0017】光学台7にはX線光学系移動装置8が付設
されており、光学台7はこのX線光学系移動装置8によ
って駆動されて矢印で示すX方向、Y方向及びZ方向の
直角3方向のそれぞれへ任意の距離だけ移動でき、これ
により、光学台7は試料Sに対して3次元的すなわち空
間的にあらゆる方向へ平行移動でき、そしてその位置に
停止できる。
The optical table 7 is provided with an X-ray optical system moving device 8 which is driven by the X-ray optical system moving device 8 to make a right angle in the X, Y and Z directions indicated by arrows. The optical table 7 can move three-dimensionally, that is, spatially in all directions with respect to the sample S, and can stop at that position.

【0018】このようなX線光学系移動装置8は、例え
ば、X、Y、Zの直交3方向のそれぞれへ移動する各ス
ライドテーブルを組み合わせると共に、それらのスライ
ドテーブルを駆動源としてのパルスモータによって駆動
するという構造によって構成できる。
Such an X-ray optical system moving device 8 combines, for example, slide tables that move in each of three orthogonal directions of X, Y, and Z, and uses the slide tables by a pulse motor as a driving source. It can be constituted by a structure of driving.

【0019】以上のような光学台7の上には、θ回転台
14及び2θ回転台16を含んで構成されたゴニオメー
タ17が設置される。θ回転台14はθ回転駆動装置1
8によって駆動されて結晶軸線Z1を中心として回転す
る。また、2θ回転台16は2θ回転駆動装置19によ
って駆動されて結晶軸線Z1を中心として回転する。通
常の測定中においては、2θ回転台16はθ回転台14
の角速度に対して2倍の角速度で同じ方向へ回転する。
A goniometer 17 including a θ turntable 14 and a 2θ turntable 16 is installed on the optical table 7 as described above. rotating table 14 is the .theta.
8 to rotate about the crystal axis Z1. The 2θ rotation table 16 is driven by a 2θ rotation drive device 19 to rotate about the crystal axis Z1. During the normal measurement, the 2θ turntable 16 is
Rotate in the same direction at twice the angular velocity with respect to the angular velocity.

【0020】θ回転駆動装置18及び2θ回転駆動装置
19はコンピュータ11からの指令に従って動作する。
これらの駆動装置の具体的な構造は特定の構造に限定さ
れるものではないが、例えば、パルスモータの動力をウ
オームとウオームホイールとから成る動力伝達機構を介
して伝達するといった構造を採用できる。
The θ rotation driving device 18 and the 2θ rotation driving device 19 operate in accordance with a command from the computer 11.
The specific structure of these driving devices is not limited to a specific structure. For example, a structure in which the power of the pulse motor is transmitted via a power transmission mechanism including a worm and a worm wheel can be employed.

【0021】θ回転台14の上には、試料Sから発生す
る蛍光X線を分光するための分光結晶3が取り付けられ
る。また、2θ回転台16から延びるカウンタアーム2
1の上には、分光結晶3で分光されたX線を検出するX
線検出器4が取り付けられる。また、試料Sからの蛍光
X線を分光結晶3へ導くためのキャピラリ光学素子6
が、試料Sと分光結晶3との間に位置するように光学台
7の上に配設される。
A dispersive crystal 3 for dispersing fluorescent X-rays generated from the sample S is mounted on the θ-turntable 14. The counter arm 2 extending from the 2θ turntable 16
On top of X, X for detecting X-rays separated by the
The line detector 4 is attached. Further, a capillary optical element 6 for guiding fluorescent X-rays from the sample S to the spectral crystal 3
Is disposed on the optical bench 7 so as to be located between the sample S and the spectral crystal 3.

【0022】上記分光結晶3は、取り出したいX線の波
長に応じて、例えばグラファイト、PET(ポリエチレ
ンテレフタレート)、LiF(リチウムフロライド)等
といった適宜の物質によって平板形状に形成される。ま
た、X線検出器4それ自身に関しては、本実施形態の場
合は高いエネルギ分解能を必要とせず、従ってこのX線
検出器4は、例えばPC(Proportional Counter)、S
C(Scintillation Counter)等を用いて構成できる。
The spectral crystal 3 is formed in a flat plate shape from an appropriate substance such as graphite, PET (polyethylene terephthalate), LiF (lithium fluoride) or the like according to the wavelength of the X-ray to be extracted. In the case of the present embodiment, the X-ray detector 4 itself does not require a high energy resolution. Therefore, this X-ray detector 4 is, for example, a PC (Proportional Counter), S
It can be configured using C (Scintillation Counter) or the like.

【0023】キャピラリ光学素子6は、複数のキャピラ
リチューブ10を束ねることによって形成され、そのX
線入射口6aから取り込んだX線をX線出射口6bから
出射する。個々のキャピラリチューブ10は全反射によ
ってX線を伝達するものであり、X線入射口6aにあら
ゆる方向からX線が入射する場合でも、そのX線出射口
6bには平行X線ビームを取り出すことができる。
The capillary optical element 6 is formed by bundling a plurality of capillary tubes 10, and its X
The X-rays taken in from the line entrance 6a are emitted from the X-ray exit 6b. The individual capillary tubes 10 transmit X-rays by total internal reflection. Even when X-rays enter the X-ray entrance 6a from all directions, a parallel X-ray beam can be extracted from the X-ray exit 6b. Can be.

【0024】また、本実施形態で用いるキャピラリ光学
素子6のX線入射口6aの口径はX線出射口6bの口径
よりも小さく形成される。例えば、X線入射口6aが1
0mm×10mm〜20mm×20mm程度の口径に形
成され、そしてX線出射口6bが13mm×13mm〜
25mm×25mm程度の口径に形成される。
The diameter of the X-ray entrance 6a of the capillary optical element 6 used in the present embodiment is smaller than the diameter of the X-ray exit 6b. For example, if the X-ray entrance 6a is 1
It is formed to a diameter of about 0 mm × 10 mm to 20 mm × 20 mm, and the X-ray emission port 6 b is 13 mm × 13 mm to
It has a diameter of about 25 mm x 25 mm.

【0025】このようにキャピラリ光学素子6のX線入
射口6aをX線出射口6bに比べて小さく形成したの
で、本実施形態の装置のキャピラリ光学素子6は試料S
のうちの微小領域Aを見込むように配置できる。つま
り、キャピラリ光学素子6は、試料Sの微小領域Aだけ
から発生する蛍光X線をそのX線入射口6aから取り込
んで、それを断面積の広い平行X線ビームに成形してX
線出射口6bから分光結晶3へ供給することができる。
As described above, since the X-ray entrance 6a of the capillary optical element 6 is formed smaller than the X-ray exit 6b, the capillary optical element 6 of the apparatus of the present embodiment has the sample S
Can be arranged so as to allow for the micro area A. That is, the capillary optical element 6 takes in the fluorescent X-rays generated only from the minute area A of the sample S from the X-ray entrance 6a, shapes it into a parallel X-ray beam having a wide cross-sectional area, and forms the X-ray.
The light can be supplied to the spectral crystal 3 from the line emission port 6b.

【0026】なお、個々のキャピラリチューブ10はX
線入射口6aからX線出射口6bにかけて均一な口径の
ものを用いることもできるし、あるいは、X線入射口6
aからX線出射口6bにかけて口径が徐々に大きくなる
ようなテーパ状のキャピラリチューブを用いることもで
きる。ここで、X線入射口6aからX線出射口6bにか
けて均一な口径のキャピラリチューブを用いる場合に
は、X線入射口6aにおいてはキャピラリチューブ10
が高密度に束ねられ、一方、X線出射口6bにおいては
キャピラリ光学素子6の口径が大きくなる分だけ個々の
キャピラリチューブ10の配列密度が低くなる。
Each of the capillary tubes 10 has an X
A uniform diameter can be used from the X-ray entrance 6a to the X-ray exit 6b, or the X-ray entrance 6
A tapered capillary tube whose diameter gradually increases from a to the X-ray emission port 6b can also be used. Here, when a capillary tube having a uniform diameter is used from the X-ray entrance 6a to the X-ray exit 6b, the capillary tube 10 is provided at the X-ray entrance 6a.
Are bundled at a high density. On the other hand, in the X-ray emission port 6b, the arrangement density of the individual capillary tubes 10 decreases as the diameter of the capillary optical element 6 increases.

【0027】次に、X線検出器4のX線取込み口4aの
口径は、キャピラリ光学素子6のX線出射口6bの口径
と同じか、あるいはそれよりも大きく形成する。こうす
れば、キャピラリ光学素子6から出て分光結晶3で分光
されたX線を効率良く、すなわち漏れなく確実にX線検
出器4に取り込むことができるようになる。
Next, the diameter of the X-ray inlet 4a of the X-ray detector 4 is formed to be equal to or larger than the diameter of the X-ray emission port 6b of the capillary optical element 6. In this way, the X-rays that have exited from the capillary optical element 6 and have been separated by the spectral crystal 3 can be efficiently taken into the X-ray detector 4 without leakage.

【0028】また、X線検出器4の出力端子には、波高
分析器(PHA:Pulse Height Analyser)を含んで構
成されたX線強度演算回路9が接続される。このX線強
度演算回路9はX線検出器4の出力信号に基づいて蛍光
X線の強度を演算してその演算結果をコンピュータ11
へ向けて出力し、そのコンピュータ11は得られた蛍光
X線の強度情報をディスプレイ12に映像として表示し
たり、あるいはプリンタ13によって紙上にプリントす
る。
An output terminal of the X-ray detector 4 is connected to an X-ray intensity calculation circuit 9 including a pulse height analyzer (PHA). The X-ray intensity calculation circuit 9 calculates the intensity of the fluorescent X-ray based on the output signal of the X-ray detector 4 and outputs the calculation result to the computer 11.
The computer 11 displays the obtained fluorescent X-ray intensity information as an image on the display 12 or prints it on paper by the printer 13.

【0029】本実施形態の蛍光X線測定装置は以上のよ
うに構成されているので、X線焦点Fから放射されたX
線は試料Sの広い面に照射され、このとき、その面から
蛍光X線が発生する。X線が照射された試料面のうちキ
ャピラリ光学素子6によって見込まれる微小領域Aから
発生する蛍光X線はそのキャピラリ光学素子6によって
取り込まれて平行X線ビームに成形された後、分光結晶
3へ供給される。その微小領域A以外の領域から発生す
る蛍光X線はキャピラリ光学素子6に取り込まれないの
で測定には供されない。つまり、本実施形態では、キャ
ピラリ光学素子6によって見込まれる微小領域Aだけが
測定領域ということになる。
Since the X-ray fluorescence measuring apparatus of the present embodiment is configured as described above, the X-ray radiated from the X-ray focus F
The line is irradiated on a wide surface of the sample S, and at this time, fluorescent X-rays are generated from the surface. X-ray fluorescence X-rays generated from the microscopic region A that can be seen by the capillary optical element 6 on the sample surface are captured by the capillary optical element 6 and shaped into a parallel X-ray beam. Supplied. The fluorescent X-rays generated from the area other than the minute area A are not taken into the capillary optical element 6 and are not used for measurement. That is, in the present embodiment, only the minute region A expected by the capillary optical element 6 is a measurement region.

【0030】以上のようにして試料Sからの蛍光X線が
分光結晶3に供給されている間、その蛍光X線に対する
分光結晶3の回転角度すなわちθ角度を徐々に変化させ
て分光結晶3への蛍光X線の入射角度を変化させる。そ
してそれと同時に、X線検出器4の回転角度すなわち2
θ角度をそのθ角度の2倍の角度で変化させてゆく。す
ると、分光結晶3の各θ角度の所でそのθ角度に対応す
る波長のX線が蛍光X線から分光され、その分光された
特性X線がX線検出器4によって取り込まれ、さらにそ
の特性X線の強度がX線強度演算回路9によって求めら
れる。この処理は、X線検出器4の異なる2θ角度のそ
れぞれに対して行われ、その結果、試料Sから発生する
蛍光X線に含まれる各種波長のX線、すなわち各種の特
性X線の強度が求められる。
As described above, while the fluorescent X-rays from the sample S are supplied to the spectral crystal 3, the rotation angle of the spectral crystal 3, that is, the θ angle with respect to the fluorescent X-rays is gradually changed to the spectral crystal 3. The incident angle of the fluorescent X-ray is changed. At the same time, the rotation angle of the X-ray detector 4, ie, 2
The θ angle is changed at twice the angle of the θ angle. Then, at each θ angle of the dispersive crystal 3, X-rays having a wavelength corresponding to the θ angle are separated from the fluorescent X-rays, and the separated characteristic X-rays are taken in by the X-ray detector 4, and the characteristic X-rays are further extracted. The X-ray intensity is obtained by the X-ray intensity calculation circuit 9. This processing is performed for each of the different 2θ angles of the X-ray detector 4, and as a result, the X-rays of various wavelengths included in the fluorescent X-rays generated from the sample S, that is, the intensities of various characteristic X-rays, Desired.

【0031】図2は、以上のようにして得られる、試料
Sに関する蛍光X線スペクトルの一例を示している。こ
の図により、2θ角度が異なる所で異なる波長の特性X
線a、b、c、… … … が検出されること、そし
て、それらの特性X線の強度がピーク高さによって示さ
れることが理解される。これらの特性X線a、b、c、
… … … は、試料Sに含まれる元素及びその含有量
に対応するものであるから、この蛍光X線スペクトルに
現れるピークを観察することにより、試料Sに含まれる
元素の種類及びその含有量を知ることができる。
FIG. 2 shows an example of a fluorescent X-ray spectrum of the sample S obtained as described above. According to this figure, the characteristic X of the different wavelength at the place where the 2θ angle is different is shown.
It is understood that the lines a, b, c,... Are detected, and that the intensity of their characteristic X-rays is indicated by the peak height. These characteristic X-rays a, b, c,
... correspond to the elements contained in the sample S and their contents. By observing the peaks appearing in the fluorescent X-ray spectrum, the types of the elements contained in the sample S and their contents are determined. You can know.

【0032】以上のように、本実施形態によれば、試料
Sのうちキャピラリ光学素子6によって見込まれる微小
領域Aに関してだけ蛍光X線測定を行うことができる。
そして、試料Sから発生した蛍光X線を平行化した上で
分光結晶3で分光する構造であるので、SSDを用いて
蛍光X線をエネルギ分解する場合に比べて、より高分解
能で測定を行うことができる。
As described above, according to the present embodiment, the fluorescent X-ray measurement can be performed only on the minute area A of the sample S which can be seen by the capillary optical element 6.
Since the structure is such that the fluorescent X-rays generated from the sample S are collimated and then separated by the spectral crystal 3, the measurement is performed with higher resolution than in the case where the fluorescent X-rays are energy-decomposed using the SSD. be able to.

【0033】さらに、本実施形態で用いるX線検出器4
はSSD等に比べて分解能が低いので、そのX線検出器
4のX線取込み口4aは大口径に設定することができ
る。この結果、分光結晶3によって分光された蛍光X線
を漏れなく確実に取り込むこと、すなわち検出効率を上
げることができ、その結果、信頼性の高い測定結果を得
ることができる。
Further, the X-ray detector 4 used in this embodiment
Since the resolution is lower than that of an SSD or the like, the X-ray inlet 4a of the X-ray detector 4 can be set to a large diameter. As a result, it is possible to reliably capture the fluorescent X-rays separated by the spectral crystal 3 without leakage, that is, to increase the detection efficiency, and as a result, to obtain a highly reliable measurement result.

【0034】なお、本実施形態では、キャピラリ光学素
子6及びゴニオメータ17を搭載した光学台7をX線光
学系移動装置8によって試料Sに対して相対的に3次元
的に平行移動できるようにしたので、キャピラリ光学素
子6による試料Sの見込み領域Aを試料Sの表面の任意
の場所に移動させることができ、その移動後の領域に対
して蛍光X線の測定を行うことができる。このような測
定を試料Sの異なる複数の微小領域に対して行えば、試
料Sの複数の異なる微小領域に関する蛍光X線スペクト
ルを得ること、すなわちマッピング測定を行うことがで
きる。
In the present embodiment, the optical table 7 on which the capillary optical element 6 and the goniometer 17 are mounted can be translated three-dimensionally relative to the sample S by the X-ray optical system moving device 8. Therefore, the expected area A of the sample S by the capillary optical element 6 can be moved to an arbitrary position on the surface of the sample S, and the X-ray fluorescence can be measured for the area after the movement. If such a measurement is performed for a plurality of different minute regions of the sample S, it is possible to obtain a fluorescent X-ray spectrum relating to the plurality of different minute regions of the sample S, that is, perform a mapping measurement.

【0035】以上、好ましい実施形態を挙げて本発明を
説明したが、本発明はその実施形態に限定されるもので
なく、請求の範囲に記載した発明の範囲内で種々に改変
できる。例えば、図1の光学系を用いて行われる上記の
測定は一般的な蛍光X線測定であるが、本発明に係る蛍
光X線測定装置はそのような一般的な測定方法とは別
に、X線の吸収を利用する元素分析手法であるXAFS
(ザフス)測定に対しても適用することができる。この
XAFS測定それ自体は既に周知の測定方法であるので
詳しい説明は省略するが、これを簡単に説明すれば、次
の通りである。
As described above, the present invention has been described with reference to the preferred embodiments. However, the present invention is not limited to the embodiments, and can be variously modified within the scope of the invention described in the claims. For example, the above measurement performed using the optical system of FIG. 1 is a general X-ray fluorescence measurement, but the X-ray fluorescence measurement apparatus according to the present invention is different from such a general measurement method. XAFS, an elemental analysis method that uses X-ray absorption
It can be applied to (Safus) measurement. Since the XAFS measurement itself is a well-known measurement method, a detailed description thereof will be omitted, but a brief description thereof is as follows.

【0036】すなわち、一般に、試料に照射するX線の
エネルギを徐々に変えてゆき、その各々のエネルギにつ
いて試料に入射するX線の強度(Io)と、試料で発生
する蛍光X線の強度(If)との比(If/Io)を求
め、それらの比に基づいて吸収係数を算出し、それをグ
ラフ上にプロットすると、図3に示すようなX線吸収線
図が得られる。この図において横軸は、吸収端のエネル
ギーを0としたときの元素内殻から放出される光電子エ
ネルギーを示している。
That is, generally, the energy of the X-ray radiated to the sample is gradually changed, and for each of the energies, the intensity (Io) of the X-ray incident on the sample and the intensity of the fluorescent X-ray generated in the sample (Io) If) and the ratio (If / Io) are calculated, the absorption coefficient is calculated based on the ratio, and plotted on a graph, to obtain an X-ray absorption diagram as shown in FIG. In this figure, the horizontal axis indicates the photoelectron energy emitted from the inner shell of the element when the energy at the absorption edge is set to 0.

【0037】このX線吸収線図において、任意の吸収端
よりも高エネルギ側50eV程度の狭い領域に現れる吸
収端微細構造は、通常、XANES(ゼーネス:X-Ray
Absorption Near Edge Structure)と呼ばれている。ま
た、XANESよりも高いエネルギ側へ1000eV程
度の広い領域に現れるX線強度比の振動構造、すなわち
吸収係数の振動構造は、EXAFS(イグザフス:Exte
nded X-Ray Absorption Fine Structure)と呼ばれてい
る。これらのXANES及びEXAFSを求めるために
行われる測定がXAFS測定と呼ばれるものである。
In this X-ray absorption diagram, the absorption edge fine structure appearing in a narrow region of about 50 eV on the higher energy side than an arbitrary absorption edge is usually XANES (X-rays: X-rays).
Absorption Near Edge Structure). Further, the vibration structure of the X-ray intensity ratio, that is, the vibration structure of the absorption coefficient, which appears in a wide area of about 1000 eV to the energy side higher than XANES, is EXAFS (Extephs: ExteX
It is called “nded X-Ray Absorption Fine Structure”. The measurement performed to determine these XANES and EXAFS is called XAFS measurement.

【0038】これらのXANES及びEXAFSには、
X線吸収原子とそのまわりの原子との間の化学結合、分
子の立体構造、原子間距離、あるいは原子配位等に関す
る情報が含まれている。よって、未知試料について図3
に示すようなX線吸収線図を求めれば、それに基づいて
その未知試料の構造解析を行うことができる。本発明に
係る蛍光X線測定装置はこのようなXAFS測定を行う
ために用いることができるものであり、特にその場合に
は、試料で発生する蛍光X線を用いてXAFS測定を行
うので、蛍光XAFS測定と呼ばれることもある。
These XANES and EXAFS include:
It contains information on the chemical bond between the X-ray absorbing atom and the surrounding atoms, the three-dimensional structure of the molecule, the interatomic distance, or the atomic coordination. Therefore, FIG.
If an X-ray absorption diagram as shown in FIG. 1 is obtained, the structure of the unknown sample can be analyzed based on the X-ray absorption diagram. The fluorescent X-ray measuring apparatus according to the present invention can be used for performing such XAFS measurement. In particular, in this case, since the XAFS measurement is performed using fluorescent X-rays generated in a sample, the fluorescent X-ray measuring apparatus is used. Sometimes called XAFS measurement.

【0039】[0039]

【発明の効果】本発明に係る蛍光X線測定装置によれ
ば、キャピラリ光学素子のX線入射口をX線出射口に比
べて小さく形成したので、キャピラリ光学素子が試料の
微小領域を見込むように配置でき、従って、試料の微小
領域又は微小試料に関する蛍光X線情報を測定できる。
According to the fluorescent X-ray measuring apparatus of the present invention, the X-ray entrance of the capillary optical element is formed smaller than the X-ray exit, so that the capillary optical element can see a small area of the sample. Therefore, X-ray fluorescence information on a small region or a small sample of the sample can be measured.

【0040】また、試料から発生した蛍光X線を平行化
した上で分光結晶で分光する構造であるので、SSDを
用いて蛍光X線をエネルギ分解する場合に比べて、より
高分解能で測定を行うことができる。
Also, since the structure is such that the fluorescent X-rays generated from the sample are collimated and then separated by a spectral crystal, the measurement can be performed with higher resolution than in the case where the fluorescent X-rays are energy-resolved using an SSD. It can be carried out.

【0041】さらに、X線検出手段それ自体を分解能の
低いものを用いることができるのでそのX線検出手段の
X線取込み口を大口径に設定することができる。このた
め、X線検出手段のX線取込み口をキャピラリ光学素子
のX線出射口の口径に合わせて大口径に設定すれば、蛍
光X線を漏れなく確実に取り込むこと、すなわち検出効
率を上げることができる。
Furthermore, since the X-ray detecting means itself can be of low resolution, the X-ray inlet of the X-ray detecting means can be set to a large diameter. Therefore, if the X-ray inlet of the X-ray detecting means is set to a large diameter in accordance with the diameter of the X-ray emission port of the capillary optical element, the fluorescent X-rays can be reliably captured without leakage, that is, the detection efficiency can be increased. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る蛍光X線測定装置の一実施形態を
示す平面図である。
FIG. 1 is a plan view showing an embodiment of an X-ray fluorescence measuring apparatus according to the present invention.

【図2】図1の装置を用いて行った蛍光X線測定の結果
の一例を示すグラフである。
FIG. 2 is a graph showing an example of a result of a fluorescent X-ray measurement performed using the apparatus of FIG.

【図3】本発明に係る蛍光X線測定装置を用いて行った
蛍光XAFS測定の結果の一例を示すグラフである。
FIG. 3 is a graph showing an example of a result of a fluorescent XAFS measurement performed using the fluorescent X-ray measuring apparatus according to the present invention.

【図4】従来の蛍光X線測定装置の一例を模式的に示す
平面図である。
FIG. 4 is a plan view schematically showing an example of a conventional fluorescent X-ray measuring device.

【符号の説明】[Explanation of symbols]

1 試料台 2 X線管 3 分光結晶 4 X線検出器 6 キャピラリ光学素子 6a X線入射口 6b X線出射口 7 光学台 10 キャピラリチューブ 12 ディスプレイ 14 θ回転台 16 2θ回転台 17 ゴニオメータ 21 カウンタアーム A 微小領域 F X線焦点(X線源) S 試料 Z1 結晶軸線 DESCRIPTION OF SYMBOLS 1 Sample stand 2 X-ray tube 3 Dispersion crystal 4 X-ray detector 6 Capillary optical element 6a X-ray entrance 6b X-ray exit 7 Optical table 10 Capillary tube 12 Display 14 θ turntable 16 2θ turntable 17 Goniometer 21 Counter arm A Micro area F X-ray focal point (X-ray source) S Sample Z1 Crystal axis

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試料から発生する蛍光X線を測定する蛍
光X線測定装置において、 試料に照射するX線を発生するX線源と、試料から発生
する蛍光X線を取り込む位置に配設されたキャピラリ光
学素子と、そのキャピラリ光学素子から出射するX線が
入射する位置に配設された分光結晶と、そしてその分光
結晶によって分光されたX線を検出するX線検出手段と
を有し、 前記キャピラリ光学素子は、複数のキャピラリチューブ
を束ねることによって形成され、そのX線入射口は前記
試料の微小領域を見込むようにX線出射口に比べて小さ
いことを特徴とする蛍光X線測定装置。
1. An X-ray fluorescence measuring apparatus for measuring X-ray fluorescence generated from a sample, comprising: an X-ray source for generating X-rays for irradiating the sample; and a position for capturing X-ray fluorescence generated from the sample. A capillary optical element, a spectral crystal disposed at a position where X-rays emitted from the capillary optical element are incident, and X-ray detection means for detecting X-rays spectrally separated by the spectral crystal, The above-mentioned capillary optical element is formed by bundling a plurality of capillary tubes, and an X-ray entrance thereof is smaller than an X-ray exit so as to see a minute area of the sample. .
【請求項2】 請求項1において、前記X線検出手段の
X線取込み口の大きさは、前記キャピラリ光学素子のX
線出射口と等しいか又はそれよりも大きいことを特徴と
する蛍光X線測定装置。
2. The apparatus according to claim 1, wherein the size of the X-ray inlet of the X-ray detection means is smaller than the size of the capillary optical element.
An X-ray fluorescence spectrometer characterized by being equal to or larger than the radiation exit.
【請求項3】 請求項1又は請求項2において、前記キ
ャピラリ光学素子、前記分光結晶及び前記X線検出手段
は一体状態で前記試料に対して相対的に平行移動可能で
あることを特徴とする蛍光X線測定装置。
3. The apparatus according to claim 1, wherein the capillary optical element, the dispersive crystal, and the X-ray detection unit are relatively movable in parallel with respect to the sample in an integrated state. X-ray fluorescence measurement device.
JP00918799A 1999-01-18 1999-01-18 X-ray fluorescence measurement equipment Expired - Fee Related JP3982732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00918799A JP3982732B2 (en) 1999-01-18 1999-01-18 X-ray fluorescence measurement equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00918799A JP3982732B2 (en) 1999-01-18 1999-01-18 X-ray fluorescence measurement equipment

Publications (2)

Publication Number Publication Date
JP2000206061A true JP2000206061A (en) 2000-07-28
JP3982732B2 JP3982732B2 (en) 2007-09-26

Family

ID=11713538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00918799A Expired - Fee Related JP3982732B2 (en) 1999-01-18 1999-01-18 X-ray fluorescence measurement equipment

Country Status (1)

Country Link
JP (1) JP3982732B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020031665A (en) * 2000-10-23 2002-05-03 추후보정 X-ray microfluorescence analyzer
JP2005257349A (en) * 2004-03-10 2005-09-22 Sii Nanotechnology Inc Superconductive x-ray analyzer
JP2006337301A (en) * 2005-06-06 2006-12-14 Shimadzu Corp X-ray analyzer
JP2007017350A (en) * 2005-07-08 2007-01-25 Shimadzu Corp X-ray analyzer
JP2008022991A (en) * 2006-07-19 2008-02-07 Institute Of Physical & Chemical Research Energy transfer capillary, energy transfer apparatus, and method of forming energy transfer capillary
JP2012181111A (en) * 2011-03-01 2012-09-20 Institute Of Physical & Chemical Research X-ray distribution apparatus and x-ray distribution system
JP2013186055A (en) * 2012-03-09 2013-09-19 Canon Inc X-ray optical device
CN109991253A (en) * 2019-04-04 2019-07-09 北京师范大学 A kind of micro-beam X-ray diffractometer that capillary focuses

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020031665A (en) * 2000-10-23 2002-05-03 추후보정 X-ray microfluorescence analyzer
JP2005257349A (en) * 2004-03-10 2005-09-22 Sii Nanotechnology Inc Superconductive x-ray analyzer
JP2006337301A (en) * 2005-06-06 2006-12-14 Shimadzu Corp X-ray analyzer
JP4639971B2 (en) * 2005-06-06 2011-02-23 株式会社島津製作所 X-ray analyzer
JP2007017350A (en) * 2005-07-08 2007-01-25 Shimadzu Corp X-ray analyzer
JP4715345B2 (en) * 2005-07-08 2011-07-06 株式会社島津製作所 X-ray analyzer
JP2008022991A (en) * 2006-07-19 2008-02-07 Institute Of Physical & Chemical Research Energy transfer capillary, energy transfer apparatus, and method of forming energy transfer capillary
JP2012181111A (en) * 2011-03-01 2012-09-20 Institute Of Physical & Chemical Research X-ray distribution apparatus and x-ray distribution system
JP2013186055A (en) * 2012-03-09 2013-09-19 Canon Inc X-ray optical device
CN109991253A (en) * 2019-04-04 2019-07-09 北京师范大学 A kind of micro-beam X-ray diffractometer that capillary focuses

Also Published As

Publication number Publication date
JP3982732B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
US7680243B2 (en) X-ray measurement of properties of nano-particles
US11105756B2 (en) X-ray diffraction and X-ray spectroscopy method and related apparatus
US8548123B2 (en) Method and apparatus for using an area X-ray detector as a point detector in an X-ray diffractometer
US5745543A (en) Apparatus for simultaneous X-ray diffraction and X-ray fluorescence measurements
US20080095311A1 (en) Measuring Device for the Shortwavelentgh X Ray Diffraction and a Method Thereof
JP5626750B2 (en) Measuring apparatus and measuring method
JP6656519B2 (en) X-ray diffractometer
JP2002350373A (en) Complex x-ray analyzing apparatus
WO2020199689A1 (en) Capillary focusing microbeam x-ray diffractometer
JP3284198B2 (en) X-ray fluorescence analyzer
JP3712531B2 (en) XAFS measurement method and XAFS measurement apparatus
JP2009002805A (en) Small angle/wide angle x-ray measuring device
JP3699998B2 (en) X-ray fluorescence holography apparatus, X-ray fluorescence holography, and local structure analysis method
JP3982732B2 (en) X-ray fluorescence measurement equipment
US7860217B2 (en) X-ray diffraction measuring apparatus having debye-scherrer optical system therein, and an X-ray diffraction measuring method for the same
JP3821414B2 (en) X-ray diffraction analysis method and X-ray diffraction analysis apparatus
JP2012108126A (en) Diffractometer
JP2014211367A (en) Fluorescent x-ray analyzer
US6546069B1 (en) Combined wave dispersive and energy dispersive spectrometer
JPH08510062A (en) X-ray analyzer for grazing angle
JP2003294659A (en) X-ray analysis apparatus
JPH1151883A (en) Method and equipment for fluorescent x-ray analysis
US20240044821A1 (en) Combined xrf analysis device
JPH06160312A (en) X-ray evaluation apparatus
JPH0735706A (en) Thin film x-ray diffraction equipment employing x-ray tube optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140713

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees