JP2006322707A - 蛍光検出装置および検査チップ - Google Patents

蛍光検出装置および検査チップ Download PDF

Info

Publication number
JP2006322707A
JP2006322707A JP2005143360A JP2005143360A JP2006322707A JP 2006322707 A JP2006322707 A JP 2006322707A JP 2005143360 A JP2005143360 A JP 2005143360A JP 2005143360 A JP2005143360 A JP 2005143360A JP 2006322707 A JP2006322707 A JP 2006322707A
Authority
JP
Japan
Prior art keywords
sample
reflected
fluorescence
laser
microchannel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005143360A
Other languages
English (en)
Other versions
JP4022830B2 (ja
Inventor
Tsutomu Matsui
勉 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funai Electric Co Ltd
Original Assignee
Funai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funai Electric Co Ltd filed Critical Funai Electric Co Ltd
Priority to JP2005143360A priority Critical patent/JP4022830B2/ja
Publication of JP2006322707A publication Critical patent/JP2006322707A/ja
Application granted granted Critical
Publication of JP4022830B2 publication Critical patent/JP4022830B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】対物レンズを高速駆動させることで励起光の焦点がマイクロ流路の一断面上を高速に走査するようにした蛍光検出装置において、この励起光の走査をマイクロ流路からはみ出ることなく且つマイクロ流路の断面のほぼ全域に渡って行われるようにする。
【解決手段】光センサ19の各検出面からのセンサ信号を演算してレーザ光の焦点が反射面に来たことを表わす反射面検出信号、および、前記反射ビームの光量を表わす反射光量検出信号を生成する演算回路30と、反射面検出信号に基づいてレーザ光の焦点がマイクロ流路45の底面と上面との間を往復するようにレンズアクチュエータ20を駆動制御するとともに、反射光量検出信号に基づいてレーザ光の焦点がマイクロ流路45の両側面の間を往復するようにレンズアクチュエータ20を駆動制御する制御回路31とを備えている。
【選択図】図1

Description

この発明は、蛍光標識物質が加えられた試料に励起光を照射して試料から発せられる蛍光を検出することで試料内の特定成分の測定を行う蛍光検出装置およびそれに用いられる検査チップに関する。
以前より、例えば生化学試料に蛍光標識物質を含んだ試薬を投入し、これをマイクロ流路に流すとともに励起光を照射して発せられる蛍光を測定することで、試料中の特定成分の定量測定を行う蛍光検出装置や落射蛍光顕微鏡などが開発されている。
本発明者らは、このような測定を高速に且つ正確に行うために、CDプレーヤなど光ディスク装置の分野で用いられている対物レンズの駆動技術を応用し、励起光を対物レンズでマイクロ流路に集光させるとともに、この対物レンズを光軸方向(フォーカス方向)やマイクロ流路を横断する方向(トランスバース方向)に高速に往復移動させて、励起光の焦点がマイクロ流路の一断面上を高速に2次元走査するようにした蛍光検出装置を開発している。
このような装置によれば、励起光の焦点位置で発っせられる蛍光を対物レンズで受けて検出することで、マイクロ流路の上記断面を通過する試料の蛍光測定を高速に且つ正確に行うことが可能となる。
本発明に関連する従来技術としては、次のような開示がある。例えば、特許文献1には、顕微鏡の対物レンズを光軸方向に駆動する駆動装置と、被検体に対する焦点の合致判定を行う光学系とを備え、曲率を有する被検体でも短時間で焦点を合わせて段差測定等を可能にする技術が開示されている。また、特許文献2には、顕微鏡のレンズレボルバに取り付け可能な対物レンズユニットにおいて、対物レンズの位置を変位させるアクチュエータを備え、このアクチュエータを作動させることで観測対象の離間した2箇所を同時に且つ高倍率で観察できるようにした技術が開示されている。また、特許文献3には、フォトマスクを介して感光性ペーストを露光するなどして基板上にマイクロ流路を形成する技術が開示されている。また、特許文献4には、共焦点顕微鏡の鏡筒に光軸の位置や角度を補正する可動部を設けた技術が開示されている。
特開平9−257411号公報 特開2002−48978号公報 特開2003−202678号公報 特開2003−279858号公報
対物レンズをフォーカス方向とトラバース方向とに高速駆動して励起光の焦点がマイクロ流路の一断面上を走査するようにするには、励起光の焦点がマイクロ流路から外れないように対物レンズの駆動位置や振幅を自動制御する必要がある。しかしながら、従来、このような自動制御を行う構成は存在しなかった。
本発明の目的は、対物レンズを高速駆動させることで励起光の焦点がマイクロ流路の一断面上を高速に2次元走査するようにした蛍光検出装置において、この励起光の走査をマイクロ流路からはみ出ることなく且つマイクロ流路の断面のほぼ全域に渡って行われるようにすることにある。
本発明は、上記目的を達成するため、検査チップに形成されたマイクロ流路に蛍光標識物質の加えられた試料を流した状態で、この試料に励起光を照射して該励起光により試料から発せられる蛍光を検出することで試料中の成分測定を行う蛍光検出装置において、前記励起光となるレーザ光を出力するレーザ出力手段と、このレーザ光を前記マイクロ流路に集束させるとともに前記試料から発せられた蛍光を受ける対物レンズと、この対物レンズをフォーカス方向および前記マイクロ流路を横断するトラバース方向に駆動するレンズアクチュエータと、前記検査チップ側で反射した前記レーザ光の反射ビームと前記試料からの蛍光とを分離する第1ビームスプリッタと、前記第1ビームスプリッタにより分離された蛍光を検出する第1光センサと、前記検査チップ側に向かう前記レーザ光の進行ビームと前記検査チップ側で反射した該レーザ光の反射ビームとを分離する第2ビームスプリッタと、前記第2ビームスプリッタにより分離された前記反射ビームに基づいて前記対物レンズにより集束されたレーザ光の焦点が反射面の近傍に来たことを表わす反射面検出信号を生成する反射面検出信号生成手段と、前記反射面検出信号に基づいて前記レーザ光の焦点が前記マイクロ流路の底面と上面との間を往復するように前記レンズアクチュエータを駆動制御する制御手段とを備えている構成とした。
このような手段によれば、反射面検出信号によりレーザ光の焦点がマイクロ流路の底面や上面に近接したことを検出できるので、この信号を監視しながら対物レンズのフォーカス方向の駆動制御を行うことで、フォーカス方向の走査範囲をマイクロ流路内に確実に保ち、且つ、この走査範囲を流路の上面近傍から底面近傍まで広くとることが可能となる。
具体的には、前記反射面検出信号生成手段は、前記第2ビームスプリッタにより分離された前記反射ビームに作用して前記レーザ光の焦点が反射面の近傍に来たときにこの反射ビームの像を発生させ、当該焦点が当該反射面からずれたときにこの像の形状又は向きを変化させる反射面検出用光学系と、前記反射面検出用光学系により生じた像を複数の検出面で検出する第2光センサと、前記第2光センサの各検出面からのセンサ信号を演算して前記反射面検出信号を生成する演算回路とから構成すると良い。
このような構成により、レーザ光の焦点がマイクロ流路の上面や底面に近づいた状態を確実に検出することが可能となる。
さらに具体的には、前記反射面検出用光学系は、前記反射ビームを前記第2光センサの検出面に集束させる集束レンズと、当該反射ビームに非点収差を与える光学素子とを含んだ構成とすることが出来る。
このような構成により、非点収差法によりレーザ光の焦点が反射面の近傍に来たときにS字波形を現すような反射面検出信号を生成でき、これによりマイクロ流路の上下方向の境界を確実に検出することが可能となる。
また、本発明は、上記目的を達成するため、検査チップに形成されたマイクロ流路に蛍光標識物質の加えられた試料を流した状態で、この試料に励起光を照射して該励起光により試料から発せられる蛍光を検出することで試料中の成分測定を行う蛍光検出装置において、前記励起光となるレーザ光を出力するレーザ出力手段と、このレーザ光を前記マイクロ流路に集束させるとともに前記試料から発せられた蛍光を受ける対物レンズと、この対物レンズをフォーカス方向および前記マイクロ流路を横断するトラバース方向に駆動するレンズアクチュエータと、前記検査チップ側で反射した前記レーザ光の反射ビームと前記試料からの蛍光とを分離する第1ビームスプリッタと、前記第1ビームスプリッタにより分離された蛍光を検出する第1光センサと、前記検査チップ側に向かう前記レーザ光の進行ビームと前記検査チップ側で反射した該レーザ光の反射ビームとを分離する第2ビームスプリッタと、前記第2ビームスプリッタにより分離された前記反射ビームの光量を検出する第2光センサと、前記第2光センサのセンサ信号に基づいて前記対物レンズにより集束されたレーザ光の焦点が前記マイクロ流路の両側面の間を往復するように前記レンズアクチュエータを駆動制御する制御手段とを備えている構成とした。
このような手段によれば、マイクロ流路と流路を外れた両脇との反射率の違いから、レーザ光の焦点がマイクロ流路の両側面に近づいたり流路外に外れたりした場合に、反射ビームの光量が変化して第2光センサの出力によりこの状態を検出することが出来る。従って、このセンサ信号に基づいて対物レンズのトラバース方向の駆動制御を行うことで、トラバース方向の走査範囲をマイクロ流路中に確実に保ち、且つ、この走査範囲をマイクロ流路の両側面間で広くとることが可能となる。
望ましくは、前記検査チップとして、前記励起光の照射側から見て前記マイクロ流路の周囲に当該マイクロ流路の範囲と光の反射率の異なる層を設けた検査チップを用いると良い。
このような構成により、レーザ光の焦点がマイクロ流路の両側面に近づいたり外れたりした場合に、反射ビームの光量が大きく変化することとなり、その分、より確実にこのような状態の検出を行うことが出来る。
以上説明したように、本発明に従うと、第2光センサの出力に基づきレーザ光の焦点がマイクロ流路とその外側との境界に近づいたことを検出することが出来るので、この検出に基づきレーザ光の焦点をマイクロ流路中の一断面に沿って広い範囲で且つ流路からはみ出さないように走査させることが出来るという効果がある。
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、この実施の形態の蛍光検出装置の概略を示す構成図である。
この実施の形態の蛍光検出装置1は、例えば唾液など生体系の液状試料に対して蛍光標識抗体を含んだ試料を投入・希釈し、これを例えば幅50μm×深さ20μmのマイクロ流路に電気泳動などにより流しつつ、このマイクロ流路の一断面に沿って励起光となるレーザ光の焦点をジグザグに走査させるとともに、この焦点が蛍光標識抗体に当たったときに発光される蛍光を検出・カウントすることで試料中の特定成分の定量測定を行うものである。励起光となるレーザ光の波長は例えば532nmであり、この励起光により発光される蛍光の波長は例えば570nmとなる。
蛍光検出装置1は、検査チップ40を搭載する図示略のステージと、励起光となる532nmのレーザ光を出射する半導体レーザ励起YAGの二次高調波レーザ(以下SHG・YAGレーザと略す:SHGは2次高調波発生:YAGはイットリウム・アルミニウム・ガーネット)10と、このレーザ光を検査チップ40のマイクロ流路45へ集束させるとともに試料から発せられた蛍光を受ける高開口数(例えばNA0.3やNA0.45など)の対物レンズ16と、この対物レンズ16を検査チップ40の面と平行でマイクロ流路45を横断する方向(トラバース方向と呼ぶ)、および、フォーカス方向に高速駆動させるレンズアクチュエータ20と、検査チップ40側から反射された波長532nmのレーザ光の反射ビームと試料から発せられる波長570nmの蛍光とを分離するダイクロイックミラー(第1ビームスプリッタ)11と、対物レンズ16で受けた蛍光を集束させる集束レンズ12と、この集束した蛍光を検出するアバランシェフォトダイオードやPINフォトダイオードからなる第1光センサ13と、第1光センサ13のセンサ信号を増幅して電圧信号に変換するアンプ14と、SHG・YAGレーザ10から出射され検査チップ40側から反射されたレーザ光の反射ビームを分離するビームスプリッタ(第2ビームスプリッタ)15と、この反射ビームを集束させる集束レンズ17と、この反射ビームに非点収差を与える円筒レンズ(或いは斜め配置した透明平行平板でも良い)18と、集束された反射ビームを複数の検出面で検出する第2光センサ19と、第2光センサ19の複数の検出面から出力される各センサ信号を演算して対物レンズ16の駆動制御に使用される信号を生成する演算回路30と、演算回路30から信号に基づいてレンズアクチュエータ20のフォーカス方向の駆動制御とトラバース方向の駆動制御とを行う駆動制御回路31とを備えている。
図2には、レンズアクチュエータの詳細な斜視図を示す。
レンズアクチュエータは、例えば、対物レンズ16を保持するレンズホルダ21を4本のワイヤ22…で可動状態に支持するとともに、このレンズホルダ21の側面に電磁コイル25a,25b(図1参照)を取り付ける一方、これら電磁コイル25a,25bと対向するようにフレーム20A側に磁石23,23を設け、ワイヤ22を介して電磁コイル25a,25bに電流を流すことで電磁力を発生させてレンズホルダ21をフォーカス方向Fやトラバース方向Tに変位させるように構成されている。
なお、本発明に係るレンズアクチュエータとしては、光ディスク装置の分野で公知となっている種々のレンズアクチュエータを適用することが出来る。
図3は、第2光センサの検出面の構成と反射ビームの像が変化する状態を示す説明図である。
第2光センサ19は、図3に示すように、4分割された検出面A〜Dを有し、各検出面A〜Dに入射した光量を示す検出電流をそれぞれ出力するようになっている。
第2光センサ19と集光レンズ17とは適宜位置調整されており、対物レンズ16により集束されたレーザ光の焦点が検査チップ40の反射面に当たったときに、その反射ビームの像が第2光センサ19の検出面上に結ばれるようになっている。また、レーザ光の焦点が検査チップ40の反射面から離れているときには、第2光センサ19上の反射ビームの像がぼけるようになっている。
また、円筒レンズ18による反射ビームに与えられる非点収差により、レーザ光の焦点が検査チップ40の反射面の奥側にややずれたときには、図3(a)に示すように、第2光センサ19上での反射ビームの像は右斜めに傾いた楕円形状になり、レーザ光の焦点が検査チップ40の反射面の手前側にややずれたときには、図3(b)に示すように、第2光センサ19上での反射ビームの像は左斜めに傾いた楕円形状にされる。
そして、演算回路30は、検出面A,Cの検出信号と検出面B,Dの検出信号との差をとることでレーザ光の焦点が反射面を通過するときにS字波形を発生させるような反射面検出信号を生成し、全検出面A〜Dの検出信号の和をとることで反射ビーム全体の光量を示す反射光量検出信号を生成するようになっている。
図4には検査チップの一部範囲の平面図を示す。
検査チップ40は、図1と図4に示すように、例えば、透明平板ガラスからなる基板41に、レーザ加工やエッチング加工により幅50μm×深さ20μm程度の凹溝を形成し、基板41の上面側を透明樹脂47などで覆うことで、上記の凹溝によりマイクロ流路45が形成されてなるものである。基板41や透明樹脂層47の厚みはそれぞれ約1.2mmである。
更に、この実施の形態の検査チップ40においては、凹溝を形成する前に基板41上の表面に銀やアルミなどの金属薄膜等からなる反射膜46を形成しておくことで、上方から見てマイクロ流路45の範囲とマイクロ流路45を外れた範囲とで光の反射率が大きく異なるように構成されている。なお、このような反射膜46は、マイクロ流路45と同等の深さに形成すると良く、また、検査チップ40の全域に形成せずにマイクロ流路45の蛍光検出装置1で測定する部分の近傍範囲のみに形成しても良い。
次に、上記のように構成された蛍光検出装置1の各部の作用と測定時の動作について説明する。
図5には、レーザ光の焦点を検査チップを通過するように移動させたときの反射面検出信号の波形を表わした説明図を示す。
レンズアクチュエータ20のフォーカス方向の駆動制御は次のように行われる。すなわち、レンズアクチュエータ20のフォーカス方向の駆動力を発生させる電磁コイル25aに直線的に変化する直流電流を出力していくと、例えば、対物レンズ16を上端付近からから下端付近まで3mm程度動かすことが出来る。そして、このような駆動により、レーザ光の焦点は、図5(a)に示すように、検査チップ40の上面側から底面側に検査チップ40を通過するように移動する。
このとき演算回路から出力される反射面検出信号は、図5(b)に示されるように、レーザ光の焦点が反射面でない範囲を移動するときには一定の基準電圧値を示すが、レーザ光の焦点が検査チップ40の上面、マイクロ流路45の上面、底面、検査チップ40の底面等の反射面を通過するときにはS字波形の出力を示す。
この実施の形態の蛍光検出装置1では、先ず、蛍光測定の前段で、駆動制御回路31に図5に示したような対物レンズ16の駆動制御を行わせてS字波形のカウントと各S字波形中央での駆動電流値をそれぞれ記憶させておく。そして、2番目と3番目の各S字波形の中央での駆動電流値に基づき、これらの駆動電流値の中間値を算出し、この中間値を蛍光測定時にフォーカス駆動用の電磁コイル25aに流すバイアス電流として設定する。
そして、蛍光測定時には、このバイアス電流に加えて、例えば正弦波の電流をフォーカス駆動用の電磁コイル25aに流して、対物レンズ16をフォーカス方向に振動させる。振動の振幅は正弦波電流の周波数や振幅により予め制御することが出来る。
さらに、これらの制御の間、駆動制御回路31は絶えず反射面検出信号を監視して、マイクロ流路45の上面と底面に相当するS字波形を超えないように、バイアス電流や正弦波電流の周波数および振幅を調整する。
このような駆動制御により、レーザ光の焦点は、マイクロ流路45の上面に近い位置から底面に近い位置まで、流路45からはみ出すことなくフォーカス方向に往復移動することなる。
図6には、レンズアクチュエータへ出力されるトラバース方向の駆動信号と反射光量検出信号との関係を示す波形図である。
レンズアクチュエータ20のトラバース方向の駆動制御は次のように行われる。すなわち、蛍光測定を行う際には、先ず測定準備として、予め対物レンズ16が停止した状態でステージを水平方向に動かして、対物レンズ16から出射されるレーザ光の光軸が測定対象となるマイクロ流路45の中央にくるように目視等で調整される。
この状態でレンズアクチュエータ20のトラバース駆動用の電磁コイル25bに、所定周波数および所定振幅の正弦波の電流を出力すると、対物レンズ16はこの周波数および一定の振幅でトラバース方向に往復動を開始する。このとき、対物レンズ16の往復動によりレーザ光の焦点がマイクロ流路45の側面側から流路外へはみ出さなければ、反射ビームの光量はさほど変化せず、図6(b)に示すように、反射光量検出信号は一定の電圧値を示したままとなる。
一方、対物レンズ16の振動振幅が大きくて反射ビームの焦点がマイクロ流路45の両側面より外側にはみ出しながら振動した場合には、はみ出したときにレーザ光がマイクロ流路45の周囲に形成された反射膜46(図4)で反射され、この反射光が第2光センサ19に入射するので、図6(c)に示すように、反射光量検出信号は駆動電流の正弦波周期の半分の周期でその値が高く変化した矩形波の信号波形が現れる。
また、対物レンズ16の振動中心が変位していて、反射ビームの焦点がマイクロ流路45の一方の側面より外側にはみ出しながら振動した場合には、図6(d)に示すように、反射光量検出信号は駆動電流の正弦波周期と同一の周期でその値が高く変化した矩形波の信号波形が現れる。
トラバース方向の駆動制御においては、先ず、蛍光測定の前段で、駆動制御回路31に振動振幅がやや大きめのトラバース方向の駆動を行わせて、駆動制御回路31に反射光量検出信号を観測させる。そして、反射光量が大きくなって流路45をはみ出したことを示す矩形波のパルス幅を左と右のはみ出しの場合で比較させることで、振動の中心がマイクロ流路45の中央からずれていないか確認する。そして、中心位置がずれていれば、バイアス電流Ibの大きさを変化させて振動中心が中央にくるように制御する。
さらに、駆動制御回路31に、駆動電流の正弦波の周波数や振幅を少量ずつ変化させながら、流路45からのはみ出しを示す矩形波信号の有無を観測させることで、マイクロ流路45からはみ出すことなく流路45のほぼ全域を走査できる振動振幅を実現する駆動電流の周波数と振幅を決定する。
そして、蛍光測定の際に、上記のように決定した正弦波の電流にバイアス電流Ibを加えた駆動電流をトラバース駆動用の電磁コイル25aに流して、対物レンズ16をトラバース方向に振動させる制御を行う。さらに、これらの制御の間、駆動制御回路31は絶えず反射光量検出信号を監視して、レーザ光の焦点がマイクロ流路45からはみ出たことを示す矩形波が現れないかを確認する。そして、この矩形波が現れ始めたら、バイアス電流Ibや正弦波信号の周波数や振幅を調整して、この矩形波が消えるように制御する。
このような駆動制御により、レーザ光の焦点は、マイクロ流路45のほぼ全幅にかけて、流路45からはみ出すことなく往復移動することとなる。
図7には、レンズアクチュエータの駆動によりレーザ光の焦点がマイクロ流路中を走査する様子の説明図を示す。
そして、上記のような対物レンズ16のフォーカス方向Fの駆動制御とトラバース方向Tの駆動制御とが同時に行われることで(なお、フォーカス方向Fの振動周波数とトラバース方向Tの振動周波数とは、大きく異なる値としておく)、図7に示すように、マイクロ流路45中の一断面Sに沿ってこの断面Sのほぼ全域に渡るように、レーザ光の焦点がジグザグに走査して、この間を通過した蛍光標識物質を確実に且つ高速に検出することが可能となる。
以上のように、この実施の形態の蛍光検出装置1によれば、励起光となるレーザ光の焦点をマイクロ流路45の一断面に沿って高速に2次元走査させ、それにより高速で正確な蛍光検出、すなわち試料に対して高速で正確な特定成分の定量測定を行うことが可能となる。
さらに、上記のレンズアクチュエータの駆動制御により、レーザ光の焦点をマイクロ流路45の一断面に沿って2次元走査させる際に、レーザ光の焦点がマイクロ流路45からはみ出すことなく、且つ、マイクロ流路45の一断面のほぼ全域に渡って走査するように制御することが出来るという効果がある。
なお、本発明は、上記実施の形態に限られるものではなく、様々な変更が可能である。例えば、上記実施の形態では、マイクロ流路の上面や底面を検出するのに非点収差法を利用しているが、その他、ナイフエッジ法など反射面を検出する種々の公知技術を適用することが可能である。また、レンズアクチュエータの構成もワイヤー支持型のものに限られず、種々の構成のものを適用して良い。
その他、励起光を試料に照射して蛍光を第1光センサ13まで導く光学系の構成、レーザや光センサの種類、検査チップの構造などは、発明の趣旨を逸脱しない範囲で適宜変更可能である。
本発明の実施の形態の蛍光検出装置の概略を示す構成図である。 レンズアクチュエータの構造を示す斜視図である。 第2光センサの検出面の構成と反射ビームの像が変化する状態を示す説明図である。 マイクロ流路の形成されている検査チップの一部を示す平面図である。 レーザ光の焦点を検査チップを通過するように移動させたときの反射面検出信号を示す説明図である。 レンズアクチュエータに出力されるトラバース方向の駆動信号と流路横断境界検出信号とを示す波形図である。 レンズアクチュエータの制御によりレーザ光の焦点がマイクロ流路中を走査する様子を示す説明図である。
符号の説明
1 蛍光検出装置
10 SHG・YAGレーザ(レーザ出力手段)
11 ダイクロイックミラー(第1ビームスプリッタ)
12 集束レンズ
13 第1光センサ
15 ビームスプリッタ(第2ビームスプリッタ)
16 対物レンズ
17 集束レンズ
18 円筒レンズ
19 第2光センサ
20 レンズアクチュエータ
30 演算回路
31 駆動制御回路
40 検査チップ
45 マイクロ流路
46 反射膜

Claims (6)

  1. 検査チップに形成されたマイクロ流路に蛍光標識物質の加えられた試料を流した状態で、この試料に励起光を照射して該励起光により試料から発せられる蛍光を検出することで試料中の成分測定を行う蛍光検出装置において、
    前記検査チップには、前記励起光の照射側から見て前記マイクロ流路の周囲に当該マイクロ流路の範囲と光の反射率の異なる層が設けられ、
    前記励起光となるレーザ光を出力するレーザ出力手段と、
    このレーザ光を前記マイクロ流路に集束させるとともに前記試料から発せられた蛍光を受ける対物レンズと、
    この対物レンズをフォーカス方向および前記マイクロ流路を横断するトラバース方向に駆動するレンズアクチュエータと、
    前記検査チップ側で反射した前記レーザ光の反射ビームと前記試料からの蛍光とを分離する第1ビームスプリッタと、
    前記第1ビームスプリッタにより分離された蛍光を検出する第1光センサと、
    前記検査チップ側に向かう前記レーザ光の進行ビームと前記検査チップ側で反射した該レーザ光の反射ビームとを分離する第2ビームスプリッタと、
    前記第2ビームスプリッタにより分離された前記反射ビームに作用して前記レーザ光の焦点が反射面の近傍に来たときにこの反射ビームの像を発生させ、当該焦点が当該反射面からずれたときにこの像の形状又は向きを変化させる反射面検出用光学系と、
    前記反射面検出用光学系により生じた像を複数の検出面で検出する第2光センサと、
    前記第2光センサの各検出面からのセンサ信号を演算して前記レーザ光の焦点が反射面に来たことを表わす反射面検出信号と、前記反射ビームの光量を表わす反射光量検出信号とを生成する演算回路と、
    前記反射面検出信号に基づいて前記レーザ光の焦点が前記マイクロ流路の底面と上面との間を往復するように前記レンズアクチュエータを駆動制御するとともに、前記反射光量検出信号に基づいて前記レーザ光の焦点が前記マイクロ流路の両側面の間を往復するように前記レンズアクチュエータを駆動制御する制御手段と、
    を備えたことを特徴とする蛍光検出装置。
  2. 検査チップに形成されたマイクロ流路に蛍光標識物質の加えられた試料を流した状態で、この試料に励起光を照射して該励起光により試料から発せられる蛍光を検出することで試料中の成分測定を行う蛍光検出装置において、
    前記励起光となるレーザ光を出力するレーザ出力手段と、
    このレーザ光を前記マイクロ流路に集束させるとともに前記試料から発せられた蛍光を受ける対物レンズと、
    この対物レンズをフォーカス方向および前記マイクロ流路を横断するトラバース方向に駆動するレンズアクチュエータと、
    前記検査チップ側で反射した前記レーザ光の反射ビームと前記試料からの蛍光とを分離する第1ビームスプリッタと、
    前記第1ビームスプリッタにより分離された蛍光を検出する第1光センサと、
    前記検査チップ側に向かう前記レーザ光の進行ビームと前記検査チップ側で反射した該レーザ光の反射ビームとを分離する第2ビームスプリッタと、
    前記第2ビームスプリッタにより分離された前記反射ビームに基づいて前記対物レンズにより集束されたレーザ光の焦点が反射面の近傍に来たことを表わす反射面検出信号を生成する反射面検出信号生成手段と、
    前記反射面検出信号に基づいて前記レーザ光の焦点が前記マイクロ流路の底面と上面との間を往復するように前記レンズアクチュエータを駆動制御する制御手段と、
    を備えたことを特徴とする蛍光検出装置。
  3. 前記反射面検出信号生成手段は、
    前記第2ビームスプリッタにより分離された前記反射ビームに作用して前記レーザ光の焦点が反射面の近傍に来たときにこの反射ビームの像を発生させ、当該焦点が当該反射面からずれたときにこの像の形状又は向きを変化させる反射面検出用光学系と、
    前記反射面検出用光学系により生じた像を複数の検出面で検出する第2光センサと、
    前記第2光センサの各検出面からのセンサ信号を演算して前記反射面検出信号を生成する演算回路と、
    から構成されることを特徴とする請求項2記載の蛍光検出装置。
  4. 前記反射面検出用光学系には、前記反射ビームを前記第2光センサの検出面に集束させる集束レンズと、当該反射ビームに非点収差を与える光学素子とが含まれていることを特徴とする請求項3記載の蛍光検出装置。
  5. 検査チップに形成されたマイクロ流路に蛍光標識物質の加えられた試料を流した状態で、この試料に励起光を照射して該励起光により試料から発せられる蛍光を検出することで試料中の成分測定を行う蛍光検出装置において、
    前記励起光となるレーザ光を出力するレーザ出力手段と、
    このレーザ光を前記マイクロ流路に集束させるとともに前記試料から発せられた蛍光を受ける対物レンズと、
    この対物レンズをフォーカス方向および前記マイクロ流路を横断するトラバース方向に駆動するレンズアクチュエータと、
    前記検査チップ側で反射した前記レーザ光の反射ビームと前記試料からの蛍光とを分離する第1ビームスプリッタと、
    前記第1ビームスプリッタにより分離された蛍光を検出する第1光センサと、
    前記検査チップ側に向かう前記レーザ光の進行ビームと前記検査チップ側で反射した該レーザ光の反射ビームとを分離する第2ビームスプリッタと、
    前記第2ビームスプリッタにより分離された前記反射ビームの光量を検出する第2光センサと、
    前記第2光センサのセンサ信号に基づいて前記対物レンズにより集束されたレーザ光の焦点が前記マイクロ流路の両側面の間を往復するように前記レンズアクチュエータを駆動制御する制御手段と、
    を備えていることを特徴とする蛍光検出装置。
  6. 蛍光標識物質の加えられた試料を流すマイクロ流路が形成され、このマイクロ流路中の試料に励起光を照射して該励起光により試料から発せられる蛍光を検出することで試料中の成分測定を行う蛍光検出装置において使用される検査チップであって、
    前記励起光の照射側から見て前記マイクロ流路の周囲に当該マイクロ流路の範囲と光の反射率の異なる層が設けられていることを特徴とする検査チップ。
JP2005143360A 2005-05-17 2005-05-17 蛍光検出装置 Expired - Fee Related JP4022830B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143360A JP4022830B2 (ja) 2005-05-17 2005-05-17 蛍光検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005143360A JP4022830B2 (ja) 2005-05-17 2005-05-17 蛍光検出装置

Publications (2)

Publication Number Publication Date
JP2006322707A true JP2006322707A (ja) 2006-11-30
JP4022830B2 JP4022830B2 (ja) 2007-12-19

Family

ID=37542516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143360A Expired - Fee Related JP4022830B2 (ja) 2005-05-17 2005-05-17 蛍光検出装置

Country Status (1)

Country Link
JP (1) JP4022830B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249804A (ja) * 2007-03-29 2008-10-16 Fujifilm Corp 共焦点蛍光顕微鏡
WO2009123359A1 (en) 2008-04-02 2009-10-08 Canon Kabushiki Kaisha Scanning imaging device
JP2010025893A (ja) * 2008-07-24 2010-02-04 Canon Inc 検出装置及び方法
WO2013146365A1 (ja) * 2012-03-29 2013-10-03 三洋電機株式会社 蛍光検出装置
CN103743546A (zh) * 2013-12-25 2014-04-23 镇江晶鑫电子科技有限公司 一种光学头力矩器传递函数自动测试及分析系统
US9000399B2 (en) 2011-05-03 2015-04-07 Samsung Electronics Co., Ltd. Fluorescence detecting optical system and multi-channel fluorescence detection apparatus including the same
JP2020527718A (ja) * 2017-07-20 2020-09-10 ザ ユニバーシティ オブ ブリストル マイクロ流体分析システム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249804A (ja) * 2007-03-29 2008-10-16 Fujifilm Corp 共焦点蛍光顕微鏡
US8716641B2 (en) 2008-04-02 2014-05-06 Canon Kabushiki Kaisha Scanning imaging device for imaging target on a substrate
WO2009123359A1 (en) 2008-04-02 2009-10-08 Canon Kabushiki Kaisha Scanning imaging device
JP2009250671A (ja) * 2008-04-02 2009-10-29 Canon Inc 走査型撮像装置
KR101260290B1 (ko) * 2008-04-02 2013-05-07 캐논 가부시끼가이샤 주사형 촬상 장치
JP2010025893A (ja) * 2008-07-24 2010-02-04 Canon Inc 検出装置及び方法
US9000399B2 (en) 2011-05-03 2015-04-07 Samsung Electronics Co., Ltd. Fluorescence detecting optical system and multi-channel fluorescence detection apparatus including the same
US9046490B2 (en) 2012-03-29 2015-06-02 Panasonic Intellectual Property Management Co., Ltd. Fluorescence detection device
WO2013146365A1 (ja) * 2012-03-29 2013-10-03 三洋電機株式会社 蛍光検出装置
JPWO2013146365A1 (ja) * 2012-03-29 2015-12-10 パナソニックIpマネジメント株式会社 蛍光検出装置
CN103743546A (zh) * 2013-12-25 2014-04-23 镇江晶鑫电子科技有限公司 一种光学头力矩器传递函数自动测试及分析系统
JP2020527718A (ja) * 2017-07-20 2020-09-10 ザ ユニバーシティ オブ ブリストル マイクロ流体分析システム
JP7268945B2 (ja) 2017-07-20 2023-05-08 ザ ユニバーシティ オブ ブリストル マイクロ流体分析システム

Also Published As

Publication number Publication date
JP4022830B2 (ja) 2007-12-19

Similar Documents

Publication Publication Date Title
JP4022830B2 (ja) 蛍光検出装置
KR101845187B1 (ko) 레이저 다이싱 장치 및 다이싱 방법
JP5469133B2 (ja) 顕微鏡システム
JP2018151624A5 (ja)
JPH07120375A (ja) フロー式粒子画像解析方法及び装置
TW200844673A (en) Laser drawing method and apparatus
US9081173B2 (en) Laser scanning microscope for scanning along a 3D trajectory
US9229207B2 (en) Laser scanning microscope with focus-detecting unit
WO2010055363A1 (en) Laser scanning microscope
JP2006133499A (ja) 共焦点スキャナ及び共焦点顕微鏡
US9261689B2 (en) Scanning optical microscope
JP2007003249A (ja) 蛍光検出装置
JP2006242726A (ja) 蛍光検出装置
JP4974060B2 (ja) 創薬スクリーニング方法
JP5052318B2 (ja) 蛍光検出装置
JP4792230B2 (ja) 蛍光顕微鏡装置
JP2004069428A (ja) 原子及び分子間力顕微鏡
JP4222895B2 (ja) 光偏向器およびこの光偏向器を用いた走査型光学顕微鏡
JP2005121602A (ja) 蛍光寿命測定装置
JPH11173821A (ja) 光学式検査装置
JP2007278783A (ja) 蛍光検出装置および蛍光検出処理方法
WO2002014842A1 (fr) Dispositif d'analyse de substances contenant un liquide et procede d'analyse de substances contenant un liquide
JP2008261829A (ja) 表面測定装置
JP2005043892A (ja) 共焦点ラスタ顕微鏡
JP3956315B2 (ja) 蛍光検出装置の調整用装置、蛍光検出装置の調整方法および製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees