JP2004052634A - 火花点火式内燃機関の始動制御装置 - Google Patents

火花点火式内燃機関の始動制御装置 Download PDF

Info

Publication number
JP2004052634A
JP2004052634A JP2002209786A JP2002209786A JP2004052634A JP 2004052634 A JP2004052634 A JP 2004052634A JP 2002209786 A JP2002209786 A JP 2002209786A JP 2002209786 A JP2002209786 A JP 2002209786A JP 2004052634 A JP2004052634 A JP 2004052634A
Authority
JP
Japan
Prior art keywords
engine
ignition timing
ignition
internal combustion
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002209786A
Other languages
English (en)
Other versions
JP4220736B2 (ja
Inventor
Masatoshi Umasaki
馬▲崎▼ 政俊
Hideaki Kosuge
小菅 英明
Motoki Otani
大谷 元希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2002209786A priority Critical patent/JP4220736B2/ja
Publication of JP2004052634A publication Critical patent/JP2004052634A/ja
Application granted granted Critical
Publication of JP4220736B2 publication Critical patent/JP4220736B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

【課題】機関温度の低い状態で火花点火式内燃機関が始動された場合にスモークが発生するのを抑制する。
【解決手段】電子制御装置(ECU)35は、火花点火式のエンジン11の機関温度もしくはそれに相当する機関情報に基づき、機関温度が低いときにはクランキング時における点火時期を圧縮上死点以降に遅角補正する。特に、機関温度が低いほど点火時期の遅角補正量を多くする。このように遅角補正されることで燃焼が緩慢となり、燃焼温度上昇にともなう燃焼場の高温化が抑制され、スモークが発生しにくくなる。さらに、クランキング時におけるエンジン回転速度(クランキング回転速度)の低下にともない遅角補正量を多くしたり、点火時期が補正されるときに、気流制御弁41を閉じ側に回動させてシリンダ12内の混合気に気流を付与したりすることが有効である。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、火花点火式内燃機関に適用される始動制御装置に関し、特に機関温度の低い状態での始動制御に適した火花点火式内燃機関の始動制御装置に関するものである。
【0002】
【従来の技術】
火花点火式内燃機関における始動時には、ハード点火、すなわち、予め定めた一定の時期に点火が行われる。この始動時の点火時期は、一般に始動性確保の観点から、良好な燃焼がなされる点火時期である圧縮上死点に設定されている。
【0003】
一方、火花点火式内燃機関では、機関温度が十分高くなっている状態での始動時(常温始動時)には燃料が良好に気化されることから、少ない量の燃料が噴射される。これに対し、機関温度が低下した状態での始動時(冷間始動時)には噴射燃料の気化割合が低下するため、機関温度の上昇した状態での始動時よりも多くの燃料が噴射される。
【0004】
【発明が解決しようとする課題】
ところが、前記火花点火式内燃機関において、機関温度が低下した状態での始動時にハード点火が行われると、多量のスモークが発生するという問題がある。このスモーク発生の原因として考えられるのは、過剰な量の燃料が噴射され、かつ燃焼場が高温になることである。
【0005】
すなわち、筒内圧が高くなっている圧縮上死点で点火が行われると、混合気が急激な熱発生をともなって燃焼するため、燃焼場は機関温度にかかわりなく高温になりやすい。一方、機関温度が高くなった状態での始動時には、前述したように少ない量の燃料が噴射され、筒内における余剰燃料が少ない。このため、前記のように燃焼場が高温になってもスモークはさほど発生しない。これに対し、機関温度が低下した状態での始動時には、前述したように多量の燃料が噴射される。このうち、燃焼に寄与しない多量の燃料がピストン頂面やシリンダ壁面に付着し、いわゆる壁面ウェットとなって燃焼場に存在する。このため、圧縮上死点での点火により燃焼場が高温になると、多量にスモークが発生することとなる。そして、このスモークの発生量は、機関温度の低下にともない噴射量が増加し、筒内の余剰(過剰)燃料が増加するに従い多くなる。
【0006】
特に、筒内に燃料を直接噴射する筒内噴射方式の火花点火式内燃機関では、吸気通路(吸気ポート)に燃料を噴射するものに比べ、始動時に筒内壁面に付着する燃料が多いため、スモークの発生量がさらに増加する傾向にある。
【0007】
なお、機関温度が低下した状態での始動時に壁面ウェットの量を少なくする技術が、例えば特開平11−62680号公報に提案されている。この技術は、機関始動完了が検出されると分割噴射を行うものである。すなわち、1回で噴射される燃料量を少なくすることにより燃料の慣性力を小さくして貫徹力を弱くし、シリンダ壁面に燃料が付着するのを抑制するものである。しかし、このように壁面ウェットの量を少なくしても、燃焼に寄与しない燃料が多量に筒内に存在することに変わりはない。そのため、この場合にも依然として多量のスモークが発生する問題がある。
【0008】
本発明はこのような実情に鑑みてなされたものであって、その目的は、機関温度の低い状態で火花点火式内燃機関が始動された場合にスモークが発生するのを抑制できる始動制御装置を提供することにある。
【0009】
【課題を解決するための手段】
以下、上記目的を達成するための手段及びその作用効果について記載する。
請求項1に記載の発明では、火花点火式内燃機関に適用され、機関温度もしくはそれに相当する機関情報に基づき機関温度が低いときにはクランキング時における点火時期を圧縮上死点以降に遅角補正する点火時期制御手段を備えている。
【0010】
上記の構成によれば、機関温度が低い場合、点火時期制御手段により、クランキング時における点火時期が圧縮上死点以降に遅角補正される。この補正された点火時期に点火が行われると、燃焼が緩慢となって燃焼温度の上昇が抑制される。その結果、燃焼場が高温となる現象が抑制され、スモークが発生しにくくなる。
【0011】
請求項2に記載の発明では、請求項1に記載の発明において、前記点火時期が遅角補正されるときに筒内の混合気に気流を付与する気流制御手段をさらに備えるものとする。
【0012】
ここで、点火時期の遅角量が多いほど燃焼が緩慢となってスモークの低減効果が大となる。しかし、点火時期が過度に遅角されると、燃焼が緩慢になり過ぎて内燃機関の出力トルクが低下する。そして、この低下により、点火遅角を行わない場合と同程度の出力トルクを確保することが困難になるおそれがある。
【0013】
この点、請求項2に記載の発明では、点火時期が遅角補正されるときには、気流制御手段により筒内の混合気に気流が付与される。この付与により燃焼速度が速められ、遅角補正を行わない場合と同程度の出力トルクが発生する。このように、請求項2に記載の発明によれば、燃焼場が高温となるのを抑制しつつ出力トルクを確保することができる。
【0014】
請求項3に記載の発明では、請求項2に記載の発明において、前記点火時期制御手段は、機関温度が低いほど前記点火時期の遅角補正量を多くするものであり、前記気流制御手段は、前記遅角補正量が多くなるほど前記混合気の気流を強めるものであるとする。
【0015】
上記の構成によれば、点火時期制御手段による点火時期の遅角補正量は、機関温度が低いほど多くなる。すなわち、機関温度が低くなるに従い噴射量が増量されるが、その増量に応じて点火時期が遅角側に多く補正される。従って、燃焼が緩慢となって燃焼場が高温になる現象が抑制され、スモークが発生しにくくなるものの、機関温度の低下にともない燃焼速度が遅くなって出力トルクの確保が難しくなるおそれがある。しかし、気流制御手段による気流付与の程度が、遅角補正量が多くなるほど強められる。この気流が強められることで燃焼速度の低下が補われ、機関温度にかかわらず、遅角補正を行わない場合と同程度の出力トルクを確保することが可能となる。
【0016】
請求項4に記載の発明では、請求項1〜3のいずれか1つに記載の発明において、前記点火時期制御手段は、さらに、前記火花点火式内燃機関のクランキング回転速度の低下にともなって前記点火時期の遅角補正量を多くするものであるとする。
【0017】
ここで、クランキング回転速度は潤滑油の種類、量あるいは異物の混入等により低下する場合がある。そして、この低下によりピストンの移動速度が遅くなるため、上死点側で燃焼が行われて多くの熱が発生し、燃焼温度が高くなってしまう。すなわち、クランキング回転速度が低下すると、少ない回転低下でも燃焼温度が大きく影響を受けて高くなり、スモークの発生量が増加するおそれがある。
【0018】
これに対し、請求項4に記載の発明では、クランキング回転速度が低下すると、点火時期制御手段により点火時期の遅角補正量が機関温度のみによる遅角補正量よりも多くされる。このため、クランキング回転速度の低下にともない燃焼温度が高くなる現象が抑制され、スモークが発生しにくくなる。
【0019】
請求項5に記載の発明では、請求項1〜4のいずれか1つに記載の発明において、前記火花点火式内燃機関は、同一気筒の異なる複数箇所にて火花放電を行う複数点点火方式の内燃機関であり、前記点火時期制御手段は、機関温度が低いときにはクランキング時における全点の点火時期を圧縮上死点以降に設定するものであるとする。
【0020】
上記構成によると、機関温度が低いときには、クランキング時における全点の点火時期が点火時期制御手段により圧縮上死点以降に設定される。従って、複数点点火方式の内燃機関であっても、点火時期が圧縮上死点以降に遅角されることで燃焼が緩慢となり、燃焼温度の上昇が抑制される。その結果、燃焼効率を上げて燃費向上を図ること、点火時期を進角せずに高い出力を得ること、といった複数点火方式本来の効果を損なわずに、請求項1に記載の発明と同様に、燃焼場の高温化にともなうスモークの発生を抑制することができる。
【0021】
なお、同一気筒の異なる複数箇所で同時に火花放電(複数点同時点火)が行われると、1箇所で火花放電(1点点火)が行われる場合に比べ、一定期間における燃焼割合が増加する。この増加により短期間で高い熱発生をともなった燃焼が行われて燃焼場が高温になるおそれがある。従って、複数同時点火では、1点点火の場合よりも点火時期の遅角補正量を多く設定することが望ましい。
【0022】
請求項6に記載の発明では、請求項1〜4のいずれか1つに記載の発明において、前記火花点火式内燃機関は、同一気筒の異なる複数箇所にて火花放電を行う複数点点火方式の内燃機関であり、前記点火時期制御手段は、機関温度が低いときにはクランキング時において1点点火とし、かつこのときの点火時期を圧縮上死点以降に設定するものであるとする。
【0023】
ここで、同一気筒の異なる複数箇所で火花放電(複数点同時点火)が行われると、1箇所で火花放電(1点点火)が行われる場合に比べ、一定期間における燃焼割合が増加し、短期間で高い熱発生をともなった燃焼が行われて燃焼場が高温になりやすい。従って、少ない量の燃料が噴射される常温始動時であれば、燃焼効率を上げて燃費の向上を図ることができる。しかし、機関温度の低い状態での始動時に複数点で点火が同時に行われると、多量の燃料が噴射されることから多量のスモークが発生するおそれがある。
【0024】
この点、請求項6に記載の発明では、機関温度が低いときには点火時期制御手段によりクランキング時における点火が1つとされ、かつこのときの点火時期が圧縮上死点以降に設定される。従って、前述した請求項1に記載の発明と同様に燃焼が緩慢となって燃焼温度の上昇が抑制され、燃焼場が高温となる現象が抑制されスモークが発生しにくくなる。また、機関温度が高く少ない量の燃料が噴射される常温始動時には、クランキング時における点火が複数箇所とされる。このため、燃焼効率を上げて燃費の向上を図ることができる。
【0025】
請求項7に記載の発明では、請求項1〜6のいずれか1つに記載の発明において、前記火花点火式内燃機関は、筒内に直接燃料噴射を行う筒内噴射方式の内燃機関であるとする。
【0026】
筒内に燃料を直接噴射するタイプの火花点火式内燃機関では、吸気通路(吸気ポート)に噴射を行うものに比べ、始動時に筒内壁面に付着する燃料が多いため、スモークの発生量がさらに増加する傾向にある。従って、機関温度が低い場合に、この筒内噴射方式の内燃機関のクランキング時における点火時期を圧縮上死点以降に遅角補正することにより、スモークの発生を抑制する点について、特に大きな効果を得ることができる。
【0027】
【発明の実施の形態】
(第1実施形態)
以下、本発明を具体化した第1実施形態について、図1〜図8に従って説明する。
【0028】
車両には、原動機として、筒内に直接燃料噴射を行う方式の火花点火式内燃機関である筒内噴射ガソリンエンジン(以下、単にエンジンという)11が搭載されている。このタイプのエンジン11には、筒内噴射による充填効率の増加にともなう出力向上、混合気の成層化による燃費向上等が得られるという特徴がある。このエンジン11は複数の気筒(シリンダ)12を有しており、各シリンダ12内にピストン13が往復動可能に収容されている。各ピストン13は、コネクティングロッド14を介し、エンジン11の出力軸であるクランク軸15に連結されている。各ピストン13の往復運動は、コネクティングロッド14によって回転運動に変換された後、クランク軸15に伝達される。
【0029】
シリンダ12毎の燃焼室16には、エンジン11の外部の空気を燃焼室16に取り込むための吸気通路17が接続されている。また、燃焼室16には、その燃焼室16で生じた排気ガスをエンジン11の外部へ排出するための排気通路18が接続されている。エンジン11には、吸気弁19及び排気弁20がそれぞれ軸方向への往復動可能に設けられている。そして、これらの吸・排気弁19,20の往復動により、吸気通路17及び燃焼室16間、排気通路18及び燃焼室16間がそれぞれ開閉される。
【0030】
吸気通路17にはスロットル弁21が回動可能に設けられている。スロットル弁21にはステップモータ等のアクチュエータ22が駆動連結されている。アクチュエータ22はECU35(これについては後述する)によって制御され、スロットル弁21を回動させる。吸気通路17を流れる空気の量は、スロットル弁21の回動角度に応じて変化する。
【0031】
エンジン11には、電磁式の燃料噴射弁23が各シリンダ12に対応して取付けられている。これらの燃料噴射弁23には、共通の高圧燃料配管であるデリバリパイプ24が接続されており、このデリバリパイプ24内の高圧燃料が各燃料噴射弁23に分配供給される。各燃料噴射弁23は、開閉制御されることにより、対応するシリンダ12内へ高圧燃料を直接噴射する。噴射された燃料は、吸気通路17を通ってシリンダ12内に取り込まれた吸入空気と混ざり合って混合気となる。
【0032】
エンジン11には、点火プラグ25が各シリンダ12に対応して取付けられている。点火プラグ25は、イグナイタ26からの点火信号に基づいて駆動される。点火プラグ25には、点火コイル27から出力される高電圧が印加される。そして、前記混合気は点火プラグ25の火花放電によって着火され、爆発・燃焼する。このときに生じた高温高圧の燃焼ガスによりピストン13が往復動され、クランク軸15が回転されて、エンジン11の駆動力(出力トルク)が得られる。
【0033】
車両には、エンジン11の運転状態を検出するために、各種センサが設けられている。例えば、クランク軸15の近傍には、そのクランク軸15が一定角度回転する毎にパルス状の信号を発生するクランク角センサ31が設けられている。クランク角センサ31の信号は、クランク軸15の回転角度であるクランク角(°CA、なお、CAはcrank angleの略称である。)、単位時間当たりのクランク軸15の回転速度であるエンジン回転速度NEの算出等に用いられる。また、エンジン11には、冷却水の温度(冷却水温THW)を検出する水温センサ32が取付けられている。
【0034】
エンジン11には、その始動時にクランキングによってクランク軸15に回転力を付与するためのスタータ(図示略)が設けられている。スタータは、運転者によるスタータスイッチ33の操作に応じて作動する。すなわち、スタータスイッチ33がスタート位置に操作されている間はスタータが作動される。このスタータが作動しているときにはスタータ信号が出力される。そのほかにも多くのセンサがエンジン11等に取付けられているが、ここでは説明を省略する。
【0035】
前記クランク角センサ31、水温センサ32及びスタータスイッチ33を含む各種センサの検出値に基づき、エンジン11の各部を制御するために、電子制御装置(Electronic Control Unit :ECU)35が設けられている。ECU35はマイクロコンピュータを中心として構成されており、中央処理装置(CPU)が、読出し専用メモリ(ROM)に記憶されている制御プログラムや初期データに従って演算処理を行い、その演算結果に基づいて各種制御を実行する。CPUによる演算結果は、ランダムアクセスメモリ(RAM)において一時的に記憶される。ECU35は、各種センサ31〜33等の検出信号に基づき、エンジン11の運転状態を判定し、その運転状態と、所定の演算式又は所定の制御マップ等とに基づき燃料噴射量、燃料噴射時期、スロットル弁21の開度、点火時期等を算出する。そして、ECU35は、算出結果に基づいてアクチュエータ22、燃料噴射弁23、イグナイタ26等に対し制御信号を出力する。
【0036】
ここで、前記のように構成されたエンジン11では、多量に燃料が噴射される冷間(低温)始動時において、燃焼に寄与しない多量の燃料が、筒内壁面に付着する、いわゆる壁面ウェットとなって燃焼場に存在する。そして、この壁面ウェットが大量のスモーク(黒煙)発生の一因となる。特に、本実施形態のように筒内噴射方式のエンジン11では、吸気通路(吸気ポート)に噴射を行うものに比べ、始動時に筒内壁面に付着する燃料が多いため、スモークがさらに増加する傾向にある。
【0037】
このエンジン11におけるスモーク発生の原因としては、燃料が過剰に噴射され、かつ筒内の燃焼場が高温になることが考えられる。従って、スモークの発生を抑制する対策として、(a)燃料の噴射量を減らすこと、(b)燃焼場が高温になるのを抑制することが考えられる。次に、これらの対策の適否について検討する。
【0038】
(a)燃料噴射量の減量
機関温度が低下した状態でエンジン11が始動されると、噴射燃料の気化する割合が低下することから、混合気を良好に形成するには多量の燃料噴射が不可欠である。この噴射量を減量することは始動性の悪化につながる。従って、噴射量を減らすことはスモークの発生を抑制するという観点からは有効であるが、始動性の悪化という不具合をともなってしまう。
【0039】
(b)高温燃焼場生成の抑制
エンジン11において燃焼速度を低下させるには、急激な熱の発生を抑制することが重要であり、その手段としては、EGR(排気還流)を導入すること、圧縮比を低下させること、点火時期を遅角し燃焼を緩慢にすること、が有効であると考えられる。
【0040】
ここで、始動時においてスモークの発生量が最も多いのは、最初の燃焼時、すなわち初爆時である。しかし、初爆の1つ前の燃焼サイクルには燃焼が行われないため、排気ガスの一部を吸気通路に還流させるEGRでは、最もスモークの発生を抑えたい初爆について、そのスモーク発生を抑制することが困難である。また、初爆以降、エンジン回転速度NEが上昇しファーストアイドルが行われるまでの期間には、燃焼サイクル毎の燃焼とエンジン11内に生ずる負圧とが大きく変化するため、EGR量を精度よく制御することが困難となる。その結果、燃焼状態が不安定となって回転変動を招くおそれがある。
【0041】
また、圧縮比については、始動時のみ圧縮比を機械的に低下させることは困難である。また、可変動弁系を用いて実圧縮比を変更させる制御も、燃焼状態が燃焼サイクル毎に急変する始動時には困難である。しかも、内部EGRの変化も同時にともなうため、上記EGR制御と同様、燃焼変動を招くこととなる。
【0042】
これに対し、点火時期の遅角制御では、燃焼変動の悪化等の問題が少ない。すなわち、クランク角について、圧縮上死点(TDC)後のある期間には、安定した燃焼が行われるため燃焼変動が少ない。実験によると、この期間の終期は、圧縮上死点後約12°CAである。従って、点火時期を遅角した場合、この期間内であれば、出力トルクの確保とスモーク発生の抑制といった背反する要求を満たすことが可能である。第1実施形態では、この点に着目し、機関温度の低い状態での始動時に点火時期を遅角することによりスモークの発生を抑制するようにしている。
【0043】
次に、この点火時期の遅角制御を含むエンジン始動時の制御について説明する。図2のフローチャートは、エンジン始動時に行われる制御のうち、最終点火時期SAfin を算出するためのルーチンを示している。このルーチンは、運転者によるスタータスイッチ33のオン操作にともない開始され、初爆を経てエンジン回転速度NEが所定の値に達するまでの所定期間にのみ実行される。
【0044】
ECU35は、まずステップ110において機関情報を読み込む。この機関情報としては、機関温度もしくはその相当値、エンジン回転速度NE、始動時噴射量q等が挙げられる。機関温度としては、例えば水温センサ32によって検出される冷却水温THWを用いることができる。また、機関温度の相当値としては油温、吸気温等が挙げられる。これらの油温、吸気温等としては、例えば、エンジン制御等のためにセンサによって検出される値を用いることができる。また、専用のセンサを設け、そのセンサの検出値を用いてもよい。
【0045】
始動時噴射量qは、別の算出ルーチンにおいて、機関温度、エンジン回転速度NE等に基づき算出されたものである。ここで、機関温度が低いと燃料の気化が悪化することから、図3に示すように、算出される始動時噴射量qは機関温度(冷却水温THW)が低くなるに従い多くなる。また、エンジン回転速度NEの上昇にともないシリンダ12内の気流の乱れが強まって気化が促進されることから、算出される始動時噴射量qはエンジン回転速度NEが高くなるに従い少なくなる。
【0046】
次に、図2のステップ130において、エンジン回転速度NE及び始動時噴射量qに基づき基本点火時期SAbaseを算出する。この算出には、例えば図4に示すマップを用いる。このマップでは、エンジン回転速度NEが高くなるに従い、また、始動時噴射量qが少なくなるに従い基本点火時期SAbaseが進角されるように、エンジン回転速度NE及び始動時噴射量qと、基本点火時期SAbaseとの関係が規定されている。
【0047】
続いて、図2のステップ140において、前記ステップ110で読み込んだ冷却水温THW及びエンジン回転速度NEに基づき、燃焼場が高温となるのを抑制するための点火時期の補正量SAtempを算出する。この算出に際しては、例えば図5に示すマップを用いる。このマップでは、冷却水温THWが高い領域ではエンジン回転速度NEに関係なく補正量SAtempが「0」に設定されている。これに対し、スモークの発生量が多くなる冷却水温THWの低い領域では、その冷却水温THWが低くなるほど、また、エンジン回転速度NEが低くなるほど補正量SAtempが遅角側の値に設定されている。
【0048】
次に、図2のステップ180において、前記ステップ130,140で求めた基本点火時期SAbase及び補正量SAtempに基づき最終点火時期SAfin を算出する。ここでは、基本点火時期SAbaseに補正量SAtempを加算し、その加算結果を最終点火時期SAfin とする。この最終点火時期SAfin は前述したように、従来の点火時期(圧縮上死点)よりも遅角側の値となる。そして、ステップ180の処理を経た後、このルーチンの一連の処理を一旦終了する。
【0049】
そして、このようにして算出された最終点火時期SAfin に基づいてイグナイタ26が制御される。この制御により、点火プラグ25で火花放電が行われ、混合気が着火されて燃焼する。なお、前述したステップ180での最終点火時期SAfin の算出処理、及び同最終点火時期SAfin に基づくイグナイタ26の制御処理等を行うECU35によって、点火時期制御手段が構成されている。
【0050】
前記始動時制御ルーチンが前記所定期間中実行されることについては前述した通りである。この所定期間が経過すると、遅角補正のない通常の点火時期制御が行われる。
【0051】
従って、第1実施形態によれば以下の効果が得られる。
(1)機関温度が低い場合、クランキング時における点火時期を圧縮上死点以降に遅角補正するようにしている。この遅角補正された点火時期に点火が行われると、遅角補正されない場合に比べて燃焼が緩慢となって燃焼温度の上昇が抑制される。その結果、燃焼場の高温化にともなうスモークの発生を抑制することができる。
【0052】
図6〜図8は、点火時期を圧縮上死点よりも遅角させたことによる効果を示している。図6中、破線で示すように、最終点火時期SAfin が冷却水温THWに関係なく圧縮上死点(TDC)に設定されていると(従来技術に相当)、筒内圧が最も高いときに点火が行われることになる。そのため、燃焼場は冷却水温THWに関係なく高温となる。冷却水温THWが高い場合(図7の一点鎖線参照)にも、低い場合(図7の破線参照)にも、単位クランク角当たりの熱発生量である熱発生率が圧縮上死点(TDC)後短期間で高い値まで急激に上昇する。このように冷却水温THWにかかわらず高い急激な熱発生をともなうため、燃焼場が高温になる。よって、冷却水温THWが低い状態でのエンジン始動時には、冷却水温THWが低くなるに従って噴射量が増加し、筒内に存在する過剰な燃料が増加することから、図8において破線で示すようにスモークの濃度が高くなる。
【0053】
これに対し、冷却水温THWの低下にともない点火時期を圧縮上死点以降に遅角する第1実施形態では、図7において実線で示すように燃焼が緩慢となって(燃焼がゆっくり行われて)燃焼温度の上昇が抑制され、図8において実線で示すようにスモークの濃度が低下する。
【0054】
なお、点火時期を遅角補正する際の懸念事項として、燃焼が緩慢になることで出力トルクが低下し、始動性が悪化して回転の吹き上がりが悪くなることが考えられる。
【0055】
しかし、実験によると、例えば初爆に関しては、圧縮上死点より約12°CA遅角して点火を行っても出力トルクの低下がほとんど見られず、圧縮上死点で点火した場合と同等の始動性を確保できることがわかった。その理由としては以下のことが考えられる。点火時期を遅角することで、燃料が噴射されてから点火されるまでのインターバルが長くなり、燃料の気化時間が長くなる。このことにより、圧縮上死点で点火する場合に比べ、同圧縮上死点よりも遅角して点火した方が、混合気が良好に形成される。従って、点火時期の遅角にともない燃焼が緩慢となるもののトータルの熱発生量が増加し、結果として出力トルクを確保できることとなる。このように、クランク角について、ある範囲内で点火時期を遅角する限り、始動性を確保しつつスモーク低減を図ることができる。
【0056】
(2)本実施形態のエンジン11は筒内噴射方式のエンジンであるが、このタイプでは、吸気通路(吸気ポート)に噴射を行うタイプのエンジンに比べ、始動時に筒内壁面に付着する燃料が多いため、スモークの発生量がさらに増加する傾向にある。従って、この筒内噴射方式のエンジン11で、機関温度が低い場合に、クランキング時における点火時期を圧縮上死点以降に遅角補正することにより、スモークの発生を抑制する点について、特に大きな効果を得ることができる。
【0057】
(第2実施形態)
次に、本発明を具体化した第2実施形態について、図1及び図9〜図12に従って説明する。第2実施形態は、点火時期が遅角補正されるときにシリンダ12内の混合気に気流を付与する気流制御手段をさらに備えている点において、前記第1実施形態と異なっている。
【0058】
図9は、各シリンダ12における吸・排気弁19,20、吸・排気通路17,18、点火プラグ25の位置関係を示している。各シリンダ12につながる吸気通路17は、同シリンダ12寄りの箇所で2つに分岐されている。分岐された一方の通路内には、気流制御弁41が軸42により回動可能に支持されている。図1において二点鎖線で示すように気流制御弁41には、モータ等のアクチュエータ43が駆動連結されている。この気流制御弁41によりシリンダ12内に気流が付与され、燃焼速度が速められて燃焼が促進される。シリンダ12内の気流は、気流制御弁41が閉じ方向へ回動されるに従って強められる。
【0059】
図10のフローチャートは、ECU35によって実行される始動時制御ルーチンのうち、第1実施形態と異なる処理のみを示している。ECU35は、ステップ180の処理を経た後、ステップ190において気流制御弁41の目標の開度を算出する。この算出に際しては、例えば図11に示すマップを用いる。このマップでは、冷却水温THWが所定値THW1(例えば0℃)以上の温度領域では気流制御弁41の開度が開き側のある値αに設定されている。冷却水温THWが所定値THW1(0℃)未満の温度領域では、気流制御弁41の開度は、冷却水温THWが低くなるに従い気流を強化すべく閉じ側の値に設定されている。そして、ステップ190において、前記ステップ110で読込んだ冷却水温THWに応じた開度を前記マップに基づき算出すると、始動時制御ルーチンの一連の処理を一旦終了する。
【0060】
前記のようにして算出された開度は、別のルーチンにおいて、アクチュエータ43を制御する際の指令値として用いられる。このアクチュエータ43の制御により、気流制御弁41が前記の開度に調整される。従って、冷却水温THWが低くなるに従い最終点火時期SAfin が遅角側の値に設定される(図6参照)が、これに応じて気流制御弁41が閉じられて、シリンダ12内に強い気流が生ずることとなる。なお、前述した気流制御弁41及びアクチュエータ43に加え、前記ステップ190での開度の算出処理及び同開度に基づくアクチュエータ43の制御処理を行うECU35等によって、気流制御手段が構成されている。
【0061】
上記第2実施形態によれば、前述した(1),(2)に加え、次の効果も得られる。
(3)ステップ180での最終点火時期SAfin については、遅角補正量が多いほど燃焼が緩慢となって大きなスモーク低減効果が得られる。しかし、遅角量を多くしすぎ、始動時に点火時期を圧縮上死点よりも所定クランク角(約12°CA)以上遅角させると、燃焼が緩慢になりすぎて出力トルクが低下する場合がある。この低下により、遅角補正を行わない場合と同程度の出力トルクを確保することが困難となったり、燃焼変動(回転変動)が増加したりする等の問題が生ずる懸念がある。図12の一点鎖線は、クランキング時において、最終点火時期SAfin を過度に遅角させた場合(大遅角側点火)の熱発生率について示している。このように遅角補正量を多くして最終点火時期SAfin を大きく遅角すると、同図12の破線で示すように最終点火時期SAfin を適度に遅角させた場合(遅角側点火、第1実施形態に相当)に比べ、燃焼がさらに緩慢となる。
【0062】
これに対し、第2実施形態では、圧縮上死点よりも所定角度(約12°CA)以上遅角補正する場合に燃焼速度を速める手段として、気流制御弁41を閉じ側に制御している。この制御により、シリンダ12内に混合気の乱れを作って気流を強化し混合気の燃焼速度を速め、図12の実線で示すように緩慢になっていた燃焼を速めて、遅角補正を行わない場合と同程度の出力トルクを確保することができる。実験によると、こういった気流制御弁41の開度制御により、圧縮上死点後約20°CAまでであれば、第1実施形態と同様の効果が得られること、すなわち、同程度の出力トルクが得られることがわかった。このように、第2実施形態によると、燃焼場が高温となるのを抑制しつつ出力トルクを確保することができる。
【0063】
(4)冷却水温THWが低くなるに従い遅角補正量が多くされるため、冷却水温THWの低下にともない燃焼速度が遅くなる。これに対し、第2実施形態では、遅角補正量が多くなるほど気流制御弁41を閉じ側に制御している。このため、気流制御弁41による気流付与の程度が、遅角補正量が多くなるほど強められる。このように気流を強めることで燃料の気化を促進するとともに前述した燃焼速度の低下を補い、冷却水温THWにかかわらず、遅角補正を行わない場合と同程度の出力トルクを確保することができる。
【0064】
(第3実施形態)
次に、本発明を具体化した第3実施形態について図13及び図14に従って説明する。第3実施形態は、機関温度に加え、クランキング時のエンジン回転速度(クランキング回転速度)が低下している場合に点火時期をさらに遅角補正している点において、第1実施形態と異なっている。
【0065】
図13のフローチャートは、ECU35によって実行される始動時制御ルーチンのうち、第1実施形態と異なる処理のみを示している。ECU35は、ステップ140の処理を経た後、ステップ150,160,170の処理により、クランキング回転速度低下に対する点火時期の補正量SAcrnkを算出する。詳しくは、ステップ150において、スタータスイッチ33の操作にともない出力されるスタータ信号に基づき、スタータがオンされているかどうかを判定する。すなわち、運転者がエンジン11を始動させようとしてスタータスイッチ33を操作してスタータをオンさせているかどうかを判定する。
【0066】
前記ステップ150の判定条件が満たされている場合には、ステップ160において、補正量SAcrnkを次のようにして算出する。まず、潤滑油の種類、量あるいは異物の混入等による低下がないとした場合のクランキング回転速度(以下、予測回転速度という)NEcrnkbaseを、機関情報に基づき予測する。ここでの機関情報としては、例えば冷却水温THWが挙げられる。この冷却水温THWに代えて、又は加えてバッテリの電圧を用いてもよい。
【0067】
次に、クランク角センサ31によって検出された実際のクランキング回転速度(以下、実回転速度という)NEcrnkと、前記予測回転速度NEcrnkbaseとの比を求める。そして、この比(NEcrnk/NEcrnkbase)と予測回転速度NEcrnkbaseとに基づき補正量SAcrnkを算出する。
【0068】
この算出には、例えば図14に示すマップを用いる。このマップでは、比(NEcrnk/NEcrnkbase)が1以上の場合、すなわち、実回転速度NEcrnkが予測回転速度NEcrnkbase以上の場合には、補正量SAcrnkによる点火時期の遅角補正が不要と考えられることから、その補正量SAcrnkが「0」に設定されている。また、比(NEcrnk/NEcrnkbase)が1よりも小さい場合、すなわち実回転速度NEcrnkが予測回転速度NEcrnkbaseよりも低い場合には、予測回転速度NEcrnkbaseが低くなるほど補正量SAcrnkが遅角側に多くなるように設定されている。そして、ステップ160で前記マップに基づき補正量SAcrnkを算出した後、前述したステップ180へ移行する。
【0069】
なお、クランキングが開始され、初爆後にエンジン回転速度NEが上昇すると、スタータがオフされるため、ステップ150の判定条件が満たされなくなる。この場合には、ステップ170へ移行し、補正量SAcrnkを「0」に設定し、ステップ180へ移行する。従って、スタータオフ後の点火時期補正は、機関温度による補正(補正量SAtempを用いた補正)のみとなる。
【0070】
ステップ180においては、前記ステップ130,140,160,170でそれぞれ求めた基本点火時期SAbase、補正量SAtemp、補正量SAcrnkに基づき最終点火時期SAfin を算出する。例えば、基本点火時期SAbaseに補正量SAtemp,SAcrnkを加算し、その加算結果を最終点火時期SAfin とする。算出された最終点火時期SAfin は、第1実施形態よりもさらに遅角側の値となる。
【0071】
従って、第3実施形態によれば、前述した(1),(2)に加え、次の効果も得られる。
(5)実回転速度NEcrnkは種々の原因によって変化し得る。例えば、実回転速度NEcrnkは、潤滑油の種類、量あるいは異物の混入等により低下する。このように実回転速度NEcrnkが低下した状況では、ある燃焼速度に対してピストン13の移動速度が遅いため、上死点側で燃焼が行われて多くの熱が発生し、燃焼温度が高くなってしまう。すなわち、実回転速度NEcrnkが遅いと燃焼温度が高くなり、スモークの発生量が増加する傾向にある。特に、クランキング時にはエンジン回転速度NEが低いため、少ない回転低下でも燃焼温度が大きく影響を受ける。
【0072】
これに対し、第3実施形態では、実回転速度NEcrnkが低下すると、補正量SAcrnkにより点火時期を遅角補正している。このため、実回転速度NEcrnkが低下した場合にも、燃焼を緩慢にすることにより、燃焼温度が上昇して燃焼場が高温となるのを抑制し、同実回転速度NEcrnkが低下しない場合と同程度にスモークの発生を抑制することができる。
【0073】
(6)また、第1実施形態での冷却水温THWに基づく補正量SAtempに加え、上記の実回転速度NEcrnkの低下に基づく補正量SAcrnkによって基本点火時期SAbaseを補正している。このため、補正量SAtemp単独で基本点火時期SAbaseを補正する場合よりも遅角補正の精度を上げることができる。このことは、冷間始動時のスモーク発生をより効果的に抑制できることにつながる。
【0074】
(7)スタータオン時に、機関情報に基づき予測される予測回転速度NEcrnkbaseと、実回転速度NEcrnkとを比較している。この比較により、実回転速度NEcrnkの低下を確実に検出し、点火時期を遅角補正する必要性の有無を的確に判断することができる。
【0075】
(8)クランキング後には補正量SAcrnkを「0」にすることにより、実回転速度NEcrnkの低下に応じた点火時期の補正を行わないようにしている。このため、クランキング後に点火時期が不要に遅角補正されるのを防止することができる。
【0076】
(第4実施形態)
次に、本発明を具体化した第4実施形態について、図15、図16等に従って説明する。第4実施形態のエンジン11は、1気筒当たり1本の点火プラグ25を有する第1〜第3実施形態(図15(a)参照)とは異なり、図15(b)に示すように、1気筒当たり2本の点火プラグ25a,25bを有している。そして、この相違から、第4実施形態のエンジン11では、各気筒の異なる2箇所で火花放電が行われる。
【0077】
ECU35による始動時制御としては、前述した図2に示すフローチャートに従って始動時の点火時期を遅角することが行われる。ただし、最終点火時期SAfin の算出に用いられる補正量SAtempとして、第1実施形態よりも大きな値が用いられる。
【0078】
ここで、図15(a),(b)には、点火源(点火プラグ25)からの火炎伝播速度が一定であるとした場合において、点火から所定時間が経過するまでの一定期間に火炎が伝播する範囲Rが、点の集まりによって示されている。これらの図15(a),(b)から、2点点火式では1点点火式エンジンに比べ、一定期間における燃焼割合が増加することがわかる。一方、図16は、1点点火を行った場合(二点鎖線参照)及び2点点火を行った場合(実線参照)の各熱発生率を示している。この図16から、2点点火では1点点火に比べ、短期間で高い熱発生をともなった燃焼が行われ、燃焼場が高温になりやすいことがわかる。そこで、この燃焼場の高温化を抑制するために、前述したように補正量SAtempとして大きな値を用いている。そして、2本の点火プラグ25a,25bは、この大きな補正量SAtempを用いて算出した最終点火時期SAfin に従って同時に点火される。
【0079】
従って、第4実施形態によれば、前述した(1),(2)に加え、次の効果も得られる。
(9)冷却水温THWが低いときには、クランキング時における2点の点火時期がともに圧縮上死点以降に設定される。従って、2点点火方式のエンジンであっても、点火時期が圧縮上死点以降に遅角されることで燃焼が緩慢となり、燃焼温度の上昇が抑制される。結果として、第1実施形態と同様に、燃焼場の高温化にともなうスモークの発生を抑制することができる。
【0080】
(10)2点点火では1点点火に比べ、一定期間における燃焼割合が増加し、短期間で高い熱発生をともなった燃焼が行われて燃焼場が高温になりやすい。これに対し、第4実施形態では、1点点火の場合よりも点火時期の遅角補正量を多く設定するようにしている。この設定により、2点点火による燃焼割合増加にともなう熱発生を抑え、第1実施形態と同様にスモークの発生を抑制することができる。
【0081】
(第5実施形態)
次に、本発明を具体化した第5実施形態について図17及び図18に従って説明する。第5実施形態では、2つの点火プラグ25の点火時期について互いに異なる時期に遅角している。換言すると、第5実施形態では、遅角補正後の2つの点火時期について時間差を設けている。
【0082】
ECU35による始動時制御としては、前述した図2に示すフローチャートに従って始動時の点火時期が遅角される。ただし、1点目の点火と2点目の点火とで異なる最終点火時期SAfin が算出される。ここで、1つ目の最終点火時期SAfin については、圧縮上死点よりも大きく遅角させる(大遅角側点火)。このとき燃焼は極めて緩慢となり出力トルクが低下するが、2つ目の最終点火時期SAfin をそれよりも若干遅いタイミングとすることで、燃焼中期の燃焼速度が促進され、出力トルクを確保することが可能となる。
【0083】
従って、第5実施形態によれば、前述した(1),(2),(9),(10)に加え、次の効果も得られる。
(11)2つの点火プラグ25a,25bの点火時期を、圧縮上死点以降の互いに異なる時期に設定している。このため、例えば点火プラグ25aでの1点目の点火にともなう火炎が伝播し、その範囲Rが広がっている途中で、点火プラグ25bでの2点目の点火にともなう火炎が伝播し始める。この伝播による燃焼にともない、図18の実線に示す態様で熱が発生する。前述したように、機関温度が低いときに最終点火時期SAfin を大きく遅角させた場合(大遅角側点火)には、図18中破線で示すように最終点火時期SAfin を適度に遅角させた場合(遅角側点火、第1実施形態に相当)に比べ、燃焼がさらに緩慢となり、同図18中一点鎖線で示すような熱発生となる。これに対し、第5実施形態では、1点目の点火による燃焼初期に2点目の点火にともなう燃焼が始まることで燃焼中期の熱発生を向上させ、燃焼速度を向上させることが可能となる。その結果、前述した第2実施形態と同様に燃焼が安定して行われるようになり、出力トルクを確保しながら燃焼温度を下げてスモークの低減を図ることが可能となる。
【0084】
(第6実施形態)
次に、本発明を具体化した第6実施形態について図19に従って説明する。第6実施形態では、点火遅角の対象となる点火プラグの本数(点火本数)を機関温度(冷却水温THW)に応じて切替えている。
【0085】
図19のフローチャートは、ECU35によって実行される始動時制御ルーチンのうち、第1実施形態と異なる処理のみを示している。ECU35はステップ110の処理を経た後、ステップ120において、冷却水温THWに応じた点火本数を設定する。この設定のために、点火本数を切替える際の機関温度についての判定値βが予め設定されている。この判定値βは、機関温度の低下にともないシリンダ12内の余剰燃料が増加しスモークの発生量が急増するときの値、例えば冷却水温THWを機関温度とした場合には0℃に設定されている。
【0086】
前記ステップ120では、前記ステップ110で読み込んだ機関温度が、前記判定値β以下であるかどうかを判定する。機関温度が判定値β以下の場合には点火本数を1本とし、判定値βよりも高い場合には点火本数を2本とする。ここで設定した本数の点火が点火遅角の対象となる。そして、ステップ120の処理を経た後、前述したステップ130以降の処理を行う。
【0087】
従って、第6実施形態によれば、前述した(1),(2)に加え、次の効果も得られる。
(12)2点点火では1点点火に比べ、一定期間における燃焼割合が増加し、短期間で高い熱発生をともなった燃焼が行われて燃焼場が高温になりやすい。
【0088】
この点、第6実施形態では、冷却水温THWが判定値β以下の場合にはクランキング時における点火が1箇所とされ、かつこのときの点火時期が圧縮上死点以降に設定される。従って、前述した第1実施形態と同様に燃焼が緩慢となる。その結果、燃焼温度の上昇を抑制し、燃焼場の高温化にともなうスモークの発生を抑制することができる。また、冷却水温THWが判定値βよりも高く、少ない量の燃料が噴射される常温始動時には、クランキング時における点火が2箇所とされる。このため、燃焼効率を上げて燃費の向上を図ることができる。
【0089】
なお、本発明は次に示す別の実施形態に具体化することができる。
・気流制御弁41として、図9で示したものとは異なるタイプを用いてもよい。その一例を図20に示す。この気流制御弁41は、各シリンダ12につながる吸気通路17において、2つに分岐された箇所の上流近傍に配置され、軸42により回動可能に支持されている。この気流制御弁41を閉じ側に回動させることにより吸入空気の流れが乱れ、これが分岐部分を通じてシリンダ12内に及ぶ。このため、第2実施形態と同様にシリンダ12内に気流を付与することが可能である。
【0090】
・第2実施形態において、気流制御弁41を閉じ側に作動させて気流を付与する制御を、点火時期を圧縮上死点よりも所定角度(約12°CA)未満遅角させる場合に行ってもよい。こうすると、燃焼速度が速まるため、点火時期の遅角可能範囲を広げ、さらなるスモークの低減と始動性の確保とを図ることができる。また、上記の制御を、エンジン始動時であって、初爆後のエンジン回転速度NEの上昇時に行ってもよい。
【0091】
・第3実施形態において、クランキング後のエンジン回転速度NEの上昇時にも上記のように補正量SAcrnkを用いた点火時期の遅角補正を行ってもよい。
・第3実施形態において、実回転速度NEcrnkと予測回転速度NEcrnkbaseとを比較し、前者が後者よりも低い場合にクランキング回転速度が低下していると判断するようにしてもよい。
【0092】
・第3実施形態では、実回転速度NEcrnkが予測回転速度NEcrnkbaseよりも低い場合、両者の偏差に関係なく、予測回転速度NEcrnkbaseのみに基づいて補正量SAcrnkを算出した。これに関し、実回転速度NEcrnk及び予測回転速度NEcrnkbaseの差も考慮して補正量SAcrnkを算出するようにしてもよい。
【0093】
・第4〜第6実施形態は、一気筒当たり3箇所以上にて火花放電を行う複数点点火方式の内燃機関にも適用可能である。
・(i)機関温度に応じて最終点火時期SAfin を遅角すること(第1実施形態に相当)を必須の要件とする。そして、この要件(i)に以下の(ii)〜(iv)を1つ以上組合わせてもよい。
(ii)気流制御弁41の制御等によりシリンダ12内に気流を付与すること。
(iii )実回転速度NEcrnkの低下にともない最終点火時期SAfin を遅角補正すること。
(iv)複数点火を行うこと。
【0094】
なお、前記(iv)が組合わされた場合には、同時に全部の点火を行うこと、点火時期に時間差を設けること、機関温度に応じて点火本数を切替えることのいずれか1つが選ばれて実行される。
【0095】
・本発明は、筒内噴射方式のガソリンエンジンに限らず、吸気通路(吸気ポート)に燃料を噴射する方式のガソリンエンジンにも適用可能である。
その他、前記各実施形態から把握できる技術的思想について、それらの効果とともに記載する。
【0096】
(A)請求項3に記載の火花点火式内燃機関の始動制御装置において、前記気流制御手段は、吸気通路に設けられた気流制御弁を備え、前記遅角補正量が多くなるほど前記気流制御弁を閉じ側に作動させるものである。
【0097】
上記の構成によれば、気流制御弁の閉じ側への作動により筒内に気流が発生する。そして、気流制御弁の閉じ側への作動量が多くなるに従い気流が強められる。従って、点火時期の遅角補正量が多くなるに従い燃焼が緩慢となるが、そのことによる燃焼速度の低下を気流強化によって補うことができる。
【0098】
(B)請求項1〜3、上記(A)のいずれか1つに記載の火花点火式内燃機関の始動制御装置において、前記火花点火式内燃機関のクランキング回転速度の低下を検出する速度低下検出手段をさらに備え、
前記点火時期制御手段は、前記速度低下検出手段による速度低下の検出に応じて前記点火時期の遅角補正量を多くするものである。
【0099】
この速度低下検出手段は、前記第3実施形態のステップ160(図13参照)において、比(NEcrnk/NEcrnkbase)が1よりも小さいかどうかを判定するECU35によって構成されている。
【0100】
上記の構成によれば、潤滑油の種類、量、異物混入等によりクランキング回転速度が低下し、そのことが速度低下検出手段によって検出されると、点火時期制御手段によって点火時期がさらに遅角補正される。このため、クランキング回転速度の低下により燃焼温度が高くなってスモークが発生する不具合を、前記点火時期の遅角補正によって解消することができる。
【0101】
(C)上記(B)に記載の火花点火式内燃機関の始動制御装置において、前記速度低下検出手段は、前記火花点火式内燃機関の機関情報に基づきクランキング回転速度を予測し、実際のクランキング回転速度が、予測されたクランキング回転速度よりも低いときにクランキング回転速度の低下を検出するものである。
【0102】
上記の構成によれば、速度低下検出手段では、潤滑油の種類、量、異物混入等による低下がないとした場合のクランキング回転速度が、機関情報に基づき予測される。そして、実際のクランキング回転速度と、前記の予測されたクランキング回転速度とを比較している。このように比較することにより、クランキング回転速度低下を確実に検出し、点火時期を遅角補正する必要性の有無を的確に判断することができる。
【0103】
(D)請求項5に記載の火花点火式内燃機関の始動制御装置において、前記点火時期制御手段は、機関温度が低いときには、少なくとも1つの点火についての点火時期を、他の点火についての点火時期と異ならせるものである。
【0104】
上記の構成によれば、例えば所定番目の点火により緩やかに熱が発生している途中で、別の点火により急激に熱を発生させることで、出力トルクを低下させずに燃焼温度を下げてスモークの低減を図ることが可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施形態における始動制御装置の構成を示す略図。
【図2】エンジン始動時に点火時期を遅角制御する手順を示すフローチャート。
【図3】冷却水温THWの低下に従い始動時噴射量qが増量される傾向を示す説明図。
【図4】基本点火時期SAbaseの決定に用いられるマップのマップ構造を示す略図。
【図5】補正量SAtempの決定に用いられるマップのマップ構造を示す略図。
【図6】冷却水温THWの低下に従い最終点火時期SAfin が遅角される傾向を示す説明図。
【図7】点火時期を圧縮上死点とした場合と、それよりも遅角した場合とについて、熱発生率及びクランク角の関係を比較して示す説明図。
【図8】点火時期の遅角補正の有無について、冷却水温THW及びスモーク濃度の関係を比較して示す説明図。
【図9】本発明の第2実施形態について、気流制御弁及びその周辺箇所を示す説明図。
【図10】エンジン始動時の点火時期の遅角制御に加え気流制御弁を閉じ側に制御する手順の一部を示すフローチャート。
【図11】気流制御弁の開度の決定に用いられるマップのマップ構造を示す略図。
【図12】点火時期を遅角補正した場合と、遅角補正に加えて気流制御弁による気流強化を行った場合とについて、熱発生率及びクランク角の関係を比較して示す説明図。
【図13】本発明の第3実施形態について、クランキング回転速度の低下時に点火時期を遅角制御する手順の一部を示すフローチャート。
【図14】補正量SAcrnkの決定に用いられるマップのマップ構造を示す略図。
【図15】本発明の第4実施形態を説明するための図であり、(a)は1点点火式エンジンの燃焼状態を示す説明図であり、(b)は2点点火式エンジンの燃焼状態を示す説明図である。
【図16】1点点火と2点点火とについて、熱発生率及びクランク角の関係を比較して示す説明図。
【図17】本発明の第5実施形態において、圧縮上死点以降の異なる時期に2点点火を行った場合の燃焼状態を示す説明図。
【図18】点火時期を遅角補正した場合、及び圧縮上死点以降の異なる時期に2点点火を行った場合について、熱発生率及びクランク角の関係を比較して示す説明図。
【図19】本発明の第6実施形態において、エンジン始動時に点火本数を切替え制御する手順の一部を示すフローチャート。
【図20】第2実施形態における気流制御弁の別の態様を示す説明図。
【符号の説明】
11…エンジン(内燃機関)、12…シリンダ(気筒)、41…気流制御弁(気流制御手段)、43…アクチュエータ(気流制御手段)、ECU(点火時期制御手段、気流制御手段)、NEcrnk…実回転速度(クランキング回転速度)、NEcrnkbase…予測回転速度(クランキング回転速度)、THW…冷却水温(機関温度)、SAtemp,SAcrnk点補正量、SAbase…基本点火時期、SAfin …最終点火時期。

Claims (7)

  1. 火花点火式内燃機関に適用され、機関温度もしくはそれに相当する機関情報に基づき機関温度が低いときにはクランキング時における点火時期を圧縮上死点以降に遅角補正する点火時期制御手段を備えることを特徴とする火花点火式内燃機関の始動制御装置。
  2. 前記点火時期が遅角補正されるときに筒内の混合気に気流を付与する気流制御手段をさらに備える請求項1に記載の火花点火式内燃機関の始動制御装置。
  3. 前記点火時期制御手段は、機関温度が低いほど前記点火時期の遅角補正量を多くするものであり、前記気流制御手段は、前記遅角補正量が多くなるほど前記混合気の気流を強めるものである請求項2に記載の火花点火式内燃機関の始動制御装置。
  4. 前記点火時期制御手段は、さらに、前記火花点火式内燃機関のクランキング回転速度の低下にともなって前記点火時期の遅角補正量を多くするものである請求項1〜3のいずれか1つに記載の火花点火式内燃機関の始動制御装置。
  5. 前記火花点火式内燃機関は、同一気筒の異なる複数箇所にて火花放電を行う複数点点火方式の内燃機関であり、
    前記点火時期制御手段は、機関温度が低いときにはクランキング時における全点の点火時期を圧縮上死点以降に設定するものである請求項1〜4のいずれか1つに記載の火花点火式内燃機関の始動制御装置。
  6. 前記火花点火式内燃機関は、同一気筒の異なる複数箇所にて火花放電を行う複数点点火方式の内燃機関であり、
    前記点火時期制御手段は、機関温度が低いときにはクランキング時において1点点火とし、かつこのときの点火時期を圧縮上死点以降に設定するものである請求項1〜4のいずれか1つに記載の火花点火式内燃機関の始動制御装置。
  7. 前記火花点火式内燃機関は、筒内に直接燃料噴射を行う筒内噴射方式の内燃機関である請求項1〜6のいずれか1つに記載の火花点火式内燃機関の始動制御装置。
JP2002209786A 2002-07-18 2002-07-18 火花点火式内燃機関の始動制御装置 Expired - Fee Related JP4220736B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209786A JP4220736B2 (ja) 2002-07-18 2002-07-18 火花点火式内燃機関の始動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209786A JP4220736B2 (ja) 2002-07-18 2002-07-18 火花点火式内燃機関の始動制御装置

Publications (2)

Publication Number Publication Date
JP2004052634A true JP2004052634A (ja) 2004-02-19
JP4220736B2 JP4220736B2 (ja) 2009-02-04

Family

ID=31933545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209786A Expired - Fee Related JP4220736B2 (ja) 2002-07-18 2002-07-18 火花点火式内燃機関の始動制御装置

Country Status (1)

Country Link
JP (1) JP4220736B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283571A (ja) * 2005-03-31 2006-10-19 Mazda Motor Corp 車両用4サイクル火花点火式エンジンの制御装置
JP2008018752A (ja) * 2006-07-10 2008-01-31 Nissan Motor Co Ltd 車両の制御装置
JP2009144611A (ja) * 2007-12-14 2009-07-02 Mitsubishi Motors Corp 筒内噴射型内燃機関の燃焼制御装置
JP2019078268A (ja) * 2019-01-10 2019-05-23 ダイハツ工業株式会社 内燃機関の制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283571A (ja) * 2005-03-31 2006-10-19 Mazda Motor Corp 車両用4サイクル火花点火式エンジンの制御装置
JP4529764B2 (ja) * 2005-03-31 2010-08-25 マツダ株式会社 車両用4サイクル火花点火式エンジンの制御装置
JP2008018752A (ja) * 2006-07-10 2008-01-31 Nissan Motor Co Ltd 車両の制御装置
JP2009144611A (ja) * 2007-12-14 2009-07-02 Mitsubishi Motors Corp 筒内噴射型内燃機関の燃焼制御装置
JP2019078268A (ja) * 2019-01-10 2019-05-23 ダイハツ工業株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JP4220736B2 (ja) 2009-02-04

Similar Documents

Publication Publication Date Title
US8141533B2 (en) Control apparatus and method for internal combustion engine
US9133811B2 (en) Method and apparatus for controlling start-up of internal combustion engine
US8078387B2 (en) Control apparatus for spark-ignition engine
JP2002130015A (ja) 筒内噴射式内燃機関の燃料噴射制御装置
JP2006322427A (ja) 過給機付き内燃機関の制御装置
JP2002339780A (ja) 筒内直接噴射式エンジンの制御装置
US20130024093A1 (en) Apparatus for and method of controlling internal combustion engine
JP6350972B2 (ja) エンジンの制御装置
JP4605512B2 (ja) 内燃機関の制御装置
JP3186589B2 (ja) 筒内噴射型火花点火式内燃機関の点火時期制御装置
US9890722B2 (en) Fuel injection control method for internal combustion engine
JP2005201186A (ja) 直噴火花点火式内燃機関の制御装置
JP3292707B2 (ja) 内燃機関のバルブタイミング制御装置
WO2016006438A1 (ja) 内燃機関の制御装置
JP5593132B2 (ja) 内燃機関の制御装置
JP4220736B2 (ja) 火花点火式内燃機関の始動制御装置
JP2005146908A (ja) 内燃機関の振動低減制御装置
JP2010065539A (ja) 火花点火式直噴エンジンの制御方法およびその装置
JP2006132399A (ja) 過給機付エンジンの制御装置および制御方法
JP6191828B2 (ja) エンジンの始動制御装置
JP7359221B2 (ja) 車両用内燃機関の触媒暖機運転制御方法および触媒暖機運転制御装置
JP2009133204A (ja) 内燃機関の制御装置
JP6213740B2 (ja) エンジンの始動制御装置
JP6103254B2 (ja) エンジンの始動制御装置
JP6213741B2 (ja) エンジンの始動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees