JPH1151883A - Method and equipment for fluorescent x-ray analysis - Google Patents

Method and equipment for fluorescent x-ray analysis

Info

Publication number
JPH1151883A
JPH1151883A JP9208866A JP20886697A JPH1151883A JP H1151883 A JPH1151883 A JP H1151883A JP 9208866 A JP9208866 A JP 9208866A JP 20886697 A JP20886697 A JP 20886697A JP H1151883 A JPH1151883 A JP H1151883A
Authority
JP
Japan
Prior art keywords
rays
fluorescent
sample
spectroscopic
predetermined position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9208866A
Other languages
Japanese (ja)
Inventor
Shinjiro Hayakawa
慎二郎 早川
Toshiharu Goto
俊治 後藤
Takashi Shoji
孝 庄司
Eiji Yamada
栄司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
RIKEN Institute of Physical and Chemical Research
Original Assignee
Rigaku Industrial Corp
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp, RIKEN Institute of Physical and Chemical Research filed Critical Rigaku Industrial Corp
Priority to JP9208866A priority Critical patent/JPH1151883A/en
Publication of JPH1151883A publication Critical patent/JPH1151883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure a highly accurate high sensitivity measurement through a simple structure by locating a spectroscopic element selectively at a predetermined position relative to a sample while bringing the spectroscopic element close to a detection means sufficiently. SOLUTION: A sample 1 is irradiated with first order X-rays 3. When fluorescent X-rays 7 are measured from the light element side having a long wavelength, a selecting means 9 sets a spectroscopic element 6A at a predetermined position relative to a sample 1. Fluorescent X-rays 5 emitted from the sample 1 are subjected to spectroscopy and the fluorescent X-rays 7 having a desired wavelength are directed toward a positional resolution detecting means 8. Subsequently, a spectroscopic element 6B corresponding to the fluorescent X-rays 7 on the heavy element side having a shorter wavelength is set at the predetermined position. When spectroscopic elements 6 corresponding to the fluorescent X-rays 7 on the heavy element side having a shorter wavelength are set sequentially at the predetermined position and the intensity distribution of the fluorescent X-rays 7 subjected to spectroscopy is measured, fluorescent X-ray analysis can be performed over a wide wavelength range without interlocking the spectroscopic element 6 and the positional resolution detecting means 8 with the sample 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、簡単な構成で、高
精度、高感度の測定ができる蛍光X線分析装置および方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray fluorescence analyzer and a method capable of performing highly accurate and highly sensitive measurement with a simple structure.

【0002】[0002]

【従来の技術】従来より、いわゆる波長分散型蛍光X線
分析においては、図2に示すように、試料台2に試料1
を固定し、試料1にX線源4から1次X線3を照射し、
試料1から発生した蛍光X線5を分光素子26で回折
し、分光素子26で回折されたX線7を、比例計数管や
シンチレーションカウンタ等の検出器28で検出する。
ここで、分光器26へ蛍光X線5が入射する入射角θ
と、蛍光X線5の延長線30と回折されたX線7のなす
分光角2θとを連動手段29で連続的に連動させること
により、試料1から発生した蛍光X線5を種々の波長に
分光し、試料1に含まれる各元素に対応する波長の蛍光
X線7を検出することができる。この連動手段29は、
いわゆるゴニオメータであり、分光素子26を、その表
面の中心を通る紙面に垂直な軸Oを中心に回転させ、そ
の回転角の2倍だけ、検出器28を、軸Oを中心に円3
1に沿って回転させる。
2. Description of the Related Art Conventionally, in so-called wavelength-dispersive X-ray fluorescence analysis, as shown in FIG.
Is fixed, and the sample 1 is irradiated with the primary X-rays 3 from the X-ray source 4,
The fluorescent X-rays 5 generated from the sample 1 are diffracted by the spectroscopic element 26, and the X-rays 7 diffracted by the spectroscopic element 26 are detected by a detector 28 such as a proportional counter or a scintillation counter.
Here, the incident angle θ at which the fluorescent X-rays 5 enter the spectroscope 26
By continuously linking the extension line 30 of the fluorescent X-ray 5 and the spectral angle 2θ formed by the diffracted X-ray 7 with the linking means 29, the fluorescent X-ray 5 generated from the sample 1 is changed to various wavelengths. By spectroscopy, fluorescent X-rays 7 having a wavelength corresponding to each element included in the sample 1 can be detected. This interlocking means 29
This is a so-called goniometer, in which the spectroscopic element 26 is rotated about an axis O perpendicular to the paper surface passing through the center of the surface, and the detector 28 is rotated about the axis O by twice the rotation angle by twice the rotation angle.
Rotate along 1.

【0003】[0003]

【発明が解決しようとする課題】しかし、このように、
分光素子26と検出器28を連動させるために、装置の
構成が複雑になり、また装置の機械的な精度ひいては測
定の精度がいまひとつ向上できない。さらに、回動する
分光素子26や検出器28が他の部分に干渉しないよう
にするために、試料1と分光素子26、分光素子26と
検出器28を十分に接近させられないので、検出器28
に入射する蛍光X線7が発散、減衰し、その強度ひいて
は測定の感度がいまひとつ向上できない。一方、いわゆ
るエネルギー分散型の蛍光X線分析では、このような連
動手段は不要であるが、用いられるSSD等の検出器の
特性から、得られる信号のS/N比がいまひとつ十分で
ない。
However, as described above,
Since the spectroscopic element 26 and the detector 28 are linked, the configuration of the device becomes complicated, and the mechanical accuracy of the device and thus the accuracy of the measurement cannot be further improved. Further, in order to prevent the rotating spectroscopic element 26 and detector 28 from interfering with other portions, the sample 1 and the spectroscopic element 26 and the spectroscopic element 26 and the detector 28 cannot be sufficiently close to each other. 28
The fluorescent X-rays 7 incident on the light source diverge and attenuate, and the intensity and thus the measurement sensitivity cannot be further improved. On the other hand, in the so-called energy dispersive X-ray fluorescence analysis, such an interlocking means is not necessary, but the S / N ratio of the obtained signal is still insufficient due to the characteristics of a detector such as an SSD used.

【0004】本発明は前記従来の問題に鑑みてなされた
もので、簡単な構成で、高精度、高感度の測定ができる
蛍光X線分析装置および方法を提供することを目的とす
る。
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a fluorescent X-ray analyzer and a method capable of performing highly accurate and highly sensitive measurement with a simple configuration.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の蛍光X線分析装置では、1次X線を照射
される試料が固定される試料台と、格子面間隔の相異な
る複数の分光素子と、前記分光素子を試料に対し所定の
位置に選択的に位置させて、試料から発生した蛍光X線
を分光させる選択手段と、前記所定の位置に対し固定さ
れ、前記分光された蛍光X線の強度分布を測定する位置
分解能検出手段とを備える。
According to a first aspect of the present invention, there is provided a fluorescent X-ray analyzer, comprising: a sample stage on which a sample to be irradiated with primary X-rays is fixed; A plurality of different light-splitting elements; a selection means for selectively positioning the light-splitting element at a predetermined position with respect to the sample to split the fluorescent X-rays generated from the sample; Position resolution detecting means for measuring the intensity distribution of the obtained fluorescent X-rays.

【0006】請求項1の装置によれば、分光素子を試料
に対し所定の位置に選択的に位置させるのみで、試料に
対し分光素子と検出手段を連動させないので、簡単な構
成で、高精度の測定ができる。また、試料と分光素子、
分光素子と検出手段を十分に接近させることができるの
で、検出手段に入射する蛍光X線の発散、減衰が抑制さ
れ、十分な強度で高感度の測定ができる。
According to the first aspect of the present invention, the spectroscopic element is selectively positioned at a predetermined position with respect to the sample, and the spectroscopic element and the detecting means are not linked to the sample. Can be measured. Also, the sample and the spectroscopic element,
Since the spectroscopic element and the detection means can be brought sufficiently close to each other, the divergence and attenuation of the fluorescent X-rays incident on the detection means are suppressed, and high-sensitivity measurement with sufficient intensity can be performed.

【0007】請求項2の蛍光X線分析方法では、試料に
1次X線を照射し、格子面間隔の相異なる複数の分光素
子を試料に対し所定の位置に選択的に位置させて、試料
から発生した蛍光X線を分光し、前記所定の位置に対し
固定された位置分解能を有する検出手段により、前記分
光された蛍光X線の強度分布を測定する。請求項2の方
法によれば、請求項1の装置と同様の作用効果が得られ
る。
In the X-ray fluorescence analysis method of the present invention, the sample is irradiated with primary X-rays, and a plurality of spectral elements having different lattice spacings are selectively positioned at predetermined positions with respect to the sample. X-rays generated from the above are separated, and the intensity distribution of the separated fluorescent X-rays is measured by detecting means having a fixed position resolution with respect to the predetermined position. According to the method of the second aspect, the same operation and effect as those of the apparatus of the first aspect are obtained.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施形態である蛍
光X線分析装置を、試料の微小部位の分析に用いられる
場合を例にとり、図面にしたがって説明する。まず、こ
の装置の構成について説明する。図1の平面図に示すよ
うに、この装置は、まず、1次X線3が照射される試料
1が固定される試料台2を備えている。ここで、1次X
線3を発生するX線源は、例えば直径5μmのコリメー
タを有するSR光源(放射光光源)であり、1次X線3
は、きわめて細いが従来よりも強度の大きいX線であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an X-ray fluorescence spectrometer according to an embodiment of the present invention will be described with reference to the drawings, taking as an example a case where it is used for analyzing a minute portion of a sample. First, the configuration of this device will be described. As shown in the plan view of FIG. 1, this apparatus includes a sample stage 2 to which a sample 1 to be irradiated with primary X-rays 3 is fixed. Where primary X
The X-ray source generating the ray 3 is, for example, an SR light source (radiation light source) having a collimator having a diameter of 5 μm, and the primary X-ray 3
Are X-rays which are extremely thin but have higher intensity than before.

【0009】また、この装置は、格子面間隔の相異なる
複数の分光素子6A,6B…と、前記分光素子6A,6
B…を試料1に対し所定の位置に選択的に位置させて、
試料1から発生した蛍光X線5を分光させる選択手段9
とを備えている。ここで、複数の分光素子6A,6B…
は、分光(回折)すべき蛍光X線7の波長によって、そ
れぞれの格子面間隔、いわゆるd値が異なっている。例
えば、長波長側からいえば、塩素の蛍光X線からカルシ
ウムの蛍光X線に対しては、ADP(NH4H2PO4)の分光
結晶が用いられ、カリウムの蛍光X線からバナジウムの
蛍光X線に対しては、二酸化珪素の分光結晶が用いら
れ、カルシウムの蛍光X線からクロムの蛍光X線に対し
ては、インジウムアンチモンの分光結晶が用いられ、チ
タンの蛍光X線からテルルの蛍光X線に対しては、珪素
の分光結晶の種々の格子面が用いられる。その他に、所
望のd値を有する多層の累積膜からなる人工格子を用い
ることもできる。
The apparatus further comprises a plurality of dispersive elements 6A, 6B... Having different lattice spacings, and the dispersive elements 6A, 6B.
B ... is selectively located at a predetermined position with respect to the sample 1,
Selection means 9 for dispersing fluorescent X-rays 5 generated from sample 1
And Here, the plurality of spectral elements 6A, 6B,...
The lattice spacing, so-called d value, differs depending on the wavelength of the fluorescent X-rays 7 to be separated (diffracted). For example, from the long wavelength side, a spectral crystal of ADP (NH 4 H 2 PO 4 ) is used for fluorescent X-rays of chlorine to fluorescent X-rays of calcium, and fluorescent fluorescent light of vanadium is converted from fluorescent X-rays of potassium. For X-rays, a spectral crystal of silicon dioxide is used. For fluorescent X-rays of calcium to fluorescent X-rays of calcium, a spectral crystal of indium antimony is used. For X-rays, various lattice planes of the silicon crystal are used. In addition, it is also possible to use an artificial lattice made of a multilayered accumulation film having a desired d value.

【0010】選択手段9は、複数の分光素子6A,6B
…が各側面に固定された多角柱である回転台9aと、そ
の回転台9aを中心軸10まわりに回転させるモータ9
bとを有する。なお、分光素子6A,6B…を選択的に
位置させる試料1に対しての所定の位置とは、試料1へ
の1次X線3の入射点Pから分光素子6の表面の中心Q
までの距離が所定の距離であり、PからQに到る蛍光X
線5の分光素子6への入射角θQ が所定の角度であるよ
うな位置をいい、図1では、分光素子6Aがその位置に
あり、試料1から発生した蛍光X線5が入射され、それ
を分光する。
The selecting means 9 comprises a plurality of spectroscopic elements 6A, 6B
Are a polygonal column fixed to each side, and a motor 9 for rotating the column 9a around a central axis 10.
b. The predetermined position with respect to the sample 1 at which the spectroscopic elements 6A, 6B... Are selectively positioned is defined as a position from the point of incidence P of the primary X-ray 3 on the sample 1 to the center Q of the surface of the spectroscopic element 6.
Is a predetermined distance, and the fluorescence X from P to Q
The position at which the incident angle θ Q of the line 5 to the spectroscopic element 6 is a predetermined angle. In FIG. 1, the spectroscopic element 6A is at that position, and the fluorescent X-rays 5 generated from the sample 1 are incident thereon. Disperse it.

【0011】さらに、この装置は、前記所定の位置に対
し固定され、前記選択手段9により選択された分光素子
6Aにより分光された蛍光X線7の強度分布を測定する
位置分解能検出手段8を備えている。ここで、位置分解
能検出手段8としては、いわゆるPSPC(ポジション
センシティブプロポーショナルカウンタ)、CCD、P
DA(フォトダイオードアレイ)、IP(イメージング
プレート)等を用いることができる。なお、位置分解能
検出手段8が前記所定の位置に対し固定されるとは、ど
の分光素子6A,6B…が選択されるかに無関係に、前
記所定の位置に対し、選択された分光素子6Aが分光す
る一定範囲の蛍光X線7が入射される位置に固定されて
おり、選択された分光素子6Aに対して回動等しないこ
とを意味する。
The apparatus further comprises a position resolution detecting means 8 fixed to the predetermined position and measuring the intensity distribution of the fluorescent X-rays 7 separated by the spectroscopic element 6A selected by the selecting means 9. ing. Here, as the position resolution detecting means 8, a so-called PSPC (Position Sensitive Proportional Counter), CCD, P
DA (photodiode array), IP (imaging plate) and the like can be used. It is to be noted that the position resolution detecting means 8 is fixed to the predetermined position, regardless of which spectral element 6A, 6B... Is selected, the selected spectral element 6A is fixed to the predetermined position. It is fixed at a position where the fluorescent X-rays 7 within a certain range to be split are incident, and means that the selected spectroscopic element 6A does not rotate or the like.

【0012】次に、この実施形態の装置の動作につい
て、説明する。まず、試料1に1次X線3を照射する。
ここで、分析しようとする蛍光X線7において、波長の
長い方、すなわち軽元素側から測定するとすると、選択
手段9により、対応する分光素子6Aを試料1に対し所
定の位置(図1における位置)に位置させる。これによ
り、試料1から発生した蛍光X線5が分光され、所望の
波長の蛍光X線7が位置分解能検出手段8に向かう。こ
のとき、分光素子6Aのd値と、蛍光X線5の入射角
(蛍光X線7の反射角)θと、蛍光X線7の波長λと
は、次式(1)のブラッグの条件を満たす。
Next, the operation of the apparatus of this embodiment will be described. First, the sample 1 is irradiated with primary X-rays 3.
Here, assuming that the fluorescent X-rays 7 to be analyzed are measured from the longer wavelength side, that is, from the light element side, the corresponding spectroscopic element 6A is positioned at a predetermined position (position in FIG. ). As a result, the fluorescent X-rays 5 generated from the sample 1 are separated, and the fluorescent X-rays 7 having a desired wavelength travel to the position resolution detecting means 8. At this time, the d value of the spectroscopic element 6A, the incident angle of the fluorescent X-rays 5 (the reflection angle of the fluorescent X-rays 7) θ, and the wavelength λ of the fluorescent X-rays 7 satisfy the Bragg condition of the following equation (1). Fulfill.

【0013】 2d sinθ=nλ (nは回折次数で正整数) …(1)2d sin θ = nλ (n is a diffraction order and a positive integer) (1)

【0014】蛍光X線5の入射角θは、分光素子6Aへ
の入射位置により異なり、図1に示すように例えばθ1
からθ2 の範囲にあり(θ1 >θ2 )、それぞれの入射
角θについて式(1)が成立して、かつ、d値は各分光
素子6A,6B…においては一定であるから、分光素子
6Aにより得られる蛍光X線7の波長λも、対応するλ
1 からλ2 の範囲にある(λ1 >λ2 )。ここで、本実
施形態の装置では、反射角がθ1 からθ2 の範囲で広が
る蛍光X線7が同時に入射され、それが並ぶ方向(広が
る方向)の強度分布を測定できるPSPC等の位置分解
能検出手段8を用いる。また、分布方向においてどの位
置にどのような波長の蛍光X線7が入射するかは、式
(1)から既知とできる。したがって、位置分解能検出
手段8が前記所定の位置に対して固定されていても、選
択手段9により選択された分光素子6Aにより分光され
た蛍光X線7について、各波長λ1 〜λ2 における強度
を測定することができる。
[0014] Fluorescence incident angle theta of the X-ray 5, depends on the incident position of the spectral element 6A, for example theta 1 1
In the range of theta 2 from (theta 1> theta 2), the theta angles of the incidence satisfied the expression (1), and, d values each spectral element 6A, is constant in 6B ..., spectral The wavelength λ of the fluorescent X-ray 7 obtained by the element 6A is also
It is in the range of 1 to λ 21 > λ 2 ). Here, in the apparatus of the present embodiment, the reflection angle is incident fluorescent X-ray 7 is simultaneously spread in the range of theta 2 from theta 1, the position resolution of such PSPC that it can measure the intensity distribution in the direction (expanding direction) aligned The detection means 8 is used. Further, it can be known from Formula (1) which position in the distribution direction the fluorescent X-ray 7 of which wavelength is incident. Therefore, even if the position resolution detecting means 8 is fixed to the predetermined position, the intensity of the fluorescent X-rays 7 separated by the spectroscopic element 6A selected by the selecting means 9 at each of the wavelengths λ 1 to λ 2 . Can be measured.

【0015】分光素子6Aを用いた測定が終了すれば、
より波長の短い重元素側の蛍光X線7に対応する分光素
子6Bを、選択手段9により、所定の位置(図1におけ
る分光素子6Aの位置)に位置させる。この分光素子6
Bのd値は、分光素子6Aのd値よりもやや小さく設定
され、これにより測定できる蛍光X線7の波長の範囲λ
3 〜λ4 は、少なくとも分光素子6Aにより測定できる
蛍光X線7の波長の範囲λ1 〜λ2 と連続し(λ3 ≧λ
2 )、かつ、より短波長λ4 まで延びている(λ4 <λ
2 )。
When the measurement using the spectroscopic element 6A is completed,
The selecting means 9 positions the spectral element 6B corresponding to the fluorescent X-ray 7 on the heavy element side with a shorter wavelength at a predetermined position (the position of the spectral element 6A in FIG. 1). This spectral element 6
The d value of B is set slightly smaller than the d value of the spectroscopic element 6A, and the wavelength range λ
3 to λ 4 are continuous with at least the wavelength range λ 1 to λ 2 of the fluorescent X-ray 7 that can be measured by the spectroscopic element 6A (λ 3 ≧ λ
2 ) and extend to shorter wavelength λ 44
2 ).

【0016】このように、次々に、より波長の短い重元
素側の蛍光X線7に対応する分光素子6B…を、選択手
段9により所定の位置に位置させて、分光された蛍光X
線7の強度分布を測定することにより、試料1に対し分
光素子6と検出手段8を連動させなくても、広い波長の
範囲で蛍光X線分析ができる。なお、測定の順序は、以
上に説明したような順序に限るものではなく、例えば、
波長の短い重元素側から行ってもよい。また、分光素子
6A,6B…の選択は、操作者が、直接選択手段9のモ
ータ9bを動作させて行ってもよいが、コンピュータ等
の制御手段を介して、自動的、連続的に行うこともでき
る。
In this way, the spectroscopic elements 6B... Corresponding to the fluorescent X-rays 7 on the side of the heavy element having a shorter wavelength are successively positioned at predetermined positions by the selecting means 9, and
By measuring the intensity distribution of the line 7, X-ray fluorescence analysis can be performed over a wide wavelength range without interlocking the spectroscopic element 6 and the detection means 8 with the sample 1. Note that the order of measurement is not limited to the order described above, for example,
It may be performed from the side of the heavy element having a short wavelength. The selection of the spectroscopic elements 6A, 6B,... May be performed by the operator by directly operating the motor 9b of the selection means 9, but may be automatically and continuously performed through control means such as a computer. Can also.

【0017】本実施形態の装置によれば、分光素子6
A,6B…を試料1に対し所定の位置に選択的に位置さ
せるのみで、試料1に対し分光素子6と検出手段8を連
動させないので、簡単な構成で、高精度の測定ができ
る。また、試料1と分光素子6A、分光素子6Aと検出
手段8を十分に接近させることができるので、検出手段
8に入射する蛍光X線7の発散、減衰が抑制され、十分
な強度で高感度の測定ができる。特に、例えば直径5μ
mのコリメータで絞られたSR光のようなきわめて細い
1次X線3を用いて、試料1の微小部位について分析を
行うような場合には、高い精度と感度が要求されるの
で、これらの効果が大きく、従来に比して1桁以上S/
N比が向上した。
According to the apparatus of this embodiment, the spectral element 6
Are selectively located at predetermined positions with respect to the sample 1, and the spectroscopic element 6 and the detecting means 8 are not linked to the sample 1, so that a highly accurate measurement can be performed with a simple configuration. In addition, since the sample 1 and the spectroscopic element 6A, and the spectroscopic element 6A and the detection means 8 can be sufficiently close to each other, divergence and attenuation of the fluorescent X-rays 7 incident on the detection means 8 are suppressed, and sufficient sensitivity and high sensitivity are obtained. Can be measured. In particular, for example, a diameter of 5μ
In the case of using a very thin primary X-ray 3 such as SR light focused by an m collimator to analyze a minute part of the sample 1, high accuracy and sensitivity are required. The effect is large, and S / S
The N ratio improved.

【0018】[0018]

【発明の効果】以上説明したように、本願発明によれ
ば、蛍光X線分析において、簡単な構成で、高精度、高
感度の測定ができる。
As described above, according to the present invention, high-precision and high-sensitivity measurement can be performed with a simple structure in X-ray fluorescence analysis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態である蛍光X線分析装置を
示す平面図である。
FIG. 1 is a plan view showing an X-ray fluorescence analyzer according to one embodiment of the present invention.

【図2】従来の波長分散型蛍光X線分析装置を示す正面
図である。
FIG. 2 is a front view showing a conventional wavelength dispersive X-ray fluorescence spectrometer.

【符号の説明】[Explanation of symbols]

1…試料、2…試料台、3…1次X線、5…試料から発
生した蛍光X線、6…分光素子、7…分光された蛍光X
線、8…位置分解能検出手段、9…選択手段。
DESCRIPTION OF SYMBOLS 1 ... sample, 2 ... sample stage, 3 ... primary X-ray, 5 ... fluorescent X-ray generated from the sample, 6 ... spectral element, 7 ... spectral X-ray
Line, 8 ... Position resolution detecting means, 9 ... Selecting means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 庄司 孝 大阪府高槻市赤大路町14番8号 理学電機 工業株式会社内 (72)発明者 山田 栄司 大阪府高槻市赤大路町14番8号 理学電機 工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Takashi Shoji, 14-8, Akaoji-machi, Takatsuki-shi, Osaka Prefecture Inside Rigaku Denki Kogyo Co., Ltd. (72) Eiji Yamada 14-8, Akaoji-cho, Takatsuki-shi, Osaka Science Denki Kogyo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1次X線が照射される試料が固定される
試料台と、 格子面間隔の相異なる複数の分光素子と、 前記分光素子を試料に対し所定の位置に選択的に位置さ
せて、試料から発生した蛍光X線を分光させる選択手段
と、 前記所定の位置に対し固定され、前記分光された蛍光X
線の強度分布を測定する位置分解能検出手段とを備えた
蛍光X線分析装置。
1. A sample stage on which a sample to be irradiated with primary X-rays is fixed, a plurality of spectroscopic elements having different lattice spacings, and the spectroscopic element is selectively positioned at a predetermined position with respect to the sample. Selecting means for dispersing the fluorescent X-rays generated from the sample, and fixing the fluorescent X-rays
An X-ray fluorescence analyzer comprising: a position resolution detector for measuring the intensity distribution of a line.
【請求項2】 試料に1次X線を照射し、 格子面間隔の相異なる複数の分光素子を試料に対し所定
の位置に選択的に位置させて、試料から発生した蛍光X
線を分光し、 前記所定の位置に対し固定された位置分解能を有する検
出手段により、前記分光された蛍光X線の強度分布を測
定する蛍光X線分析方法。
2. A method of irradiating a sample with primary X-rays, selectively arranging a plurality of spectroscopic elements having different lattice spacings at predetermined positions with respect to the sample, and obtaining fluorescent X-rays generated from the sample.
An X-ray fluorescence analysis method, wherein the X-rays are disperse | distributed and the intensity distribution of the disperse | distributed X-ray fluorescence is measured by the detection means which has fixed positional resolution with respect to the said predetermined position.
JP9208866A 1997-08-04 1997-08-04 Method and equipment for fluorescent x-ray analysis Pending JPH1151883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9208866A JPH1151883A (en) 1997-08-04 1997-08-04 Method and equipment for fluorescent x-ray analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9208866A JPH1151883A (en) 1997-08-04 1997-08-04 Method and equipment for fluorescent x-ray analysis

Publications (1)

Publication Number Publication Date
JPH1151883A true JPH1151883A (en) 1999-02-26

Family

ID=16563426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9208866A Pending JPH1151883A (en) 1997-08-04 1997-08-04 Method and equipment for fluorescent x-ray analysis

Country Status (1)

Country Link
JP (1) JPH1151883A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2772752A4 (en) * 2011-10-28 2015-09-02 Hamamatsu Photonics Kk X-ray spectrometry detector device
CN105758467A (en) * 2014-12-16 2016-07-13 天津西创科技有限公司 Accumulated flow detection box
EP2647983A3 (en) * 2012-04-06 2017-01-04 Japan Atomic Energy Agency Spectroscopic apparatus
CN111595878A (en) * 2020-05-13 2020-08-28 雅视特科技(杭州)有限公司 Element component automatic detection device based on assembly line and detection method thereof
CN112313505A (en) * 2018-04-20 2021-02-02 奥图泰(芬兰)公司 X-ray fluorescence analyzer and method for performing X-ray fluorescence analysis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2772752A4 (en) * 2011-10-28 2015-09-02 Hamamatsu Photonics Kk X-ray spectrometry detector device
EP2647983A3 (en) * 2012-04-06 2017-01-04 Japan Atomic Energy Agency Spectroscopic apparatus
CN105758467A (en) * 2014-12-16 2016-07-13 天津西创科技有限公司 Accumulated flow detection box
CN112313505A (en) * 2018-04-20 2021-02-02 奥图泰(芬兰)公司 X-ray fluorescence analyzer and method for performing X-ray fluorescence analysis
CN111595878A (en) * 2020-05-13 2020-08-28 雅视特科技(杭州)有限公司 Element component automatic detection device based on assembly line and detection method thereof

Similar Documents

Publication Publication Date Title
WO2005005969A1 (en) Energy dispersion type x-ray diffraction/spectral device
WO2004086018A1 (en) X-ray fluorescence analyzer
JP3511826B2 (en) X-ray fluorescence analyzer
JPH1151883A (en) Method and equipment for fluorescent x-ray analysis
JP2001124711A (en) Fluorescence x-ray analysis method and evaluation method of sample structure
JP3968350B2 (en) X-ray diffraction apparatus and method
US6285736B1 (en) Method for X-ray micro-diffraction measurement and X-ray micro-diffraction apparatus
JP2000206061A (en) Fluorescent x-ray measuring device
JP2685726B2 (en) X-ray analyzer
JP3593412B2 (en) X-ray analyzer and attachment for X-ray fluorescence analysis
JP3411705B2 (en) X-ray analyzer
JP2921597B2 (en) Total reflection spectrum measurement device
JPH0763897A (en) X-ray spectroscope
JPH1114566A (en) X-ray apparatus for x-ray diffraction measurement and for fluorescent x-ray measurement
JP3968452B2 (en) X-ray analyzer
JPH07260598A (en) X-ray stress measuring device and x-ray stress measuring method
JP3590681B2 (en) X-ray absorption fine structure analysis method and apparatus
JP2000009666A (en) X-ray analyzer
JP2002333409A (en) X-ray stress measuring device
WO2023017636A1 (en) X-ray analysis device
JPH0455743A (en) X-ray inspecting apparatus
JP3476333B2 (en) X-ray analysis method
JP6862710B2 (en) X-ray diffractometer
JPS6327741A (en) X-ray spectroscopic apparatus
JP3394936B2 (en) Wavelength dispersive X-ray fluorescence analysis method and apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201