JP2006283571A - 車両用4サイクル火花点火式エンジンの制御装置 - Google Patents

車両用4サイクル火花点火式エンジンの制御装置 Download PDF

Info

Publication number
JP2006283571A
JP2006283571A JP2005100681A JP2005100681A JP2006283571A JP 2006283571 A JP2006283571 A JP 2006283571A JP 2005100681 A JP2005100681 A JP 2005100681A JP 2005100681 A JP2005100681 A JP 2005100681A JP 2006283571 A JP2006283571 A JP 2006283571A
Authority
JP
Japan
Prior art keywords
engine
control device
cylinder
spark ignition
ignition engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005100681A
Other languages
English (en)
Other versions
JP4529764B2 (ja
Inventor
Mitsuo Hitomi
光夫 人見
Shigeyuki Hirashita
茂行 平下
Hitoshi Hongo
均 本郷
Hideaki Yokohata
英明 横畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2005100681A priority Critical patent/JP4529764B2/ja
Publication of JP2006283571A publication Critical patent/JP2006283571A/ja
Application granted granted Critical
Publication of JP4529764B2 publication Critical patent/JP4529764B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0002Cylinder arrangements
    • F02F7/0019Cylinders and crankshaft not in one plane (deaxation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0015Controlling intake air for engines with means for controlling swirl or tumble flow, e.g. by using swirl valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】 可及的に高い幾何学的圧縮比を採用しつつノッキングを抑制し、しかも燃費の向上をも図ること。
【解決手段】 エンジン20の幾何学的圧縮比を14以上に設定する。燃焼室27の混合気を点火する複数の点火プラグ34を設ける。アイドル回転数よりも所定回転数高いエンジン低回転領域における高負荷運転領域では、圧縮上死点後に多点点火するように点火プラグ34を制御する。また、部分負荷運転領域では、圧縮自己着火を行う。エンジン20は、クランクシャフト21の回転方向が右回りになる側から見て、気筒24のシリンダボア中心Zがクランクシャフト21の回転中心Oから右側にオフセットしている。
【選択図】 図2

Description

本発明は車両用4サイクル火花点火式エンジンの制御装置に関する。
エンジンの出力を向上するためには、圧縮比を高めることが有効である。
しかし、単にエンジンの幾何学的圧縮比を高めただけでは、ノッキングが生じやすくなるという問題が発生する。
このような問題を解決するため、例えば特許文献1に記載されている技術では、燃料を分割噴射し、前段の燃料の点火後に後段の燃料噴射を実行する技術が開示されている。
特開平9−126028号公報
特許文献1の技術では、分割噴射された燃料が燃焼されることにより、空燃比がリーン状態となるため、比較的ノッキングを抑制することが可能ではある。
しかしながら、特許文献1の技術では、燃料噴射タイミングを分割し、前段の燃料の燃焼後に後段の燃料を点火する方法を講じているに過ぎないため、後段の燃料点火が遅れるとトルクが著しく低減する一方、後段の燃料点火を早めようとすると、ノッキング対策が困難になる。このようにノッキングとトルクの両立が困難になるので、ノッキングを回避可能な圧縮比にも限界があり、高負荷時の低回転運転領域での出力を向上することが困難になっていた。
本発明は前記不具合に鑑みてなされたものであり、可及的に高い幾何学的圧縮比を採用しつつノッキングを抑制し、しかも燃費の向上をも図ることのできる車両用4サイクル火花点火式エンジンの制御装置を提供することを課題としている。
前記課題を解決するために、本発明は、トルクを出力するクランクシャフトと、このクランクシャフトに連結されるピストンと、このピストンを往復移動可能に嵌装することにより、当該ピストンと協働して混合気の燃焼室を区画する気筒とを備えた4サイクル火花点火式車両用4サイクル火花点火式エンジンの制御装置において、前記エンジンの幾何学的圧縮比を14以上に設定し、前記エンジンの運転状態を検出する運転状態検出手段と、一気筒当たり複数の点火プラグと、運転状態検出手段の検出に基づいて点火プラグの作動を制御する制御手段とを設け、アイドル回転数よりも所定回転数高いエンジン低回転領域における高負荷運転領域では、圧縮上死点以降に多点点火するように制御手段が点火プラグを制御することを特徴とする車両用4サイクル火花点火式エンジンの制御装置である。この態様では、エンジンの幾何学的圧縮比を14以上に設定することにより、高い出力性能を得ることが可能になる。しかも、アイドル回転数よりも所定回転数高いエンジン低回転領域における高負荷運転領域での点火タイミングが圧縮上死点以降に設定されることにより、ノッキング限界がシフトする結果、ノッキングを防止することが可能になる。ところで、点火タイミングが圧縮上死点以降に設定された場合、通常は、ピストンが下降する膨張行程での燃焼となるため、燃焼速度が遅くなり過ぎて燃料のエネルギーを有効に膨張仕事に変換することができなくなり、出力性能の大幅低下を招く。これに対し、本発明では、多点点火を用いることで燃焼速度を高めることが可能になり、高負荷では通常圧縮比の従来エンジン並みの出力性能を確保しつつ、部分負荷では高圧縮比による燃費改善が可能になる。
好ましい態様において、吸気を加熱する吸気加熱手段を設け、部分負荷運転領域では、筒内吸気を加熱して圧縮自己着火運転を行うように前記制御手段が前記吸気加熱手段を制御する。この態様では、比較的ノッキングが生じにくい運転領域では、圧縮自己着火を実行し、さらなる燃費の向上を図ることが可能になる。
好ましい態様において、前記部分負荷運転領域の高負荷側では、圧縮自己着火後に多点点火するように制御手段が点火プラグを制御する。圧縮自己着火を低負荷で実行する場合、高負荷側で通常の火花点火に円滑に切換えるのが課題となる。負荷を上げるには、吸気加熱や内部EGRによる温度上昇を抑制しつつ、新気を増やす制御が必要になるが、これは同時に圧縮自己着火も起こしにくくすることにもなり、失火の混じった不安定な領域を招くことになる。そこで、この態様では、本来なら圧縮自己着火を起こすタイミングよりも遅いタイミング(上死点以降)で多点点火を実行し、圧縮自己着火が不成立に終わったサイクルでも点火で燃焼を成立させ、圧縮自己着火運転を火花点火運転に切換える比較的高負荷側の運転領域近辺での失火とエミッション悪化を防止するようにしている。
別の態様において、既燃ガスの一部を吸気通路に還流する外部EGR装置を備え、部分負荷運転領域では、外部EGRを導入するとともにEGR導入領域の比較的高負荷運転領域では圧縮上死点後に多点点火するように制御手段が外部EGR装置および点火プラグを制御する。換言すれば、低負荷側では、圧縮上死点前で多点点火を実行してもよい。この態様では、幾何学的圧縮比が高いため、部分負荷運転領域からノッキングが発生しやすくなるが、外部EGRの導入により比熱が増し、混合気の温度上昇が抑制されるためノッキングが抑制される。さらに多点点火の急速燃焼効果が加わってノッキング抑制効果が増し、部分負荷時にノッキング抑制領域を拡大でき、しかも燃費の向上とも両立することが可能になる。
好ましい態様において、前記点火プラグは、気筒の中心部にレイアウトされるものを含む少なくとも3本以上に設定されている。この態様では、多点点火を行う場合には、一の点火プラグが気筒の中央部分から混合気に点火し、残余の点火プラグが他の部位から混合気に点火するので、燃焼の伝播がより迅速になるとともに、多点点火を実行しない場合においても、中央部分に配置された点火プラグを採用することにより、比較的速やかに混合気を燃焼させることが可能になる。
好ましい態様において、前記エンジンは、当該クランクシャフトの回転方向が右回りになる側から見て気筒のシリンダボア中心がクランクシャフトの回転中心から右側にオフセットしている。この態様では、気筒のシリンダボア中心がクランクシャフトの回転中心からオフセットすることにより、ピストンの昇降速度が上死点に対して非対称になり、膨張行程初期でのピストンの下降速度が相対的に遅くなる。このため、ピストンの下降速度に比べて燃焼速度が相対的に速くなるので、良好な燃焼環境を維持することができ、ピストンに作用するエネルギーが高くなって燃費の向上を図ることが可能になる。
好ましい態様において、筒内にスワールを生成するスワール生成手段を設けている。この態様では、スワールの生成によって、乱流エネルギーを上死点まで有効に維持することができ、多点点火に加え膨張行程時の燃焼速度向上に寄与することができる。このため、上死点後に多点点火を実行する場合においても、効率悪化を抑制することができる。また、部分負荷時における圧縮自己着火運転領域では、燃料と空気のミキシングに有効となり、火花点火運転領域では、急速燃焼によるノッキングの抑制に有効となる。
好ましい態様において、吸気弁の閉弁時期を下死点以前の所定時期であって有効圧縮比が膨張比とほぼ等しくなる第1のタイミングと有効圧縮比が膨張比と比べて小さくなる第2のタイミングとに変更可能な可変バルブタイミング機構を設け、エンジン始動時の少なくとも温間時には吸気弁の閉弁時期が第2のタイミングとなるように前記制御手段が前記可変バルブタイミング機構を制御する。この態様では、エンジンの高出力が要請される運転領域では、有効圧縮比が膨張比とほぼ等しくなるように吸気弁を駆動して高圧縮比による出力の向上を図ることができる一方、始動トルクが低くて済む温間始動時には、有効圧縮比が低くなるように吸気弁を駆動して、圧縮抵抗を低減することにより始動性の向上を図ることが可能になる。
以上説明したように、本発明によれば、可及的に高い幾何学的圧縮比を採用しつつノッキングを抑制し、しかも燃費の向上をも図ることができるという顕著な効果を奏する。
以下、添付図面を参照しながら本発明の好ましい実施の形態について説明する。
図1は、本発明の実施の一形態に係る制御装置10の概略構成を示す構成図であり、図2は図1に係る4サイクルガソリンエンジン20の一つの気筒の構造を示す断面略図である。
図1および図2を参照して、図示の制御装置10は、4サイクルガソリンエンジン20と、このエンジン20を制御する制御手段としてのコントロールユニット100とを備えている。
エンジン20は、クランクシャフト21を回転自在に支持するシリンダブロック22と、シリンダブロック22の上部に配置されたシリンダヘッド23とを一体的に有しており、これらシリンダブロック22およびシリンダヘッド23には、複数の気筒24が設けられている。
各気筒24には、コンロッド25を介してクランクシャフト21に連結されたピストン26と、ピストン26が気筒24内に形成する燃焼室27とが設けられている。本実施形態において、各気筒24の幾何学的圧縮比は14に設定されている。
図2を参照して、本実施形態に係るエンジン20は、当該クランクシャフト21の回転方向が右回りになる側(すなわち図2の状態)から見て気筒24のシリンダボア中心Zがクランクシャフト21の回転中心Oから右側にオフセットしている。このオフセット量Sは、気筒24のボア径が70mmの場合、例えば1mm〜2mmに設定されている。
図3は本実施形態におけるピストンのモデル図である。
同図を参照して、コンロッド25とピストン26とを連結する連結ピン25aの回転中心とコンロッド25とクランクシャフト21とを連結する連結ピン25bの回転中心の距離をA、連結ピン25bの回転中心とクランクシャフト21の回転中心Oの距離をA、オフセット量をS、連結ピン25bを通る鉛直線LN1とコンロッド25のなす角度をα、クランクシャフト21の角速度をωとする。
図3に基づくと、連結ピン25aの回転中心の座標(Xp,Yp)、連結ピン25bの回転中心の座標(Xc,Yc)は、クランクシャフト21の中心Oを通る水平線とシリンダボア中心Zとの交点座標を(0,0)とすると、それぞれ
(Xp,Yp)=(0, Acosωt+Acosα) ・・・(式1)
(Xc,Yc)=(Asinωt−S, Acosωt) ・・・(式2)
となる。また、ピストン26の拘束条件は
sinωt−S=Asinα ・・・(式3)
となる。ここで(式3)の両辺を微分すると
Figure 2006283571
・・・(式4)
が得られる。
次に(式1)のYp成分をtで微分し、(式4)を代入して、ピストン26の速度vを求めると
Figure 2006283571
・・・(式5)
が得られる。また、(式3)より
Figure 2006283571
・・・(式6)
であるから、(式6)を(式5)に代入すると、
Figure 2006283571
・・・(式7)
が得られる。
図4は、クランク角度に対するピストンの速度を表わすグラフである。また、図5はクランク角度とピストン移動量の関係を示すモデル図である。
図4および図5を参照して、(式5)から明らかなように、オフセット量S=0の場合、tanα=0であるから、ピストン26の速度vは、正弦波と等しくなる。
これに対して、オフセット量S>0とした場合、(式5)(式7)の第2項の値によって、ピストン26の波形は非対称となり、ピストン26が最も高速で移動する点P、P(ピストン26の上死点を通る直線が連結ピン25bの軌跡25L上になす接点)は、左右非対称となる。この結果、仮に、ピストン26が上死点にある時の点Pを中心に前後同量のクランク角度ωt(=30°)の移動量Y、Yを考えると、図5から明らかなように、上死点近傍から上死点に至るまでの移動量Yは比較的大きくなり、ピストン26は、速い速度で移動するのに対し、上死点を越えた後の移動量Yは比較的小さくなり、ピストン26は、比較的遅い速度で移動することになる。
図6は気筒24を拡大して示す平面略図である。また図7は本実施形態に係る燃焼室の気流を示す説明図であり、(A)は圧縮行程初期、(B)は膨張行程初期をそれぞれ示している。
図6および図7を参照して、各気筒24には、シリンダヘッド23の下面には、燃焼室27の天井部が構成され、この天井部は中央部分からシリンダヘッド23の下端まで延びる2つの傾斜面27a、27bを有するいわゆるペントルーフ型となっている。
前記燃焼室27の天井部を構成する一方の傾斜面(図7(A)(B)において右側の傾斜面)27aには各々独立した2つの吸気ポート28が開口し、また、他方の傾斜面(図7(A)(B)において左側の傾斜面)27bには2つの排気ポート29が開口しており、各ポート28、29の開口端に吸気弁30および排気弁31が設けられている。前記吸気ポート28は、それぞれ燃焼室27から図7の右斜め上方に直線的に延びるストレートポートであり、図7に示す断面で吸気上流側ほどシリンダボア中心Zから離れるような形状とされている。
燃焼室27の側部には、下記コントロールユニットからの燃料噴射パルスを受けて、このパルス幅に対応する燃料を燃焼室27に噴射する燃料噴射弁32が設けられている。
前記ピストン26の冠面には、吸気側の周縁部の所定範囲および排気側の周縁部の所定範囲に、シリンダヘッド23の傾斜面に沿うように傾斜するスキッシュエリア構成面26a、26bが設けられている。さらにこのスキッシュエリア構成面26a、26bの内側には、凹陥部33が設けられている。
凹陥部33は、吸気弁30および排気弁31の投影面を含む所定範囲に設けられている。この凹陥部33の底面は、燃焼室天井部の両傾斜面27a、27bとほぼ平行な一対の傾斜状底面33a,33bを有して、凹陥部33の略中央部に前記両傾斜状底面33a,33bの間の稜線部分33cが位置する山形状に形成されている。前記稜線部分33cは、シリンダボア中心Zよりも多少排気側にオフセットした位置で、燃焼室天井部の傾斜面27a、27b間の稜線と同方向に直線状に延びている。
前記凹陥部33の吸気ポート側周縁(吸気側スキッシュエリア構成面26aとの境界)33dおよび排気ポート側周縁(排気側スキッシュエリア構成面26bとの境界)33eは、ともに、稜線部分33cと平行な直線状に形成されている。そして、この吸気ポート側周縁33dおよび排気ポート側周縁33eにおいてそれぞれスキッシュエリア構成面26a、26bから凹陥部33の底面に至る縦壁33fは、吸気弁30、排気弁31のリフト方向に傾斜して形成されている。
このため本実施形態では、部分負荷運転領域D(図8参照)において以下のような作用を奏する。
すなわち、吸気行程でのピストン26の下降によって燃焼室27に吸い込まれる吸気は、主に吸気ポート28開口の点火プラグ34に近い側から燃焼室27へ流れ込み、排気側の燃焼室周壁面に向かって流れ、続いて排気側周壁面に沿って下方へ向かった後、ピストン冠面に沿って吸気側へ流れ、そこから上方へ向う。こうして、図7で反時計回り方向に旋回する正タンブル流T1が生成されるようになっている。
次に圧縮行程に移行すると、ピストンの上昇に伴い、正タンブル流T1が上下方向に押し縮められつつ燃焼室27内を旋回し、その下部側の流れは凹陥部33に入り込み、凹陥部33の底面に沿って移動する。この場合に、凹陥部33の底面が略中央部に稜線部分33cを有する山形状に形成されているため、排気側の傾斜状底面33bに沿って流れた気流が稜線部分33cで底面から剥離される。そして、図7(A)に示すように、稜線部分33cで剥離されることにより、正タンブル流T1のうちの一部が分流して正タンブル流T1とは逆方向に旋回する逆タンブル流T2を生じる。
圧縮行程初期乃至中期の段階では正タンブル流T1の方が分流した逆タンブル流T2よりも大きく、かつ強いが、圧縮行程が進行してピストン26が燃焼室天上部分に近づくにつれ、正タンブル流T1は中心が次第に排気側に移動するとともに小さくなる。そして、ピストン26が上死点付近にある圧縮行程終期ないし膨張行程初期には、図7(b)に示すように、タンブル流T1、T2が同程度の大きさおよび強さで、燃焼室27内の排気側と吸気側とに分かれて互いに逆方向に旋回する状態となる。
また、ピストン26の冠面における吸気ポート側周縁部の所定範囲および排気ポート側周縁部の所定範囲にスキッシュエリア構成面26a、26bが設けられていることにより、ピストン26が上死点に近づく圧縮行程終期には、燃焼室天井部の傾斜面27a、27bとスキッシュエリア構成面26a、26bとの間のスキッシュエリアから燃焼室27中央部側へ向う方向(図7(b)中の白抜矢印Ra,Rbとは反対の方向)に正スキッシュ流が生じ、ピストン26が上死点に達した後に下降し始める膨張行程初期には、図7(b)中の白抜矢印Ra,Rbで示すような燃焼室27中央部側から前記スキッシュエリアに向う逆スキッシュ流が生じる。
この場合に、2つに分離したタンブル流T1、T2は、正スキッシュ流とは逆方向、逆スキッシュ流Ra,Rbとは同方向の流れとなるため、圧縮行程終期の正スキッシュ流を弱めて逆スキッシュ流の生成を早めるとともに、逆スキッシュ流Ra,Rbを強化する作用を発揮する。
このように逆スキッシュ流Ra,Rbが強化されることにより、部分負荷運転領域D(図8参照)においては、スキッシュエリア内の燃焼速度が充分に高められ、火炎の主燃焼速度が高くなって急速燃焼が実現される。しかも、正タンブル流T1が適度に弱められることにより、初期燃焼速度はあまり高くならず、エンドガスゾーンにおける混合気の自己着火が誘発されることもない。つまり、初期燃焼期間はあまり短くならずに、主燃焼期間が大幅に短縮されることにより、ノッキングの発生が抑制されるとともに急速燃焼により熱効率が向上する。
さらに、前記一対の傾斜状底面33a,33bが燃焼室天井部の傾斜面27a、27bと平行であるため、その間の空間では火炎伝播が均一に行われ、デトネーション防止にも効果的である。
次に図2および図6を参照して、各気筒24には、シリンダヘッド23に固定され、燃焼室27内にスパークを発する3個の点火プラグ34が配設されている。各点火プラグ34は、ピストン26の稜線部分33cと平行なシリンダ直径沿いに並んでおり、中央のものがシリンダボア中心Z上に配置され、両側のものが燃焼室27の側縁に配置されている。各点火プラグ34には、電子制御による点火タイミングのコントロールが可能な点火回路35が接続されており、この点火回路35がコントロールユニット100に制御されることにより、点火プラグ34は、選択的に点火制御されるようになっている。
次に、図2を参照して、各気筒24の吸気弁30および排気弁31には、それぞれ公知のタペットユニット36が設けられている。タペットユニット36は、シリンダヘッド23に設けられた動弁機構のカム軸37、38のカム37a、38aによって、周期的に駆動されるものである。また、吸気弁30に対する動弁機構には、吸気弁30の開閉タイミングを変更可能とする可変バルブタイミング機構40が設けられている。この可変バルブタイミング機構40は、吸気弁開時期を吸気上死点付近とする第1のタイミングとこれよりも吸気弁開時期を進角させた第2のタイミングとにわたり、運転状態に応じてバルブタイミングを変更するものである。
次に、図1および図2を参照して、エンジン20の吸気ポート28には、インテークマニホールド42の分岐吸気管43が接続している。分岐吸気管43は、気筒24毎に設けられており、それぞれがインテークマニホールド42に等長の吸気経路を形成した状態で接続されている。図示の実施形態において、各気筒24には、2つ一組の吸気ポート28が形成されており、前記分岐吸気管43の下流端は、各気筒24の吸気ポート28に対応して二股に形成されている。分岐吸気管43の上流側合流部分には、開閉弁44が設けられている。開閉弁44は、アクチュエータ45によって、個別に分岐吸気管43の集合部分を開閉できるように構成されている。他方、二股に分岐した分岐吸気管43の一方の分岐部分には、図2に示すように周知のスワール生成用開閉弁43aが設けられている。このスワール生成用開閉弁43aはアクチュエータ43bにより駆動されて開閉作動するもので、このスワール生成用開閉弁43aにより当該分岐吸気管43の一方の分岐部分が閉じられたときは他方の分岐部分を通る吸気によって燃焼室27内にスワールが生成され、スワール生成用開閉弁43aが開かれるにつれてスワールが弱められるようになっている。
インテークマニホールド42の上流側には、新気をインテークマニホールド42内部に導入するための吸気通路46が接続されている。この吸気通路46には、スロットルバルブ47が設けられている。このスロットルバルブ47の上流側には、三方電磁弁48が設けられており、この三方電磁弁48に接続されたバイパス通路49には、吸気加熱手段としてのヒータ50が設けられている。従って、三方電磁弁48を切換えることにより、外気の新気をそのままインテークマニホールド42に導入したり、ヒータ50で加温された空気をインテークマニホールド42に導入したりすることができるようになっている。
次に、図1に示すように、排気ポート29には、各気筒24に2つ一組で形成された二股状の分岐排気管51が接続されている。各分岐排気管51の下流端は、エキゾーストマニホールド52に接続されている。このエキゾーストマニホールド52には、既燃ガスを排出する排気通路53が接続されている。
次に、図1、図2を参照して、前記インテークマニホールド42、エキゾーストマニホールド52の間には、排気された既燃ガスをインテークマニホールド42に還流させる外部EGRシステム60が設けられている。
外部EGRシステム60は、インテークマニホールド42とエキゾーストマニホールド52との間に形成された還流通路61に接続され、EGRクーラ62と、EGR弁63と、EGR弁63を駆動するアクチュエータ64とを備えた公知のバルブシステムである。
図1を参照して、エンジン20の運転状態を検出するために、吸気通路46には、エアフローセンサSW1が設けられ、開閉弁44の下流には筒内温度を予測するための吸気温度センサSW2(図2参照)が設けられている。また、シリンダブロック22には、クランクシャフト21の回転数を検出するクランク角センサSW3および冷却水の温度を検出するエンジン水温センサSW4が設けられている(図2参照)。さらに、排気通路53には、空燃比を制御するための酸素濃度センサSW5が設けられている。
エンジン20のコントロールユニット100には、エアフローセンサSW1、吸気温度センサSW2、クランク角センサSW3、エンジン水温センサSW4、酸素濃度センサSW5、並びにエンジン負荷を検出するためのアクセル開度センサSW6が入力要素として接続されている。これら各センサSW1〜SW6は、何れも本実施形態における運転状態検出センサの具体例である。他方、コントロールユニット100には、スロットルバルブ47のアクチュエータ、可変バルブタイミング機構40、スワール生成用開閉弁43aのアクチュエータ43b、吸気通路46の三方電磁弁48、ヒータ50、外部EGRシステム60のアクチュエータ64が制御要素として接続されている。
図1を参照して、コントロールユニット100は、CPU101、メモリ102、インターフェース103並びにこれらのユニット101〜103を接続するバス104を有するものであり、メモリ102に記憶されるプログラム並びにデータによって、運転状態を判定する運転状態判定手段を機能的に構成している。
図8は、図1の実施形態に係る運転状態に応じた制御を行うための運転領域設定の一例を示す特性図である。図9は、特性毎の吸気開弁タイミングと点火タイミングとを示すタイミングチャートである。
図8を参照して、コントロールユニット100は、例えば同図に示すような特性図に基づく制御用マップを有している。
図8に示す特性図において、所定の回転数(図示の例では1200rpm)N1以上の低回転領域(エンジン回転数N2以下の領域)内における高負荷運転領域D0では、図9(A)のSPで示すように、圧縮上死点後に多点点火するように設定されている。これにより、点火タイミングが圧縮上死点以降になることにより、詳しくは後述するようにノッキング限界を高速側に拡張するとともに、多点点火を用いることによって燃焼速度を促進し、燃料のエネルギーを有効に膨張仕事に変換して、出力性能を確保することができる。この結果、圧縮自己着火運転が困難な比較的低回転運転領域での高負荷側で、高い幾何学的圧縮比を維持しつつ、点火タイミングを遅らせてノッキング防止を図る一方、多点点火によって、燃費を改善することが可能になる。
次に、図8に示す特性図において、部分負荷運転領域D(斜線で示す領域Dとこれより低負荷側の白抜きで示す領域Dの部分の双方)では、図9(B)で示すように、ヒータ50が作動され、圧縮自己着火運転が実行される。
次に、図8に示す特性図において、前記部分負荷運転領域Dのうち、高負荷側の領域Dでは、図9(A)と同様なタイミングで着火アシストを行い、圧縮自己着火後の着火アシストを行うように設定されている。また、この高負荷側の運転領域D1では、スワール生成用開閉弁43aがコントロールユニット100によって制御される。このため、この結果、吸気時にスワールが生じ、上死点まで乱流エネルギーが維持され、吸気ポート28から導入された新気と排気弁31から導入された既燃ガスとの混合が促進される。このため、着火タイミングを膨張行程前半に遅らせても、混合気を速やかに燃焼させ、効率悪化を抑制することが可能になる。また、特に高負荷側の運転領域D1においてスワールが生成されることにより、燃料との混合も促進されるので、筒内温度の低減にも寄与することができ、ノッキングを一層回避することができるとともに、燃費が改善し、リーン燃焼限界の向上にも寄与することになる。
次に、図9(A)〜(C)を参照して、上述した各運転領域では、図9(A)(B)に示すように、吸気弁30は、概ね吸気行程の上死点で開始され、下死点で終了する第1のタイミングで開弁するのに対し、エンジン20が温間時に再始動した場合には可変バルブタイミング機構40によって相当遅角し、図9(C)に示すように有効圧縮比が膨張比と比べて小さくなる第2のタイミングで開くようになっている。この結果、圧縮行程に移行したピストン26によって、内部の空気が吸気ポート28側に吹き戻されるいわゆるミラーサイクル機能を奏することになる。
以上説明したように本実施形態では、エンジン20の幾何学的圧縮比を14以上に設定することにより、高い出力性能を得ることが可能になる。
図10はエンジン負荷とエンジン回転数の関係を示す特性図である。
同図に示すように、幾何学的圧縮比εが比較的大きいエンジンでは、曲線ε1で示すように、トルクが大きくなる反面、幾何学的圧縮比εが比較的小さいエンジン(曲線ε2)よりもノッキング限界(NK1)に至る領域が高回転側に拡がることになる。
これに対して本実施形態では、アイドル回転数よりも所定回転数N1高いエンジン低回転領域における高負荷運転領域D0での点火タイミングが図9(A)で示すように圧縮上死点以降に設定しているので、図10の仮想線NK1から実線NK2で示すように、ノッキング限界が低速側にシフトする。この結果、低回転運転領域においても、ノッキングを確実に防止することが可能になる。ところで、点火タイミングが圧縮上死点以降に設定された場合、通常は、ピストン26が下降する膨張行程での燃焼となるため、燃焼速度が遅くなり過ぎて燃料のエネルギーを有効に膨張仕事に変換することができなくなり、出力性能の大幅低下を招く。これに対し、本実施形態では、図9(A)で示すように、点火時には多点点火を行うことにより、燃焼速度が高くなる。従って、ノッキングを回避しつつ、高圧縮比エンジン20による高膨張効果を奏することができ、燃費を改善することが可能になる。
また、本実施形態では、吸気を加熱する吸気加熱手段としてのヒータ50を設け、図8に示す部分負荷運転領域Dでは、筒内吸気を加熱して圧縮自己着火運転を行うようにコントロールユニット100がヒータ50を制御する。このため本実施形態では、比較的ノッキングが生じにくい運転領域では、圧縮自己着火を実行し、さらなる燃費の向上を図ることが可能になる。
また、本実施形態では、部分負荷運転領域Dの高負荷側の運転領域D1では、圧縮自己着火後に多点点火するようにコントロールユニット100が点火プラグ34を制御する。このため本実施形態では、本来なら圧縮自己着火を起こすタイミングよりも遅いタイミング(上死点以降)で多点点火を実行し、圧縮自己着火が不成立に終わったサイクルでも点火で燃焼を成立させ、圧縮自己着火運転を火花点火運転に切換える比較的高負荷側の運転領域近辺での失火とエミッション悪化を防止することが可能になる。
また、本実施形態では、点火プラグ34は、気筒24の中心部にレイアウトされるものを含む少なくとも3本以上に設定されている。このため本実施形態では、多点点火を行う場合には、一の点火プラグ34が気筒24の中央部分から混合気に点火し、残余の点火プラグ34が他の部位から混合気に点火するので、燃焼の伝播がより迅速になるとともに、多点点火を実行しない場合においても、中央部分に配置された点火プラグ34を採用することにより、比較的速やかに混合気を燃焼させることが可能になる。
また、本実施形態では、エンジン20は、当該クランクシャフト21の回転方向が右回りになる側から見て気筒24のシリンダボア中心Zがクランクシャフト21の回転中心Oから右側にオフセットしている。このため本実施形態では、ピストン26の昇降速度が上死点に対して非対称になり、膨張行程初期でのピストン26の下降速度が相対的に遅くなる。このため、ピストン26の下降速度に比べて燃焼速度が相対的に速くなるので、良好な燃焼環境を維持することができ、ピストン26に作用するエネルギーが高くなって燃費の向上を図ることが可能になる。
また、本実施形態では、筒内にスワールを生成するスワール生成手段としてのスワール生成用開閉弁43aを設けている。このため本実施形態では、スワールの生成によって、乱流エネルギーを上死点まで有効に維持することができ、多点点火に加え膨張行程時の燃焼速度向上に寄与することができる。このため、上死点後に多点点火を実行する場合においても、効率悪化を抑制することができる。また、部分負荷時における圧縮自己着火運転領域では、燃料と空気のミキシングに有効となり、火花点火運転領域では、急速燃焼によるノッキングの抑制に有効となる。
また、本実施形態では、吸気弁30の閉弁時期を下死点以前の所定時期であって有効圧縮比が膨張比とほぼ等しくなる第1のタイミングと有効圧縮比が膨張比と比べて小さくなる第2のタイミングとに変更可能な可変バルブタイミング機構40を設け、エンジン始動時の少なくとも温間時には吸気弁の閉弁時期が第2のタイミングとなるようにコントロールユニット100が可変バルブタイミング機構40を制御する。このため本実施形態では、エンジン20の高出力が要請される運転領域では、有効圧縮比が膨張比とほぼ等しくなるように吸気弁30を駆動して高圧縮比による出力の向上を図ることができる一方、始動トルクが低くて済む温間始動時には、有効圧縮比が低くなるように吸気弁30を駆動して、圧縮抵抗を低減することにより始動性の向上を図ることが可能になる。
このように本実施形態によれば、可及的に高い幾何学的圧縮比を採用しつつノッキングを抑制し、しかも燃費の向上をも図ることができるという顕著な効果を奏する。
上述した実施形態は、本発明の好ましい具体例に過ぎず、本発明は上述した実施形態に限定されない。
例えば、図11に示す特性に基づいて、図1〜図7で示したエンジン20を制御してもよい。
図11は本発明の別の実施形態に係る特性図である。
同図に示すように、部分負荷運転領域D3では、外部EGRシステム60を作動して外部EGRを筒内に導入するとともに、EGR導入領域の比較的高負荷運転領域では圧縮上死点後に多点点火するようにコントロールユニット100が外部EGRシステム60および点火プラグ34を制御するようにしてもよい。
この実施形態では、エンジン20の幾何学的圧縮比が高いため、部分負荷運転領域からノッキングが発生しやすくなるが、外部EGRの導入により比熱が増し、混合気の温度上昇が抑制されるためノッキングが抑制される。さらに多点点火の急速燃焼効果が加わってノッキング抑制効果が増し、部分負荷時にノッキング抑制領域を拡大でき、しかも燃費の向上とも両立することが可能になる。
また、上述した各実施形態において、燃料噴射弁32や点火プラグ34としては、図12、図13の構成を採用してもよい。
図12は本発明のさらに別の実施形態に係るエンジン20の断面図であり、図13は図12の実施形態に係る気筒部分の拡大略図である。
図12、図13を参照して、燃料噴射弁32の配置としては、気筒24の中央部分に配置されたセンター噴射方式を採用してもよい。さらに、点火プラグ34としては、3本に限らず、例えば、吸気ポート28、28間にも配置された4本構成にしてもよい。
図12および図13の実施形態では、気筒24の中央部分から燃料が噴射されるとともに、4本の点火プラグ34によって多点点火されるので、より燃焼速度を迅速にすることが可能になる。
また上述した各実施形態において、スワールを生成する手段としては、上述した開閉弁43aに限らず、例えば、吸気弁30および排気弁31を1気筒当たり2弁ずつ設け、一方の吸気弁30の開閉動作を停止させるとともに、開弁動作を行う吸気弁に対して対角線上に位置する排気弁を再開弁動作させるように構成してもよい。
また既燃ガスを吸気ポート28に吹き返すミラーサイクル効果を得る方法としては、吸気弁30を遅閉じにする場合のみならず、排気行程後半で吸気弁30を開く早開きを採用してもよい。
さらに多点点火を具体化するに当たり、高負荷時の多点点火では、中央部分に配置された点火プラグと周辺部分に配置された点火プラグの点火タイミングをずらしてもよい。
その他、本発明の特許請求の範囲内で種々の変更が可能であることはいうまでもない。
本発明の実施の一形態に係る制御装置の概略構成を示す構成図である。 図1に係る4サイクルガソリンエンジンの一つの気筒の構造を示す断面略図である。 本実施形態におけるピストンのモデル図である。 クランク角度に対するピストンの速度を表わすグラフである。 クランク角度とピストン移動量の関係を示すモデル図である。 気筒24を拡大して示す平面略図である。 本実施形態に係る燃焼室の気流を示す説明図であり、(A)は圧縮行程初期、(B)は膨張行程初期をそれぞれ示している。 図1の実施形態に係る運転状態に応じた制御を行うための運転領域設定の一例を示す特性図である。 特性毎の吸気開弁タイミングと点火タイミングとを示すタイミングチャートである。 エンジン負荷とエンジン回転数の関係を示す特性図である。 本発明の別の実施形態に係る特性図である。 本発明のさらに別の実施形態に係るエンジンの断面図である。 図12の実施形態に係る気筒部分の拡大略図である。
符号の説明
10 制御装置
20 4サイクルガソリンエンジン
21 クランクシャフト
24 気筒
26a、26b スキッシュエリア構成面
26 ピストン
27 燃焼室
28 吸気ポート
29 排気ポート
30 吸気弁
31 排気弁
32 燃料噴射弁
34 点火プラグ
35 点火回路
40 可変バルブタイミング機構
43a スワール生成用開閉弁
46 吸気通路
50 ヒータ
60 外部EGRシステム
100 コントロールユニット
O 回転中心
S オフセット量
SW1 エアフローセンサ(運転状態検出手段の一例)
SW2 吸気温度センサ(運転状態検出手段の一例)
SW3 クランク角センサ(運転状態検出手段の一例)
SW4 エンジン水温センサ(運転状態検出手段の一例)
SW5 酸素濃度センサ(運転状態検出手段の一例)
SW6 アクセル開度センサ(運転状態検出手段の一例)
Z シリンダボア中心

Claims (8)

  1. トルクを出力するクランクシャフトと、このクランクシャフトに連結されるピストンと、このピストンを往復移動可能に嵌装することにより、当該ピストンと協働して混合気の燃焼室を区画する気筒とを備えた車両用4サイクル火花点火式エンジンの制御装置において、
    前記エンジンの幾何学的圧縮比を14以上に設定し、
    前記エンジンの運転状態を検出する運転状態検出手段と、
    一気筒当たり複数の点火プラグと、
    運転状態検出手段の検出に基づいて点火プラグの作動を制御する制御手段と
    を設け、アイドル回転数よりも所定回転数高いエンジン低回転領域における高負荷運転領域では、圧縮上死点以降に多点点火するように制御手段が点火プラグを制御することを特徴とする車両用4サイクル火花点火式エンジンの制御装置。
  2. 請求項1記載の車両用4サイクル火花点火式エンジンの制御装置において、
    吸気を加熱する吸気加熱手段を設け、
    部分負荷運転領域では、筒内吸気を加熱して圧縮自己着火運転を行うように前記制御手段が前記吸気加熱手段を制御するものであることを特徴とする車両用4サイクル火花点火式エンジンの制御装置。
  3. 請求項2記載の車両用4サイクル火花点火式エンジンの制御装置において、
    前記部分負荷運転領域の高負荷側では、圧縮自己着火後に多点点火するように制御手段が点火プラグを制御するものであることを特徴とする車両用4サイクル火花点火式エンジンの制御装置。
  4. 請求項1記載の車両用4サイクル火花点火式エンジンの制御装置において、
    既燃ガスの一部を吸気通路に還流する外部EGR装置を備え、
    部分負荷運転領域では、外部EGRを導入するとともにEGR導入領域の比較的高負荷運転領域では圧縮上死点後に多点点火するように制御手段が外部EGR装置および点火プラグを制御するものであることを特徴とする車両用4サイクル火花点火式エンジンの制御装置。
  5. 請求項1から4の何れか1項に記載の車両用4サイクル火花点火式エンジンの制御装置において、
    前記点火プラグは、気筒の中心部にレイアウトされるものを含む少なくとも3本以上に設定されていることを特徴とする車両用4サイクル火花点火式エンジンの制御装置。
  6. 請求項1から5の何れか1項に記載の車両用4サイクル火花点火式エンジンの制御装置において、
    前記エンジンは、当該クランクシャフトの回転方向が右回りになる側から見て気筒のシリンダボア中心がクランクシャフトの回転中心から右側にオフセットしていることを特徴とする車両用4サイクル火花点火式エンジンの制御装置。
  7. 請求項1から6の何れか1項記載の車両用4サイクル火花点火式エンジンの制御装置において、
    筒内にスワールを生成するスワール生成手段を設けていることを特徴とする車両用4サイクル火花点火式エンジンの制御装置。
  8. 請求項1から7の何れか1項に記載の車両用4サイクル火花点火式エンジンの制御装置において、
    吸気弁の閉弁時期を下死点以前の所定時期であって有効圧縮比が膨張比とほぼ等しくなる第1のタイミングと有効圧縮比が膨張比と比べて小さくなる第2のタイミングとに変更可能な可変バルブタイミング機構を設け、
    エンジン始動時の少なくとも温間時には吸気弁の閉弁時期が第2のタイミングとなるように前記制御手段が前記可変バルブタイミング機構を制御するものであることを特徴とする車両用4サイクル火花点火式エンジンの制御装置。
JP2005100681A 2005-03-31 2005-03-31 車両用4サイクル火花点火式エンジンの制御装置 Expired - Fee Related JP4529764B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100681A JP4529764B2 (ja) 2005-03-31 2005-03-31 車両用4サイクル火花点火式エンジンの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100681A JP4529764B2 (ja) 2005-03-31 2005-03-31 車両用4サイクル火花点火式エンジンの制御装置

Publications (2)

Publication Number Publication Date
JP2006283571A true JP2006283571A (ja) 2006-10-19
JP4529764B2 JP4529764B2 (ja) 2010-08-25

Family

ID=37405762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100681A Expired - Fee Related JP4529764B2 (ja) 2005-03-31 2005-03-31 車両用4サイクル火花点火式エンジンの制御装置

Country Status (1)

Country Link
JP (1) JP4529764B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106766A (ja) * 2006-10-24 2008-05-08 Ford Global Technologies Llc 多種燃料エンジンの制御装置及び方法
WO2009054154A1 (ja) * 2007-10-22 2009-04-30 Ygk Co., Ltd. 多点点火エンジン
JP2009127485A (ja) * 2007-11-21 2009-06-11 Toyota Motor Corp 内燃機関
JP2010077858A (ja) * 2008-09-25 2010-04-08 Mazda Motor Corp 火花点火式内燃機関の設計方法及び製造方法
JP2010077857A (ja) * 2008-09-25 2010-04-08 Mazda Motor Corp 火花点火式内燃機関
CN101746474A (zh) * 2008-12-17 2010-06-23 光阳工业股份有限公司 摩托车引擎结构
WO2011027416A1 (ja) * 2009-09-01 2011-03-10 ハスクバーナ・ゼノア株式会社 2サイクルエンジン
KR101152644B1 (ko) 2010-04-02 2012-06-05 구승범 내연기관용 혼합기 완전 연소장치 및 제어방법
JP2012241542A (ja) * 2011-05-16 2012-12-10 Mazda Motor Corp 圧縮着火式ガソリンエンジン
JP2018193985A (ja) * 2017-05-19 2018-12-06 マツダ株式会社 圧縮着火式エンジンの制御装置
DE102018006431A1 (de) 2017-08-25 2019-02-28 Mazda Motor Corporation Kompressionszündungsmotor, Regel- bzw. Steuersystem dafür, Verfahren zum Regeln bzw. Steuern eines Kompressionszündungsmotors und Computerprogrammprodukt
CN109578132A (zh) * 2017-09-29 2019-04-05 Ifp新能源公司 双气门内燃机
US10539098B2 (en) 2017-05-19 2020-01-21 Mazda Motor Corporation Control system of compression-ignition engine
JP2020159247A (ja) * 2019-03-25 2020-10-01 ダイハツ工業株式会社 内燃機関の制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246878A (ja) * 1995-03-09 1996-09-24 Toyota Motor Corp 筒内噴射式火花点火機関
JPH10169446A (ja) * 1996-12-09 1998-06-23 Toyota Motor Corp 筒内噴射式火花点火機関
JP2002266739A (ja) * 2001-03-12 2002-09-18 Mazda Motor Corp エンジンの点火時期制御装置
JP2004052634A (ja) * 2002-07-18 2004-02-19 Nippon Soken Inc 火花点火式内燃機関の始動制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246878A (ja) * 1995-03-09 1996-09-24 Toyota Motor Corp 筒内噴射式火花点火機関
JPH10169446A (ja) * 1996-12-09 1998-06-23 Toyota Motor Corp 筒内噴射式火花点火機関
JP2002266739A (ja) * 2001-03-12 2002-09-18 Mazda Motor Corp エンジンの点火時期制御装置
JP2004052634A (ja) * 2002-07-18 2004-02-19 Nippon Soken Inc 火花点火式内燃機関の始動制御装置

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106766A (ja) * 2006-10-24 2008-05-08 Ford Global Technologies Llc 多種燃料エンジンの制御装置及び方法
US8196561B2 (en) 2007-10-22 2012-06-12 Ygk Co., Ltd. Multipoint ignition engine
WO2009054154A1 (ja) * 2007-10-22 2009-04-30 Ygk Co., Ltd. 多点点火エンジン
JP2009127485A (ja) * 2007-11-21 2009-06-11 Toyota Motor Corp 内燃機関
JP2010077858A (ja) * 2008-09-25 2010-04-08 Mazda Motor Corp 火花点火式内燃機関の設計方法及び製造方法
JP2010077857A (ja) * 2008-09-25 2010-04-08 Mazda Motor Corp 火花点火式内燃機関
CN101746474A (zh) * 2008-12-17 2010-06-23 光阳工业股份有限公司 摩托车引擎结构
WO2011027416A1 (ja) * 2009-09-01 2011-03-10 ハスクバーナ・ゼノア株式会社 2サイクルエンジン
CN102575580A (zh) * 2009-09-01 2012-07-11 富世华智诺株式会社 两冲程发动机
CN102575580B (zh) * 2009-09-01 2015-09-30 富世华智诺株式会社 两冲程发动机
JPWO2011027416A1 (ja) * 2009-09-01 2013-01-31 ハスクバーナ・ゼノア株式会社 2サイクルエンジン
US8960149B2 (en) 2009-09-01 2015-02-24 Husqvarna Zenoah Co., Ltd Two-cycle engine
KR101152644B1 (ko) 2010-04-02 2012-06-05 구승범 내연기관용 혼합기 완전 연소장치 및 제어방법
JP2012241542A (ja) * 2011-05-16 2012-12-10 Mazda Motor Corp 圧縮着火式ガソリンエンジン
JP2018193985A (ja) * 2017-05-19 2018-12-06 マツダ株式会社 圧縮着火式エンジンの制御装置
US10539098B2 (en) 2017-05-19 2020-01-21 Mazda Motor Corporation Control system of compression-ignition engine
DE102018006431A1 (de) 2017-08-25 2019-02-28 Mazda Motor Corporation Kompressionszündungsmotor, Regel- bzw. Steuersystem dafür, Verfahren zum Regeln bzw. Steuern eines Kompressionszündungsmotors und Computerprogrammprodukt
US10895214B2 (en) 2017-08-25 2021-01-19 Mazda Motor Corporation Control system for compression-ignition engine
DE102018006431B4 (de) 2017-08-25 2023-02-09 Mazda Motor Corporation Kompressionszündungsmotor, Regel- bzw. Steuersystem dafür, Verfahren zum Regeln bzw. Steuern eines Kompressionszündungsmotors und Computerprogrammprodukt
CN109578132A (zh) * 2017-09-29 2019-04-05 Ifp新能源公司 双气门内燃机
CN109578132B (zh) * 2017-09-29 2022-05-10 Ifp新能源公司 双气门内燃机
JP2020159247A (ja) * 2019-03-25 2020-10-01 ダイハツ工業株式会社 内燃機関の制御装置
JP7251900B2 (ja) 2019-03-25 2023-04-04 ダイハツ工業株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JP4529764B2 (ja) 2010-08-25

Similar Documents

Publication Publication Date Title
JP4529764B2 (ja) 車両用4サイクル火花点火式エンジンの制御装置
JP3963144B2 (ja) 火花点火式エンジンの制御装置
JP4172340B2 (ja) 火花点火式エンジンの制御装置
JP4581794B2 (ja) 火花点火式エンジンの制御装置
EP1108868A2 (en) Compression self-ignition gasoline engine
US6941905B2 (en) Control unit for spark ignition-type engine
JP4548183B2 (ja) 火花点火式エンジンの制御装置
JP2007292050A (ja) 火花点火式ガソリンエンジン
JP2013231428A (ja) 内燃機関の吸気システム
JP4702249B2 (ja) 火花点火式直噴ガソリンエンジン
JP2004144052A (ja) 理論空燃比成層燃焼内燃機関
JP2009264107A (ja) 筒内噴射式火花点火内燃機関
JP2001263067A (ja) 圧縮自己着火式ガソリン機関
US10995681B2 (en) Combustion control device for engine
WO2017033646A1 (ja) エンジン制御装置
JP2006299992A (ja) 内燃機関の制御システム
US10100775B2 (en) Direct injection engine
JP4425839B2 (ja) 内燃機関の制御装置
JP2009041531A (ja) 筒内噴射式内燃機関
JP3743499B2 (ja) 排気昇温装置
JP2010121550A (ja) エンジン制御装置及び方法
JP2001055925A (ja) 直噴式内燃機関の吸気制御装置
JP5316113B2 (ja) ガソリンエンジンの制御装置
JP5452430B2 (ja) 内燃機関の制御装置
JP2006283668A (ja) 火花点火式多気筒エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Ref document number: 4529764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees